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Flow conservation constraints
E qk — E qk = Ci
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Vi € N~ demand nodes
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Vi € Nsupply nodes

Box Constraints
qk < Qe < G
Vk € A flow bounds

Variables of the optimization problem

p? <p? <p}

o Flow through each pipe
Vi € N pressure bounds

@ Pressure at each node
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Gass loss equations'

Given a pipe between two nodes 7 and j, we have.

s _ 16Lg)
WQD,i

As many nonlinear constraints as pipes.
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@ ~ 1000 constraints (and ~ 2000 box constraints)

@ =~ 500 constraints are nonlinear

How to solve this problem?

o Global optimization algorithms on approximations of the
problem (cannot handle real-size problems)

nonlinearities = piecewise linear functions -+ integer variables
e Local optimization algorithms such as sequential linear

programming, SLP, or sequential quadratic programming,
SQP
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Mixed-integer nonlinear nonconvex programming problem
@ ~ 1000 continuous variables and 1000 constraints

@ No more than 100-200 binary variables

How are these problems normally tackled?.

Two-step algorithms
o Step 1. Study a simplified version of the problem to fix all
binary choices
o Step 2. Apply SLP, SQP,...to the resulting continuous
problem
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Our two-step approach for MINLP problems
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SLP-NTR (No Trust Region)

Nonlinear programming problem: NLP
minimize f(x)
subject to
inequality contraints g;(x) <0, i=1,---,m
equality constrains hj(a:) =0, j=1,---,1
linear constraints x € X ={x e R": Az <b}

where f, g; and h; are nonlinear functions.
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SLP-NTR

@ At iteration £ we have a candidate solution @
o We solve the linearization of NLP about x*, LP(z"):

k

minimize Vf(z")tx
subject to
inequality constraints g;(z*) + Vg;(®)!(x —2*) <0 i=1,--- ,m
equality constraints h;(x®) + Vh(z") (x —2F) =0 j=1,---,1
linear constraints x € X = {x €¢ R": Az < b}

trust region /gt 1)1

@ We remove the constraints that define the trust region

Straightforward inclusion of binary variables.
Theoretical justification for the removal of the trust region? I
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Summary (algorithm for MINLP problems)

2SLP: SLP-NTR + Classic SLP
e Step 1. SLP-NTR (No Trust Region)
@ Step 2. Classic SLP

Features of our two-step approach
@ Easy to implement
@ Step 1 runs on the full model. No simplification needed
@ Step 2 “guarantees’ convergence

@ Good practical behavior (< 5 minutes running time on Spanish network)

e Significant cost reduction with respect to operation schemes
reported by the Transmission System Operator (whose software does not
optimize)

e Limitation: No bounds/gap to optimality
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Our contribution

NLP problems
Theoretical foundation for the SLP-NTR algorithm

MINLP problems
Heuristic approach based on the SLP-NTR algorithm

@ Nothing deep, but we have not seen it elsewhere
@ Good performance in real size problems

MINLP stochastic problems
@ Long-term infrastructure planning under uncertainty
(prices and demands)

@ Implementation of a lagrangian decomposition algorithm

(progressive hedging) that uses SLP-NTR algorithm to solve
the MINLP subproblems
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Numerical results

@ Comparisons on the Spanish gas transmission network
@ Comparisons on related gas transmission problems

© Comparisons on multicommodity flow problems

Work in progress.
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o Next task. Designing a full set of test instances
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@ Benchmark test sets available (Babonneau et al. 2004)

Variab.

Problem |N| |E| |T|  Constr. Zopt Relative error

Planar problems CSLP  SLP-NTR 2SLP
P30 30 150 92 2760 13800  4.445 x 107 0.0074 0.0085 0.0074
P50 50 250 267 13350 66750 1.212 x 10%  0.0202 0.0212 0.0202
P80 80 440 543 43440 238920 1.819 x 108  0.0174 0.0188 0.0174
P100 100 532 1085 108500 577220 2.291 x 108  0.0212 0.0219 0.0212
Grid problems

G1 25 80 50 1250 4000 8.336 x 10>  0.0003 0.0054 0.0004
G2 25 80 100 2500 8000 1.727 x 108 0.0006 0.0089 0.0005
G3 100 360 50 5000 18000 1.532 x 105  0.0000 0.0065 0.0002
G4 100 360 100 10000 36000 3.055 x 10 0.0000 0.0066 0.0000
G5 225 840 100 22500 84000 5.079 x 10  0.0000 0.0069 0.0000
G6 225 840 200 45000 168000 1.051 x 107 0.0001 0.0108 0.0002
G7 400 1520 400 160000 608000 2.607 x 107 0.0000 0.0031 0.0000
Telecommunication-like problems

N22 14 22 23 322 506 1.871 x 103 0.0131 0.0131 0.0131
N148 58 148 122 7076 18056  1.402 x 105  0.0000 0.0002 0.0000
Transportation problems

S-F 24 76 528 12672 40128  3.202 x 10°  0.0050 0.0051 0.0050
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@ All approaches very competitive in terms of objective function
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zf;:lTR @ Apparently, the trust region helps to

ase solve faster very large linearized
subproblems
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