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The core of a strictly convex n-player game. . .

has n! extreme points
(one for each vector of marginal contributions)

and its core is full dimensional
(an (n − 1)-dimensional polytope inside the set of imputations)
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The Core and its Faces

1 2

3

F1

F23

F1 = C(N, vF1
)

F23 = C(N, vF23
)

If v is convex, then the face games are convex (not strictly convex)
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Let (N, v) be a convex game and T ⊆ N . Then, C(N, vFT
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Let (N, v) be a convex game and T ⊆ N . Then, C(N, vFT
) = FT .

Therefore, C(N, v) = co{C(N, vFT
) : ∅ 6= T ( N}
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Decomposable Games

v(N) = 5
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F23

{
x2 + x3 = 5
x1 = 0
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In FT the “negotiations” between T and N\T have been
decided in favor of T

Thus, vFT
is decomposable with respect to T and N\T .

Denote by (T, vT ) and (N\T, vN\T ) the games in the
decomposition

If |T | > 1, the players in T still have to “negotiate”
(similarly in (N\T, vN\T ))
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Results

The combinatorial complexity of the core of a game is the number
of “different” kinds of polytopes there are among its facets
Let (N, v) be a strictly convex game and ∅ 6= T ( N

Result 1
(T, vT ) and (N\T, vN\T ) are strictly convex and
C(N, vFT

) = C(T, vT ) × C(N\T, vN\T )

Result 2
For each t ∈ {1, . . . , n − 1}, C(N, v) has 2

(
n
t

)
“equal” facets

(decomposable as the product of the cores of two strictly convex
games with t and n − t players, respectively)

Result 3
The combinatorial complexity of C(N, v) is ⌊n

2 ⌋

Cores of Convex Games and Pascal’s Triangle González-D́ıaz and Sánchez-Rodŕıguez 6/7



Results

The combinatorial complexity of the core of a game is the number
of “different” kinds of polytopes there are among its facets
Let (N, v) be a strictly convex game and ∅ 6= T ( N

Result 1
(T, vT ) and (N\T, vN\T ) are strictly convex and
C(N, vFT

) = C(T, vT ) × C(N\T, vN\T )

Result 2
For each t ∈ {1, . . . , n − 1}, C(N, v) has 2

(
n
t

)
“equal” facets

(decomposable as the product of the cores of two strictly convex
games with t and n − t players, respectively)

Result 3
The combinatorial complexity of C(N, v) is ⌊n

2 ⌋

Cores of Convex Games and Pascal’s Triangle González-D́ıaz and Sánchez-Rodŕıguez 6/7
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