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Abstract. We introduce a space-time ARMAX storage model, analogotieteolar thermal energy
model considered in Haslett [3] to describe the temperatevel in a tank used for the storage of solar
energy. For this model we analyze stationarity, max-siigb#ind compute some spatial dependence
coefficients.
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1 Introduction

In multivariate and spatial problems attention has ofteru$éed on obtaining dependence measures that
capture the main characteristics of the dependence steuckor a max-stable stationary random field
X = {Xt }1z2 » with marginal distributions=, the extremal coefficieng(i,j), defined as

P (max(X, %) < x) = F&)(x),x e R,

provides information about pairwise extremal dependerfc¥ ¢see Schlather and Tawn [4]). This
coefficient is related to the upper tail dependence paranuefned in Sibuya [5] as

A(i,j) = lim P(X > x| X >x),
Xx—xF
wherexg denotes the upper endpointffthrough the relation (i,j) =2—¢€(i,j).

Unlike a Gaussian process, the dependence structure of atalale process is not completely cha-
racterized by its pairwise dependence structure. To oweedbis problem Schlather and Tawn [4] extend
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the definition of the extremal coefficient to a multivariagttisig of any dimension, as follows

P <\/>q gx) =Ff®(x), xeR,ACZ2

ieA
This coefficient measures the extremal dependence betiweeariables indexed by satand its simple

interpretation as the effective number of independentatées, in the se, from which the maximum
is drawn has led to its use as a dependence measure in a wigeafjoractical applications.

When the spatial proces§is isotropic the pairwise extremal dependence measurendegnly on
the distancd|i —j|| between the locationsandj considered. Nevertheless, in general, we don’t have
isotropy and thus need to evaluate the spatial dependertbe Beveral directions &2. To attain this
we propose a matrix of bivariate tail coefficients defined as

(i),

%‘l,l
(i),
2,.

) b

)
A (T ) A i
) A ' a' A(sg(0), 1)
.8,

denote the the neighbors ioés follows

A(sy
A
A(
where for each = (i1,ip) € Z2, si(i),j =1
sii) = (i1 +1Li2), () =i+1 s(i)=(in,i2+1), ()= (i1—-1i2+1),
s5(i) = (i1—1Li2), ss(i)=i—-1, s7(i) =(ir,i2—1), sg(i)=(i1+1i2-1),

/(i) = (sjo...osj)(i), ktimes withm > 1, s‘j)(i) =i,j=1,2,...,8 andT"(i) = {s]'(i) : j=1,...,8}.

Note that, for eache Z2, (i) =i, A(i,i) = 1 and, form > 1, we have
A(S(i),i) = AS™ (i), 1) 4 (8™ (i), i) — e(s]'(i),i), t,j € {1,2,...,8}.

In the next section we introduce a space-time ARMAX storagelehfor which we analyze statio-
narity, max-stablility and compute some spatial depene@oefficients.

2 A space-time ARMAX storage model

In Haslett [3] the solar thermal energy model
Xj=BXj—1V(aBXj_1+Yj), j>1, 0<a<l 0<B<1,

was introduced to describe the temperature level in a tael s the storage of solar energy. This
model was further investigated by Daley and Haslett [2], agnathers. Alpuim [1] studied its extremal
behavior for the particular case= 0. We will next present a study of an analogous space-timeggora
model.

Let X0 = = {Xii0) i1 andYU ={Yi,j)}i=1, | € N, denote independent and stationary random se-
quences, with, respectlvely, common univariate margiigtidutionsH andG, and consider for each
subsetdiy,...,ip} € Nand{j1,...,jp} €N,

Hi1.0),....(15.0) %5 - -+ Xp) = P(X(iz.0) <X, . Xiipo) < Xp)y  (X1,---,%p) € RP,
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and
Glig,jn)o(iprip) %5+ %Xp) = P(YV(igjp) Xt Yiipjp) < Xp)y (X1, %p) € RP.

We will assume that for eache N the random sequenc&$)), j € N, are identically distributed.

Considering the stationary random sequeX¢® and the stationary random fie¥l= {Y(i,j)}(i"j)e,\,z
we can now define a max-autoregressive random field througtetation

. I o
X(Lj) = k(X(Lj—l) \/Y(H)) = kJX(Lo) V \/ kJithlY(Lt), (l, j) S NZ7 O<k<1
t=1

For any locations 1 = (i1, j1),...,rp = (ip, jp) ON N, and(xy,...,Xp) € RP we have

X1 X X1 X
HI'17M,I’p(X17 e 7Xp) - Hr1+(0,71),...,rp+(0,71) (F’ sty ?p> X Gl'lru,l’p (?7 sty ?p> .

If we consideri; = ... =ip =i > 1 fixed, we find the well know Markovian sequence studied inuiip
[1], for which was shown that for & jo < j1 < ... < jp

. XS p j171 . Xm
H(i,ja)slisip) X2+ Xp) = H (p;Qp@) [ ﬁl;lﬁl)e <t£‘2n'£‘p kjms> : 1)

In what follows we shall consider locations = (i1, j1),...,rp = (ip, jp), ON N2, such thatim, # im,,
my,m € {1,..., p}.

The next results give necessary and sufficient conditionX fim be a stationary max-stable random

field.

Proposition 2.1 X is a stationary random field if and only if, for any locations,...,rp € N? and
(X1,...,Xp) € RP,

If the finite dimension distributions of the sequend€$), j > 1 associated to the the random field
of innovationsY are multivariate extreme value distributions thérs a max-stable random field.

Proposition 2.2 The stationary random field is max-stable if and only ¥ is a max-stable random
field.

The extremal coefficients of the finite dimension distriond of X andY coincide as shown in the
next result.

Proposition 2.3 If both X andY are stationary max-stable random fields then the extremefficients
of their finite dimension distributions coincide.
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From this result we know that ({r1,...,rp}) = €Y ({ry,...,rp}) for any locations 1 = (i1, j1),...,
ro=(ip,jp), ON N2, such thatiy, # im,, My, M € {1,...,p}. On the other hand, from (1) we obtain

e({(i,j1),..-,(i,jp)}) as follows.

Proposition 2.4 For any choice of > 1and0= jo < j1 <... < Jp,

) P -
i j1),... (i) jp)}) = kit 1—ki—ie-),
e({(i,ja),--- (i, ip)}) +t;( -1)

We can then conclude that for any poirt (i, j) € N2 it holds
e(i,s3'(1)) =e({(i,}), (i, j+m)}) =2—-k", m>1,
and consequently(sz(i),i) = k™.
Lets now consideK (©) a stationary Markov chain in discrete time with continuotsesspace, with
distribution function such that
H(10),(20) (X1 %) = &XP(—((=INH (x1))° + (= INH (%2))°)®), (x1,%) € R?,
whered € [1,+e[ andH 1 g)(X) = H(x) = exp(—exp(—X)), X € R.

In this case we obtain

(10, 2.0 = "HANEN _ ZUOHX _qe 5y

andA((2,0),(1,0)) = 2— 2% where independence is achieveddct 1. The measure matrix of depen-
dence, fom= 1, is then given by

0 k 0
ATL0),i)=| 2—2%3 1 2213
0 k 0

The computation of the other matric&sTd"(i),i), m> 2, only depends on the computationdfl"(1),1)
since we have already shown that, for eawt» 1, A(Tg'(1),1) = k™. As before we can first obtain
the related coefficient(1,T¢"(1)), m > 2, which can be computed from the dependence function of

(X(1,0, X(m+1,0))-
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