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Convex
for each i € N and each S and T such that S C T C N\{i},

v(SU) —v(S) <v(TUi)—ov(T)

Strictly Convex

for each ¢ € N and each S and T such that S C 7' C N\ {i},
v(SUT) —v(S) <v(TUi)—v(T)

The core of a strictly convex n-player game. ..

o has n! extreme points
(one for each vector of marginal contributions)

@ and its core is full dimensional

(an (n — 1)-dimensional polytope inside the set of imputations)

Cores of Convex Games and Pascal’s Triangle Gonzélez-Diaz and Sénchez-Rodriguez



The Core and its Faces

Cores of Convex Games and Pascal’s Triangle Gonzélez-Diaz and Sénchez-Rodriguez



The Core and its Faces

Cores of Convex Games and Pascal’s Triangle Gonzélez-Diaz and Sénchez-Rodriguez



The Core and its Faces

Cores of Convex Games and Pascal’s Triangle Gonzélez-Diaz and Sénchez-Rodriguez



The Core and its Faces

o Hr:={z cR": 3, rax;=v(T)}
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Cores of Convex Games and Pascal’s Triangle Gonzélez-Diaz and Sénchez-Rodriguez



The Core and its Faces

o Hr:={z cR": ), .rx; =v(T)}
o Fr:=C(N,v)NHy\r

3

Cores of Convex Games and Pascal’s Triangle Gonzélez-Diaz and Sénchez-Rodriguez



The Core and its Faces

o Hr:={z cR": ), .rx; =v(T)}
o Fr:=C(N,v)NHy\r
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The Core and its Faces

o Hr:={z cR": ), .rx; =v(T)}
o Fr:=C(N,v)NHy\r

3

T2 + x3 = v(23)
Fy
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The Core and its Faces

o Hr:={z cR": ), .rx; =v(T)}
o Fr:=C(N,v)NHy\r

3

x1 =v(1)

T2 + x3 = v(23)
Fy
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The Core and its Faces

o Hr:={z cR": ), .rx; =v(T)}
o Fr:=C(N,v)NHy\r
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The Core and its Faces

o Hr:={z cR": ), .rx; =v(T)}
o Fr:=C(N,v)NHy\r

3

To + X3 = 7,'(23)
Fy

T-face game: (N, vg,)
v (S) ==
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The Core and its Faces

o Hr:={z cR": ), .rx; =v(T)}
o Fr:=C(N,v)NHy\r

3

z1 =v(1)

To + X3 = 7,'(23)
1

T-face game: (N, vg,)
v (S) == v(SN(N\T))
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The Core and its Faces

o Hr:={z cR": ), .rx; =v(T)}
o Fr:=C(N,v)NHy\r

3

z1 =v(1)

To + X3 = 7,'(23)
1

T-face game: (N, vg,)
vre(8) =0((S NT) U (N\T)) — v(N\T) +v(S N (N\T))
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The Core and its Faces

3
F23 1
F1 N/ -
1 2 -
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The Core and its Faces

Fi

co 2 8 2 3 3 8

If v is convex, then the face games are convex (not strictly convex)
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The Core and its Faces

F1

co 2 8 2 3 3 8

If v is convex, then the face games are convex (not strictly convex)

Proposition
Let (N,v) be a convex game and T' C N.
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The Core and its Faces

Fag = C(N,vpy,)

co 2 8 2 3 3 8

If v is convex, then the face games are convex (not strictly convex)
Proposition
Let (IV,v) be a convex game and T'C N. Then, C(N,vp,) = Fr.
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The Core and its Faces

Fo3 = C(N,vp,,)

co 2 8 2 3 3 8

If v is convex, then the face games are convex (not strictly convex)

Proposition

Let (N,v) be a convex game and T'C N. Then, C(N,vp,) = Fr.
Therefore, C(N,v) = co{C(N,vp,): 0 #T C N}
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Let P = {Ny,...,N,} be a partition of NV, with p > 2
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Decomposable Games

Let P = {Ny,...,N,} be a partition of NV, with p > 2
(N,v) is decomposable with respect to P if, for each S C N,

v(S) =v(SNNy)+...+v(SNNp)
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Decomposable Games

Let P = {Ny,...,N,} be a partition of NV, with p > 2
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N,eP
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Decomposable Games

Let P = {Ny,...,N,} be a partition of NV, with p > 2
(N,v) is decomposable with respect to P if, for each S C N,

v(S) =v(SNN) +...+0(SNN,) = Y v(SNN)
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@ The core of a decomposable convex game is the cartesian
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Decomposable Games

Let P = {Ny,...,N,} be a partition of NV, with p > 2
(N,v) is decomposable with respect to P if, for each S C N,

v(S) =v(SNN) +...+0(SNN,) = Y v(SNN)
N;eP

Lemma
@ The core of a decomposable convex game is the cartesian
product of the cores of the components of any decomposition
@ A strictly convex game is indecomposable
o (N,vp,) is decomposable with respect to P = {T', N\T'}
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-~

vp (SO(N\T))
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Decomposable Games

Let P = {Ny,...,N,} be a partition of NV, with p > 2
(N,v) is decomposable with respect to P if, for each S C N,

v(S) =v(SNN) +...+0(SNN,) = Y v(SNN)
N;eP

Lemma

@ The core of a decomposable convex game is the cartesian
product of the cores of the components of any decomposition

@ A strictly convex game is indecomposable
o (N,vp,) is decomposable with respect to P = {T', N\T'}

vp,(S) ==v((SNT)U (J\ST)) —v(N\T) + (SN (N\T))

vip (ST) vpy (SO(N\T))
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Decomposable Games

Let P = {Ny,...,N,} be a partition of NV, with p > 2
(N,v) is decomposable with respect to P if, for each S C N,

v(S) =v(SNN) +...+0(SNN,) = Y v(SNN)
N,eP

Lemma

@ The core of a decomposable convex game is the cartesian
product of the cores of the components of any decomposition

@ A strictly convex game is indecomposable

@ (N,vp, ) is decomposable with respect to P = {T', N\T'}

vrp(S) == o((SNT) U (J\QT)) —o(N\T) + (SN (N\T))

vip (ST) vpy (SO(N\T))
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Decomposable Games

v(2) =0, (1) =0

v(3) =0
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Decomposable Games

v(2) =0, (1) =0

v(3) =0

Cores of Convex Games and Pascal's Triangle Gonzélez-Diaz and Sénchez-Rodriguez



Decomposable Games

3
v(N)=5
v(l)=v(2)=v(3)=0
v(12) =2; v(23) =v(13) =1
v(2) =0, (1) =0
1 v(@3) =0 2
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Decomposable Games

v(3) =0
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Decomposable Games

v(3) =0
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Decomposable Games

v(N)=5 %
v(l)=v(2)=v(3)=0
v(12) =2; v(23) =v(13) =1

1 2
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Decomposable Games

o In Fp the “negotiations” between T" and N\T have been
decided in favor of T’
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Decomposable Games

o In Fp the “negotiations” between T" and N\T have been
decided in favor of T’

@ Thus, vp, is decomposable with respect to 7" and N\T.
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Decomposable Games

o In Fp the “negotiations” between T" and N\T have been
decided in favor of T

@ Thus, vp, is decomposable with respect to 7" and N\T.
Denote by (T,v") and (N\T,v\T) the games in the
decomposition
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Decomposable Games

o In Fp the “negotiations” between T" and N\T have been
decided in favor of T

@ Thus, vp, is decomposable with respect to 7" and N\T.
Denote by (T,v") and (N\T,v\T) the games in the
decomposition

o If |T| > 1, the players in T still have to “negotiate”
(similarly in (N\T,v™\T))
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The combinatorial complexity of the core of a game is the number
of "different” kinds of polytopes there are among its facets
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The combinatorial complexity of the core of a game is the number
of "different” kinds of polytopes there are among its facets
Let (N, v) be a strictly convex game and ) 2T C N
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The combinatorial complexity of the core of a game is the number
of "different” kinds of polytopes there are among its facets
Let (N, v) be a strictly convex game and ) 2T C N

Result 1

Result 2

Result 3
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The combinatorial complexity of the core of a game is the number
of "different” kinds of polytopes there are among its facets
Let (N, v) be a strictly convex game and ) 2T C N

Result 1
(T,v™) and (N\T,vN\T) are strictly convex

Result 2

Result 3
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The combinatorial complexity of the core of a game is the number
of "different” kinds of polytopes there are among its facets
Let (N, v) be a strictly convex game and ) 2T C N

Result 1
(T,v") and (N\T,vN\T) are strictly convex and
C(N,vp,) = C(T,v") x C(N\T,vN\T)

Result 2

Result 3
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The combinatorial complexity of the core of a game is the number
of "different” kinds of polytopes there are among its facets
Let (N, v) be a strictly convex game and ) 2T C N

Result 1
(T,v") and (N\T,vN\T) are strictly convex and
C(N,vp,) = C(T,v") x C(N\T,vN\T)

Result 2
For each t € {1,...,n — 1}, C(N,v) has 2(}) “equal” facets

Result 3
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The combinatorial complexity of the core of a game is the number
of “different” kinds of polytopes there are among its facets
Let (N, v) be a strictly convex game and ) 2T C N

Result 1
(T,v") and (N\T,vN\T) are strictly convex and
C(N,vp,) = C(T,v") x C(N\T,vN\T)

Result 2

For each t € {1,...,n — 1}, C(N,v) has 2(}) “equal” facets
(decomposable as the product of the cores of two strictly convex
games with ¢ and n — ¢ players, respectively)
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Result 1: (T, 0T, (N\T,'UN\T) strictly convex. C(N, ’UFT) = (T, »T) x C(N\T, 'UN\T)
Result 2: For each t € {0,...,n}, C(N,v) has 2(72) “equal” facets

Result 3: The combinatorial complexity of C'(N, v) is | % |



Result 1: (T, v ), (N\T, vN\T) strictly convex. C(N, vpp) = C(T, oy x ¢(N\T, vN\T)
Result 2: For each t € {0,...,n}, C(N,v) has 2(7:) “equal” facets

Result 3: The combinatorial complexity of C'(N, v) is | % |
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Result 1: (T, v ), (N\T, vN\T) strictly convex. C(N, vpp) = C(T, oy x ¢(N\T, vN\T)
Result 2: For each t € {0,...,n}, C(N,v) has 2(7:) “equal” facets
Result 3: The combinatorial complexity of C'(N, v) is | % |
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0 and their facets (cores of face games)
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2-players.
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