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Abstract. Accurate short-term wind forecasts are crucial for the whole energy industry that is currently
moving toward clean and renewable energy sources like, e.g., the wind energy. These forecasts can be
used to optimize the performance of wind farms. They are also very helpful for planning purposes
that aim at smoothing the overall electricity supply. In this work, we present a short-term wind speed
forecast using 10-minute high frequency data collected in Manschnow, Germany. To model the wind
speed we use the information about its daily and monthly patterns extracted from the data and we
apply an ARFIMA (p,d,q) process for modelling its persistent nature. As a result we obtain a model
that beats the standard persistence benchmark at one hour time horizon.

Keywords. High frequency data; Long range dependence; Time series regression; Wind speed; Envi-
ronmental statistics.

1 Introduction

Wind power could be a perfect solution to the problem of world’s increasing energy needs. It is pollution-
free, renewable and inexpensive in generation, once the wind farm has been installed. However, wind
fluctuations resulting in varying electricity generation make that aim difficult to reach. Therefore accu-
rate and reliable short-term wind forecasts are so important to level the capacity of electric utilities and
to create secure energy supplies. In fact, it is possible to predict the wind power directly, however, it will
always strongly depend on the wind turbines used in a certain wind farm (their specifications, capacity,
size etc., see, e.g., Genton and Hering (2009)). Because the wind power output can be directly calcu-
lated from the wind speed it seems to be more natural to forecast the wind speed. Numerical Weather
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Prediction models fulfill that task very well for forecasting periods exceeding 6 hours (cf. Giebel et al.
(2003)). For shorter time horizons statistical methods outperform them significantly (e.g. autoregressive
time series methods). Such short-term wind forecasts are frequently used to optimize the performance
of the wind farms. They provide a valuable piece of information to wind energy investors on the stock
exchange as well.

Our aim is to forecast the wind speed by taking into account daily and monthly factors as well as
the wind persistence. To capture the daily factor we make use of the results of spectral analysis. Peaks
in the spectral density graph give a hint on periodic daily component. Over the years we find also
some interesting pattern in the average wind speed during single months. These monthly influences are
incorporated into our model by a locally constant function which is monthly dependent. The parameters
for both daily and monthly factors are estimated using the method of least squares. After subtracting
both of them from the wind time series we obtain residuals that are highly correlated. Because of the
long-memory feature of the residuals we model them by the means of an ARFIMA (Autoregressive
Fractionally Integrated Moving Average) process.

2 Data and Exploratory Analysis

The high-frequency data used in this study were collected at the weather station in Manschnow, an
area in Eastern Germany (52°32'50”N 4°32'49"E). They consist of approximately 157100 10-minute
observations from January 2005 to December 2007. Because the data were not entirely complete, 0.36%
had to be estimated. This was done by using a linear interpolation. By sorting the data with respect to
certain criteria wind features like diurnal or seasonal pattern become obvious.
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Figure 1: Hourly averages Figure 2: Monthly averages

Figure 1 presents the average hourly wind speed over 2005 to 2007. There is a clear regular pattern
within a single day; the wind speed peaks between 11 AM and 12 AM. We investigated this pattern using
spectral analysis that confirmed our daily factor assumption. We found out that peaks in the periodogram
of our data occurred always at a frequency of 0.043. This value corresponds to the period P of 144
observations which is equal to 24 hours (144 x 10 minutes = 1440 minutes = 24 hours). Figure 2 shows
the average monthly wind speed and wind direction over the same years. It indicates that the wind blows
much stronger during the cool season (October-March) than during the warmer one. But even within the
seasons there are visible differences between the single months. Using the SAS program we estimated
the values of the monthly parameters and we proved their significance for the model by rejecting the null
hypothesis that they are equal to O at the significance level of 99.99%. Finally, we decided to include
them into the model as indicator functions for each month apart from December in order to make the
model uniquely identifiable.
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3 Modelling High Frequency Wind Speed Data

The above considerations give rise for introducing the model

W, = Bo+Bicos(2nt/P)+ Bosin(2nt /P) (1)
+B3I{Jan} (t) T+t B131{N0v} (t) +&.

where W, is the wind speed at time ¢, P is a period equal to 144, I4(¢) denotes the indicator function of
A, and {¢, } represents an ARFIMA(p,d,q) process. This means that

0(B)Vee = 0(B)a,.

Here B stands for the backward shift operator defined by Be; = €,_;. The fractional difference operator

V4 is given by
(1-By =Y <d) (—B)~.
i=0 \k

{a,} is a white noise process of uncorrelated variables with mean 0. It is assumed that ¢(z) = 1 —
Z?:l ¢;z/ and 6(z) =1 — 231':1 0,2/ have no zeros on or inside the unit circle and no zeros in common.

We model the residuals using the ARFIMA process because of their strong positive autocorrelation
confirmed by the Durbin-Watson statistics. ARFIMA processes have been intensively discussed in, e.g.,
Beran (1994), Taniguchi and Kakizawa (2000), and Robinson (2003).

The above model is a regression model with 13 regressors and long-memory stationary errors. The
parameters o to B3 were estimated using the ordinary least squares estimator (LSE) method. The
autoregressive and moving-average order of the process (p and g) were set equal to 3 according to the
results based on the minimum information criterion. The parameter d as well as the three AR and the
three MA coefficients are estimated for each forecast separately using the ARFIMA package in the Ox
program of J.A. Doornik. It has to be noted that the estimator of d always takes values between 0 and
0.5. The estimation procedure was performed given the previous month observations which complies
with the results of Gneiting et al. (2006). They observed that training periods between 30 and 50 days
perform best for AR forecasts. Moreover, all regressors of the model are non-stochastic. Such processes
have been treated among others by Yajima [10] and Dahlhaus [3]. Using the matrix notation the process
(1) can be written as

W, = Z;B +&

with z, = (1,cos(2nt /P),sin(2nt | P), I jan) (1), -, [inovy ()" and B = (Bo, ..., B13)’. Various estimators of
the parameter vector § have been considered in literature. The most obvious approach to use is the LSE
Brsp = (Z'2)'Z/W where Z/ = (21, ...,2,) and W = (W,,...,W,)'. Yajima [10] analyzed the asymptotic
behavior of this estimator for a polynomial regression. Assuming that 0 < d < 1/2 he showed that under
certain conditions the least squares estimator is strongly consistent and consistent but with a lower order
than for short-range dependent disturbances. He calculated the asymptotic covariance matrix of the LSE
as well. Moreover, he studied the asymptotic behavior of the best linear unbiased estimator (BLUE) of
B. Tt is possible to extend his results to more general regression models if the so-called Grenander’s
conditions are fulfilled (see, e.g., Taniguchi and Kakizawa [9]).
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4 Forecast and Evaluation

To arrive at the final forecast we first estimate the ARFIMA parameters that we use as an input for the
residual prediction. This step is performed by using a forecast option in the ARFIMA package of the
Ox program. Finally, we add the daily and monthly components. Theoretically, it could happen that the
forecast result is negative, especially when there is a strong declining trend in the daily component and
the ARFIMA residual forecast. In such a case the forecast result should be set to 0. However, this has
never happened in our study.

A typical benchmark for evaluating the short-term forecasts of the wind speed is the no-change
assumption (persistence). In general, the shorter the forecasting period, the more competitive the per-
sistence forecast turns out to be. It is trivial, but it works well due to the fact that the changes in the
atmosphere occur usually within days (at least in Europe). To compare the persistence and our point
forecasts we used the root mean squared error (RMSE). Our model beats the persistence forecast rela-
tively best at one hour time horizon +/— 10 minutes. In such a case the RMSE for a persistence model
equals 7.24 while for our model it is 6.55. This gives a 9.42% improvement over the persistence as-
sumption. We observed this is mostly due to a very good ARFIMA performance when the wind speed
changes rapidly.
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