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Abstract. We consider the model surveillance problem of detectinghvener not in a given sensor
network, there is a cluster of sensors which exhibit an “waldehavior” Formally, suppose we are
given a set of nodes (sensors) and attach a time series toreaf (information transmitted by the
sensor). We observe a realization of this process over timdeasant to decide between the null, where
all the variables are i.i.d. standard normal; and the altative, where there is an emerging cluster
of i.i.d. normal variables with positive mean and unit vawta. The growth models used to represent
the emerging cluster are quite general, and in particulaclide cellular automata used in modelling
epidemics. We consider classes of clusters that are quitergk for which we obtain a lower bound
on their respective minimax detection rate, and show thatestorm of scan statistic, by far the most
popular method in practice, achieves that same rate withiogarithmic factor. Our results are not
limited to the normal location model, but generalize to ang-@arameter exponential family when the
anomalous clusters are large enough. This is an extendetieabsf [3].
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1 Introduction

We consider a spatio-temporal surveillance setting wheset @f nodes transmit information over time
to a central location. Under normal circumstances, theabsasX, (t) behave similarly, while under ab-
normal circumstances, there is an emerging cluster of nadesning slightly larger values. This models
a wide-array of real-life situations, for example, the ntorihng of hazardous materials [5] and target
tracking [11] based on sensor networks; object trackinghfradeo frames [12] (a digital camera may
be seen as a sensor network, with CCD or CMOS pixel sensardje @arly detection of epidemics [7],
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with surveillance systems now incorporating data from fiaspmergency visits, ambulance dispatch
calls and pharmacy sales of over-the-counter drugs.

Mathematical framework. Let V,,, ¢ RY be a set ofmnodes. To each nodec V., we attach a time
series,(Xy(t) :t=0,1,...,ty). Our analysis is in the asymptotic setting— o andt;,, — . Let xm be

a class of cluster sequences of the fdika: t = 0,1,...,ty) such thatk; C Vi, for allt = 0,1,... .
For example, a space-time cylinder, e.g. a model used irmstseutbreak detection [10], is a cluster
sequence of the forri; = {v € Vi, : ||[v—Xo|| < ro}, if t > to, andK; = 0 otherwise, so thaty is the
time origin andxp the center of the emerging cluster. Another example is thatspace-time cone, of
the formK; = {ve Vi |[v—Xo|| < C(t —to)}, if t > tp, andK; = 0 otherwise, wher€ controls how
fast the cluster grows over time. The random varialflégt) : ve Vp,,t =0,1,... ty) are assumed
independent. For concreteness, we consider a normal docatodel which is popular in signal and
image processing to model the noise. Our analysis, howegesreralizes to any exponential family
under some condition on the sizes of the anomalous clustecs, as Bernoulli models which arise in
sensor arrays where each sensor collects one bit (i.e. dkesry decision) or Poisson models which
come up with count data, e.g. arising in infectious diseaseeslance systems. We assume the process
is calibrated so that, under normal circumstances, tha@sX,(t) ~ 2((0,1) for all ve V. Under
abnormal circumstances, with emerging cluster (K;) € %m, we assume thag, (t) ~ A (8m|K|~/2,1)

for all (v,t) € K, andX,(t) ~ A((0,1) for all (v,t) ¢ K, whereB, > 0 and|K]| is the size oK as a space-
time cluster. The emerging clustiris unknown. We adopt a minimax point of view, where the risk
of a test is the sum of its probability of type | error and theximaum of its probability of type Il error
among all the specific alternatives (here, cluster sequseincthe class). We say that the hypotheses
are asymptotically separable if there is a sequence of wa#isrisk tending to zero, and that they are
asymptotically inseparable if all sequences of tests hiakae&nding to one.

The scan statistic. The generalized likelihood-ratio test rejects for largkiga of

Kexm /K[ &

Without the normalization, this is the so-called scan stiati the prevalent method in disease outbreak
detection, with many variations [9]. This is the matchecefdtmethod ubiquitous in problems of de-
tection in a wide variety of fields, sometimes in the form ofadmable templates in the engineering
literature [8]. Note that the scan statistic is As advocatd@], we will not use the scan statistic directly,
but rather restrict the scanning to a subsekgf More precisely, we will introduce the following metric
on subsets of nodeK, L C X,

3(K.L) = V2 (1 KL/V/IKTE)

and will restrict the scanning to aanet of xy, with respect t, i.e. a subse{K; : j € J} C Km, with
the property that, for eack € % there isj € J such thaid(K,K;) < &. WhenJ is minimal, we call
the resulting statistic ae-scan statistic. The approximation precisiomwill be chosen appropriately
depending on the situation.

Contribution. Within the mathematical framework we obtain a lower boundttoa minimax detec-
tion rate for8y, for a large class of cluster sequences with some sort of, linfitch many models for
epidemics satisfy [1], and prove that escan statistic achieves that detection threshold.
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2 Mainresults

The set of nodes. We assume that the nodes are embeddé@yir RY, a compact set with non-empty
interior. LetB(x,r) denote the (open) Euclidean ball with cernteand radiusr. We consider a finite
subsetVy, C Qg of sizem, which is evenly spread-out in the following sense: thera ®nstanC > 1
independent ofmand a sequenag, — 0, such that,

Cimrd < |B(x,r)NVm| <CmA,  vrer,1], Vxe Qq. (1)

In words, the number of nodes in any ball that is not too srsatbughly proportional to its volume. For
the regular lattice,
Vm={0o,m Y 1-mV99cq4=10,1,

(assumingn/9 is an integer) condition (1) is satisfied figk, > vdm 9. This is the smallest possible
order of magnitude. Whe¥W, is obtained from samplingh points from the uniform distribution o€y,
(1) is satisfied with high probability far;, > C(log(m)/m)¥/9, whenC is large enough.

L ower bound: detecting space-time cylinders. The simplest class of cluster sequences is that of space-
time cylinders introduced earlier. For that class we haeefttiowing lower bound on the detection
threshold.

Proposition. ConsiderA, — 0O, with Ay, > r};,, and let ki, be the class of all space-time cylinders of
the form K = B(X,Am) NV, Vt =0,...,tm, where x€ Q4. Then the hypotheses are asymptotically
inseparable if

Tim Om(log(1/A%)) 2 < V2

With only one possible shape and known time origin, such aghisdather limited. We now consider
much larger class of cluster sequences with some sort of (imithe sense of (2)), and show that,
nevertheless, a form of scan statistic achieves that sateetida rate.

Upper bound: cluster sequences with a limit. Motivated by the fact that cellular automata, which
have been used to model epidemics [1], develop an asymtwjoce under some conditions [6, 4], we
consider cluster sequences with some sort of (spatial). Wk first define a class of spatial clusters with
Lipschitz boundary that are not too thin. For 1, let 74 4(k) be the subclass of bi-Lipschitz functions
f :B(0,1) — Qg such thattA;-1 <K, whereA; denotes the Lipschitz constant bf For f € 744(k),
the spatial clustef (B(0,1)) NV, which is the set of nodes that belong to the rangé,aé blob-like

in that it contains a ball of radius; /k and is contained within a ball of radidg, so thatk control its
aspect ratio. We focus here on cluster sequences obByjng 0, i.e. the anomalous cluster is present
at the last time point. This is a standing assumption in symitr surveillance systems [10] and any
prospective surveillance setting. For a cluster sequinegK;,t € Ty), lettx = min{t : K; # 0}, which

is the time wherK originates.

Theorem. Consider sequences,, — 0 with Ay, > r;;, and loglogty,, = o(log(1/Anm)), and a function
v(t) with lim{_.v(t) =0andv(t) <1forallt > 0. Let Xy, be a class of cluster sequences such that
tm — max{tk : K € km} — o, and for each K= (K¢,t € Tm) € K there is fe Fqq(K) with A¢ > A,
such that

O(Ki, f(B(0,1))NVpy) <v(t—tk), Vt=0,1,....tm 2

Then there is a scan statistic over a family of space-timadgts that asymptotically separates the
hypotheses if

lim Om(log(1/A%)) 2 > V2.

m—oo
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If the starting time is uniformly bounded away fragand the convergence to the thick spatial cluster
(in the sense of (2)) occurs at a uniform speed, all the algstguences in the class have sufficient time to
develop into their ‘limiting’ shapes. The space-time cgiins over which we scan are based org-aet
for the possible limiting shapes, i.e. the class of spatiadters generated byqq(K). Scanning over
space-time cylinders (with balls as bases) is advocateldeilisease outbreak detection literature [10].
Though seemingly naive, this approach achieves, in our pitio setting, the minimax detection rate if
the cluster sequences develop into balls, and in genelsktabrt by a constant factor.
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