
Covariance estimation via Fourier series and application to
groundwater quality indicators

P. García-Soidán1∗, R. Menezes2, and O. Rubiños3

1 Dept. of Statistics and Operations Research, University of Vigo, Spain; pgarcia@uvigo.es
2 Dept. of Mathematics and Applications, University of Minho, Portugal; rmenezes@mct.uminho.pt
3 Dept. of Signal Theory and Communications, University of Vigo, Spain; oscar@com.uvigo.es
∗Corresponding author

Abstract. The Fourier series approach is a useful tool for approximation of curves in a variety of
settings. In this paper we will apply this technique to estimate the covariance function of a second-
order stationary random process. Furthermore, an expansion may be constructed for approximation of
the covariance estimator such that it satisfies the positive-definiteness property and, therefore, is valid
for prediction using the kriging techniques. We also suggest a procedure for an optimal choice of the
truncation point, which specifies the number of terms to be used in the expansion. Several studies have
been conducted to illustrate the performance of this approach, for both simulated and real data.
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1 Introduction

The need to reconstruct a phenomenon over the whole observation region from a finite set of data can be
found in a broad spectrum of areas, such as geostatistics, hydrology, atmospheric science, etc. The use
of kriging for this purpose requires estimation of the variogram or the covariance function, depending
on whether intrinsic or second-order stationarity is assumed. The class of intrinsic stationary random
processes is more general than that of second-order stationary random processes and the variogram does
not require estimation of the constant mean of the process, unlike the covariance function. Despite the
latter arguments, an important number of practitioners prefer the use of the covariance function and the
reason for this might be related to their unfamiliarity with the way of characterizing dependence through
the variogram. The current paper is focussed on the covariance function estimation, although a similar
approach can be proposed for estimation of the variogram.
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Several procedures have been suggested in the literature for estimation of the covariance function.
See [8] for a review of several approaches, which are put into comparison in a numerical study covering
different spatial dependence situations. In a first step, the nonparametric estimators may be used for this
purpose, such as the empirical covariance [1] or the kernel-type estimator [6]. Nevertheless, they cannot
be used in kriging since the positive-definiteness condition typically fails and, consequently, they might
originate a negative mean squared prediction error. We can cope with this problem by choosing a valid
parametric family and then selecting that covariance function in the family considered which best may
fit the data. An additional option in the isotropic setting is proposed in [9], for a broad class of models
dependent on a large number of parameters. Application of this approach requires selection of nodes,
which could be taken to be equispaced or as the roots of some Bessel functions, as suggested in [5]; the
latter method produces an orthogonal discretization so that a very small number of nodes is necessary
to obtain a good nonparametric fit. Another alternative to obtain a valid estimator, which can be applied
under anisotropy, is that of first truncating and then inverting the Fourier transform of a given estimator,
given in [7], although selection of the truncation term is an open issue.

In this paper we develop a procedure to obtain a valid covariance estimator by using an approxima-
tion obtained from the Fourier series. This technique has been applied in different settings, such as those
concerning the density or the regression estimation, as proposed in [3]. The underlying idea is based
on approximating the unknown covariance function by a finite expansion, which involves two issues:
specification of the truncation point and estimation of the Fourier coefficients. To ensure that the approx-
imating partial sum is positive-definite, only those terms corresponding to positive coefficients will be
included.

To estimate the Fourier coefficients in the expansion, it is necessary to choose a prior covariance
estimator, referred to as the pilot estimator. This may be either supplied to carry out a specific study or
may be selected from the different alternatives existing in the geostatistics literature. In this respect, our
approach may be viewed as a procedure for transformation of a given covariance estimator into a valid
one.

The choice of a smoothing parameter is necessary to specify the number of terms to be used in the
expansion; we will refer to it as the cutoff or the truncation point. Different methods have been proposed
for the latter selection with the aim of overcoming inconsistency of the resulting estimators, as suggested
in [2]. In our study, an explicit procedure for choice of the truncation point is provided, based on the
minimization of the corresponding mean integrated squared error.

Simulation studies, for simulated and real data, were conducted in order to assess the quality of our
valid covariance estimator and to compare it with other currently existing estimators. In particular, we
focus our analysis on the water quality indicators collected by the Portuguese Hydrological Resources
Management System in the south litoral coast of Esposende, during 2008 and 2009. This area was re-
cently classified as a Vulnerable Area, making it urgent to achieve a better understanding of groundwater
quality over time. The data analysis requires the application of geostatistical tools to model the spatial
distribution of physic-chemical variables, such as nitrates, in distinct temporal levels. This work aims to
apply the proposed valid covariogram estimator to nitrates data, allowing to build groundwater quality
prediction maps.
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2 Main results

Let {Z(s) : s∈D⊂ IRd} be a second-order stationary random process with covariance functionC, where
D is a bounded observation region. Denote byZ(s1), ..., Z(sn), n data collected at the respective spatial
locationss1, ...,sn ∈D. Our aim will be to estimateC(t), for eacht ∈ A = {s−s′ : s,s′ ∈D}, and we will
address this problem by approximating the covariance function through a Fourier expansion.

We will assume, without loss of generality, thatA is a bounded rectangle,A = I1× ...× Id, where
I j = [0,b j ] andb j > 0, for all j. Then, there exists a complete orthonormal set onA, which will be
designed as{ψi : i ∈ IN}. To check the latter, it is enough to take into account that:

• ψi1,...,id = ψi1,b1 · ... ·ψid,bd is a complete orthornormal basis onA, provided that{ψi j ,b j : i j ∈ IN} is
a complete orthonormal system onI j = [0,b j ], for eachj.

• The unidimensional cosine systemψi,b(x) = ei cos(iπxb−1) is a complete orthonormal basis on
I = [0,b], whereei equalsb−1/2 or (0.5b)−1/2, for i = 0 or i > 0, respectively.

• A bijection can be established betweenINd andIN.

SinceC is a bounded and positive-definite function, it can be approximated by:

Cm(t) = ∑
i≤m

θC,iψi(t), for all t ∈ A

with θC,i = 〈C,ψi〉. Hereaftermwill be called the cutoff or the truncation point.

From the foregoing definition ofCm, it is clear that approximating the covariance function by using
a Fourier series requires:

• Computing coefficientsθC,i , dependent on the theoretical covariance function.

• Selecting the cutoffm, which will specify the number of terms in the expansion.

To compute the coefficients, a pilot estimatorĈ of the covariance function is needed. This esti-
mator must satisfy thatsupt∈A

∣∣Bias
[
Ĉ(t)

]∣∣ n→∞−→ 0 andsupt∈AVar
[
Ĉ(t)

] n→∞−→ 0, which would guarantee
consistency of the resulting estimator, namely:

C̃1,m(t) = ∑
i≤m

θĈ,iψi(t) (1)

whereθĈ,i = 〈Ĉ,ψi〉.

For instance, the kernel covariance estimator, whose properties are derived in [4], can be taken as the
pilot covariance and is given by:

Ĉh(t) =
∑ j,k K

(
t−(sj−sk)

h

)
(Z(sj)− Z̄)(Z(sk)− Z̄)

∑ j,k K

(
t−(sj−sk)

h

)
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whereZ̄ = n−1 ∑n
j=1Z(sj), K denotes ad-variate kernel function andh = hn is the bandwidth parameter,

with h→ 0 asn tends to∞.

Estimator (1) is not necessarily positive-definite, although we can overcome this problem by restrict-
ing our selection of the terms in the expansion to those involving positive Fourier coefficientsθĈ,i . This
leads to the following approximating function:

C̃2,m(t) = ∑
i≤m

wiθĈ,iψi(t) (2)

with wi = I{θĈ,i>0}. The positive-definiteness of (2) can be easily checked.

With regard to the truncation pointm, necessary for implementation of the covariance estimators (1)
and (2), we propose to proceed by minimizing:

MISE
[
C̃j,m,C

]
= ∑

i≤m

pi

(
Var

[
θĈ,i

]
+Bias

[
θĈ,i

]2
−θ2

C,i

)
+
Z

A
C(t)2dt = M j(m)+

Z

A
C(s)2ds

with pi equaling 1 orwi , for j = 1 or j = 2, respectively.

Minimization of functionM j , equivalent to that ofMISE[C̃j,m,C], will provide a key idea for selection
of the cutoff in each case, where the pilot covariance can be again used for approximation of the unknown
terms inM j(m).
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