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González-D́ıaz et al. Sharing a Cake



Motivation
Outline

Timing Games

“Noisy” timing games

Chicken game

Patent race

Two families of timing games

1 War of attrition games

2 Preemption games
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González-D́ıaz et al. Sharing a Cake



Motivation
Outline

First Example: Sharing a Cake

Mummy&Daddy

Mark: α1

Sara: α2

�

�

�

�
α1

�

�

�

�
α2
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González-D́ıaz et al. Sharing a Cake



Motivation
Outline

First Example: Sharing a Cake

Mummy&Daddy

Mark: α1

Sara: α2

�

�

�

�
α1

�

�

�

�
α2

�

�

�

�
e

t1

t2

t1 < t2 −→ α1

t1 < t2 −→ α2 + e

t1 > t2 −→ α1 + e

t1 > t2 −→ α2
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González-D́ıaz et al. Sharing a Cake



Motivation
Outline

The Models

Timing Game Pricing Game
(Sharing a Cake) (Sharing a Market)

Primitives α , δ

The Game Γpure =< N, {A1, A2}, {π1, π2} >

Players N = {1, 2}
Stragegies A1 = A2 = [0,∞)
Payoffs

πi(a1, a2) =







δaiαi ai < aj

δai(αi + e
2) ai = aj

δai(αi + e) ai > aj

González-D́ıaz et al. Sharing a Cake



Motivation
Outline

The Models

Timing Game Pricing Game
(Sharing a Cake) (Sharing a Market)

Primitives α , δ α , p̄

The Game Γpure =< N, {A1, A2}, {π1, π2} >

Players N = {1, 2}
Stragegies A1 = A2 = [0,∞)
Payoffs

πi(a1, a2) =







δaiαi ai < aj

δai(αi + e
2) ai = aj

δai(αi + e) ai > aj
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González-D́ıaz et al. Sharing a Cake



Motivation
Outline

Outline

1 The General Model
The Cake Sharing Game
Pure Strategies vs Mixed Strategies
The State of Art

2 Results
Two player result
n-player result

3 Proofs

4 Conclusions
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González-D́ıaz et al. Sharing a Cake



The General Model
Results
Proofs

Conclusions

The Cake Sharing Game
Pure Strategies vs Mixed Strategies
The State of Art

The Cake Sharing Game

The Model

N = {1, . . . , n} is the set of players
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González-D́ıaz et al. Sharing a Cake



The General Model
Results
Proofs

Conclusions

The Cake Sharing Game
Pure Strategies vs Mixed Strategies
The State of Art

Discussion of the model

Objectives

Assumptions of the model

Continuous time
Common discount factor
α1 < α2 < . . . < αn

Differences with “Noisy” timing games

Substantial change in payoff funtions







“Noisy” “Silent”
L1(t1) L1(t1)
F2(t1) F2(t2)

In a “noisy” game:
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Assumptions of the model

Continuous time
Common discount factor
α1 < α2 < . . . < αn

Differences with “Noisy” timing games

Substantial change in payoff funtions




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“Noisy” “Silent”
L1(t1) L1(t1)
F2(t1) F2(t2)

In a “noisy” game:
-“Once a player stops the game effectively ends”
In a “silent” game:
-No need for extensive form game
-No room for subgame perfection
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González-D́ıaz et al. Sharing a Cake



The General Model
Results
Proofs

Conclusions

The Cake Sharing Game
Pure Strategies vs Mixed Strategies
The State of Art

A negative result

There is no Nash equilibrium in pure strategies
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The extended model

A mixed strategy is a distribution function G, defined on [0,∞)

Cake sharing game (with mixed strategies)
Γα,δ =< N, {Xi}i∈N , {πi}i∈N >

Given a strategy profile G = (G1, G2, . . . , Gn),

πi(G−i, t) =
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Mixed strategies

The extended model

A mixed strategy is a distribution function G, defined on [0,∞)

Cake sharing game (with mixed strategies)
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Given a strategy profile G = (G1, G2, . . . , Gn),
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Mixed strategies

The extended model

A mixed strategy is a distribution function G, defined on [0,∞)

Cake sharing game (with mixed strategies)
Γα,δ =< N, {Xi}i∈N , {πi}i∈N >

Given a strategy profile G = (G1, G2, . . . , Gn),

πi(G−i, t) = Gj(t
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The extended model

A mixed strategy is a distribution function G, defined on [0,∞)

Cake sharing game (with mixed strategies)
Γα,δ =< N, {Xi}i∈N , {πi}i∈N >
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The extended model

A mixed strategy is a distribution function G, defined on [0,∞)

Cake sharing game (with mixed strategies)
Γα,δ =< N, {Xi}i∈N , {πi}i∈N >

Given a strategy profile G = (G1, G2, . . . , Gn),
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The extended model

A mixed strategy is a distribution function G, defined on [0,∞)

Cake sharing game (with mixed strategies)
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The extended model

A mixed strategy is a distribution function G, defined on [0,∞)

Cake sharing game (with mixed strategies)
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The state of art

Existing Results

Hamers (1993) proves the existence and uniqueness of the
Nash equilibrium of any two player cake sharing game

Koops (2001) finds several properties that Nash equilibria of
three player cake sharing game must satisfy
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The result (two player case)

Theorem 1 (Hamers (1993))

Let Γα,δ be a 2-player cake sharing game and t̄ := logδ
α2

α2+e
.

Define G∗ = (G∗
1, G

∗
2) ∈ G × G by

G∗
1(t) =







α2 − α2δ
t

δte
if 0 ≤ t ≤ t̄

1 if t > t̄

G∗
2(t) =







α2(α1 + e) − α1(α2 + e)δt

δt(α2 + e)e
if 0 ≤ t ≤ t̄

1 if t > t̄

Then G∗ is the unique Nash equilibrium of Γα,δ.The payoffs are

π̄1 =
α2(α1 + e)

α2 + e
π̄2 = α2

González-D́ıaz et al. Sharing a Cake



The General Model
Results
Proofs

Conclusions

Two player result
n-player result

The result (two player case)

Theorem 1 (Hamers (1993))

Let Γα,δ be a 2-player cake sharing game and t̄ := logδ
α2

α2+e
.

Define G∗ = (G∗
1, G

∗
2) ∈ G × G by

G∗
1(t) =







α2 − α2δ
t

δte
if 0 ≤ t ≤ t̄

1 if t > t̄

G∗
2(t) =







α2(α1 + e) − α1(α2 + e)δt

δt(α2 + e)e
if 0 ≤ t ≤ t̄

1 if t > t̄

Then G∗ is the unique Nash equilibrium of Γα,δ.The payoffs are

π̄1 =
α2(α1 + e)

α2 + e
π̄2 = α2
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The result (two player case)

Remarks
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González-D́ıaz et al. Sharing a Cake



The General Model
Results
Proofs

Conclusions

Two player result
n-player result

The result (two player case)

Remarks

α1 < π̄1 < α2 π̄2 = α2

Payoffs do not depend on δ

Player 2 plays t = 0 with positive probability
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The result (two player case)

Remarks

α1 < π̄1 < α2 π̄2 = α2

Payoffs do not depend on δ

Player 2 plays t = 0 with positive probability

Distribution functions are continuous in (0, t̄)
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An Example

Example 1

Player 1: α1 = 0.1
Player 2: α2 = 0.3
Discount factor: δ = 0.9
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An Example

Example 1

Player 1: α1 = 0.1 Equilibrium Payoff: 0.2333
Player 2: α2 = 0.3 Equilibrium Payoff: 0.3
Discount factor: δ = 0.9

Distribution functions Density functions
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The result (n-player case)

Theorem 2

Let Γα,δ be an n-player cake sharing game with n ≥ 3.
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The result (n-player case)

Theorem 2

Let Γα,δ be an n-player cake sharing game with n ≥ 3. Then Γα,δ

has a unique Nash equilibrium
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The result (n-player case)

Theorem 2

Let Γα,δ be an n-player cake sharing game with n ≥ 3. Then Γα,δ

has a unique Nash equilibrium in which players 3, . . . , n put

probability 1 at 0
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The result (n-player case)

Theorem 2

Let Γα,δ be an n-player cake sharing game with n ≥ 3. Then Γα,δ

has a unique Nash equilibrium in which players 3, . . . , n put

probability 1 at 0 and players 1 and 2 play the game with total

cake size α1 + α2 + e.
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The result (n-player case)

Theorem 2

Let Γα,δ be an n-player cake sharing game with n ≥ 3. Then Γα,δ

has a unique Nash equilibrium in which players 3, . . . , n put

probability 1 at 0 and players 1 and 2 play the game with total

cake size α1 + α2 + e.

Remarks

α1 < π̄1 < α2 π̄i = αi i 6= 1
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Let Γα,δ be an n-player cake sharing game with n ≥ 3. Then Γα,δ

has a unique Nash equilibrium in which players 3, . . . , n put

probability 1 at 0 and players 1 and 2 play the game with total

cake size α1 + α2 + e.

Remarks

α1 < π̄1 < α2 π̄i = αi i 6= 1

Payoffs do not depend on δ
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The result (n-player case)

Theorem 2

Let Γα,δ be an n-player cake sharing game with n ≥ 3. Then Γα,δ

has a unique Nash equilibrium in which players 3, . . . , n put

probability 1 at 0 and players 1 and 2 play the game with total

cake size α1 + α2 + e.

Remarks

α1 < π̄1 < α2 π̄i = αi i 6= 1

Payoffs do not depend on δ

Players different from 1 play t = 0 with positive probability

Distribution functions are continuous in (0, t̄)
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The result (n-player case)

Theorem 2

Let Γα,δ be an n-player cake sharing game with n ≥ 3. Then Γα,δ

has a unique Nash equilibrium in which players 3, . . . , n put

probability 1 at 0 and players 1 and 2 play the game with total

cake size α1 + α2 + e.

Remarks

α1 < π̄1 < α2 π̄i = αi i 6= 1

Payoffs do not depend on δ

Players different from 1 play t = 0 with positive probability

Distribution functions are continuous in (0, t̄)

Allowing for equalities in the initial rights
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The pricing game

N firms. Each one with αi loyal consumers

Strategic consumers: e

Higher admissible price: p̄
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The result and the pricing game

The pricing game

N firms. Each one with αi loyal consumers

Strategic consumers: e

Higher admissible price: p̄

The equilibrium of the pricing game

Only the two firms with less loyal consumers “fight”

Only the firm with less loyal consumers gains by “fighting”
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The result and the pricing game

The pricing game

N firms. Each one with αi loyal consumers

Strategic consumers: e

Higher admissible price: p̄

The equilibrium of the pricing game

Only the two firms with less loyal consumers “fight”

Only the firm with less loyal consumers gains by “fighting”

Strategic consumers pay less than loyal consumers
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Proof of the existence and uniqueness result of the Nash
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Lemma 1

Let Γα,δ be an n-player cake sharing game and let G = (Gi)i∈N ∈
GN be a Nash equilibrium of Γα,δ. Then, J(Gi) ∩ (0,∞) = ∅ for

every i ∈ N . Proof
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Lemma 1 (No jumps)

Lemma 1

Let Γα,δ be an n-player cake sharing game and let G = (Gi)i∈N ∈
GN be a Nash equilibrium of Γα,δ. Then, J(Gi) ∩ (0,∞) = ∅ for

every i ∈ N . Proof

No jumps in (0,∞)
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Lemma 2

Let Γα,δ be an n-player cake sharing game and let the profile G =
(Gi)i∈N ∈ GN be a Nash equilibrium of Γα,δ. Let i ∈ N and

t ∈ S(Gi). There exists j ∈ N\{i} such that t ∈ S(Gj). Proof
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Lemma 2

Let Γα,δ be an n-player cake sharing game and let the profile G =
(Gi)i∈N ∈ GN be a Nash equilibrium of Γα,δ. Let i ∈ N and

t ∈ S(Gi). There exists j ∈ N\{i} such that t ∈ S(Gj). Proof

No distribution function grows alone
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Lemma 2 (No one grows alone)

Lemma 2

Let Γα,δ be an n-player cake sharing game and let the profile G =
(Gi)i∈N ∈ GN be a Nash equilibrium of Γα,δ. Let i ∈ N and

t ∈ S(Gi). There exists j ∈ N\{i} such that t ∈ S(Gj). Proof

No distribution function grows alone

Lemma 2 + 2-player: The supports coincide

González-D́ıaz et al. Sharing a Cake



The General Model
Results
Proofs

Conclusions

Lemma 3 (No stop&go)

1

0 t

G(t)

u1 u2

-No Jumps

-No one grows alone
2Common Support

González-D́ıaz et al. Sharing a Cake



The General Model
Results
Proofs

Conclusions

Lemma 3 (No stop&go)

Lemma 3

Let G = (Gi)i∈N be a Nash equilibrium of the n-player cake sharing

game Γα,δ. Suppose t ∈ [0,∞) is such that t /∈ S(Gj) for every

j ∈ N . Then (t,∞) ∩ S(Gj) = ∅ for every j ∈ N . Proof
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Lemma 3

Let G = (Gi)i∈N be a Nash equilibrium of the n-player cake sharing

game Γα,δ. Suppose t ∈ [0,∞) is such that t /∈ S(Gj) for every

j ∈ N . Then (t,∞) ∩ S(Gj) = ∅ for every j ∈ N . Proof

No stop&go
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Lemma 3

Let G = (Gi)i∈N be a Nash equilibrium of the n-player cake sharing

game Γα,δ. Suppose t ∈ [0,∞) is such that t /∈ S(Gj) for every

j ∈ N . Then (t,∞) ∩ S(Gj) = ∅ for every j ∈ N . Proof

No stop&go

Lemma 3 + 2-player: Strictly increasing distribution functions
(till they get value 1)
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Lemma 4

Let G = (Gi)i∈N be a Nash equilibrium of the n-player cake sharing

game Γα,δ. Then, S(Gi) is a compact set for every i ∈ N . Proof
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Lemma 4

Let G = (Gi)i∈N be a Nash equilibrium of the n-player cake sharing

game Γα,δ. Then, S(Gi) is a compact set for every i ∈ N . Proof

Bounded Support
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Lemma 4

Let G = (Gi)i∈N be a Nash equilibrium of the n-player cake sharing

game Γα,δ. Then, S(Gi) is a compact set for every i ∈ N . Proof

Bounded Support

Corollary 1

S(G1) ⊂ [0, t̄2].
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Lemma 5 (n=2)

Let Γα,δ be a 2-player cake sharing game and let G = (G1, G2) ∈
G × G be a Nash equilibrium of Γα,δ. Let t̄2 := logδ

α2
α2+e

. Then

S(G1) = S(G2) = [0, t̄2]. Proof
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Lemma 5 (n=2)

Let Γα,δ be a 2-player cake sharing game and let G = (G1, G2) ∈
G × G be a Nash equilibrium of Γα,δ. Let t̄2 := logδ

α2
α2+e

. Then

S(G1) = S(G2) = [0, t̄2]. Proof

(n=2) The supports are [0, t̄2]
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Lemma 5 (n=2) (Supports are [0, t̄2])

Lemma 5 (n=2)

Let Γα,δ be a 2-player cake sharing game and let G = (G1, G2) ∈
G × G be a Nash equilibrium of Γα,δ. Let t̄2 := logδ

α2
α2+e

. Then

S(G1) = S(G2) = [0, t̄2]. Proof

(n=2) The supports are [0, t̄2]

Corollary 2 (n=2)

Player 1 puts probability 0 at 0
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-No stop&go
2Strictly Increasing

-Bounded support

-2Supports are [0, t̄2]

-2Player 1 puts prob 0 at 0
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S(G1) = S(G2) = [0, t̄2]
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-2Supports are [0, t̄2]

-2Player 1 puts prob 0 at 0
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Proof of Theorem 1.

S(G1) = S(G2) = [0, t̄2]
There exist constants c and d such that

c = π1(t, G2) = δt(α1 + eG2(t)) t ∈ [0, t̄2]
d = π2(G1, t) = δt(α2 + eG1(t)) t ∈ [0, t̄2]

-No Jumps

-No one grows alone
2Common Support

-No stop&go
2Strictly Increasing

-Bounded support

-2Supports are [0, t̄2]

-2Player 1 puts prob 0 at 0
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Proof of Theorem 1.

S(G1) = S(G2) = [0, t̄2]
There exist constants c and d such that

c = π1(t, G2) = δt(α1 + eG2(t)) t ∈ [0, t̄2]
d = π2(G1, t) = δt(α2 + eG1(t)) t ∈ [0, t̄2]

Since G1(0) = 0, d = πG
2 (0) = α2.

-No Jumps

-No one grows alone
2Common Support

-No stop&go
2Strictly Increasing

-Bounded support

-2Supports are [0, t̄2]

-2Player 1 puts prob 0 at 0
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Proof of Theorem 1.

S(G1) = S(G2) = [0, t̄2]
There exist constants c and d such that

c = π1(t, G2) = δt(α1 + eG2(t)) t ∈ [0, t̄2]
d = π2(G1, t) = δt(α2 + eG1(t)) t ∈ [0, t̄2]

Since G1(0) = 0, d = πG
2 (0) = α2.

Then G1(t) = α2−α2δt

eδt

-No Jumps

-No one grows alone
2Common Support

-No stop&go
2Strictly Increasing

-Bounded support

-2Supports are [0, t̄2]

-2Player 1 puts prob 0 at 0
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Proof of Theorem 1

Proof of Theorem 1.

S(G1) = S(G2) = [0, t̄2]
There exist constants c and d such that

c = π1(t, G2) = δt(α1 + eG2(t)) t ∈ [0, t̄2]
d = π2(G1, t) = δt(α2 + eG1(t)) t ∈ [0, t̄2]

Since G1(0) = 0, d = πG
2 (0) = α2.

Then G1(t) = α2−α2δt

eδt

Similarly, since G2(t̄2) = 1

c = πG
1 (t̄2) = δt̄2(α1 + e) = α2(α1+e)

α2+e
, ...

-No Jumps

-No one grows alone
2Common Support

-No stop&go
2Strictly Increasing

-Bounded support

-2Supports are [0, t̄2]

-2Player 1 puts prob 0 at 0
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Proof of Theorem 1.

S(G1) = S(G2) = [0, t̄2]
There exist constants c and d such that

c = π1(t, G2) = δt(α1 + eG2(t)) t ∈ [0, t̄2]
d = π2(G1, t) = δt(α2 + eG1(t)) t ∈ [0, t̄2]

Since G1(0) = 0, d = πG
2 (0) = α2.

Then G1(t) = α2−α2δt

eδt

Similarly, since G2(t̄2) = 1

c = πG
1 (t̄2) = δt̄2(α1 + e) = α2(α1+e)

α2+e
, ...

These strategies are Nash by definition.

-No Jumps

-No one grows alone
2Common Support

-No stop&go
2Strictly Increasing

-Bounded support

-2Supports are [0, t̄2]

-2Player 1 puts prob 0 at 0
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(0 is in the support of every strategy & Every player but player 1 jumps at 0)

Lemma 6 (and 7)

Let Γα,δ be an n-player cake sharing game with n ≥ 3 and let

G = (Gi)i∈N ∈ GN be a Nash equilibrium of Γα,δ. Then 0 ∈ S(Gj)
for every j ∈ N . Moreover Gj(0) > 0 for every j ∈ N\1. Proof
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(0 is in the support of every strategy & Every player but player 1 jumps at 0)

Lemma 6 (and 7)

Let Γα,δ be an n-player cake sharing game with n ≥ 3 and let

G = (Gi)i∈N ∈ GN be a Nash equilibrium of Γα,δ. Then 0 ∈ S(Gj)
for every j ∈ N . Moreover Gj(0) > 0 for every j ∈ N\1. Proof

0 is in the support of every strategy
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Lemma 6 and Lemma 7
(0 is in the support of every strategy & Every player but player 1 jumps at 0)

Lemma 6 (and 7)

Let Γα,δ be an n-player cake sharing game with n ≥ 3 and let

G = (Gi)i∈N ∈ GN be a Nash equilibrium of Γα,δ. Then 0 ∈ S(Gj)
for every j ∈ N . Moreover Gj(0) > 0 for every j ∈ N\1. Proof

0 is in the support of every strategy

Every player but player 1 jumps at 0
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Lemma 8

Let G = (Gi)i∈N be a Nash equilibrium of the n-player cake shar-

ing game Γα,δ and let π̄ = (ηi)i∈N be the corresponding vector of

equilibrium payoffs. Then

π̄1 =
α2(α1 + e)

α2 + e
and

π̄i = αi for every i ∈ N\{1}

Proof

González-D́ıaz et al. Sharing a Cake



The General Model
Results
Proofs

Conclusions

Lemma 8 (Nash Payoffs)

Lemma 8

Let G = (Gi)i∈N be a Nash equilibrium of the n-player cake shar-

ing game Γα,δ and let π̄ = (ηi)i∈N be the corresponding vector of

equilibrium payoffs. Then

π̄1 =
α2(α1 + e)

α2 + e
and

π̄i = αi for every i ∈ N\{1}

Proof

Nash payoffs are π̄1 = α2(α1+e)
α2+e

and π̄i = αi (i 6= 1)
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Lemma 9

Let G = (Gi)i∈N be a Nash equilibrium of the n-player cake sharing

game Γα,δ with n ≥ 3. Then for every i ∈ N\{1, 2}, Gi corresponds

to pure strategy t = 0. Proof
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Lemma 9

Let G = (Gi)i∈N be a Nash equilibrium of the n-player cake sharing

game Γα,δ with n ≥ 3. Then for every i ∈ N\{1, 2}, Gi corresponds

to pure strategy t = 0. Proof

Players 3, . . . , n play t = 0
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Proof of Theorem 2.
-No Jumps

-No one grows alone

-No stop&go

-Bounded support

-0 is in the support

-i 6= 1 jumps at 0

-π̄i =
α2(α1+e)
(α2+e)

-π̄i = αi, i 6= 1
-3, . . . , n play t = 0
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Proof of Theorem 2.

Agents 1 and 2 play the game with cake size
α1 + α2 + e
Strategy t = 0 is optimal for players 3, . . . , n
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-No stop&go
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Results

Existence and uniqueness of the Nash equilibrium for the n-player
cake sharing game.
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Results

Existence and uniqueness of the Nash equilibrium for the n-player
cake sharing game.
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-No one grows alone

-No stop&go

-Bounded support

-0 is in the support

-i 6= 1 jumps at 0

-π̄i =
α2(α1+e)
(α2+e)

-π̄i = αi, i 6= 1

π2(G−2, u) = δu(α2 + e
∏

j 6=2 Gj(u)) ≤ α2

Since u ∈ S(Gi), πi(G−i, u) = δu(αi + e
∏

j 6=i Gj(u)) = αi

δue
∏

j 6=2 Gj(u) ≤ α2(1 − δu)

δue
∏

j 6=i Gj(u) = αi(1 − δu)

}

dividing
=⇒

Gi(u)

G2(u)
≤

α2

αi
< 1

Then G2(u) > Gi(u) = 1, contradiction.

Return
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