The Role of Commitment in Repeated Games

Julio González-Díaz Ignacio García-Jurado

Department of Statistics and Operations Research School of Mathematics Universidade de Santiago de Compostela

・ロト ・西ト ・ヨト ・ヨト ・ ヨー うへで

Introduction Outline

Motivation

Commitment

- Commitment
- Repeated games

- Commitment
- Repeated games
- Unilateral commitments in repeated games

- Commitment
- Repeated games
- Unilateral commitments in repeated games
- Delegation games

Outline

Virtually Subgame Perfect Equilibrium

- Some Examples
- Formal Definitions
- Discussion

Onilateral Commitments

- Definitions
- Delegation Models and Unilateral Commitments
- Results

3 Conclusions

VSPF

Outline

U Virtually Subgame Perfect Equilibrium

- Some Examples
- Formal Definitions
- Discussion

- Operation Definitions
- Delegation Models and Unilateral Commitments
- Results

Some Examples Formal Definitions Discussion

Some Examples Formal Definitions Discussion

Virtually Subgame Perfect Equilibrium First Example

Pure Strategies !!!

Some Examples Formal Definitions Discussion

Virtually Subgame Perfect Equilibrium First Example

Some Examples Formal Definitions Discussion

Some Examples Formal Definitions Discussion

Some Examples Formal Definitions Discussion

Some Examples Formal Definitions Discussion

Virtually Subgame Perfect Equilibrium Second Example

Some Examples Formal Definitions Discussion

Virtually Subgame Perfect Equilibrium Second Example

Some Examples Formal Definitions Discussion

Virtually Subgame Perfect Equilibrium Second Example

Some Examples Formal Definitions Discussion

Virtually Subgame Perfect Equilibrium Second Example

Some Examples Formal Definitions Discussion

Virtually Subgame Perfect Equilibrium Second Example

Some Examples Formal Definitions Discussion

Virtually Subgame Perfect Equilibrium Second Example

Some Examples Formal Definitions Discussion

Virtually Subgame Perfect Equilibrium Formal Definitions

Some Examples Formal Definitions Discussion

Virtually Subgame Perfect Equilibrium Formal Definitions

Let Γ be an extensive-form game and let x and σ be a single-node information set and a strategy profile, respectively. Then, Γx denotes the subgame of Γ that begins at node x and σx the restriction of σ to Γx.

Some Examples Formal Definitions Discussion

Virtually Subgame Perfect Equilibrium Formal Definitions

- Let Γ be an extensive-form game and let x and σ be a single-node information set and a strategy profile, respectively. Then, Γx denotes the subgame of Γ that begins at node x and σx the restriction of σ to Γx.
- Now, let Γ be an extensive-form game, σ a strategy profile of Γ, and x a single-node information set. Then, the subgame Γ_x is σ-relevant if either (i) Γ_x = Γ, or (ii) there are a player i, a strategy σ'_i, and a single-node information set y such that Γ_y is σ-relevant and node x is reached by (σ_{-i}, σ'_i)_y. ► Example

Some Examples Formal Definitions Discussion

Virtually Subgame Perfect Equilibrium Formal Definitions

- Let Γ be an extensive-form game and let x and σ be a single-node information set and a strategy profile, respectively. Then, Γx denotes the subgame of Γ that begins at node x and σx the restriction of σ to Γx.
- Now, let Γ be an extensive-form game, σ a strategy profile of Γ, and x a single-node information set. Then, the subgame Γ_x is σ-relevant if either (i) Γ_x = Γ, or (ii) there are a player i, a strategy σ'_i, and a single-node information set y such that Γ_y is σ-relevant and node x is reached by (σ_{-i}, σ'_i)_y. ► Example
- Let Γ be an extensive-form game. The strategy profile σ is a virtually subgame perfect equilibrium of Γ if for each σ-relevant subgame Γ_x, then σ_x is a Nash equilibrium of Γ_x.

Some Examples Formal Definitions Discussion

Virtually Subgame Perfect Equilibrium Discussion

Some Examples Formal Definitions Discussion

Virtually Subgame Perfect Equilibrium Discussion

Subgame Perfect Vs Virtually Subgame Perfect

Some Examples Formal Definitions Discussion

Virtually Subgame Perfect Equilibrium Discussion

Subgame Perfect Vs Virtually Subgame Perfect

Why do we need VSPE?

Some Examples Formal Definitions Discussion

Virtually Subgame Perfect Equilibrium Discussion

Subgame Perfect Vs Virtually Subgame Perfect

Why do we need VSPE?

• In our model, we face very large trees

Some Examples Formal Definitions Discussion

Virtually Subgame Perfect Equilibrium Discussion

Subgame Perfect Vs Virtually Subgame Perfect

Why do we need VSPE?

- In our model, we face very large trees
- There can be subgames with no Nash Equilibrium

Some Examples Formal Definitions Discussion

Virtually Subgame Perfect Equilibrium Discussion

Subgame Perfect Vs Virtually Subgame Perfect

Why do we need VSPE?

- In our model, we face very large trees
- There can be subgames with no Nash Equilibrium
- Hence,

Some Examples Formal Definitions Discussion

Virtually Subgame Perfect Equilibrium Discussion

Subgame Perfect Vs Virtually Subgame Perfect

Why do we need VSPE?

- In our model, we face very large trees
- There can be subgames with no Nash Equilibrium
- Hence,

We cannot use the classic results for the existence of SPE

VSPE Definitions Unilateral Commitments Delegation Models and Unilateral Commitments Conclusions Results

Outline

Virtually Subgame Perfect Equilibrium

- Some Examples
- Formal Definitions
- Discussion
- Onilateral Commitments
 - Definitions
 - Delegation Models and Unilateral Commitments
 - Results

Conclusions

Definitions Delegation Models and Unilateral Commitments Results

Unilateral Commitments Definitions

• The stage game:

Definitions Delegation Models and Unilateral Commitments Results

Unilateral Commitments Definitions

• The stage game: $G := (N, A, \varphi)$

Definitions Delegation Models and Unilateral Commitments Results

Unilateral Commitments Definitions

• The stage game:
$$G := (N, A, \varphi) \begin{cases} N := \{1, \dots, n\} \end{cases}$$

Definitions Delegation Models and Unilateral Commitments Results

Unilateral Commitments Definitions

• The stage game:
$$G := (N, A, \varphi) \begin{cases} N := \{1, \dots, n\} \\ A := \prod_{i \in N} A_i \end{cases}$$

Definitions Delegation Models and Unilateral Commitments Results

• The stage game:
$$G := (N, A, \varphi) \begin{cases} N := \{1, \dots, n\} \\ A := \prod_{i \in N} A_i \\ \varphi := (\varphi_1, \dots, \varphi_n) \end{cases}$$

Definitions Delegation Models and Unilateral Commitments Results

• The stage game:
$$G := (N, A, \varphi) \begin{cases} N := \{1, \dots, n\} \\ A := \prod_{i \in N} A_i \\ \varphi := (\varphi_1, \dots, \varphi_n) \end{cases}$$

• The repeated game: $G_{\delta}^T := (N, S, \varphi^{\delta}) \end{cases}$

Definitions Delegation Models and Unilateral Commitments Results

• The stage game:
$$G := (N, A, \varphi) \begin{cases} N := \{1, \dots, n\} \\ A := \prod_{i \in N} A_i \\ \varphi := (\varphi_1, \dots, \varphi_n) \end{cases}$$

• The repeated game:
$$G_{\delta}^T := (N, S, \varphi^{\delta}) \begin{cases} N := \{1, \dots, n\} \\ S := \prod_{i \in N} S_i \end{cases}$$

Definitions Delegation Models and Unilateral Commitments Results

• The stage game:
$$G := (N, A, \varphi) \begin{cases} N := \{1, \dots, n\} \\ A := \prod_{i \in N} A_i \\ \varphi := (\varphi_1, \dots, \varphi_n) \end{cases}$$

• The repeated game:
$$G_{\delta}^T := (N, S, \varphi^{\delta}) \begin{cases} N := \{1, \dots, n\} \\ S := \prod_{i \in N} S_i \\ (S_i := A_i^H) \end{cases}$$

Definitions Delegation Models and Unilateral Commitments Results

• The stage game:
$$G := (N, A, \varphi) \begin{cases} N := \{1, \dots, n\} \\ A := \prod_{i \in N} A_i \\ \varphi := (\varphi_1, \dots, \varphi_n) \end{cases}$$

• The repeated game:
$$G_{\delta}^T := (N, S, \varphi^{\delta}) \begin{cases} N := \{1, \dots, n\} \\ S := \prod_{i \in N} S_i \\ (S_i := A_i^H) \\ \varphi^{\delta} \end{cases}$$

Definitions Delegation Models and Unilateral Commitments Results

Unilateral Commitments Definitions

• The stage game:
$$G := (N, A, \varphi) \begin{cases} N := \{1, \dots, n\} \\ A := \prod_{i \in N} A_i \\ \varphi := (\varphi_1, \dots, \varphi_n) \end{cases}$$

• The repeated game:
$$G_{\delta}^T := (N, S, \varphi^{\delta}) \begin{cases} N := \{1, \dots, n\} \\ S := \prod_{i \in N} S_i \\ (S_i := A_i^H) \\ \varphi^{\delta} \end{cases}$$

• The UC-extension: $U(G) := (N, A^U, \varphi^U)$

Definitions Delegation Models and Unilateral Commitments Results

Unilateral Commitments Definitions

• The stage game:
$$G := (N, A, \varphi) \begin{cases} N := \{1, \dots, n\} \\ A := \prod_{i \in N} A_i \\ \varphi := (\varphi_1, \dots, \varphi_n) \end{cases}$$

• The repeated game:
$$G_{\delta}^T := (N, S, \varphi^{\delta}) \begin{cases} N := \{1, \dots, n\} \\ S := \prod_{i \in N} S_i \\ (S_i := A_i^H) \\ \varphi^{\delta} \end{cases}$$

• The UC-extension: $U(G) := (N, A^U, \varphi^U)$ $A^U := \prod_{i \in N} A_i^U$, where A_i^U is the set of all couples (A_i^c, α_i) such that

Definitions Delegation Models and Unilateral Commitments Results

Unilateral Commitments Definitions

• The stage game:
$$G := (N, A, \varphi) \begin{cases} N := \{1, \dots, n\} \\ A := \prod_{i \in N} A_i \\ \varphi := (\varphi_1, \dots, \varphi_n) \end{cases}$$

• The repeated game:
$$G_{\delta}^T := (N, S, \varphi^{\delta}) \begin{cases} N := \{1, \dots, n\} \\ S := \prod_{i \in N} S_i \\ (S_i := A_i^H) \\ \varphi^{\delta} \end{cases}$$

• The UC-extension: $U(G) := (N, A^U, \varphi^U)$

 $A^U:=\prod_{i\in N}A^U_i$, where A^U_i is the set of all couples $\left(A^c_i,\alpha_i\right)$ such that

Definitions Delegation Models and Unilateral Commitments Results

Unilateral Commitments Definitions

• The stage game:
$$G := (N, A, \varphi) \begin{cases} N := \{1, \dots, n\} \\ A := \prod_{i \in N} A_i \\ \varphi := (\varphi_1, \dots, \varphi_n) \end{cases}$$

• The repeated game:
$$G_{\delta}^T := (N, S, \varphi^{\delta}) \begin{cases} N := \{1, \dots, n\} \\ S := \prod_{i \in N} S_i \\ (S_i := A_i^H) \\ \varphi^{\delta} \end{cases}$$

• The UC-extension: $U(G) := (N, A^U, \varphi^U)$

 $A^U:=\prod_{i\in N}A^U_i$, where A^U_i is the set of all couples $\left(A^c_i,\alpha_i\right)$ such that

Definitions Delegation Models and Unilateral Commitments Results

Unilateral Commitments Definitions

• The stage game:
$$G := (N, A, \varphi) \begin{cases} N := \{1, \dots, n\} \\ A := \prod_{i \in N} A_i \\ \varphi := (\varphi_1, \dots, \varphi_n) \end{cases}$$

• The repeated game:
$$G_{\delta}^T := (N, S, \varphi^{\delta}) \begin{cases} N := \{1, \dots, n\} \\ S := \prod_{i \in N} S_i \\ (S_i := A_i^H) \\ \varphi^{\delta} \end{cases}$$

• The UC-extension: $U(G) := (N, A^U, \varphi^U)$

 $A^U:=\prod_{i\in N}A^U_i$, where A^U_i is the set of all couples $\left(A^c_i,\alpha_i\right)$ such that

$$\begin{array}{l} \textcircled{0} & \oiint \subseteq A_i^c \subseteq A_i, \\ \textcircled{0} & \alpha_i : \prod_{j \in N} 2^{A_j} \longrightarrow A_i \text{ and, for each } A^c \in \prod_{j \in N} 2^{A_j}, \\ & \alpha_i(A^c) \in A_i^c. \end{array}$$

Definitions Delegation Models and Unilateral Commitments Results

Unilateral Commitments Definitions

• The stage game:
$$G := (N, A, \varphi) \begin{cases} N := \{1, \dots, n\} \\ A := \prod_{i \in N} A_i \\ \varphi := (\varphi_1, \dots, \varphi_n) \end{cases}$$

• The repeated game:
$$G_{\delta}^T := (N, S, \varphi^{\delta}) \begin{cases} N := \{1, \dots, n\} \\ S := \prod_{i \in N} S_i \\ (S_i := A_i^H) \\ \varphi^{\delta} \end{cases}$$

• The UC-extension: $U(G) := (N, A^U, \varphi^U)$

 $A^U:=\prod_{i\in N}A^U_i$, where A^U_i is the set of all couples $\left(A^c_i,\alpha_i\right)$ such that

$$\begin{array}{l} \textcircled{0} \hspace{0.1cm} \emptyset \subsetneq A_{i}^{c} \subseteq A_{i}, \\ \textcircled{0} \hspace{0.1cm} \alpha_{i} : \prod_{j \in N} 2^{A_{j}} \longrightarrow A_{i} \text{ and, for each } A^{c} \in \prod_{j \in N} 2^{A_{j}}, \\ \hspace{0.1cm} \alpha_{i}(A^{c}) \in A_{i}^{c}. \end{array}$$

Commitments are Unilateral

Julio González-Díaz, Ignacio García-Jurado

Definitions Delegation Models and Unilateral Commitments Results

Unilateral Commitments Definitions

• The stage game:
$$G := (N, A, \varphi) \begin{cases} N := \{1, \dots, n\} \\ A := \prod_{i \in N} A_i \\ \varphi := (\varphi_1, \dots, \varphi_n) \end{cases}$$

• The repeated game:
$$G_{\delta}^T := (N, S, \varphi^{\delta}) \begin{cases} N := \{1, \dots, n\} \\ S := \prod_{i \in N} S_i \\ (S_i := A_i^H) \\ \varphi^{\delta} \end{cases}$$

• The UC-extension: $U(G) := (N, A^U, \varphi^U)$

 $A^U := \prod_{i \in N} A^U_i$, where A^U_i is the set of all couples (A^c_i, α_i) such that

$$\begin{array}{l} \textcircled{0} & \emptyset \subsetneq A_i^c \subseteq A_i, \\ \textcircled{0} & \alpha_i : \prod_{j \in N} 2^{A_j} \longrightarrow A_i \text{ and, for each } A^c \in \prod_{j \in N} 2^{A_j}, \\ & \alpha_i(A^c) \in A_i^c. \end{array}$$

Commitments are Unilateral

Julio González-Díaz, Ignacio García-Jurado

Definitions Delegation Models and Unilateral Commitments Results

Delegation Models and Unilateral Commitments

Definitions Delegation Models and Unilateral Commitment: Results

Delegation Models and Unilateral Commitments

Fershtman et al (1991)

VSPE Definitions Unilateral Commitments Delegation Models and Unilateral Commit Conclusions Results

Delegation Models and Unilateral Commitments

Fershtman et al (1991)

Players: 2 principals, 2 agents

VSPE Definitions Unilateral Commitments Delegation Models and Unilateral Commitme Conclusions Results

Delegation Models and Unilateral Commitments

Fershtman et al (1991)

Players: 2 principals, 2 agents

Compensation Monotonic Function Schemes:

VSPE Definitions Unilateral Commitments Delegation Models and Unilateral Commitme Conclusions Results

Delegation Models and Unilateral Commitments

Fershtman et al (1991)

Players:2 principals, 2 agents

Compensation Schemes: Monotonic Function depend on the payoffs

VSPE Definitions Unilateral Commitments Delegation Models and Unilateral Commitme Conclusions Results

Delegation Models and Unilateral Commitments

Fershtman et al (1991)

Players: 2 principals, 2 agents

Compensation Monotonic Function

Schemes: depend on the payoffs

Contracts: Public

Delegation Models and Unilateral Commitments

Fershtman et al (1991) Our Model

Players: 2 principals, 2 agents

Compensation Monotonic Function

Schemes: depend on the payoffs

Contracts: Public

Delegation Models and Unilateral Commitments

Fershtman et al (1991) Our Model

Players: 2 principals, 2 agents

Compensation Monotonic Function **Schemes:** depend on the payoffs

Schemes: depend on the payoffs

Contracts: Public

2 principals, 2 agents

Delegation Models and Unilateral Commitments

Fershtman et al (1991) Our Model

Players:2 principals, 2 agents2 principals, 2 agents

Compensation Monotonic Function **Schemes:** depend on the payoffs Proportional within A^c

Contracts: Public

Delegation Models and Unilateral Commitments

Fershtman et al (1991) Our Model

Players: 2 principals, 2 agents 2 principals, 2 agents

Compensation Monotonic Function Schemes: depend on the payoffs

Proportional within A^c depend on the strategies

Contracts: Public

Delegation Models and Unilateral Commitments

Fershtman et al (1991) Our Model

Players: 2 principals, 2 agents 2 principals, 2 agents

Compensation Schemes:

Monotonic Function depend on the payoffs

Proportional within A^c

depend on the strategies

Contracts: Public Public

VSPE Definitions Unilateral Commitments Delegation Models and Unilateral Commitmer Conclusions Results

Delegation Models and Unilateral Commitments

Fershtman et al (1991) Our Model

Players:2 principals, 2 agents2 principals, 2 agents

Compensation N Schemes: do

Monotonic Function depend on the payoffs Proportional within A^c depend on the strategies

Contracts: Public

Public
Complete Information!!!

VSPE Definitions Unilateral Commitments Delegation Models and Unilateral Commitment Conclusions Results

Delegation Models and Unilateral Commitments

Fershtman et al (1991) Our Model

Players: 2 principals, 2 agents

2 principals, 2 agents

Compensation Schemes: Monotonic Function

depend on the payoffs

Proportional within A^c depend on the strategies

Contracts: Public

Public

Definitions Delegation Models and Unilateral Commitments **Results**

Unilateral Commitments

Definitions Delegation Models and Unilateral Commitments **Results**

Unilateral Commitments

Objectives

Definitions Delegation Models and Unilateral Commitments **Results**

Unilateral Commitments

- Objectives
- Results:

Definitions Delegation Models and Unilateral Commitments **Results**

Unilateral Commitments

- Objectives
- Results:

The Folk Theorems

Definitions Delegation Models and Unilateral Commitments **Results**

Unilateral Commitments

- Objectives
- Results:

The Folk Theorems

Minmax Payoffs:

$$v_i = \min_{a_{-i} \in A - i} \max_{a_i \in A_i} \varphi_i(a_i, a_{-i})$$

Definitions Delegation Models and Unilateral Commitments **Results**

Unilateral Commitments

- Objectives
- Results:

The Folk Theorems

Minmax Payoffs:

$$v_i = \min_{a_{-i} \in A - i} \max_{a_i \in A_i} \varphi_i(a_i, a_{-i})$$

Feasible and Individually Rational Payoffs:

Definitions Delegation Models and Unilateral Commitments **Results**

Unilateral Commitments

- Objectives
- Results:

The Folk Theorems

Minmax Payoffs:

$$v_i = \min_{a_{-i} \in A - i} \max_{a_i \in A_i} \varphi_i(a_i, a_{-i})$$

Feasible and Individually Rational Payoffs: $F := co\{\varphi(a) : a \in \varphi(A)\}$

Definitions Delegation Models and Unilateral Commitments **Results**

Unilateral Commitments

- Objectives
- Results:

The Folk Theorems

Minmax Payoffs:

$$v_i = \min_{a_{-i} \in A - i} \max_{a_i \in A_i} \varphi_i(a_i, a_{-i})$$

Feasible and Individually Rational Payoffs: $F := co\{\varphi(a) : a \in \varphi(A)\}$ $\overline{F} := F \cap \{u \in \mathbb{R}^n : u \ge v\}$

Unilateral Commitments

Definitions Delegation Models and Unilateral Commitments Results

The Folk Theorems Finite Horizon

Definitions Delegation Models and Unilateral Commitments **Results**

The Folk Theorems Finite Horizon

Nash Folk Theorem (without UC)

 ${\sf G}$ must have a Nash equilibrium in which some player gets more than his minmax payoff

Definitions Delegation Models and Unilateral Commitments **Results**

The Folk Theorems Finite Horizon

Nash Folk Theorem (without UC)

${\sf G}$ must have a Nash equilibrium in which some player gets more than his minmax payoff

Theorem 1 (García-Jurado et al., 2000)

No assumption is needed for the Nash folk theorem with UC.

Definitions Delegation Models and Unilateral Commitments **Results**

The Folk Theorems Finite Horizon

Nash Folk Theorem (without UC)

 ${\sf G}$ must have a Nash equilibrium in which some player gets more than his minmax payoff

Theorem 1 (García-Jurado et al., 2000)

No assumption is needed for the Nash folk theorem with UC.

Definitions Delegation Models and Unilateral Commitments **Results**

The Folk Theorems Finite Horizon

Nash Folk Theorem (without UC)

${\sf G}$ must have a Nash equilibrium in which some player gets more than his minmax payoff

Theorem 1 (García-Jurado et al., 2000)

No assumption is needed for the Nash folk theorem with UC.

Definitions Delegation Models and Unilateral Commitments **Results**

The Folk Theorems Finite Horizon

Nash Folk Theorem (without UC)

 ${\sf G}$ must have a Nash equilibrium in which some player gets more than his minmax payoff

Theorem 1 (García-Jurado et al., 2000)

No assumption is needed for the Nash folk theorem with UC.

• Moreover, the Nash equilibrium of the repeated game with UC can be chosen such that

Definitions Delegation Models and Unilateral Commitments **Results**

The Folk Theorems Finite Horizon

Nash Folk Theorem (without UC)

 ${\sf G}$ must have a Nash equilibrium in which some player gets more than his minmax payoff

Theorem 1 (García-Jurado et al., 2000)

No assumption is needed for the Nash folk theorem with UC.

 Moreover, the Nash equilibrium of the repeated game with UC can be chosen such that the subgame that begins after the commitments has a unique Nash payoff

Unilateral Commitments

Definitions Delegation Models and Unilateral Commitments Results

The Folk Theorems Finite Horizon

Definitions Delegation Models and Unilateral Commitments Results

The Folk Theorems Finite Horizon

Subgame Perfect Folk Theorem (without UC)

G must have a pair of Nash equilibra in which some player gets different payoffs

Definitions Delegation Models and Unilateral Commitments Results

The Folk Theorems Finite Horizon

Subgame Perfect Folk Theorem (without UC)

G must have a pair of Nash equilibra in which some player gets different payoffs

Proposition 1

The counterpart of Theorem 1 for VSPE does not hold.

Definitions Delegation Models and Unilateral Commitments **Results**

The Folk Theorems Finite Horizon

Subgame Perfect Folk Theorem (without UC)

G must have a pair of Nash equilibra in which some player gets different payoffs

Proposition 1

The counterpart of Theorem 1 for VSPE does not hold.

Proposition 2

Let $\bar{a} \in A$ be a Nash equilibrium of G. Then, the game U(G) has a VSPE with payoff $\varphi(\bar{a})$.

Definitions Delegation Models and Unilateral Commitments **Results**

The Folk Theorems Finite Horizon

Subgame Perfect Folk Theorem (without UC)

 ${\sf G}$ must have a pair of Nash equilibra in which some player gets different payoffs

Proposition 1

The counterpart of Theorem 1 for VSPE does not hold.

Proposition 2

Let $\bar{a} \in A$ be a Nash equilibrium of G. Then, the game U(G) has a VSPE with payoff $\varphi(\bar{a})$.

Theorem 2

No assumption is needed for the VSPE folk theorem when we have two stages of commitments.

The Folk Theorems Finite Horizon

Theorem 1 No assumptions for the Nash folk theorem with UC. Proposition 2 Let $\bar{a} \in A$ be a Nash equilibrium of G. Then, the game U(G) has a VSPE with payoff $\varphi(\bar{a})$.

Theorem 2

No assumption is needed for the VSPE folk theorem when we have two stages of commitments.

Proof

The Folk Theorems

Theorem 1 No assumptions for the Nash folk theorem with UC. Proposition 2 Let $\bar{a} \in A$ be a Nash equilibrium of G. Then, the game U(G) has a VSPE with payoff $\varphi(\bar{a})$.

Theorem 2

No assumption is needed for the VSPE folk theorem when we have two stages of commitments.

Proof

() Apply Theorem 1 to $G(\delta, T)$

VSPE Definitions Unilateral Commitments Conclusions Results

The Folk Theorems Finite Horizon

Theorem 1 No assumptions for the Nash folk theorem with UC. Proposition 2 Let $\bar{a} \in A$ be a Nash equilibrium of G. Then, the game U(G) has a VSPE with payoff $\varphi(\bar{a})$.

Theorem 2

No assumption is needed for the VSPE folk theorem when we have two stages of commitments.

Proof

• Apply Theorem 1 to $G(\delta,T) \implies U(G(\delta,T))$ has a Nash

VSPE Definitions Unilateral Commitments Conclusions Results

The Folk Theorems

Theorem 1 No assumptions for the Nash folk theorem with UC. Proposition 2 Let $\bar{a} \in A$ be a Nash equilibrium of G. Then, the game U(G) has a VSPE with payoff $\varphi(\bar{a})$.

Theorem 2

No assumption is needed for the VSPE folk theorem when we have two stages of commitments.

Proof

- **Q** Apply Theorem 1 to $G(\delta, T) \implies U(G(\delta, T))$ has a Nash
- **2** Apply Proposition 2 to $U(G(\delta, T))$

The Folk Theorems Finite Horizon

Theorem 1 No assumptions for the Nash folk theorem with UC. Proposition 2 Let $\bar{a} \in A$ be a Nash equilibrium of G. Then, the game U(G) has a VSPE with payoff $\varphi(\bar{a})$.

Theorem 2

No assumption is needed for the VSPE folk theorem when we have two stages of commitments.

Proof

- **(**) Apply Theorem 1 to $G(\delta, T) \implies U(G(\delta, T))$ has a Nash
- **2** Apply Proposition 2 to $U(G(\delta, T))$

 $\implies U(U(G(\delta,T)))$ has a VSPE

The Folk Theorems Finite Horizon

Theorem 1 No assumptions for the Nash folk theorem with UC. Proposition 2 Let $\bar{a} \in A$ be a Nash equilibrium of G. Then, the game U(G) has a VSPE with payoff $\varphi(\bar{a})$.

Theorem 2

No assumption is needed for the VSPE folk theorem when we have two stages of commitments.

Proof

- **(**) Apply Theorem 1 to $G(\delta, T) \implies U(G(\delta, T))$ has a Nash
- **2** Apply Proposition 2 to $U(G(\delta, T))$
 - $\implies U(U(G(\delta,T)))$ has a VSPE
 - Moreover, the VSPE can be chosen such that

The Folk Theorems Finite Horizon

Theorem 1 No assumptions for the Nash folk theorem with UC. Proposition 2 Let $\bar{a} \in A$ be a Nash equilibrium of G. Then, the game U(G) has a VSPE with payoff $\varphi(\bar{a})$.

Theorem 2

No assumption is needed for the VSPE folk theorem when we have two stages of commitments.

Proof

- **(**) Apply Theorem 1 to $G(\delta, T) \implies U(G(\delta, T))$ has a Nash
- Solution 2 to $U(G(\delta, T))$

 $\implies U(U(G(\delta,T)))$ has a VSPE

 Moreover, the VSPE can be chosen such that the subgame that begins after the first stage of commitments has a unique Nash payoff

Definitions Delegation Models and Unilateral Commitments Results

The Folk Theorems

Theorem 2

No assumption is needed for the VSPE folk theorem when we have two stages of commitments.

Definitions Delegation Models and Unilateral Commitments Results

The Folk Theorems

Theorem 2

No assumption is needed for the VSPE folk theorem when we have two stages of commitments.

Remarks

Definitions Delegation Models and Unilateral Commitments **Results**

The Folk Theorems

Theorem 2

No assumption is needed for the VSPE folk theorem when we have two stages of commitments.

Remarks

• Are two stages of commitments natural??

Definitions Delegation Models and Unilateral Commitments Results

The Folk Theorems

Theorem 2

No assumption is needed for the VSPE folk theorem when we have two stages of commitments.

Remarks

- Are two stages of commitments natural??
- We "allow for" commitments on commitments

Definitions Delegation Models and Unilateral Commitments Results

The Folk Theorems

Theorem 2

No assumption is needed for the VSPE folk theorem when we have two stages of commitments.

Remarks

- Are two stages of commitments natural??
- We "allow for" commitments on commitments
- President \longrightarrow Manager \longrightarrow Director

	Without UC	1 stage of UC	2 stages of UC
Nash Theorem	None		
Infinite Horizon	(Fudenberg and Maskin, 1986)		
(Virtual) Perfect Th.	Non-Equivalent Utilities		
Infinite Horizon	(Abreu et al., 1994)		
Nash Theorem	Minimax-Bettering Ladder		
Finite Horizon	(González-Díaz, 2003)		
(Virtual) Perfect Th.	Recursively-distinct		
Finite Horizon	Nash payoffs (Smith, 1995)		

	Without UC	1 stage of UC	2 stages of UC
Nash Theorem	None	None	
Infinite Horizon	(Fudenberg and Maskin, 1986)	(Prop. 2)	
(Virtual) Perfect Th.	Non-Equivalent Utilities	None	
Infinite Horizon	(Abreu et al., 1994)	(Prop. 2)	
Nash Theorem	Minimax-Bettering Ladder		
Finite Horizon	(González-Díaz, 2003)		
(Virtual) Perfect Th.	Recursively-distinct		
Finite Horizon	Nash payoffs (Smith, 1995)		

	Without UC	1 stage of UC	2 stages of UC
Nash Theorem	None	None	
Infinite Horizon	(Fudenberg and Maskin, 1986)	(Prop. 2)	
(Virtual) Perfect Th.	Non-Equivalent Utilities	None	
Infinite Horizon	(Abreu et al., 1994)	(Prop. 2)	
Nash Theorem	Minimax-Bettering Ladder	None	
Finite Horizon	(González-Díaz, 2003)	(García-Jurado et al., 2000)	
(Virtual) Perfect Th.	Recursively-distinct		
Finite Horizon	Nash payoffs (Smith, 1995)		

	Without UC	1 stage of UC	2 stages of UC
Nash Theorem	None	None	
Infinite Horizon	(Fudenberg and Maskin, 1986)	(Prop. 2)	
(Virtual) Perfect Th.	Non-Equivalent Utilities	None	
Infinite Horizon	(Abreu et al., 1994)	(Prop. 2)	
Nash Theorem	Minimax-Bettering Ladder	None	
Finite Horizon	(González-Díaz, 2003)	(García-Jurado et al., 2000)	
(Virtual) Perfect Th.	Recursively-distinct	Minimax-Bettering Ladder	
Finite Horizon	Nash payoffs (Smith, 1995)	(Prop. 2, only sufficient)	

	Without UC	1 stage of UC	2 stages of UC
Nash Theorem	None	None	None
Infinite Horizon	(Fudenberg and Maskin, 1986)	(Prop. 2)	(Prop. 2)
(Virtual) Perfect Th.	Non-Equivalent Utilities	None	None
Infinite Horizon	(Abreu et al., 1994)	(Prop. 2)	(Prop. 2)
Nash Theorem	Minimax-Bettering Ladder	None	None
Finite Horizon	(González-Díaz, 2003)	(García-Jurado et al., 2000)	(Prop. 2)
(Virtual) Perfect Th.	Recursively-distinct	Minimax-Bettering Ladder	None
Finite Horizon	Nash payoffs (Smith, 1995)	(Prop. 2, only sufficient)	(Th. 2)

Outline

Virtually Subgame Perfect Equilibrium

- Some Examples
- Formal Definitions
- Discussion
- 2 Unilateral Commitments
 - Definitions
 - Delegation Models and Unilateral Commitments
 - Results

3 Conclusions

Conclusions

Our contribution

Julio González-Díaz, Ignacio García-Jurado The Role of Commitment in Repeated Games

Conclusions

Our contribution

• UC lead to weaker assumptions for the folk theorems.

Conclusions

Our contribution

- UC lead to weaker assumptions for the folk theorems.
- Nonetheless, some assumptions are still needed for some VSPE folk theorems.

◀ Return

《曰》 《圖》 《圖》 《圖》 三里

◀ Return

《曰》 《圖》 《圖》 《圖》 三里

◀ Return

《曰》 《圖》 《圖》 《圖》 三里

・ロト ・回ト ・ヨト ・ヨト ・ヨー りへぐ

・ロト ・回ト ・ヨト ・ヨト ・ヨー りへぐ

◀ Return

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目目 のへで

Proof Let $u \in \bar{F}$ and let $\bar{a} \in A$ be such that $\varphi(\bar{a}) = u$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Proof Let $u \in \bar{F}$ and let $\bar{a} \in A$ be such that $\varphi(\bar{a}) = u$ Strategy for a player i

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Let $u \in \bar{F}$ and let $\bar{a} \in A$ be such that $\varphi(\bar{a}) = u$ Strategy for a player i

Occommitment: $\bar{S}_i^c :=$ "If \bar{a} is played in the first stage, then I play \bar{a}_i forever"

Let $u \in \overline{F}$ and let $\overline{a} \in A$ be such that $\varphi(\overline{a}) = u$ Strategy for a player i

- Commitment: $\bar{S}_i^c :=$ "If \bar{a} is played in the first stage, then I play \bar{a}_i forever"
- Ostrategy:

Let $u \in \bar{F}$ and let $\bar{a} \in A$ be such that $\varphi(\bar{a}) = u$ Strategy for a player i

- Commitment: $\bar{S}_i^c :=$ "If \bar{a} is played in the first stage, then I play \bar{a}_i forever"
- Strategy:

• If
$$S^c = \bar{S}^c$$
:

Let $u \in \overline{F}$ and let $\overline{a} \in A$ be such that $\varphi(\overline{a}) = u$ Strategy for a player i

- Commitment: $\bar{S}_i^c :=$ "If \bar{a} is played in the first stage, then I play \bar{a}_i forever"
- O Strategy:

• If
$$S^c = \overline{S}^c$$
:

• i plays \bar{a}_i in the first stage

◀ Return

Let $u \in \overline{F}$ and let $\overline{a} \in A$ be such that $\varphi(\overline{a}) = u$ Strategy for a player i

- Commitment: $\bar{S}_i^c :=$ "If \bar{a} is played in the first stage, then I play \bar{a}_i forever"
- O Strategy:

• If
$$S^c = \overline{S}^c$$
:

- i plays \bar{a}_i in the first stage
- If someone deviates i punishes him forever

・ロト ・西ト ・ヨト ・ヨー うへで

Let $u \in \overline{F}$ and let $\overline{a} \in A$ be such that $\varphi(\overline{a}) = u$ Strategy for a player i

- Commitment: $\bar{S}_i^c :=$ "If \bar{a} is played in the first stage, then I play \bar{a}_i forever"
- Ostrategy:
 - $\bullet \ \, {\rm If} \ S^c=\bar S^c\colon$
 - i plays \bar{a}_i in the first stage
 - If someone deviates i punishes him forever
 - If someone has deviated from the commitment \boldsymbol{i} punishes him forever

<ロ> (四) (四) (三) (三) (三)

