Cores of Convex Games and Pascal's Triangle

Julio González-Díaz

Kellogg School of Management (CMS-EMS) Northwestern University and Research Group in Economic Analysis Universidad de Vigo

(joint with Estela Sánchez-Rodríguez)

July 4th, 2007

・ロト ・回ト ・ヨト ・ヨト

Convex

・ロト ・回ト ・ヨト ・ヨト

Convex

for each $i \in N$ and each S and T such that $S \subseteq T \subseteq N \setminus \{i\}$,

Convex

for each $i \in N$ and each S and T such that $S \subseteq T \subseteq N \setminus \{i\}$,

$$v(S \cup i) - v(S) \le v(T \cup i) - v(T)$$

Convex

for each $i \in N$ and each S and T such that $S \subseteq T \subseteq N \setminus \{i\}$,

$$v(S \cup i) - v(S) \le v(T \cup i) - v(T)$$

Strictly Convex

for each $i \in N$ and each S and T such that $S \subsetneq T \subseteq N \setminus \{i\}$,

$$v(S \cup i) - v(S) < v(T \cup i) - v(T)$$

Convex

for each $i \in N$ and each S and T such that $S \subseteq T \subseteq N \setminus \{i\}$,

$$v(S \cup i) - v(S) \le v(T \cup i) - v(T)$$

Strictly Convex

for each $i \in N$ and each S and T such that $S \subsetneq T \subseteq N \setminus \{i\}$,

$$v(S \cup i) - v(S) < v(T \cup i) - v(T)$$

The core of a strictly convex n-player game...

Convex

for each $i \in N$ and each S and T such that $S \subseteq T \subseteq N \setminus \{i\}$,

$$v(S \cup i) - v(S) \le v(T \cup i) - v(T)$$

Strictly Convex

for each $i \in N$ and each S and T such that $S \subsetneq T \subseteq N \setminus \{i\}$,

$$v(S \cup i) - v(S) < v(T \cup i) - v(T)$$

The core of a strictly convex *n*-player game...

• has n! extreme points

Convex

for each $i \in N$ and each S and T such that $S \subseteq T \subseteq N \setminus \{i\}$,

$$v(S \cup i) - v(S) \le v(T \cup i) - v(T)$$

Strictly Convex

for each $i \in N$ and each S and T such that $S \subsetneq T \subseteq N \setminus \{i\}$,

$$v(S \cup i) - v(S) < v(T \cup i) - v(T)$$

The core of a strictly convex *n*-player game...

 has n! extreme points (one for each vector of marginal contributions)

Convex

for each $i \in N$ and each S and T such that $S \subseteq T \subseteq N \setminus \{i\}$,

$$v(S \cup i) - v(S) \le v(T \cup i) - v(T)$$

Strictly Convex

for each $i \in N$ and each S and T such that $S \subsetneq T \subseteq N \setminus \{i\}$,

$$v(S \cup i) - v(S) < v(T \cup i) - v(T)$$

The core of a strictly convex *n*-player game...

- has n! extreme points (one for each vector of marginal contributions)
- and its core is full dimensional

Convex

for each $i \in N$ and each S and T such that $S \subseteq T \subseteq N \setminus \{i\}$,

$$v(S \cup i) - v(S) \le v(T \cup i) - v(T)$$

Strictly Convex

for each $i \in N$ and each S and T such that $S \subsetneq T \subseteq N \setminus \{i\}$,

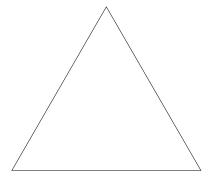
$$v(S \cup i) - v(S) < v(T \cup i) - v(T)$$

The core of a strictly convex *n*-player game...

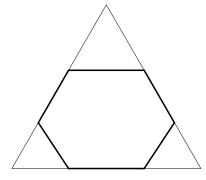
- has n! extreme points
 (one for each vector of marginal contributions)
- and its core is full dimensional

(an (n-1)-dimensional polytope inside the set of imputations)

・ 同 ト ・ ヨ ト ・ ヨ ト



伺 と く ヨ と く ヨ と



▲御▶ ▲ 臣▶ ▲ 臣▶ -

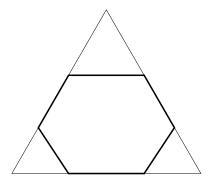
•
$$H_T := \{x \in \mathbb{R}^n : \sum_{i \in T} x_i = v(T)\}$$



▲御▶ ▲ 臣▶ ▲ 臣▶ -

•
$$H_T := \{x \in \mathbb{R}^n : \sum_{i \in T} x_i = v(T)\}$$

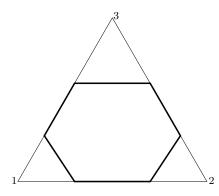
•
$$F_T := C(N, v) \cap H_{N \setminus T}$$



▲□ → ▲ 目 → ▲ 目 →

•
$$H_T := \{x \in \mathbb{R}^n : \sum_{i \in T} x_i = v(T)\}$$

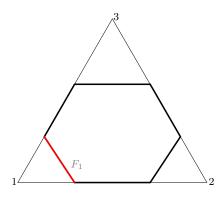
• $F_T := C(N, v) \cap H_{N \setminus T}$



<回> <注→ <注> <注> <注> <

•
$$H_T := \{x \in \mathbb{R}^n : \sum_{i \in T} x_i = v(T)\}$$

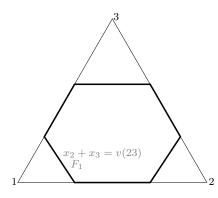
• $F_T := C(N, v) \cap H_{N \setminus T}$



▲御▶ ▲注▶ ▲注▶ - 注

•
$$H_T := \{x \in \mathbb{R}^n : \sum_{i \in T} x_i = v(T)\}$$

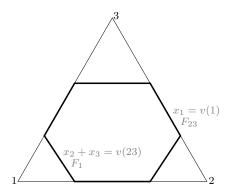
• $F_T := C(N, v) \cap H_{N \setminus T}$



▲御▶ ▲注▶ ▲注▶ - 注

•
$$H_T := \{x \in \mathbb{R}^n : \sum_{i \in T} x_i = v(T)\}$$

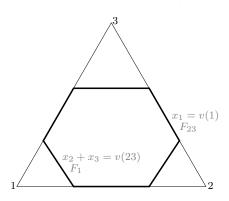
• $F_T := C(N, v) \cap H_{N \setminus T}$

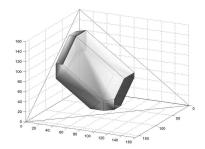


< □> < 注> < 注> = 注

•
$$H_T := \{x \in \mathbb{R}^n : \sum_{i \in T} x_i = v(T)\}$$

• $F_T := C(N, v) \cap H_{N \setminus T}$

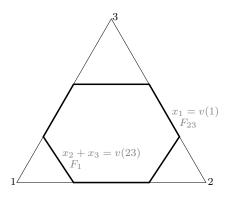


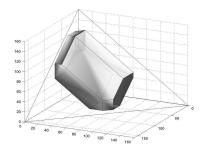


▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ……

•
$$H_T := \{x \in \mathbb{R}^n : \sum_{i \in T} x_i = v(T)\}$$

• $F_T := C(N, v) \cap H_{N \setminus T}$



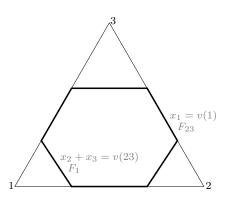


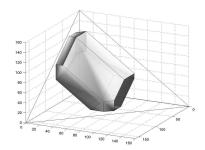
- (回) - (回) - (回) - (回) - (回) - (回) - (回) - (回) - (回) - (回) - (回) - (回) - (回) - (回) - (回) - (回) - (回) - (\Pi) - (\Pi

$$T$$
-face game: (N, v_{F_T})
 $v_{F_T}(S) :=$

•
$$H_T := \{x \in \mathbb{R}^n : \sum_{i \in T} x_i = v(T)\}$$

• $F_T := C(N, v) \cap H_{N \setminus T}$





 $v(S \cap (N \backslash T))$

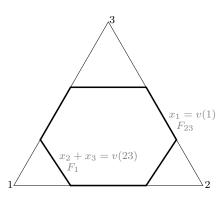
$$T$$
-face game: (N, v_{F_T})
 $v_{F_T}(S) :=$

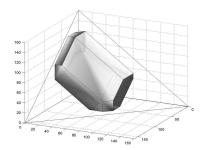
Cores of Convex Games and Pascal's Triangle

González-Díaz and Sánchez-Rodríguez

•
$$H_T := \{x \in \mathbb{R}^n : \sum_{i \in T} x_i = v(T)\}$$

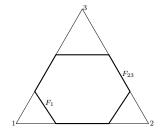
• $F_T := C(N, v) \cap H_{N \setminus T}$

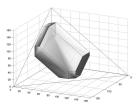




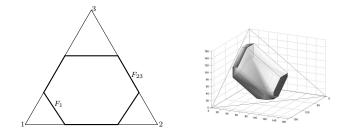
 $T\text{-face game: } (N, v_{F_T})$ $v_{F_T}(S) := v((S \cap T) \cup (N \setminus T)) - v(N \setminus T) + v(S \cap (N \setminus T))$

Cores of Convex Games and Pascal's Triangle González-Díaz and Sánchez-Rodríguez

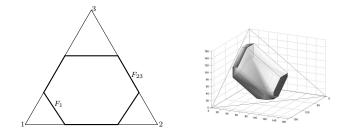




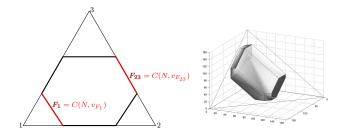
▲御▶ ▲ 陸▶ ▲ 陸▶



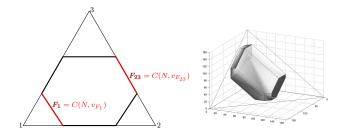
If v is convex, then the face games are convex (not strictly convex)



If v is convex, then the face games are convex (not strictly convex) Proposition Let (N,v) be a convex game and $T\subseteq N.$



If v is convex, then the face games are convex (not strictly convex) Proposition Let (N, v) be a convex game and $T \subseteq N$. Then, $C(N, v_{F_T}) = F_T$.



If v is convex, then the face games are convex (not strictly convex)

Proposition

Let (N, v) be a convex game and $T \subseteq N$. Then, $C(N, v_{F_T}) = F_T$. Therefore, $C(N, v) = co\{C(N, v_{F_T}) : \emptyset \neq T \subsetneq N\}$

回 と く ヨ と く ヨ と

Let $\mathcal{P} = \{N_1, \dots, N_p\}$ be a partition of N, with $p \geq 2$

・ 同 ト ・ ヨ ト ・ ヨ ト

Let $\mathcal{P} = \{N_1, \dots, N_p\}$ be a partition of N, with $p \ge 2$ (N, v) is decomposable with respect to \mathcal{P} if, for each $S \subseteq N$,

Let $\mathcal{P} = \{N_1, \dots, N_p\}$ be a partition of N, with $p \ge 2$ (N, v) is decomposable with respect to \mathcal{P} if, for each $S \subseteq N$,

 $v(S) = v(S \cap N_1) + \ldots + v(S \cap N_p)$

Let $\mathcal{P} = \{N_1, \ldots, N_p\}$ be a partition of N, with $p \ge 2$ (N, v) is decomposable with respect to \mathcal{P} if, for each $S \subseteq N$,

$$v(S) = v(S \cap N_1) + \ldots + v(S \cap N_p) = \sum_{N_i \in \mathcal{P}} v(S \cap N_i)$$

Let $\mathcal{P} = \{N_1, \dots, N_p\}$ be a partition of N, with $p \ge 2$ (N, v) is decomposable with respect to \mathcal{P} if, for each $S \subseteq N$,

$$v(S) = v(S \cap N_1) + \ldots + v(S \cap N_p) = \sum_{N_i \in \mathcal{P}} v(S \cap N_i)$$

Lemma

Let $\mathcal{P} = \{N_1, \dots, N_p\}$ be a partition of N, with $p \ge 2$ (N, v) is decomposable with respect to \mathcal{P} if, for each $S \subseteq N$,

$$v(S) = v(S \cap N_1) + \ldots + v(S \cap N_p) = \sum_{N_i \in \mathcal{P}} v(S \cap N_i)$$

Lemma

 The core of a decomposable convex game is the cartesian product of the cores of the components of any decomposition

Let $\mathcal{P} = \{N_1, \dots, N_p\}$ be a partition of N, with $p \ge 2$ (N, v) is decomposable with respect to \mathcal{P} if, for each $S \subseteq N$,

$$v(S) = v(S \cap N_1) + \ldots + v(S \cap N_p) = \sum_{N_i \in \mathcal{P}} v(S \cap N_i)$$

- The core of a decomposable convex game is the cartesian product of the cores of the components of any decomposition
- A strictly convex game is indecomposable

Let $\mathcal{P} = \{N_1, \dots, N_p\}$ be a partition of N, with $p \ge 2$ (N, v) is decomposable with respect to \mathcal{P} if, for each $S \subseteq N$,

$$v(S) = v(S \cap N_1) + \ldots + v(S \cap N_p) = \sum_{N_i \in \mathcal{P}} v(S \cap N_i)$$

- The core of a decomposable convex game is the cartesian product of the cores of the components of any decomposition
- A strictly convex game is indecomposable
- (N, v_{F_T}) is decomposable with respect to $\mathcal{P} = \{T, N \setminus T\}$

Let $\mathcal{P} = \{N_1, \dots, N_p\}$ be a partition of N, with $p \ge 2$ (N, v) is decomposable with respect to \mathcal{P} if, for each $S \subseteq N$,

$$v(S) = v(S \cap N_1) + \ldots + v(S \cap N_p) = \sum_{N_i \in \mathcal{P}} v(S \cap N_i)$$

- The core of a decomposable convex game is the cartesian product of the cores of the components of any decomposition
- A strictly convex game is indecomposable
- (N, v_{F_T}) is decomposable with respect to $\mathcal{P} = \{T, N \setminus T\}$

$$v_{F_T}(S) := \underbrace{v((S \cap T) \cup (N \setminus T)) - v(N \setminus T)}_{v(S \cap (N \setminus T))} + \underbrace{v(S \cap (N \setminus T))}_{v(S \cap (N \setminus T))}$$

Let $\mathcal{P} = \{N_1, \dots, N_p\}$ be a partition of N, with $p \ge 2$ (N, v) is decomposable with respect to \mathcal{P} if, for each $S \subseteq N$,

$$v(S) = v(S \cap N_1) + \ldots + v(S \cap N_p) = \sum_{N_i \in \mathcal{P}} v(S \cap N_i)$$

- The core of a decomposable convex game is the cartesian product of the cores of the components of any decomposition
- A strictly convex game is indecomposable
- (N, v_{F_T}) is decomposable with respect to $\mathcal{P} = \{T, N \setminus T\}$

$$v_{F_T}(S) := \underbrace{v((S \cap T) \cup (N \setminus T)) - v(N \setminus T)}_{v_{F_T}(S \cap (N \setminus T))} + \underbrace{v(S \cap (N \setminus T))}_{v_{F_T}(S \cap (N \setminus T))}$$

Let $\mathcal{P} = \{N_1, \dots, N_p\}$ be a partition of N, with $p \ge 2$ (N, v) is decomposable with respect to \mathcal{P} if, for each $S \subseteq N$,

$$v(S) = v(S \cap N_1) + \ldots + v(S \cap N_p) = \sum_{N_i \in \mathcal{P}} v(S \cap N_i)$$

- The core of a decomposable convex game is the cartesian product of the cores of the components of any decomposition
- A strictly convex game is indecomposable
- (N, v_{F_T}) is decomposable with respect to $\mathcal{P} = \{T, N \setminus T\}$

$$v_{F_T}(S) := \underbrace{v((S \cap T) \cup (N \setminus T)) - v(N \setminus T)}_{v_{F_T}(S \cap T)} + \underbrace{v(S \cap (N \setminus T))}_{v_{F_T}(S \cap (N \setminus T))}$$

Let $\mathcal{P} = \{N_1, \dots, N_p\}$ be a partition of N, with $p \ge 2$ (N, v) is decomposable with respect to \mathcal{P} if, for each $S \subseteq N$,

$$v(S) = v(S \cap N_1) + \ldots + v(S \cap N_p) = \sum_{N_i \in \mathcal{P}} v(S \cap N_i)$$

- The core of a decomposable convex game is the cartesian product of the cores of the components of any decomposition
- A strictly convex game is indecomposable
- (N, v_{F_T}) is decomposable with respect to $\mathcal{P} = \{T, N \setminus T\}$

$$v_{F_T}(S) := \underbrace{v((S \cap T) \cup (N \setminus T)) - v(N \setminus T)}_{v_{F_T}(S \cap T)} + \underbrace{v(S \cap (N \setminus T))}_{v_{F_T}(S \cap (N \setminus T))}$$

回 と く ヨ と く ヨ と

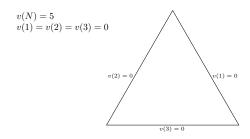
v(N) = 5

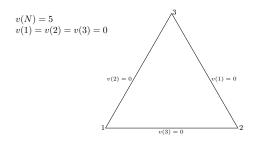
- 4 回 > - 4 回 > - 4 回 >

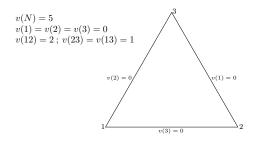
$$v(N) = 5$$

 $v(1) = v(2) = v(3) = 0$

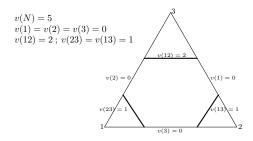
・ロト ・回ト ・ヨト ・ヨト





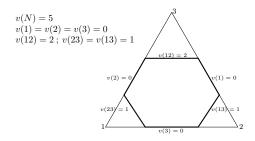


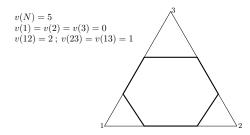
< 回 > < 三 > < 三 >



5/7

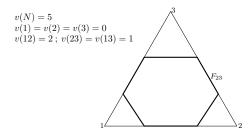
< 回 > < 三 > < 三 >





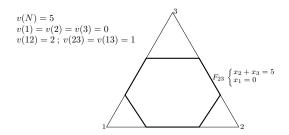
5/7

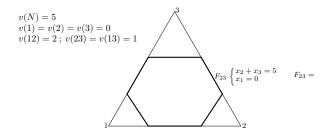
< 回 > < 三 > < 三 >



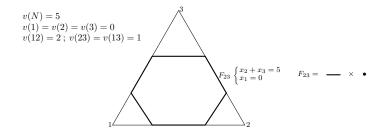
5/7

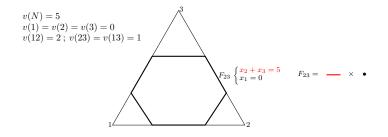
< 回 > < 三 > < 三 >

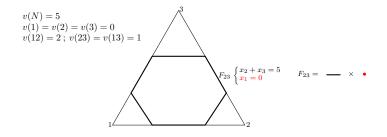




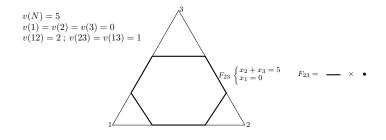
5/7





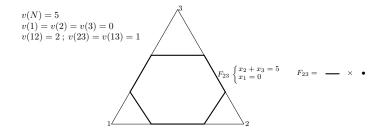


• In F_T the "negotiations" between T and $N\backslash T$ have been decided in favor of T

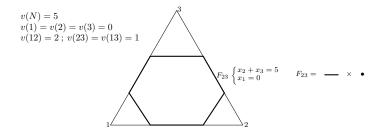


伺 と く ヨ と く ヨ と

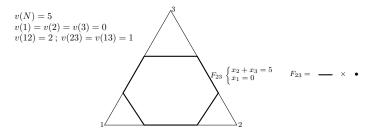
- In F_T the "negotiations" between T and $N\backslash T$ have been decided in favor of T
- Thus, v_{F_T} is decomposable with respect to T and $N \setminus T$.



- In F_T the "negotiations" between T and $N\backslash T$ have been decided in favor of T
- Thus, v_{F_T} is decomposable with respect to T and $N \setminus T$. Denote by (T, v^T) and $(N \setminus T, v^{N \setminus T})$ the games in the decomposition



- In F_T the "negotiations" between T and $N\backslash T$ have been decided in favor of T
- Thus, v_{F_T} is decomposable with respect to T and $N \setminus T$. Denote by (T, v^T) and $(N \setminus T, v^{N \setminus T})$ the games in the decomposition
- If |T| > 1, the players in T still have to "negotiate" (similarly in $(N \setminus T, v^{N \setminus T})$)



・ロト ・回ト ・ヨト ・ヨト

The *combinatorial complexity* of the core of a game is the number of "different" kinds of polytopes there are among its facets

The *combinatorial complexity* of the core of a game is the number of "different" kinds of polytopes there are among its facets

The *combinatorial complexity* of the core of a game is the number of "different" kinds of polytopes there are among its facets

The *combinatorial complexity* of the core of a game is the number of "different" kinds of polytopes there are among its facets Let (N, v) be a strictly convex game and $\emptyset \neq T \subsetneq N$

The *combinatorial complexity* of the core of a game is the number of "different" kinds of polytopes there are among its facets Let (N, v) be a strictly convex game and $\emptyset \neq T \subsetneq N$ Result 1

Result 2

Result 3

同 と く ヨ と く ヨ と

The *combinatorial complexity* of the core of a game is the number of "different" kinds of polytopes there are among its facets Let (N, v) be a strictly convex game and $\emptyset \neq T \subsetneq N$

 $\begin{array}{l} \mbox{Result 1} \\ (T,v^T) \mbox{ and } (N\backslash T,v^{N\backslash T}) \mbox{ are strictly convex} \end{array}$

Result 2

Result 3

The *combinatorial complexity* of the core of a game is the number of "different" kinds of polytopes there are among its facets Let (N, v) be a strictly convex game and $\emptyset \neq T \subsetneq N$

Result 1 (T, v^T) and $(N \setminus T, v^{N \setminus T})$ are strictly convex and $C(N, v_{F_T}) = C(T, v^T) \times C(N \setminus T, v^{N \setminus T})$

Result 2

Result 3

The *combinatorial complexity* of the core of a game is the number of "different" kinds of polytopes there are among its facets Let (N, v) be a strictly convex game and $\emptyset \neq T \subsetneq N$

Result 1 (T, v^T) and $(N \setminus T, v^{N \setminus T})$ are strictly convex and $C(N, v_{F_T}) = C(T, v^T) \times C(N \setminus T, v^{N \setminus T})$

Result 2

For each $t \in \{1, \dots, n-1\}$, C(N, v) has $2 \binom{n}{t}$ "equal" facets

Result 3

The *combinatorial complexity* of the core of a game is the number of "different" kinds of polytopes there are among its facets Let (N, v) be a strictly convex game and $\emptyset \neq T \subsetneq N$

$\begin{array}{l} \mbox{Result 1} \\ (T,v^T) \mbox{ and } (N \backslash T, v^{N \backslash T}) \mbox{ are strictly convex and } \\ C(N,v_{F_T}) = C(T,v^T) \times C(N \backslash T, v^{N \backslash T}) \end{array}$

Result 2

For each $t \in \{1, ..., n-1\}$, C(N, v) has $2\binom{n}{t}$ "equal" facets (decomposable as the product of the cores of two strictly convex games with t and n-t players, respectively)

Result 3

The *combinatorial complexity* of the core of a game is the number of "different" kinds of polytopes there are among its facets Let (N, v) be a strictly convex game and $\emptyset \neq T \subsetneq N$

$\begin{array}{l} \mbox{Result 1} \\ (T,v^T) \mbox{ and } (N \backslash T, v^{N \backslash T}) \mbox{ are strictly convex and } \\ C(N,v_{F_T}) = C(T,v^T) \times C(N \backslash T, v^{N \backslash T}) \end{array}$

Result 2

For each $t \in \{1, ..., n-1\}$, C(N, v) has $2\binom{n}{t}$ "equal" facets (decomposable as the product of the cores of two strictly convex games with t and n-t players, respectively)

Result 3

The combinatorial complexity of C(N, v) is $\lfloor \frac{n}{2} \rfloor$

(日本) (日本) (日本)

Results

The *combinatorial complexity* of the core of a game is the number of "different" kinds of polytopes there are among its facets Let (N, v) be a strictly convex game and $\emptyset \neq T \subsetneq N$

$\begin{array}{l} \mbox{Result 1} \\ (T,v^T) \mbox{ and } (N \backslash T, v^{N \backslash T}) \mbox{ are strictly convex and } \\ C(N,v_{F_T}) = C(T,v^T) \times C(N \backslash T, v^{N \backslash T}) \end{array}$

Result 2

For each $t \in \{1, ..., n-1\}$, C(N, v) has $2\binom{n}{t}$ "equal" facets (decomposable as the product of the cores of two strictly convex games with t and n-t players, respectively)

Result 3

The combinatorial complexity of C(N, v) is $\lfloor \frac{n}{2} \rfloor$

(日本) (日本) (日本)

Results

The *combinatorial complexity* of the core of a game is the number of "different" kinds of polytopes there are among its facets Let (N, v) be a strictly convex game and $\emptyset \neq T \subsetneq N$

$\begin{array}{l} \mbox{Result 1} \\ (T,v^T) \mbox{ and } (N \backslash T, v^{N \backslash T}) \mbox{ are strictly convex and } \\ C(N,v_{F_T}) = C(T,v^T) \times C(N \backslash T, v^{N \backslash T}) \end{array}$

Result 2

For each $t \in \{1, ..., n-1\}$, C(N, v) has $2\binom{n}{t}$ "equal" facets (decomposable as the product of the cores of two strictly convex games with t and n-t players, respectively)

Result 3

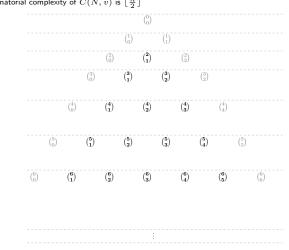
The combinatorial complexity of C(N, v) is $\lfloor \frac{n}{2} \rfloor$

(日本) (日本) (日本)

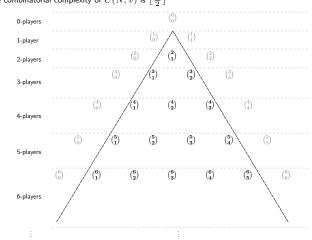
Result 3: The combinatorial complexity of C(N,v) is $\lfloor \frac{n}{2} \rfloor$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

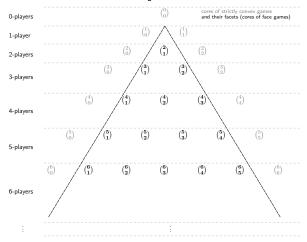
 $\begin{array}{l} \text{Result 1: } (T,v^T), (N \backslash T, v^{N \backslash T}) \text{ strictly convex. } C(N, v_{F_T}) = C(T,v^T) \times C(N \backslash T, v^{N \backslash T}) \\ \text{Result 2: For each } t \in \{0, \ldots, n\}, \ C(N,v) \text{ has } 2 {n \choose t} \text{ "equal" facets} \end{array}$



Result 3: The combinatorial complexity of C(N, v) is $\lfloor \frac{n}{2} \rfloor$

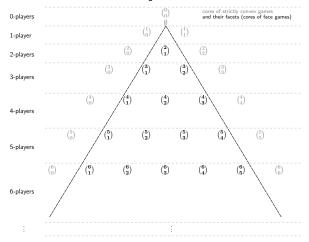


Result 3: The combinatorial complexity of C(N, v) is $\lfloor \frac{n}{2} \rfloor$

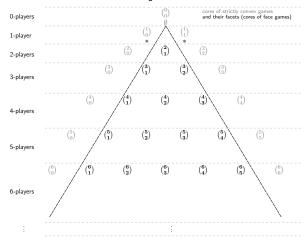


◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Result 3: The combinatorial complexity of C(N, v) is $\lfloor \frac{n}{2} \rfloor$

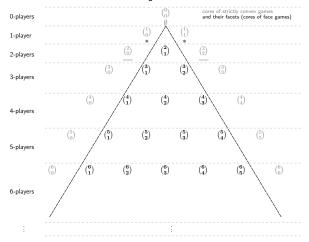


◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの



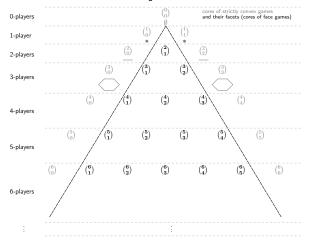
◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Result 3: The combinatorial complexity of C(N, v) is $\lfloor \frac{n}{2} \rfloor$



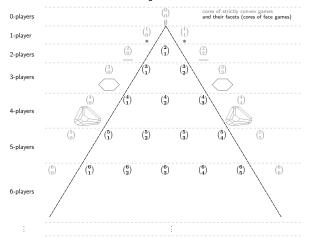
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Result 3: The combinatorial complexity of C(N, v) is $\lfloor \frac{n}{2} \rfloor$



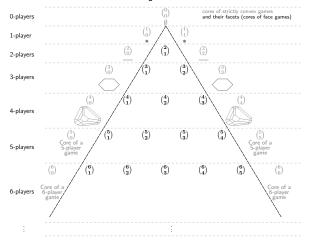
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Result 3: The combinatorial complexity of C(N, v) is $\lfloor \frac{n}{2} \rfloor$



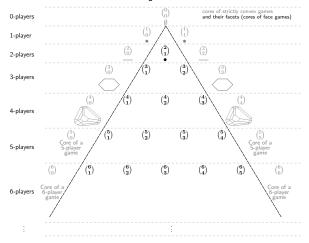
◆□▶ ◆□▶ ◆□▶ ◆□▶ = つへの

Result 3: The combinatorial complexity of C(N, v) is $\lfloor \frac{n}{2} \rfloor$

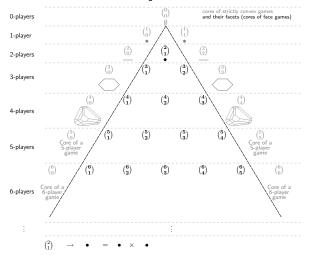


◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Result 3: The combinatorial complexity of C(N, v) is $\lfloor \frac{n}{2} \rfloor$

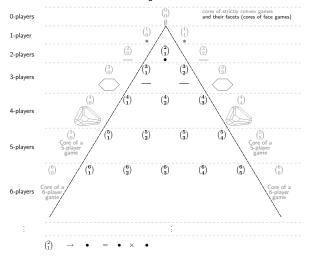


◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへの

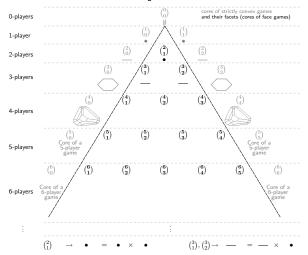


◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへの

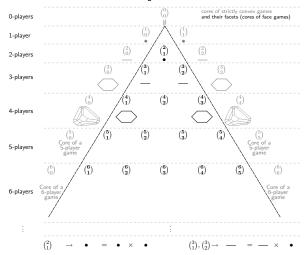
Result 3: The combinatorial complexity of C(N, v) is $\lfloor \frac{n}{2} \rfloor$



◆□▶ ◆□▶ ◆□▶ ◆□▶ = つへの

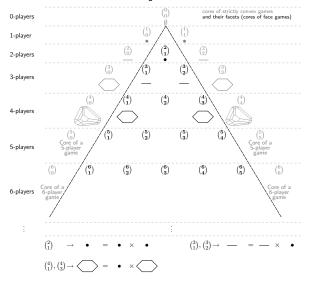


イロト イヨト イヨト イヨト ヨー のくで



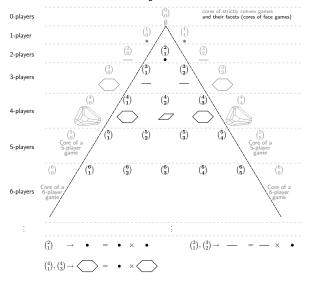
イロト イヨト イヨト イヨト ヨー シタの

Result 3: The combinatorial complexity of C(N, v) is $\lfloor \frac{n}{2} \rfloor$



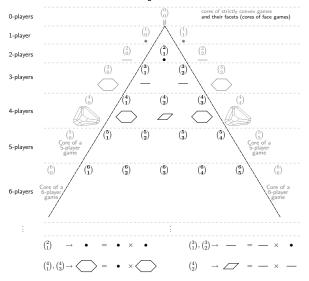
イロト イロト イヨト イヨト 三日 - のくで

Result 3: The combinatorial complexity of C(N, v) is $\lfloor \frac{n}{2} \rfloor$

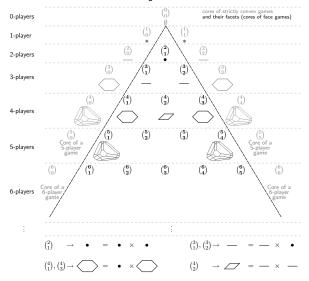


イロト イロト イヨト イヨト 三日 - のくで

Result 3: The combinatorial complexity of C(N, v) is $\lfloor \frac{n}{2} \rfloor$

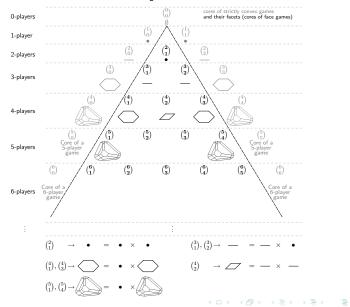


Result 3: The combinatorial complexity of C(N, v) is $\lfloor \frac{n}{2} \rfloor$

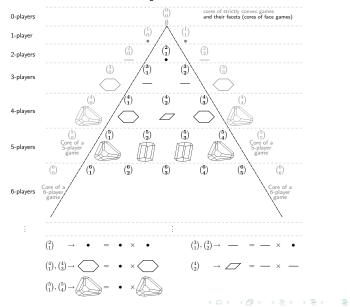


イロト イロト イヨト イヨト 三日 - クタウ

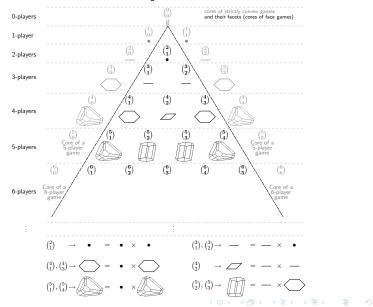
Result 3: The combinatorial complexity of C(N, v) is $\lfloor \frac{n}{2} \rfloor$



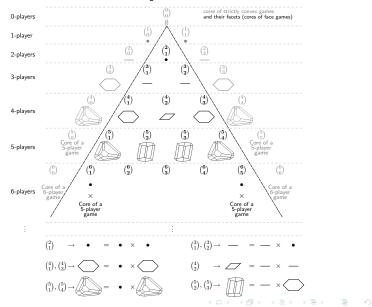
Result 3: The combinatorial complexity of C(N, v) is $\lfloor \frac{n}{2} \rfloor$



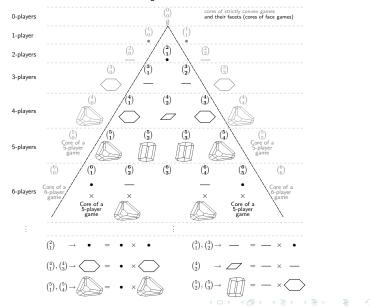
Result 3: The combinatorial complexity of C(N, v) is $\lfloor \frac{n}{2} \rfloor$



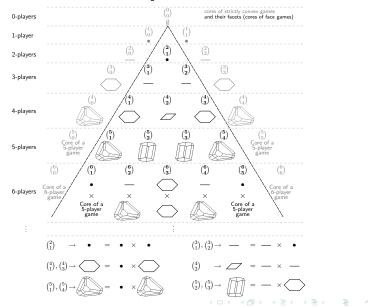
Result 3: The combinatorial complexity of C(N, v) is $\lfloor \frac{n}{2} \rfloor$



Result 3: The combinatorial complexity of C(N, v) is $\lfloor \frac{n}{2} \rfloor$



Result 3: The combinatorial complexity of C(N, v) is $\lfloor \frac{n}{2} \rfloor$



Cores of Convex Games and Pascal's Triangle

Julio González-Díaz

Kellogg School of Management (CMS-EMS) Northwestern University and Research Group in Economic Analysis Universidad de Vigo

(joint with Estela Sánchez-Rodríguez)

July 4th, 2007

