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Abstract. The local singular behavior displayed by the spectral density of long-range correlated data
motivates us to consider the wavelet transform, in the spectral domain, for parameter estimation of
spatiotemporal long-range dependence. Two spectral scalogram-based functional estimation algo-
rithms are proposed. A simulation study is developed to investigate the bias and efficiency of the
computational methods proposed for functional parameter estimation of strong-dependent processes.
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1 Introduction

Different approaches have been introduced in the statistical analysis of long-range correlated systems.
Fractional time series [2] and regression [9] models provide a flexible framework to represent strong-
dependence in data. The theory of self-similar and fractal fields also provides a suitable context for the
introduction of spatiotemporal long-range dependence models (see [10]).

Estimation methods for long-range dependence parameters have been widely studied within the the-
ory of fractional time series. Semiparametric procedures based on the periodogram have been formu-
lated, for example, in [2], and [12]. Spectral-based approaches have been also proposed in the spatial
and spatiotemporal contexts in [5],[8],[4],[6],[7] and [11]. In all the cited spectral-based approaches, the
main difficulty relies on the lost of information caused by the truncation of the covariance (heavy) tails,
when the discrete Fourier transform of the data is performed. This difficulty is overcome when measure-
ments are produced in the spectral domain, e.g., measurements from spectral devices (spectrometers and
spectroradiometers). In this paper, we refer to a special class of multispectral imaging systems, gener-
ated from fractal spectral Gaussian processes directly connected with strong-dependence spatiotemporal
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random fields. Specifically, the following spectral image sequence model is considered:

X̂(dω,dλ) = r̂(ω,λ)[ fY (ω,λ)]1/2ε(ω,λ)dωdλ, (1)

where ε(ω,λ) denotes spectral white noise on Rd+1,

r̂(ω,λ) = C1|ω|−2νΠd
i=1|λi|−2βi , ν ∈ (0,1/2), βi ∈ (0,1/2), i = 1, . . . ,d,

and fY (ω,λ) satisfies the following conditions:

Condition 1. | fY (ω,λ)| →C1, when ω→ 0 and λi → 0, for i = 1, . . . ,d, with C1 being a positive
constant.

Condition 2. | fY (ω,λ)|
(1+|(ω,λ)|2)−ν̃−∑d

i=1 β̃i
→C2, when ω → ∞ and λi → ∞, for i = 1, . . . ,d, where C2 is a

positive constant, and (ν̃, β̃1, . . . , β̃d) ∈ (1/2,∞)d+1, and (ν,β1, . . . ,βd) ∈ (0,1/2)d+1.

2 Results and Methodology

The continuous discrete wavelet transform of the spectral random field r̂(ω,λ)[ fY (ω,λ)]1/2ε(ω,λ) is
performed, obtaining the wavelet-spectral random field

ŴX j(b) =
∫

R+×Rd
Ψ j,b(ω,λ)r̂(ω,λ)[ fY (ω,λ)]1/2ε(ω,λ)dωdλ,

where we have considered a compactly supported wavelet basis {Ψ j,b, b ∈ L j, j ∈ Z} with support
D = [−ε,ε]d+1, ε <<, ε∼ 0.

Since, under Conditions 1 and 2, the local behavior of the spectral random field X̂ is given by

X̂(dω,dλ)∼ r̂(ω,λ)ε(ω,λ)dωdλ, ‖(ω,λ)‖→ 0,

the weak-sense second-order moments of the square of the wavelet-spectral random field will display the
asymptotic behavior given in the proposition below.

Proposition 1 Let ŴX j(·) be the wavelet-spectral random field defined above. For every absolutely
integrable function g, the following limit holds:

E
[
[ŴX ]2j(g)−µ[ŴX ]2j(g)

]2
→ 0, j → ∞,

where [ŴX ]2j(g) denotes the generalized random field associated with [ŴX ]2j applied to function g, and
µ[ŴX ]2j(g) denotes its mean applied to the same test function g.

The proof of this result follows from the local self-similar behavior of the higher order spectra of spa-
tiotemporal random field X , associated with spectral process X̂ , which is collected by the wavelet trans-
form at high resolution levels. This result provides the weak-consistency of the functional estimators
proposed.
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2.1 Methodology

From equation (1), when |ω̃| → 0,

∫

ε(ω̃)
C1|ω|−2ν

d

∏
i=1
|λ0

i |−2βiψ j:k(ω)dω∼ 2− j(−2ν+1)C(ψ,λ0).

Here, C(ψ,λ0) represents a constant depending on the wavelet basis chosen and on the fixed spatial fre-
quency value λ0. A similar behavior is displayed for |̃λi| → 0, i = 1, . . . ,d (∼ 2− j(−2βi+1)

C(ψ,ω0, . . . ,λ0
i−1,λ

0
i+1, . . . ,λ

0
d), for C(ψ,ω0, . . . ,λ0

i−1,λ
0
i+1, . . . ,λ

0
d) being a constant depending on the

wavelet basis chosen, and the fixed frequency values ω0, . . . ,λ0
i−1, λ0

i+1, . . . , λ0
d in a neighborhood of

zero frequency). The long-range dependence parameter estimates are then computed by applying linear
regression, from the square of the directional log-wavelet transform (at high resolution levels) of process
X̂ evaluated at different fixed spectral marginal values in a neighborhood of zero-frequency. Specifically,
two functional estimation algorithms are designed, which respectively correspond to averaging and non-
averaging the square of directional spectral curves in a zero-frequency neighborhood sequence (before
applying the one-dimensional wavelet transform to such spectral curves, see, [3]).

3 Simulations

Spatiotemporal process X is defined as a Gaussian stationary process with spectral density given by

fX1(ω,λ1,λ2) =

[
1

(1+ |ω|2)
α1
2

][
1

(1+ |λ1|2)
α2
2

][
1

(1+ |λ2|2)
α3
2

]

× |ω|−2ν|λ1|−2β1 |λ2|−2β2 , (2)

with αi ∈ (0,1), i = 1,2,3. Functional spectral data are constructed from 256× 256× 256 frequency
points belonging to the interval (ω,λ1,λ2) ∈ [−127.5∗10−8,127.5∗10−8]3, with discretization step size
10−8. The simulation study is developed considering the following two structural parameter scenarios

Case I: ν = 0.3, β1 = 0.375, β2 = 0.45, α1 = 0.2, α2 = 0.3, α3 = 0.4,
Case II: ν = 0.15, β1 = 0.2, β2 = 0.25, α1 = 0.2, α2 = 0.3, α3 = 0.4.

The results obtained after implementation of the above-referred two functional estimation algo-
rithms are displayed in Figures 1 and 2, where the three (temporal and spatial) long-range depen-
dence parameter estimate sequences are represented. The spectral curve sample sizes considered are
n = 1,4,9,16,25,36,49,64,81,100, at temporal and spatial directions. Specifically, Figures 1 and 2
show ν̂, β̂1, and β̂2 values on top and standard deviations on bottom (blue, red and black line, respec-
tively). Parameter values for ν, β1, β2 are displayed with dotted blue, red and black line, respectively.
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Figure 1: Functional estimates and real parameter values for case I (left) and case II (right).
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Figure 2: Standard deviations of ν̂, β̂1, and β̂2 estimators for case I and II.
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