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Differences with “Noisy” timing games
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Fa(t1)  Fa(t)
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-“Once a player stops the game effectively ends”
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The General Model The Cake Sharing Game

Pure Strategies vs Mixed Strategies
The State of Art

The state of art

Existing Results

@ Hamers (1993) proves the existence and uniqueness of the
Nash equilibrium of any two player cake sharing game

o Koops (2001) finds several properties that Nash equilibria of
three player cake sharing game must satisfy
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© Results

@ Two player result
o n-player result
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The result (two player case)

Theorem 1 (Hamers (1993))
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The result (two player case)

Theorem 1 (Hamers (1993))

Let Ty 5 be a 2-player cake sharing game and t := log; a;"ie.
Define G* = (G7,G5) € G x G by
a9 — ag(St _
* —— jf0<t<t
Gi(t) = ote -~
1 ift>t
as(ag +e) — ai(ag +e)dt . _
* fOo<t<t
G5(t) = dt(ag + e)e ==
1 ift >t

Then G* is the unique Nash equilibrium of I, 5. The payoffs are

_ az(ar+e) _
= T2 = Q2
as + e
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o Payoffs do not depend on ¢
@ Player 2 plays t = 0 with positive probability
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The result (two player case)

0 ) <M <o o = Q2
o Payoffs do not depend on ¢
@ Player 2 plays t = 0 with positive probability

@ Distribution functions are continuous in (0, ?)
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Discount factor: § = 0.9
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An Example

Player 1: a3 = 0.1 Equilibrium Payoff: 0.2333
Player 2: ay = 0.3 Equilibrium Payoff: 0.3
Discount factor: 6 = 0.9

Distribution functions Density functions

1 .1
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Let T', 5 be an n-player cake sharing game with n > 3.
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The result (n-player case)

Let T', 5 be an n-player cake sharing game withn > 3. Then I'y s
has a unique Nash equilibrium in which players 3, ..., n put
probability 1 at 0
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The result (n-player case)

Let T', 5 be an n-player cake sharing game withn > 3. Then I'y s
has a unique Nash equilibrium in which players 3, ..., n put
probability 1 at 0 and players 1 and 2 play the game with total
cake size a1 + an + e.
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The result (n-player case)

Let T', 5 be an n-player cake sharing game withn > 3. Then I'y s
has a unique Nash equilibrium in which players 3, ..., n put
probability 1 at 0 and players 1 and 2 play the game with total
cake size a1 + ag + €.

ap < < Qo Ti=a; £ 1

Payoffs do not depend on §

Players different from 1 play t = 0 with positive probability
Distribution functions are continuous in (0, )

Allowing for equalities in the initial rights H

e © 6 ¢ ¢
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The result and the pricing game

The pricing game
@ N firms. Each one with «; loyal consumers
@ Strategic consumers: e

@ Higher admissible price: p
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The result and the pricing game

The pricing game
@ N firms. Each one with «; loyal consumers
@ Strategic consumers: e

@ Higher admissible price: p

.

The equilibrium of the pricing game

@ Only the two firms with less loyal consumers “fight”

.
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The result and the pricing game

The pricing game
@ N firms. Each one with «; loyal consumers
@ Strategic consumers: e

@ Higher admissible price: p

.

The equilibrium of the pricing game

@ Only the two firms with less loyal consumers “fight”

@ Only the firm with less loyal consumers gains by “fighting”

.
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The result and the pricing game

The pricing game
@ N firms. Each one with «; loyal consumers
@ Strategic consumers: e

@ Higher admissible price: p

.

The equilibrium of the pricing game

@ Only the two firms with less loyal consumers “fight”
@ Only the firm with less loyal consumers gains by “fighting”

@ Strategic consumers pay less than loyal consumers

.
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Our Contribution

o Alternative proof of the existence and uniqueness result of the
Nash equilibrium in the two player case
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Results Two player result
n-player result

Our Contribution

o Alternative proof of the existence and uniqueness result of the
Nash equilibrium in the two player case

@ Proof of the existence and uniqueness result of the Nash
equilibrium in the general case (n-players)
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Proofs

Lemma 1 (No jumps)

G(t)
1 ®
0 u t
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Proofs

Lemma 1 (No jumps)

Let Ty 5 be an n-player cake sharing game and let G = (G;)ien €
GN be a Nash equilibrium of Ty 5. Then, J(G;) N (0,00) = @ for
every i € N.
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Proofs

Lemma 1 (No jumps)

Let Ty 5 be an n-player cake sharing game and let G = (G;)ien €
GN be a Nash equilibrium of Ty 5. Then, J(G;) N (0,00) = @ for
every i € N.

‘ No jumps in (0, c0)
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Proofs

Lemma 2 (No one grows alone)

-No Jumps
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Proofs

Lemma 2 (No one grows alone)

Let I', s be an n-player cake sharing game and let the profile G =
(Gi)ien € GN be a Nash equilibrium of I'y 5. Let i € N and
t € S(G;). There exists j € N\{i} such thatt € S(G;).

Gonzalez-Diaz et al. Sharing a Cake



Proofs

Lemma 2 (No one grows alone)

Let I', s be an n-player cake sharing game and let the profile G =
(Gi)ien € GN be a Nash equilibrium of I'y 5. Let i € N and
t € S(G;). There exists j € N\{i} such thatt € S(G;).

‘ No distribution function grows anneI

Gonzalez-Diaz et al. Sharing a Cake



Proofs

Lemma 2 (No one grows alone)

Let I', s be an n-player cake sharing game and let the profile G =
(Gi)ien € GN be a Nash equilibrium of I'y 5. Let i € N and
t € S(G;). There exists j € N\{i} such thatt € S(G;).

‘ No distribution function grows anneI

Lemma 2 + 2-player: The supports coincide )
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Proofs

Lemma 3 (No stop&sgo)

-No Jumps

-No one grows alone
2

“Common Support
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Proofs

Lemma 3 (No stop&sgo)

Let G = (G;)icn be a Nash equilibrium of the n-player cake sharing
game I'y 5. Suppose t € [0,00) is such that t ¢ S(G;) for every
Jj € N. Then (t,00) N S(G;) =0 for every j € N.
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Proofs

Lemma 3 (No stop&sgo)

Let G = (G;)icn be a Nash equilibrium of the n-player cake sharing
game I'y 5. Suppose t € [0,00) is such that t ¢ S(G;) for every
Jj € N. Then (t,00) N S(G;) =0 for every j € N.

No stop&go
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Proofs

Lemma 3 (No stop&sgo)

Let G = (G;)icn be a Nash equilibrium of the n-player cake sharing
game I'y 5. Suppose t € [0,00) is such that t ¢ S(G;) for every
Jj € N. Then (t,00) N S(G;) =0 for every j € N.

No stop&go

Lemma 3 + 2-player: Strictly increasing distribution functions
(till they get value 1)
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Proofs

Lemma 4 (Bounded Support)

No Jumps

-No one grows alone
2Common Support
-No stop&go
2Strictly Increasing
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Proofs

Lemma 4 (Bounded Support)

Let G = (G;)ien be a Nash equilibrium of the n-player cake sharing
game 'y 5. Then, S(G;) is a compact set for every i € N.

Gonzalez-Diaz et al. Sharing a Cake



Proofs

Lemma 4 (Bounded Support)

Let G = (G;)ien be a Nash equilibrium of the n-player cake sharing
game 'y 5. Then, S(G;) is a compact set for every i € N.

‘ Bounded Support'
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Proofs

Lemma 4 (Bounded Support)

Let G = (G;)ien be a Nash equilibrium of the n-player cake sharing
game 'y 5. Then, S(G;) is a compact set for every i € N.

‘ Bounded Support'

S(Gl) C [O, Eg]
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Proofs

Lemma 5 ( :2) (Supports are [0, 72])

-No Jumps

-No one grows alone
2

“Common Support
-No stop&go
2Str'\ctly Increasing
-Bounded support
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Proofs

Lemma 5 (n=2) (Supports are [0, 7))

Let T, 5 be a 2-player cake sharing game and let G = (G1,G2) €
G x G be a Nash equilibrium of Ty 5. Let ty := logs a‘;ie. Then
S(G1) = S(Gz2) = [0, 29].
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Proofs

Lemma 5 (n=2) (Supports are [0, 7))

Let T, 5 be a 2-player cake sharing game and let G = (G1,G2) €
G x G be a Nash equilibrium of Ty 5. Let ty := logs a‘;ie. Then
S(G1) = S(Gz2) = [0, 29].

‘(n:2) The supports are [0, t5]
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Proofs

Lemma 5 (n=2) (Supports are [0, 7))

Let T, 5 be a 2-player cake sharing game and let G = (G1,G2) €
G x G be a Nash equilibrium of Ty 5. Let ty := logs a‘;ie. Then
S(G1) = S(Gz2) = [0, 29].

‘(n:2) The supports are [0, t5]

Corollary 2 (n=2)
Player 1 puts probability 0 at 0
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Proofs

Proof of Theorem 1

-No Jumps

-No one grows alone

2 Common Support

-No stop&go

2Strict|y Increasing
-Bounded support
—jSupports are [0, t2]
—QPIayer 1 puts prob 0 at 0
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Proofs

Proof of Theorem 1

Proof of Theorem 1.

S(G1) = S(Ga) = [0, 5]

-No Jumps

-No one grows alone

2 Common Support

-No stop&go

2S‘mctly Increasing
-Bounded support
—zSupports are [0, t2]
—QPIayer 1 puts prob 0 at 0
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Proofs

Proof of Theorem 1

Proof of Theorem 1.
S(G1) = S(G2) = [0, 1]
There exist constants ¢ and d such that

c=mi(t,Ga) = (a1 + eGa(t)) te€]0,ts] Nodumps
d — 7T2(G17 t) == 5t(a2 + eGl (t)) t (= [07 172] 2,50”1”10&2 Support
-No stop&go

2S‘mctly Increasing
-Bounded support
—zSupports are [0, t2]
—QPIayer 1 puts prob 0 at 0
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Proofs

Proof of Theorem 1

Proof of Theorem 1.
S(G1) = S(G2) = [0, 1]
There exist constants ¢ and d such that

c=m(t,Ga) = 8t (a1 + eGa(t)) t€0,13] Nodumps e
d — WQ(Gl, t) = (st(O[2 + eGl(t)) t (= [07 2‘72] QNComtmo&rz Support
-No stop&go

e, s .
“Strictly Increasing
-Bounded support

Since G1 (0) = 0’ d = 71'?(0) = (9. fQSupports are [0, t2]

—QPIayer 1 puts prob 0 at 0
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Proof of Theorem 1

Proof of Theorem 1.
S(G1) = S(G2) = [0, 1]
There exist constants ¢ and d such that

c=m(t,Ga) = 8t (a1 + eGa(t)) t€0,13] Nodumps e
d — WQ(Gl, t) = (st(O[2 + eGl(t)) t (= [07 2‘72] QNComtmo&rz Support
-No stop&go

e, s .
“Strictly Increasing
-Bounded support

Since G1(0) =0, d = 75(0) = az. e 0
Then G1(t) = 252~
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Proofs

Proof of Theorem 1

Proof of Theorem 1.

S(G1) = S(G2) = [0, 1]
There exist constants ¢ and d such that

c=m(t,Ga) = 8t (a1 + eGa(t)) t€0,13] Nodumps e
d — WQ(Gl, t) = (st(O[2 + eGl(t)) t (= [07 2‘72] QNCommo&rz Support
-No stop&go

e, s .
“Strictly Increasing
-Bounded support

a — — G — -2Supports are [0, 2
Slnce Gl (0) B Bé_daz_atﬂ-2 (O) N a2 —QilaF;'er ; puts {;)ro[b_(r) at 0
Then Gl(t) = T
Similarly, since Ga(t2) =1

c=n{(fy) = 62(ay +e) = 220t
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Proof of Theorem 1

Proof of Theorem 1.

S(G1) = S(G2) = [0, 1]
There exist constants ¢ and d such that

c=m(t,Ga) = 8t (a1 + eGa(t)) t€0,13] Nodumps e
d — 71-2(G1, t) = (st(O[2 + eGl(t)) t (= [07 2‘72] QNCommo&rz Support
-No stop&go

e, s .
“Strictly Increasing
-Bounded support

Since G1(0) =0, d = n5(0) = 0z e
Then G1(t) = *2 52

Similarly, since Ga(t2) =1

c=78(t) =62 (a; +e) = %

These strategies are Nash by definition. O
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Proofs

Lemma 6 (0 is in the support of every strategy)

G(?)

1
-No Jumps
-No one grows alone
-No stop&go
-Bounded support

1
0 t
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Lemma 7 (Every player but player 1 jumps at 0)

-No Jumps

-No one grows alone
-No stop&go
-Bounded support
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Proofs

Lemma 6 and Lemma 7

(0'is in the support of every strategy & Every player but player 1 jumps at 0)

Lemma 6 (and 7)

Let T'y s be an n-player cake sharing game with n > 3 and let
G = (Gi)ien € GV be a Nash equilibrium of I',, 5. Then 0 € S(G;)
for every j € N. Moreover G;(0) > 0 for every j € N\1.
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Lemma 6 and Lemma 7

(0'is in the support of every strategy & Every player but player 1 jumps at 0)

Lemma 6 (and 7)

Let T'y s be an n-player cake sharing game with n > 3 and let
G = (Gi)ien € GV be a Nash equilibrium of I',, 5. Then 0 € S(G;)
for every j € N. Moreover G;(0) > 0 for every j € N\1.

0 is in the support of every strategy.
‘Every player but player 1 jumps at OI
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Proofs

Lemma 8 (Nash Payoffs)

Lemma 8

Let G = (G;)ien be a Nash equilibrium of the n-player cake shar-
ing game I'y 5 and let @ = (1;);en be the corresponding vector of
equilibrium payoffs. Then
™ o= —a2(a1 o) and
oo + e
m; = « foreveryie N\{1}
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Proofs

Lemma 8 (Nash Payoffs)

Lemma 8

Let G = (G;)ien be a Nash equilibrium of the n-player cake shar-
ing game I'y 5 and let @ = (1;);en be the corresponding vector of
equilibrium payoffs. Then
™ o= —a2(a1 o) and
oo + e
m; = « foreveryie N\{1}

Nash payoffs are 7, = 229149 and 7, — q; (i £ 1)

ag+te
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Proofs

Lemma 9 (Players 3,...,n play t =

-No Jumps

-No one grows alone
-No stop&go
-Bounded support

0 is in the support

-1 # 1 jumps at 0
B ag(ag+e)
Ti = T{ag+e)

STy =g, 1F£ 1
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Proofs

Lemma 9

Let G = (G;)ien be a Nash equilibrium of the n-player cake sharing
gameT', s withn > 3. Then for everyi € N\{1,2}, G; corresponds
to pure strategy t = 0.
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Proofs

Lemma 9

Let G = (G;)ien be a Nash equilibrium of the n-player cake sharing
gameT', s withn > 3. Then for everyi € N\{1,2}, G; corresponds
to pure strategy t = 0.

‘ Players 3,... ., n play t =0
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Proofs

Proof of Theorem 2

-No Jumps

-N |
Proof of Theorem 2. Nostoptge

-Bounded support
-0 is in the support
-1 # 1 jumps at 0

ag(ag+te)

= (ag+e)
D T =g, 1 F# 1
-3, ..., nplayt =0
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Proofs

Proof of Theorem 2

-No Jumps

-N |
Proof of Theorem 2. Nostoptge

o . -Bounded support
Agents 1 and 2 play the game with cake size ~0'is in the support
-7 # 1 jumps at O

oq + a9 _|_ e - ag(aj+e)

(ag+te)

D T =g, 1 F# 1

-3, ..., nplayt =0
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Proofs

Proof of Theorem 2

-No Jumps
-N ws al
Proof of Theorem 2. No stopige
o . -Bounded support
Agents 1 and 2 play the game with cake size -0 in the suppor
-i # 1 jumps at
aq o (0%) T @ = 4‘;7')8\1‘7)4 )
=01 i F =y, 1 # 1
Strategy t = 0 is optimal for players 3,...,n [ T irl
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Existence and uniqueness of the Nash equilibrium for the n-player
cake sharing game.
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Existence and uniqueness of the Nash equilibrium for the n-player
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@ Check whether the results hold for more general “silent”
timing games

o Different discounts
@ Risk aversion

@ Discrete and finite models
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Conclusions

Existence and uniqueness of the Nash equilibrium for the n-player
cake sharing game.

Extensions: Timing game

@ Check whether the results hold for more general “silent”
timing games

o Different discounts
@ Risk aversion

@ Discrete and finite models

Extensions: Pricing game

@ Incomplete information models
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Conclusions

Conclusions

Existence and uniqueness of the Nash equilibrium for the n-player
cake sharing game.

Extensions: Timing game

@ Check whether the results hold for more general “silent”
timing games

o Different discounts
@ Risk aversion

@ Discrete and finite models

Extensions: Pricing game

@ Incomplete information models

o Different degrees of loyalty
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Proof of Lemma 1 (No jumps)

t

+-------06-----49

0
@ Assume without loss of generality that 1 “jumps” at u
o Gi(u™) >0 forall
o mi(G_i,t) = 0'(ai + e[, Gj(t7)) has a jump at u (i # 1)
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-No Jumps




Proof of Lemma 2 (No one grows alone)

-No Jumps

0 Up Ul2 !

@ Assume with out loss of generality that 1 “grows alone”
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Proof of Lemma 2 (No one grows alone)

-No Jumps

0 u9 t
o mi(G_i,t) = 0'(a; +e[];4;G;(t7)) decreasing in [0, uz)
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Proof of Lemma 3 (No stop&go)

G(t)
1
-No Jumps
-No one grows alone
2Common Support
| |
| |
| |
| |
| |
f ;
0 (75} us t

o mi(G_i,t) = 0'(ci + e[, Gj(t7)) decreasing in [u1, uz)
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@ Take t;, such that
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Proof of Lemma 4 (Bounded Support)

How much are you willing to wait?

o Take t1, 79 such that
o dh(a;+e) =
o 02 (g +e)=ay

-No Jumps
-No one grows alone

2Common Support

-No stop&go

2Strictly Increasing




Proof of Lemma 4 (Bounded Support)

How much are you willing to wait?

o Take 2?1,?52 such that .
t1 — -No one grows alone
L) = 5
5{ (C!]_ + 6) o 2Common Support
) 2(0[2 + 6) = (g -No stop&go
_ 2Strictly Increasing
ot2 _ as(ar+e)
@ & — =\ 1T
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How much are you willing to wait?

@ Take 1,19 such that

_ -No Jumps
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7 Common Support
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_ 2Strictly Increasing
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Proof of Lemma 4 (Bounded Support)

How much are you willing to wait?

@ Take 1,19 such that

_ -No Jumps
CJ 5t1 (C!]_ + 6) = :ZNO one grows alone
7 Common Support
@ 0 2(0[2 + 6) = Qg -No stop&go
_ 2Strictly Increasing
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Proof of Lemma 4 (Bounded Support)

How much are you willing to wait?

@ Take 1,19 such that

_ -No Jumps
CJ 5t1 (C!]_ + 6) = :ZNO one grows alone
7 Common Support
@ 0 2(0[2 + 6) = Qg -No stop&go
_ 2Strictly Increasing
52 _ og(arte) _ az(l—a2)
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Proof of Lemma 4 (Bounded Support)

How much are you willing to wait?

@ Take 1,19 such that

_ -No Jumps
t1 = -No one grows alone
° 5{ (C!]_ + 6) a1 2Common Support
@ 0 2(0[2 + 6) = Qg -No stop&go
_ 2Strictly Increasing
stz _ as(a1+e) _ as(1—a2) > 1
St1 a1 (az+te) a1(l—a1)
ot >t
. 1 2 v
0f —+ + . 00
ti t2 (31



Proof of Lemma 4 (Bounded Support)

How much are you willing to wait?

@ Take 1,19 such that

_ -No Jumps
CJ 5t1 (C!]_ =+ 6) = :ZNO one grows alone
7 Common Support
) 2(0[2 + 6) = (g -No stop&go
_ 2Strictly Increasing
52 _ og(arte) _ az(l—a2)
o = >1
3t a1 (az+te) a1(l—a1)
@ 11 > to

o0f - N\
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-No Jumps
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2Common Support
-No stop&go
ZStrictly Increasing
-Bounded support

0

o Take u € (t*,t2)
o 7T1(u, Gz) = 5“(0&1 + GGQ(U)) = 5“’((11 aF 6)
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-Bounded support

0

o Take u € (t*,t2) i
o m(u,Ga) = 6% (a1 + eGa(u)) = 6%(aq +€) > 62(aq +€) =
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o m(u,Ga) = 6% (a1 + eGa(u)) = 6%(aq +€) > 62(aq +€) =
% > a1 = m1(G_;,0). Player 1 puts probability 0 at 0

o Then ma(G_1,t) = 6'(ew + eG1(t)) is continuous in [0, 00)

o mo(u,G1) = 6% (ag + eG1(u)) = 6% (g +€) > 62 (g +€) =
g = 7T2(G,1,0).
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Proof of Lemma 6 (0 is in the support of every strategy)

G(t)

1 1
-No Jumps
-No one grows alone
-No stop&go
-Bounded support

) t
0| u

@ No j will put positive probability in (0, u)
o mi(G_j,t) = 6"(ai + e[, Gj(t)) decreasing in (0, u)
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G(t)
1# 1
1 7
-No Jumps
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-No stop&go
-Bounded support
0 t

o mi(G-1,t) = d'(a1 +e[];4, G;(t)) is continuous at 0



Proof of Lemma 7 (Every player but player 1 jumps at 0)

G(t)
1# 1
1 7
-No Jumps
-No one grows alone
-No stop&go
-Bounded support
0 t

o m(G_1,t) = 6% (a1 + e]l;21 Gj(t)) is continuous at 0
o 71’1(G,1./t72) = 552((l1 aF (i) >
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Proof of Lemma 8 (Nash Payoffs)

-No Jumps
-No one grows alone
-No stop&go

-Bounded support
-0 is in the support
-1 # 1 jumps at 0

t i

0 to
o Player 1 can ensure himself 7; by playing t5

@ He cannot get more than that in equilibrium
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-0 is in the support
-7 # 1 jumps at 0
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Proof of Lemma 9 (Players 3,...,n play t = 0)
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