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Abstract. We consider the model surveillance problem of detecting whether or not in a given sensor
network, there is a cluster of sensors which exhibit an “unusual behavior.” Formally, suppose we are
given a set of nodes (sensors) and attach a time series to eachnode (information transmitted by the
sensor). We observe a realization of this process over time and want to decide between the null, where
all the variables are i.i.d. standard normal; and the alternative, where there is an emerging cluster
of i.i.d. normal variables with positive mean and unit variance. The growth models used to represent
the emerging cluster are quite general, and in particular include cellular automata used in modelling
epidemics. We consider classes of clusters that are quite general, for which we obtain a lower bound
on their respective minimax detection rate, and show that some form of scan statistic, by far the most
popular method in practice, achieves that same rate within alogarithmic factor. Our results are not
limited to the normal location model, but generalize to any one-parameter exponential family when the
anomalous clusters are large enough. This is an extended abstract of [3].
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1 Introduction

We consider a spatio-temporal surveillance setting where aset of nodes transmit information over time
to a central location. Under normal circumstances, the variablesXv(t) behave similarly, while under ab-
normal circumstances, there is an emerging cluster of nodesreturning slightly larger values. This models
a wide-array of real-life situations, for example, the monitoring of hazardous materials [5] and target
tracking [11] based on sensor networks; object tracking from video frames [12] (a digital camera may
be seen as a sensor network, with CCD or CMOS pixel sensors); or the early detection of epidemics [7],
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with surveillance systems now incorporating data from hospital emergency visits, ambulance dispatch
calls and pharmacy sales of over-the-counter drugs.

Mathematical framework. Let Vm ⊂ R
d be a set ofm nodes. To each nodev∈ Vm, we attach a time

series,(Xv(t) : t = 0,1, . . . , tm). Our analysis is in the asymptotic settingm→ ∞ andtm → ∞. LetKm be
a class of cluster sequences of the form(Kt : t = 0,1, . . . , tm) such thatKt ⊂ Vm for all t = 0,1, . . . , tm.
For example, a space-time cylinder, e.g. a model used in disease outbreak detection [10], is a cluster
sequence of the formKt = {v ∈ Vm : ‖v− x0‖ ≤ r0}, if t ≥ t0, andKt = /0 otherwise, so thatt0 is the
time origin andx0 the center of the emerging cluster. Another example is that of a space-time cone, of
the formKt = {v ∈ Vm : ‖v− x0‖ ≤ C(t − t0)}, if t ≥ t0, andKt = /0 otherwise, whereC controls how
fast the cluster grows over time. The random variables(Xv(t) : v ∈ Vm, t = 0,1, . . . , tm) are assumed
independent. For concreteness, we consider a normal location model which is popular in signal and
image processing to model the noise. Our analysis, however,generalizes to any exponential family
under some condition on the sizes of the anomalous clusters,such as Bernoulli models which arise in
sensor arrays where each sensor collects one bit (i.e. makesa binary decision) or Poisson models which
come up with count data, e.g. arising in infectious disease surveillance systems. We assume the process
is calibrated so that, under normal circumstances, the variablesXv(t) ∼ N (0,1) for all v ∈ V. Under
abnormal circumstances, with emerging clusterK = (Kt)∈Km, we assume thatXv(t)∼N (θm|K|−1/2,1)
for all (v, t) ∈ K, andXv(t) ∼ N (0,1) for all (v, t) /∈ K, whereθm > 0 and|K| is the size ofK as a space-
time cluster. The emerging clusterK is unknown. We adopt a minimax point of view, where the risk
of a test is the sum of its probability of type I error and the maximum of its probability of type II error
among all the specific alternatives (here, cluster sequences in the class). We say that the hypotheses
are asymptotically separable if there is a sequence of testswith risk tending to zero, and that they are
asymptotically inseparable if all sequences of tests have risk tending to one.

The scan statistic. The generalized likelihood-ratio test rejects for large values of

max
K∈Km

1
√

|K| ∑
v∈K

Xv.

Without the normalization, this is the so-called scan statistic, the prevalent method in disease outbreak
detection, with many variations [9]. This is the matched filters method ubiquitous in problems of de-
tection in a wide variety of fields, sometimes in the form of deformable templates in the engineering
literature [8]. Note that the scan statistic is As advocatedin [2], we will not use the scan statistic directly,
but rather restrict the scanning to a subset ofKm. More precisely, we will introduce the following metric
on subsets of nodes,K,L ⊂ Km,

δ(K,L) =
√

2
(

1−|K∩L|/
√

|K||L|
)1/2

,

and will restrict the scanning to anε-net ofKm with respect toδ, i.e. a subset{K j : j ∈ J} ⊂ Km, with
the property that, for eachK ∈ Km there is j ∈ J such thatδ(K,K j) ≤ ε. WhenJ is minimal, we call
the resulting statistic anε-scan statistic. The approximation precisionε will be chosen appropriately
depending on the situation.

Contribution. Within the mathematical framework we obtain a lower bound onthe minimax detec-
tion rate forθm for a large class of cluster sequences with some sort of limit, which many models for
epidemics satisfy [1], and prove that anε-scan statistic achieves that detection threshold.
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2 Main results

The set of nodes. We assume that the nodes are embedded inΩd ⊂ R
d, a compact set with non-empty

interior. LetB(x, r) denote the (open) Euclidean ball with centerx and radiusr. We consider a finite
subsetVm ⊂ Ωd of sizem, which is evenly spread-out in the following sense: there isa constantC ≥ 1
independent ofmand a sequencer∗m → 0, such that,

C−1mrd ≤ |B(x, r)∩Vm| ≤Cmrd, ∀r ∈ [r∗m,1], ∀x∈ Ωd. (1)

In words, the number of nodes in any ball that is not too small is roughly proportional to its volume. For
the regular lattice,

Vm = {0,m−1/d, . . . ,1−m−1/d}d ⊂ Ωd = [0,1]d,

(assumingm1/d is an integer) condition (1) is satisfied forr∗m >
√

dm−1/d. This is the smallest possible
order of magnitude. WhenVm is obtained from samplingm points from the uniform distribution onΩd,
(1) is satisfied with high probability forr∗m ≥C(log(m)/m)1/d, whenC is large enough.

Lower bound: detecting space-time cylinders. The simplest class of cluster sequences is that of space-
time cylinders introduced earlier. For that class we have the following lower bound on the detection
threshold.

Proposition. Considerλm → 0, with λm ≥ r∗m, and letKm be the class of all space-time cylinders of
the form Kt = B(x,λm)∩Vm, ∀t = 0, . . . , tm, where x∈ Ωd. Then the hypotheses are asymptotically
inseparable if

lim
m→∞

θm(log(1/λd
m))−1/2 <

√
2.

With only one possible shape and known time origin, such a model is rather limited. We now consider
much larger class of cluster sequences with some sort of limit (in the sense of (2)), and show that,
nevertheless, a form of scan statistic achieves that same detection rate.

Upper bound: cluster sequences with a limit. Motivated by the fact that cellular automata, which
have been used to model epidemics [1], develop an asymptoticshape under some conditions [6, 4], we
consider cluster sequences with some sort of (spatial) limit. We first define a class of spatial clusters with
Lipschitz boundary that are not too thin. Forκ ≥ 1, letFd,d(κ) be the subclass of bi-Lipschitz functions
f : B(0,1) → Ωd such thatλ f λ f−1 ≤ κ, whereλ f denotes the Lipschitz constant off . For f ∈ Fd,d(κ),
the spatial clusterf (B(0,1))∩Vm, which is the set of nodes that belong to the range off , is blob-like
in that it contains a ball of radiusλ f /κ and is contained within a ball of radiusλ f , so thatκ control its
aspect ratio. We focus here on cluster sequences obeyingKtm 6= /0, i.e. the anomalous cluster is present
at the last time point. This is a standing assumption in syndromic surveillance systems [10] and any
prospective surveillance setting. For a cluster sequenceK = (Kt , t ∈ Tm), let tK = min{t : Kt 6= /0}, which
is the time whenK originates.

Theorem. Consider sequencesλm → 0 with λm ≥ r∗m and log logtm = o(log(1/λm)), and a function
ν(t) with limt→∞ ν(t) = 0 and ν(t) ≤ 1 for all t ≥ 0. LetKm be a class of cluster sequences such that
tm−max{tK : K ∈ Km} → ∞, and for each K= (Kt , t ∈ Tm) ∈ Km there is f∈ Fd,d(κ) with λ f ≥ λm,
such that

δ(Kt , f (B(0,1))∩Vm) ≤ ν(t − tK), ∀t = 0,1, . . . , tm. (2)

Then there is a scan statistic over a family of space-time cylinders that asymptotically separates the
hypotheses if

lim
m→∞

θm(log(1/λd
m))−1/2 >

√
2.
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If the starting time is uniformly bounded away fromtm and the convergence to the thick spatial cluster
(in the sense of (2)) occurs at a uniform speed, all the cluster sequences in the class have sufficient time to
develop into their ‘limiting’ shapes. The space-time cylinders over which we scan are based on anε-net
for the possible limiting shapes, i.e. the class of spatial clusters generated byFd,d(κ). Scanning over
space-time cylinders (with balls as bases) is advocated in the disease outbreak detection literature [10].
Though seemingly naive, this approach achieves, in our asymptotic setting, the minimax detection rate if
the cluster sequences develop into balls, and in general falls short by a constant factor.
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