

Measuring dependence of a space-time ARMAX storage model

Fonseca, C.¹, Martins, A.P.*, Pereira, L.² and Ferreira, H.²

¹ UDI, Instituto Politécnico da Guarda, Portugal; cfonseca@ipg.pt

² Departamento de Matemática, Universidade da Beira Interior, Portugal; lpereira@ubi.pt, helena.ferreira@ubi.pt

* Departamento de Matemática, Universidade da Beira Interior, Portugal; amartins@ubi.pt

Abstract. We introduce a space-time ARMAX storage model, analogous to the solar thermal energy model considered in Haslett [3] to describe the temperature level in a tank used for the storage of solar energy. For this model we analyze stationarity, max-stability and compute some spatial dependence coefficients.

Keywords. Spatial extreme events; Spatial Dependence Coefficients; Space-time ARMAX model.

1 Introduction

In multivariate and spatial problems attention has often focused on obtaining dependence measures that capture the main characteristics of the dependence structure. For a max-stable stationary random field $\mathbf{X} = \{X_t\}_{t \in \mathbb{Z}^2}$, with marginal distributions *F*, the extremal coefficient, $\varepsilon(\mathbf{i}, \mathbf{j})$, defined as

$$P(\max(X_{\mathbf{i}}, X_{\mathbf{j}}) \leq x) = F^{\varepsilon(\mathbf{i}, \mathbf{j})}(x), x \in \mathbb{R},$$

provides information about pairwise extremal dependence of X (see Schlather and Tawn [4]). This coefficient is related to the upper tail dependence parameter, defined in Sibuya [5] as

$$\lambda(\mathbf{i},\mathbf{j}) = \lim_{x \to x^F} P(X_{\mathbf{i}} > x \mid X_{\mathbf{j}} > x),$$

where x_F denotes the upper endpoint of *F*, through the relation $\lambda(\mathbf{i}, \mathbf{j}) = 2 - \varepsilon(\mathbf{i}, \mathbf{j})$.

Unlike a Gaussian process, the dependence structure of a max-stable process is not completely characterized by its pairwise dependence structure. To overcome this problem Schlather and Tawn [4] extend the definition of the extremal coefficient to a multivariate setting of any dimension, as follows

$$P\left(\bigvee_{\mathbf{i}\in\mathbf{A}}X_{\mathbf{i}}\leq x\right)=F^{\varepsilon(\mathbf{A})}(x),\quad x\in\mathbb{R},\ \mathbf{A}\subseteq\mathbb{Z}^{2}.$$

This coefficient measures the extremal dependence between the variables indexed by set A and its simple interpretation as the effective number of independent variables, in the set A, from which the maximum is drawn has led to its use as a dependence measure in a wide range of practical applications.

When the spatial process **X** is isotropic the pairwise extremal dependence measures depend only on the distance $\|\mathbf{i} - \mathbf{j}\|$ between the locations \mathbf{i} and \mathbf{j} considered. Nevertheless, in general, we don't have isotropy and thus need to evaluate the spatial dependence in the several directions of \mathbb{Z}^2 . To attain this we propose a matrix of bivariate tail coefficients defined as

$$\Lambda(T_s^m(\mathbf{i}),\mathbf{i}) = \begin{bmatrix} \lambda(s_4^m(\mathbf{i}),\mathbf{i}) & \lambda(s_3^m(\mathbf{i}),\mathbf{i}) & \lambda(s_2^m(\mathbf{i}),\mathbf{i}) \\ \lambda(s_5^m(\mathbf{i}),\mathbf{i}) & \lambda(s_0^m(\mathbf{i}),\mathbf{i}) & \lambda(s_1^k(\mathbf{i}),\mathbf{i}) \\ \lambda(s_6^m(\mathbf{i}),\mathbf{i}) & \lambda(s_7^m(\mathbf{i}),\mathbf{i}) & \lambda(s_8^m(\mathbf{i}),\mathbf{i}) \end{bmatrix}$$

where for each $\mathbf{i} = (i_1, i_2) \in \mathbb{Z}^2$, $s_j(\mathbf{i}), j = 1, 2, ..., 8$, denote the neighbors of \mathbf{i} as follows

$$s_1(\mathbf{i}) = (i_1 + 1, i_2), \quad s_2(\mathbf{i}) = \mathbf{i} + \mathbf{1}, \quad s_3(\mathbf{i}) = (i_1, i_2 + 1), \quad s_4(\mathbf{i}) = (i_1 - 1, i_2 + 1),$$

$$s_5(\mathbf{i}) = (i_1 - 1, i_2), \quad s_6(\mathbf{i}) = \mathbf{i} - \mathbf{1}, \quad s_7(\mathbf{i}) = (i_1, i_2 - 1), \quad s_8(\mathbf{i}) = (i_1 + 1, i_2 - 1),$$

 $s_j^m(\mathbf{i}) = (s_j \circ \ldots \circ s_j)(\mathbf{i}), k \text{ times with } m \ge 1, s_j^0(\mathbf{i}) = \mathbf{i}, j = 1, 2, \dots, 8, \text{ and } T_s^m(\mathbf{i}) = \{s_j^m(\mathbf{i}) : j = 1, \dots, 8\}.$

Note that, for each $\mathbf{i} \in \mathbb{Z}^2$, $s_0^m(\mathbf{i}) = \mathbf{i}$, $\lambda(\mathbf{i}, \mathbf{i}) = 1$ and, for m > 1, we have

$$\lambda(s_j^m(\mathbf{i}),\mathbf{i}) = \lambda(s_t^{m-1}(\mathbf{i}),\mathbf{i}) + \varepsilon(s_t^{m-1}(\mathbf{i}),\mathbf{i}) - \varepsilon(s_j^m(\mathbf{i}),\mathbf{i}), t, j \in \{1,2,\ldots,8\}.$$

In the next section we introduce a space-time ARMAX storage model for which we analyze stationarity, max-stability and compute some spatial dependence coefficients.

2 A space-time ARMAX storage model

In Haslett [3] the solar thermal energy model

$$X_j = \beta X_{j-1} \lor (\alpha \beta X_{j-1} + Y_j), \quad j \ge 1, \quad 0 \le \alpha \le 1, \quad 0 < \beta < 1,$$

was introduced to describe the temperature level in a tank used for the storage of solar energy. This model was further investigated by Daley and Haslett [2], among others. Alpuim [1] studied its extremal behavior for the particular case $\alpha = 0$. We will next present a study of an analogous space-time storage model.

Let $\mathbf{X}^{(0)} = \{X_{(i,0)}\}_{i\geq 1}$ and $\mathbf{Y}^{(j)} = \{Y_{(i,j)}\}_{i\geq 1}$, $j \in \mathbb{N}$, denote independent and stationary random sequences, with, respectively, common univariate marginal distributions H and G, and consider for each subsets $\{i_1, \ldots, i_p\} \in \mathbb{N}$ and $\{j_1, \ldots, j_p\} \in \mathbb{N}$,

 $H_{(i_1,0),\ldots,(i_p,0)}(x_1,\ldots,x_p) = P(X_{(i_1,0)} \le x_1,\ldots,X_{(i_p,0)} \le x_p), \quad (x_1,\ldots,x_p) \in \mathbb{R}^p,$

and

$$G_{(i_1,j_1),\dots,(i_p,j_p)}(x_1,\dots,x_p) = P(Y_{(i_1,j_1)} \le x_1,\dots,Y_{(i_p,j_p)} \le x_p), \quad (x_1,\dots,x_p) \in \mathbb{R}^p$$

We will assume that for each $j \in \mathbb{N}$ the random sequences $\mathbf{Y}^{(j)}$, $j \in \mathbb{N}$, are identically distributed.

Considering the stationary random sequence $\mathbf{X}^{(0)}$ and the stationary random field $\mathbf{Y} = \{Y_{(i,j)}\}_{(i,j)\in \mathbb{N}^2}$ we can now define a max-autoregressive random field through the relation

$$X_{(i,j)} = k \left(X_{(i,j-1)} \lor Y_{(i,j)} \right) = k^j X_{(i,0)} \lor \bigvee_{t=1}^{j} k^{j-t+1} Y_{(i,t)}, \quad (i,j) \in \mathbb{N}^2, \quad 0 < k < 1.$$

For any locations $\mathbf{r}_1 = (i_1, j_1), \dots, \mathbf{r}_p = (i_p, j_p)$ on \mathbb{N}^2 , and $(x_1, \dots, x_p) \in \mathbb{R}^p$ we have

$$H_{\mathbf{r}_{1},...,\mathbf{r}_{p}}(x_{1},...,x_{p}) = H_{\mathbf{r}_{1}+(0,-1),...,\mathbf{r}_{p}+(0,-1)}\left(\frac{x_{1}}{k},...,\frac{x_{p}}{k}\right) \times G_{\mathbf{r}_{1},...,\mathbf{r}_{p}}\left(\frac{x_{1}}{k},...,\frac{x_{p}}{k}\right).$$

If we consider $i_1 = \ldots = i_p = i \ge 1$ fixed, we find the well know Markovian sequence studied in Alpuim [1], for which was shown that for $0 = j_0 < j_1 < \ldots < j_p$

$$H_{(i,j_1),\dots,(i,j_p)}(x_1,\dots,x_p) = H\left(\min_{1 \le s \le p} \frac{x_s}{k^{j_s}}\right) \prod_{t=1}^p \prod_{s=j_{(t-1)}}^{j_t-1} G\left(\min_{t \le m \le p} \frac{x_m}{k^{j_m-s}}\right).$$
(1)

In what follows we shall consider locations $\mathbf{r}_1 = (i_1, j_1), \dots, \mathbf{r}_p = (i_p, j_p)$, on \mathbb{N}^2 , such that $i_{m_1} \neq i_{m_2}$, $m_1, m_2 \in \{1, \dots, p\}$.

The next results give necessary and sufficient conditions for \mathbf{X} to be a stationary max-stable random field.

Proposition 2.1 X is a stationary random field if and only if, for any locations $\mathbf{r}_1, \ldots, \mathbf{r}_p \in \mathbb{N}^2$ and $(x_1, \ldots, x_p) \in \mathbb{R}^p$,

$$H_{\mathbf{r}_1,\ldots,\mathbf{r}_p}(x_1,\ldots,x_p) = H_{\mathbf{r}_1,\ldots,\mathbf{r}_p}\left(\frac{x_1}{k},\ldots,\frac{x_p}{k}\right) \times G_{\mathbf{r}_1,\ldots,\mathbf{r}_p}\left(\frac{x_1}{k},\ldots,\frac{x_p}{k}\right).$$

If the finite dimension distributions of the sequences $\mathbf{Y}^{(j)}$, $j \ge 1$ associated to the the random field of innovations \mathbf{Y} are multivariate extreme value distributions then \mathbf{Y} is a max-stable random field.

Proposition 2.2 The stationary random field \mathbf{X} is max-stable if and only if \mathbf{Y} is a max-stable random field.

The extremal coefficients of the finite dimension distributions of X and Y coincide as shown in the next result.

Proposition 2.3 If both **X** and **Y** are stationary max-stable random fields then the extremal coefficients of their finite dimension distributions coincide.

From this result we know that $\varepsilon^{\mathbf{X}}({\mathbf{r}_1, \dots, \mathbf{r}_p}) = \varepsilon^{\mathbf{Y}}({\mathbf{r}_1, \dots, \mathbf{r}_p})$ for any locations $\mathbf{r}_1 = (i_1, j_1), \dots, \mathbf{r}_p = (i_p, j_p)$, on \mathbb{N}^2 , such that $i_{m_1} \neq i_{m_2}, m_1, m_2 \in \{1, \dots, p\}$. On the other hand, from (1) we obtain $\varepsilon({(i, j_1), \dots, (i, j_p)})$ as follows.

Proposition 2.4 For any choice of $i \ge 1$ and $0 = j_0 < j_1 < \ldots < j_p$,

$$\varepsilon(\{(i, j_1), \dots, (i, j_p)\}) = k^{j_1} + \sum_{t=1}^p (1 - k^{j_t - j_{(t-1)}}).$$

We can then conclude that for any point $\mathbf{i} = (i, j) \in \mathbb{N}^2$ it holds

$$\varepsilon(\mathbf{i}, s_3^m(\mathbf{i})) = \varepsilon(\{(i, j), (i, j+m)\}) = 2 - k^m, \ m \ge 1,$$

and consequently $\lambda(s_3(\mathbf{i}), \mathbf{i}) = k^m$.

Lets now consider $\mathbf{X}^{(0)}$ a stationary Markov chain in discrete time with continuous state space, with distribution function such that

$$H_{(1,0),(2,0)}(x_1,x_2) = \exp(-((-\ln H(x_1))^{\delta} + (-\ln H(x_2))^{\delta})^{1/\delta}), \ (x_1,x_2) \in \mathbb{R}^2,$$

where $\delta \in [1, +\infty[$ and $H_{(1,0)}(x) = H(x) = \exp(-\exp(-x)), x \in \mathbb{R}.$

In this case we obtain

$$\varepsilon(\{(1,0),(2,0)\}) = \frac{\ln H_{(1,0),(2,0)}(x,x)}{\ln H(x)} = \frac{-2^{1/\delta}\exp(-x)}{-\exp(-x)} = 2^{1/\delta}, \quad \delta \ge 1,$$

and $\lambda((2,0),(1,0)) = 2 - 2^{1/\delta}$, where independence is achieved for $\delta = 1$. The measure matrix of dependence, for m = 1, is then given by

$$\Lambda(T_s^1(\mathbf{i}),\mathbf{i}) = \left[egin{array}{ccc} 0 & k & 0 \ 2-2^{1/\delta} & 1 & 2-2^{1/\delta} \ 0 & k & 0 \end{array}
ight].$$

The computation of the other matrices $\Lambda(T_s^m(\mathbf{i}), \mathbf{i}), m \ge 2$, only depends on the computation of $\lambda(T_{s_1}^m(\mathbf{1}), \mathbf{1})$ since we have already shown that, for each $m \ge 1$, $\lambda(T_{s_3}^m(\mathbf{1}), \mathbf{1}) = k^m$. As before we can first obtain the related coefficient $\varepsilon(\mathbf{1}, T_{s_1}^m(\mathbf{1})), m \ge 2$, which can be computed from the dependence function of $(X_{(1,0)}, X_{(m+1,0)})$.

References

- [1] Alpuim, M.T. (1989). An extremal Markovian sequence. J. Appl. Probab., 26, 219-232.
- [2] Daley, D.J. and Haslett, J. (1982). A thermal energy storage process with controlled input. Adv. Appl. Probab., 14, 257-271.
- [3] Hasllett, J. (1979). A Diffusion Model for the Storage of Solar Thermal Energy. J. Op. Res. Soc., 30(5), 433-438. bibitemSchlatherTawn03 Schlather, M. and Tawn, J. (2003). A dependence measure for multivariate and spatial extremes: Properties and inference. *Biometrika*, 90(1), 139-156.
- [4] Schlather, M. and Tawn, J. (2003). A dependence measure for multivariate and spatial extremes: Properties and inference. *Biometrika*, **90**(1), 139-156.
- [5] Sibuya, M.(1960). Bivariate extreme. Ann. Inst. Statist. Math., 8, 195-210.