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Abstract. In this paper we introduce a semiparametric spatio-temporal process for modelling the
PM10 concentration. Estimators for the parameters are obtained by making use of the unscented
Kalman filter of Julier et al. (2000) and the generalized EM algorithm. The nonparametric component
is estimated by a Nadaraya-Watson type estimator. Moreover, an interpolation procedure is proposed
which is based on a local approach in the sense of Bodnar and Schmid (2010). In an empirical study
this model is applied to describe the PM10 content of the Berlin-Brandenburg region in Germany.
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1 Introduction

In the last years spatio-temporal processes have been intensively discussed in literature (e.g., Stroud et
al. (2001), Le and Zidek (2006)). They have turned out to be extremely useful for modelling environ-
mental processes. Nowadays we find a variety of applications to different types of processes like, e.g.,
atmospheric pollutant concentrations, precipitation fields and surface winds.

Fassò and Cameletti (2009) introduced a very general spatio-temporal process for modeling the con-
centration of PM10. It can be presented as a state-space model. In this model it is assumed that there
is a linear relationship between the PM10 concentration and the geographical and meteorological co-
variates. In Bodnar and Schmid (2010) a similar model is considered and it is used to calculate the
locally weighted scatterplot smoothing (LOESS) kriging predictor. Their approach is based on the idea
to find a balance between a local and a more global method. This means that necessarily not all available
measurement stations are used to interpolate the process at an arbitrary position. Criteria for finding an
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optimal set of included stations are discussed in the paper.

In the present paper we introduce a semiparametric spatio-temporal model. It can be considered as
an extension of the models discussed in Fassò and Cameletti (2009) and Bodnar and Schmid (2010).
This model is more flexible because it is not assumed that there is a linear relationship between the
concentration and the geographical and meteorological covariates. It has further desirable properties. For
instance, it is guaranteed that the concentration process is always positive and the present concentration
depends directly on previous values. The price of the generalization is a process which is more difficult
to handle. Because both the state and the space equations are non-linear, the standard Kalman filter
cannot be used for estimating the model parameters. For that reason we make use of the unscented
Kalman Filter suggested by Julier et al. (2000). This method is combined with the EM algorithm and
a Nadaraya-Watson type estimator for the nonparametric component to get estimators of the process
parameters. Furthermore we consider the problem of interpolating the process at arbitrary locations.
This is done in a similar way as described in Bodnar and Schmid (2010). Our results are applied to
model the PM10 concentration of the Berlin-Brandenburg region in Germany.

2 A Semiparametric Spatial-Temporal Process

Let Zt(s) denote an observed univariate spatio-temporal process at the geographical location s at time t.
The network data at time point t at the geographical locations s0,s1, ...,sn are written as Zt = (Zt(s0),
Zt(s1), ...,Zt(sn))′. In the present paper we introduce an extension of the general spatio-temporal model
of Fassò and Cameletti (2009) and Bodnar and Schmid (2010). The model is given by

Zt(s) = Ut(s)+ εt (1)

Ut(s) = Ỹt +µ(Xt(s);β)+
m

∑
i=1

αiUt−i(s)+ωt(s) (2)

log(Ỹt) = µ0 +g(log(Ỹt−1)−µ0)+ηt (3)

for t ∈ {1,2, ...,T} with E(log(Ỹ0)) = µ0.

In equation (1) it is described how the observed spatio-temporal process {Zt(s)} is related to the
unobservable "true" spatio-temporal process {Ut(s)}. The variables {εt} denote a measurement error
process with no spatial component. {εt} is assumed to be independent and identically distributed with
E(εt) = 0 and Var(εt) = σ2

ε .

In the second equation the unobservable "true" spatio-temporal process is modeled as a function
µ = µ(Xt(s);β) of the covariates Xt(s) at time t and at site s, preceeding values of the "true" process,
a process {Ỹt}, and a spatial noise process {ωt(s)}. It is assumed to have mean zero and a covariance
function given by

Cov(ωt(s),ωt(s′)) = σ2
ωΓ(||s− s′||;θ)

where θ is a parameter and ||s− s′|| denotes the Euclidean distance between the sites s and s′. The
symbol Cθ(.) stands for the covariogramm which is assumed to be isotropic. Moreover, it is assumed to
be independent over time.

The process {Ỹt} is explained in (3). It stands for the space-constant temporal process of the analyzed
region. Because the process is always taking positive values it is modeled via the logarithm in (3). Let
σ2

0 = Var(log(Ỹ0)). The error process {ηt} is assumed to be independent and identically distributed with
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mean 0 and variance σ2
η. Finally, it is assumed that all of the three error processes {εt}, {ωt(s)}, and

{ηt} are mutually independent.

In equation (2) the function µ stands for a regression function describing the influence of the covari-
ates. The most general approach would be to assume that there is an arbitrary relationship µ between the
variables. Then it would be necessary to estimate µ by a d-dimensional nonparametric estimator which
is not quite easy. For that reason we prefer a semiparametric method which reduces the dimension of the
estimation problem and thus its complexity. The most common semiparametric models (cf. Härdle et al.
(2004)) are the additive model with µ(Xt1, ...,Xtd) = ∑d

i gi(Xit) where the functions gi(.) should be esti-
mated nonparametrically, the partial linear model with µ(Xt1, ...,Xtd) = X̃′

t β̃ + ğ(X̆t), X̃t = (Xt1, ...,Xtd̃)
′

and X̆t = (Xtd̃+1, ...,Xtd)′, where the function ğ(.) is estimated nonparametrically and the vector β̃ is
calculated by using a parametric method and finally the single index model with µ(Xt1, ...,Xtd) = g(X′

tβ)
where g(.) is estimated non-parametrically and β parametrically. In the following the single index model
is applied for describing the concentration of PM10 as a function of the geographical and meteorological
covariates. This means that we put µ(Xt(s);β) = µ(Xt(s)′β).

Let Yt = log(Ỹt)−µ0. Rewriting (1) to (3) we get

Zt(s) = νexp(Yt)+µ(Xt(s)′β)+
m

∑
i=1

αiZt−i(s)+ et(s) (4)

Yt = gYt−1 +ηt (5)

where et = ωt(s)+ εt −∑m
i=1 αiεt−i and ν = exp(µ0). Note that the equations (4) and (5) define a non-

linear state-space model (see, e.g., Julier et al. (2000)).

3 Estimation and Empirical Illustration

The quasi maximum likelihood estimator of Ψ = (β,α,σ2
ω,g,σ2

η,ν,σ2
0,θ,γ)′ with α = (α1, ...,αm)′ is

calculated using an iterative procedure and the generalized EM algorithm (e.g., McLachlan and Krishnan
(1997)). Using data of the l-nearest monitoring stations the quasi log-likelihood function is expressed as

logL(Ψ;z1, ..,zT ) =− lT
2

log(2π)− T
2

log(|Σe|)− 1
2

T

∑
t=1

(zt(s)−νexp(Yt)1−µ(Xt(s)′β)−
m

∑
i=1

αizt−i(s))′

× Σ−1
e (zt(s)−νexp(Yt)1−µ(Xt(s)′β)−

m

∑
i=1

αizt−i(s))

− T
2

(log(σ2
η)− 1

2T σ2
η

T

∑
t=1

(Yt −gYt−1)2)− 1
2

log(σ2
0)−

Y 2
0

2σ2
0
, (6)

where Σe = σ2
ω (Γ(||si− s j||;θ))i, j=0,...,l with

Γ(h) =
{

1+ γ for h = 0
Cθ(h) for h > 0

and γ = σ2
ε/σ2

ω(1+∑m
i=1 α2

i ).

For maximizing (6) we use the EM algorithm. At each step of iteration k = 1,2, ... the EM algorithm
consists of an expectation (E) and a maximization (M) step. In the E-step we calculate the conditional
expectation of the log-likelihood function given the data Z = {z1, ..,zT} and the vector of estimated
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parameters in the previous step Ψ̂(k)
, i.e.

Q(Ψ) = −2EZ,Ψ(logL(Ψ;z1, ..,zT )) = lT log(2π)+T log(|Σe|)

+EZ,Ψ(
T

∑
t=1

(zt(s)−νexp(Yt)1−µ(Xt(s)′β)−
m

∑
i=1

αizt−i(s))′Σ−1
e (zt(s)−νexp(Yt)1−µ(Xt(s)′β)−

m

∑
i=1

αizt−i(s)))

+ T (log(σ2
η)+

1
T σ2

η

T

∑
t=1

EZ,Ψ((Yt −gYt−1)2))+ log(σ2
0)+

EZ,Ψ(Y 2
0 )

σ2
0

with EZ(Yt) = yT
t , VarZ(Yt) = PT

t , and CovZ(Yt ,Yt−1) = PT
t,t−1. The quantities yT

t , PT
t , and PT

t,t−1 are

calculated recursively using Ψ̂(k−1)
. For the calculation of these quantities we use the unscented Kalman

filter. Since µ(.) is an unknown function we replace µ(.) by the Nadaraya-Watson type estimator (see,
e.g., Härdle et al. (2004)) given by

µ̂(Xt(si)′β) =
∑(ĩ,t̃)6=(i,t) Zt̃(sĩ)Kh((Xt̃(sĩ)−Xt(si))′β)Iχ(t,si)(Xt̃(sĩ))

∑(ĩ,t̃)6=(i,t) Kh((Xt̃(sĩ)−Xt(si))′β)Iχ(t,si)(Xt̃(sĩ))
,

where Kh(.) is a kernel function and Iχ(t,si)(.) is the indicator function of the set χ(t,si) = {X : ||X−
Xt(si)|| ≤ h}. For computing Ψ̂(k+1)

the Newton-Raphson algorithm is used to minimize Q(Ψ).

In an empirical study the suggested model is applied to model the PM10 concentration in the Berlin-
Brandenburg region of Germany. For interpolating the values of the PM10 concentration at positions
where no monitoring station is available, the conditional kriging predictor is derived for the model (1)-
(3). Eleven covariates are taken into account, namely the type of the station, the weekend effect, the
height above sea level, the temperature, the atmospheric pressure, the wind direction, the wind power, the
wind velocity, the cloud cover, the sunshine duration, and the precipitation. Cross-validation is applied
for identifying the number of the neighboring stations used for interpolating the PM10 concentration and
the most relevant covariates.
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