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Preface

This thesis is the result of my first four years as a researcher in game theory. Nonetheless, my

devotion for games, specially the zero-sum ones, is much older than that. I would say that it

really began when I first saw my eldest brother playing chess with my father; by that time I was

six years old. Both of them passed me the love for this game, which I still practice. Apart from

chess, I have also wasted part of my leisure time over the last few years playing computer games,

cards, and many other board and table games with my family and friends. It was not before

the fifth year of my undergraduate studies in Mathematics that I realized that the scope of the

theory of games goes far beyond simple (and not so simple) diversions.

My first formal approach to game theory was during a course taught by Ignacio García Jurado.

After Ignacio’s course, games were not just a hobby anymore. Hence, after finishing the degree, I

joined the PhD program of the Department of Statistics and Operations Research with the idea

of writing my thesis in game theory. Soon after that, Ignacio became my advisor. He is the one

who has helped me most during these four years, not only because of his academic guidance, but

also for being the main responsible for the fruitful years I have spent as a game theorist so far.

Many thanks, Ignacio, for the time you have spent on me.

Many thanks, too, to my other advisor, Estela, for all the time she has devoted to this thesis;

mainly through her co-authorship in Chapters 5, 6, and 7. Thanks for all the discussions, so

central to the core of this thesis.

Joint research with different people has helped me to deepen into game theory and to un-

derstand many other aspects of a researcher’s life. Hence, I am grateful to all my co-authors:

Ignacio, Estela, Peter, Henk, Ruud, Marieke, and Antonio. Besides, special thanks to my ad-

vanced mathematics consultants: Roi and Carlitos for their helpful discussions that contributed

to most of the Chapters of this thesis, mainly through Chapters 5 and 6.

I am also grateful to many other colleagues for their helpful discussions regarding earlier

versions of the various chapters included in this Thesis. Thanks to Gustavo, Juan, and the rest

of Galician game theorists. Thanks also to Carles Rafels, Yves Sprumont, Salvador Barberá,

Hervé Moulin, Bernhard von Stengel, and many others for helpful comments during pleasant

conversations.

I have also had the possibility of visiting some prestigious universities during these years.

These stays have substantially influenced my formation not only as a researcher, but also in
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many other aspects of life. Because of this, I am indebted to Peter, Henk, Ruud, Arantza,. . . and

all the people at CentER for the pleasant atmosphere I had during my three-month visit to

Tilburg University. I am also indebted to Inés and Jordi for having invited me to visit the Unit

of Economic Analysis of the Universitat Autònoma de Barcelona, and to the other members of

the Department for their reception; I am specially grateful to the PhD students at IDEA for their

warm welcome, where Sergio and Joan deserve a special mention. Finally, I am deeply indebted

to William for inviting me to visit the Department of Economics of University of Rochester. My

gratitude to all the members of the Department, to the PhD students, to Diego, Paula, Ricardo,

Çağatay,. . . .

Moreover, William’s influence on this thesis goes further than just the invitation to visit

University of Rochester. He has taught to me some of the secrets of correct (scientific) writing,

and I have tried to follow his credo throughout this thesis. Unfortunately, it was already too late

to implement his principles in some of the chapters of this thesis (in the others just blame me for

my inaptitude).

I deeply appreciate the kind support from the group of Galician game theorists and from the

people in the Department of Statistics and Operations Research.

I am also grateful to my two officemates, Rosa and Manuel. Because of them I have developed

my research in a very comfortable environment. Also, thanks Manuel for your countless LaTeX

recommendations.

Finally, I want to mention all the other PhD students at the Faculty of Mathematics for

the enjoyable conversations and discussions during the daily coffee breaks. Thanks to Marco,

Carlitos, Tere, Bea,. . . .

Last, but not least, I have to render many thanks to my family and to my friends. They have

provided me with a very pleasant and relaxed atmosphere during all these years.

Julio González Díaz

Santiago de Compostela
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Notations

Since many of the chapters within this thesis do not bear any relation to each other, all of them

are self-contained. In order to do this, it can be the case that the same piece of notation is

introduced in more than one chapter. Even though, the following symbols and notations are

common for all the chapters.

N The set of natural numbers

R The set of real numbers

RN The set of vectors whose coordinates are indexed by the elements of N

R+ The set of non-negative real numbers

R++ The set of positive real numbers

T ⊆ S T is a subset of S

T ( S T is a subset of S and T is not equal to S

2N The set of all subsets of N

|S| The number of elements of S

co(A) The convex hull of A

Let u, v ∈ RN :

u ≥ v For each i ∈ N , ui ≥ vi

u > v For each i ∈ N , ui > vi

vii
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3

Introduction to Noncooperative Game Theory

This first Part of the dissertation deals with noncooperative game theoretical models. It consists

of four Chapters, and in each of them we present and discuss a different issue.

Chapter 1 presents a noncooperative situation in which timing plays an important role. That

is, not only the chosen strategies are relevant to obtain the payoffs of a given profile, but also

the moment in which they are played influences the outcome. The games we define model the

division of a cake by n players as a special class of timing games. Our main result establishes

the existence and uniqueness of a Nash equilibrium profile for each of these games. This Chapter

is based on the paper González-Díaz et al. (2004) and generalizes to the n-player situation the

2-player results described in Hamers (1993).

Both Chapters 2 and 3 describe models within the scope of the repeated games literature.

In Chapter 2, which is based on the paper González-Díaz (2003), we elaborate a little bit more

on the extensively studied topic of the folk theorems. More specifically, we present a generalized

Nash folk theorem for finitely repeated games with complete information. The main result in this

Chapter refines the sufficient condition presented in Benoît and Krishna (1987), replacing it by

a new one which turns out to be also necessary. Besides, this result also corrects a small flaw in

Smith (1995). Moreover, our folk theorem is more general than the standard ones. The latter look

for conditions under which the set of feasible and individually rational payoffs can be supported

by Nash or subgame perfect equilibria. Our folk theorem also looks for such conditions, but we

also characterize the set of achievable payoffs when those conditions are not met. On the other

hand, in Chapter 3 we consider the topic of unilateral commitments; the research on this issue

follows the lines in García-Jurado et al. (2000). We study the impact of unilateral commitments

in the assumptions needed for the various folk theorems, showing that, within our framework,

they can always be relaxed. These results imply that, when unilateral commitments are possible,

we can support “cooperative” payoffs of the original game as the result of either a Nash or a

subgame perfect equilibrium profile in situations in which they could not be supported within the

classic framework. Chapter 3 is based on García-Jurado and González-Díaz (2005).

We conclude this first Part with Chapter 4. This Chapter deals with bankruptcy problems.

We associate noncooperative bankruptcy games to bankruptcy situations and study the properties

of the equilibria of such games. We show that each of these games has a unique Nash equilibrium

payoff, which, moreover, is always supported by strong Nash equilibria. Besides, we show that

for each bankruptcy rule and each bankruptcy situation, we can define a bankruptcy game whose

Nash equilibrium payoff corresponds with the proposal of the given bankruptcy rule. This Chapter

is based on García-Jurado et al. (2004).
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6 Chapter 1. A Silent Battle over a Cake

1.1 Introduction

There are many strategic situations in which some agents face a decision problem in which timing

is important. The literature on timing games has been devoted to analyze these situations and

provide theoretical models to study the underlying strategic problem. A first approach to timing

games appears in Karlin (1959) in the zero sum context. More recent contributions are Baston

and Garnaev (2000) and Laraki et al. (2003). A classic example of a timing game is the war of

attrition, introduced in Smith (1974) and widely studied, for instance, in Hendricks et al. (1988).

More specifically, consider the following war of attrition game. Two rival firms are engaged in a

race to make a patentable discovery, and hence, as soon as one firm makes the discovery, all the

previous effort made by the other firm turns out to be useless. This patent race model has been

widely studied in the literature (see, for instance, Fudenberg et al. (1983)). In this model it is

assumed that, as soon as one of the firms leaves the race, the game ends. The motivation for this

assumption is that, once there is only one firm in the race, the game reduces to a decision problem

in which the remaining firm has to optimize its resources. Hence, the strategy of each firm consists

of deciding, for each time t, whether to leave the race or not. Most of the literature in timing

games models what we call non-silent timing games, that is, as soon as one player acts, the others

are informed and the game ends.1 In this Chapter, on the contrary, we provide a formal model

for the silent situation. We use again the patent race to motivate our formulation. Consider a

situation in which two firms are engaged in a patent race and also in an advertising campaign.

Suppose that one of the two firms, say firm 1, decides to leave the race. Then, it will probably

be the case that firm 1 does not want firm 2 to realize that 1 is not in the race anymore; and

therefore, firm 1 can get a more advantageous position for the advertising campaign. Moreover,

if firm 2 does not realize that firm 1 has already left the race, it can also be the case that, firm 2

leaves the race before making the discovery, benefiting again firm 1.

Next, we introduce our silent timing game. We consider a situation in which n players have

to divide a cake of size S. At time 0, player i has the initial right to receive the amount αi,

where it is assumed that
∑

i∈N αi < S. If player i claims his part at time t > 0 then he receives

the discounted part δtαi of the cake, unless he is the last claimant, in which case he receives the

discounted remaining part of the cake δt(S −∑j 6=i αj). We refer to this game as a cake sharing

game.

Hamers (1993) showed that 2-player cake sharing games always admit a unique Nash equilib-

rium. In this Chapter we consider cake sharing games that are slightly different from the games

introduced in Hamers (1993). We first provide an alternative, but more direct, existence and

uniqueness result for 2-player cake sharing games, and we generalize this result to cake sharing

games with more players.

It is worth to mention the similarities between our results and some well known results in all-

pay auctions (Weber, 1985). At first glance, the two models seem quite different but in fact they

1An exception is Reinganum (1981), although her model is very different from ours.
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have many similarities. Indeed, in this Chapter we show that the same kind of results obtained

for the all-pay auctions (Hilman and Riley, 1989; Baye et al., 1996) can be obtained for our timing

game. However, even though both the results and also the some of the proofs are very similar for

the two models, they are different enough so that our results cannot be derived from those in the

all-pay auctions literature and conversely.

This Chapter is organized as follows. In Section 1.2 we introduce the cake sharing games.

In Sections 1.3 and 1.4 we deal with 2-player cake sharing games and more player cake sharing

games, respectively.

1.2 The Model

In this Section we formally introduce the cake sharing games.

Let N = {1, . . . , n} be a set of players with n ≥ 2, let S > 0, α = (α1, . . . , αn) ∈ RN
+

be such that α1 + · · · + αn < S, and δ ∈ (0, 1). Throughout this Chapter we assume that

0 < α1 < α2 < · · · < αn. The number S is called the size of the cake, the vector α the initial

right vector and δ the discount factor.

The cake sharing game with pure strategies associated with S, α, and δ, is the triple Γpure

S,α,δ :=

(N, {Ai}i∈N , {πi}i∈N ), where

Ai := [0,∞) is the set of pure strategies of player i ∈ N , interpreted as the time at which i

claims his share,

πi is the payoff function of player i ∈ N , defined by:

πi(t1, . . . , tn) :=







(S −
∑

j 6=i

αj)δ
ti ti > max

j 6=i
tj

αiδ
ti otherwise.

Hence, if there is a unique last claimant, then he receives the discounted value of the cake that

remains after that other players have taken their initial rights. If there is not a unique last

claimant, then all players receive the discounted value of their initial rights. Note that the payoff

functions defined above differ slightly from the payoff functions introduced in Hamers (1993),

where, in case there is not a unique last claimant, the discounted value of the remaining cake is

shared equally between the last claimants. This change in the model does not affect the results,

but it simplifies proofs. 2

One easily verifies that Γpure

S,α,δ has no Nash equilibria. If there is a unique last claimant,

then this player can improve his payoff by claiming a little bit earlier (and remaining the last

2Let us make some comments concerning the relation between the cake sharing game (CS) and the all-pay
auctions model (AP ). For simplicity, we think of the two player case. Setting aside the issue of timing, note the
following differences: (i) Initial rights: in CS they depend on the player (αi), in AP they are 0; (ii) in CS each
player wants to get 1− (α1 +α2), in AP the valuation of the object depends on the player; and (iii) In CS waiting
till time t, each player is “paying” αi − (αi)δ

t, i.e., it depends on the player, in AP bidding v, each player is
“paying” v. All the other strategic elements are analogous in the two models.
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claimant). If there is no unique last claimant, then one of the last claimants can improve his

payoff by claiming a little bit later (becoming the unique last claimant in this way). Hence, for

an appropriate analysis of cake sharing games we need to consider mixed strategies.

Formally, a mixed strategy is a function G : [0,∞) → [0, 1] satisfying:

G(0) = 0,

G is a nondecreasing function,

G is left-continuous,

limx→∞G(x) = 1.

For a mixed strategy G we can always find a probability measure P on [0,∞) such that:3

for each x ∈ [0,∞), G(x) = P
(
[0, x)

)
. (1.1)

On the other hand, every probability measure P on [0,∞) defines by formula (1.1) a mixed

strategy G. Hence, the set of mixed strategies coincides with the set of probability measures on

[0,∞).4 Let G denote the set of all mixed strategies. We now introduce other notation related to

mixed strategy G:

for each x ∈ [0,∞), we denote limy↓xG(y), the probability of choosing an element in the

closed interval [0, x], by G(x+).

if x > 0 is such that for each pair a, b ∈ [0,∞), with a < x < b, we have G(b) > G(a+)

(i.e., the probability of choosing an element in (a, b) is positive), then x is an element of

the support of G, S(G). If for each b > 0, G(b) > 0 (i.e., the probability of choosing an

element in [0, b) is positive), then 0 is an element of S(G). One easily verifies that S(G) is

a closed set.

the set of jumps (discontinuities) of G is J(G) := {x ∈ [0,∞) : G(x+) > G(x)}, i.e., the

set of pure strategies which are chosen with positive probability.

If player i chooses pure strategy t and all other players choose mixed strategies {Gj}j 6=i then the

expected payoff for player i is

πi(G1, . . . , Gi−1, t, Gi+1, . . . , Gn) =
∏

j 6=i

Gj(t) δ
t(S −

∑

j 6=i

αj) + (1 −
∏

j 6=i

Gj(t)) δ
tαi

= δt(αi + (S −
∑

j∈N

αj)
∏

j 6=i

Gj(t)).

3See Rohatgi (1976) for more details.
4An alternative way of defining mixed strategies G is as a nondecreasing, right-continuous function from [0,∞)

to [0, 1] with limx→∞G(x) = 1. For such a function we can always find a probability measure P on [0,∞) such
that for each x ∈ [0,∞), G(x) = P

�
[0, x]

�
, i.e., G is the (cumulative) distribution function corresponding to

P . Although this equivalent approach seems more natural, it would lead to technical problems when computing
Lebesgue-Stieltjes integrals later on.
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If player i also chooses a mixed strategy Gi, whereas all other players stick to mixed strategies

{Gj}j 6=i, then the expected payoff for player i can be computed by use of the Lebesgue-Stieltjes

integral:

πi(G1, . . . , Gn) =

∫

πi(G1, . . . , Gi−1, t, Gi+1, . . . , Gn)dGi(t). (1.2)

Note that, with a slight abuse of notation, the functions πi do not only denote payoffs to players

when pure strategies are played, but also when mixed strategies are used.

The cake sharing game associated with S, α, and δ, is defined by the triple ΓS,α,δ :=

(N, {Xi}i∈N , {πi}i∈N ), where

Xi := G is the set of mixed strategies of player i ∈ N ,

πi, defined by (1.2), is the (expected) payoff function of player i ∈ N .

Given a strategy profile G = (G1, G2, . . . , Gn) ∈ Gn, let πG
i (t) be the corresponding payoff

πi(G1, . . . , Gi−1, t, Gi+1, . . . , Gn). Hence, πG
i (t) is the expected payoff for player i when he plays

the pure strategy t and all the other players act in accordance with G.

1.3 Two Players

In this Section we provide an alternative proof of the result of Hamers (1993) for 2-player cake

sharing games. Our reasons for doing this are threefold. First, our model is slightly different from

the model of Hamers (1993), and hence, a new proof is required. Secondly, our proof is more

direct than Hamers’ proof. Finally, our proof forms the basis for the results in Section 1.4 for

cake sharing games with three or more players.

First, we derive a number of properties for Nash equilibria of n-player cake sharing games.

The following Lemma shows that in a Nash equilibrium players do not place positive probability

on a pure strategy t > 0.

Lemma 1.1. Let ΓS,α,δ be an n-player cake sharing game and let the profile G = (Gi)i∈N ∈ GN

be a Nash equilibrium of ΓS,α,δ. Then, for each i ∈ N , J(Gi) ∩ (0,∞) = ∅.

Proof. Let i ∈ N . We show that J(Gi) ∩ (0,∞) = ∅. Assume, without loss of generality, that

i = 1. Suppose that u ∈ J(G1) ∩ (0,∞). If there is i 6= 1 such that Gi(u
+) = 0, then, for each

t ∈ [0, u], πG
1 (t) = δtα1. Since the function πG

1 (·) is strictly decreasing on [0, u], player 1 would

be better off moving the probability in u to 0. Hence, for each i ∈ N , Gi(u
+) > 0. Now, for each

i ∈ N\{1}, consider the functions

πG
i (t) = δt(αi + (S −

∑

j∈N

αj)
∏

j 6=i

Gj(t)).

Since G1 is discontinuous at u, i.e., G1(u
+) > G1(u), there are u1 < u, u2 > u, and ε > 0 such
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that for each i 6= 1 and each t ∈ [u1, u],

πG
i (u2) − πG

i (t) ≥ ε.

If player i ∈ N\{1} places positive probability on [u1, u], i.e., if Gi(u
+) > Gi(u1), then he can

increase his payoff by at least ε(Gi(u
+) − Gi(u1)) by moving all this probability to u2. Hence,

for each i ∈ N\{1}, we have Gi(u
+) = Gi(u1) and, for each t ∈ [u1, u], Gi(t) = Gi(u). Hence,

the function

πG
1 (t) = δt(α1 + (S −

∑

j∈N

αj)
∏

j 6=1

Gj(t))

is strictly decreasing on [u1, u]. Now, player 1 can improve his payoff by moving some probability

from u to u1.

Lemma 1.1 implies that, in a Nash equilibrium G, the players use mixed strategies which are

continuous on (0,∞). Hence, for each i ∈ N and each t > 0, we can write Gi(t
+) = Gi(t).

Moreover, the functions πG
i (·) are continuous on (0,∞).

Lemma 1.2. Let ΓS,α,δ be an n-player cake sharing game and let the profile G = (Gi)i∈N ∈ GN

be a Nash equilibrium of ΓS,α,δ. Let i ∈ N and t ∈ S(Gi). Then, there is j ∈ N\{i} such that

t ∈ S(Gj).

Proof. Suppose that t /∈ ∪j 6=iS(Gj). We distinguish between two cases:

Case 1: t > 0.

There are t1, t2 > 0, with t1 < t < t2, such that for each j 6= i, Gj(t2) = Gj(t1).
5 Hence, for

each u ∈ [t1, t2] and each j 6= i, Gj(u) = Gj(t2). Hence, the function

πG
i (u) = δu(αi + (S −

∑

j∈N

αj)
∏

j 6=i

Gj(u))

is strictly decreasing on [t1, t2]. Since t ∈ S(Gi), we have Gi(t2) > Gi(t
+
1 ), i.e., player i places

positive probability on (t1, t2). Now, player i can strictly improve his payoff by moving all this

probability to t1.

Case 2: t = 0.

Let b > 0 be the smallest element in ∪j 6=iS(Gj) (recall that all the S(Gj) are closed). Clearly,

for each j 6= i, Gj(b) = 0. Again, if Gi(b) > Gi(0
+), i.e., if player i places positive probability on

(0, b), then similar arguments as in Case 1 can be used to show that player i can strictly improve

his payoff by moving this probability to 0. Hence, Gi(b) = Gi(0
+) and hence, since 0 ∈ S(Gi),

we have Gi(0
+) > 0. Moreover, for each t ∈ (0, b], Gi(t) = Gi(b) (this is relevant only for the

5For each j ∈ N\{i} there are tj1, t
j
2 > 0, with tj1 < t < tj2, such that Gj(t

j
2) = Gj(t

j
1). Hence, we take

t1 = maxj∈N\{i} t
j
1 and t2 = minj∈N\{i} t

j
2.
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case n = 2). Hence, for each j ∈ N\{i}, the function

πG
j (t) = δt(αj + (S −

∑

k∈N

αk)
∏

k 6=j

Gk(t))

is strictly decreasing on (0, b].

Let a ∈ (0, b) and let j ∈ N\{i} be a player such that b ∈ S(Gj). Let ε := πG
j (a)−πG

j (b) > 0.

Since the function πG
j (·) is continuous on (0,∞), we have that there is δ > 0 sufficiently small

such that

for each t ∈ [b, b+ δ], πG
j (a) − πG

j (t) >
1

2
ε.

Since b ∈ S(Gj), then Gj(b+ δ) > 0 = Gj(b). Hence, player j can improve his payoff by moving

the probability he assigns to [b, b+ δ) to a. Contradiction.

The following Lemma shows that if some pure strategy t does not belong to the support of

any of the equilibrium strategies, then no pure strategy t′ > t belongs to the support of any of

the equilibrium strategies either.

Lemma 1.3. Let G = (Gi)i∈N be a Nash equilibrium of the n-player cake sharing game ΓS,α,δ.

Let t ∈ [0,∞) be such that for each j ∈ N , t /∈ S(Gj). Then, for each j ∈ N , (t,∞)∩S(Gj) = ∅.

Proof. Let K := ∪j∈NS(Gj). Clearly, K is closed and t /∈ K. We have to show that K ∩ (t,∞) =

∅. Suppose that K ∩ (t,∞) 6= ∅. Let t∗ := min{u ∈ K : u > t}. Let j∗ ∈ N be such that

t∗ ∈ S(Gj∗). Since for each j ∈ N , [t, t∗) ∩ S(Gj) = ∅, then we have that, for each j ∈ N ,

Gj(t) = Gj(t
∗). Hence, the functions Gj are constant on [t, t∗]. Now, since for each u ∈ [0,∞),

πG
j∗(u) = δu(αj∗ + (S −

∑

j∈N

αj)
∏

j 6=j∗

Gj(u)),

then, the function πG
j∗(·) is strictly decreasing on [t, t∗]. By the continuity of πG

j∗(·) at t∗, for each

u ∈ [t∗, t∗ + ε], with ε > 0 sufficiently small, we have πG
j∗(t) > πG

j∗(u). Hence, Gj∗ is constant on

[t∗, t∗ + ε] as well, contradicting the fact that t∗ ∈ S(Gj∗).

Now, we provide specific results for 2-player cake sharing games. The following Lemma shows

that, in a Nash equilibrium, the players use mixed strategies whose supports coincide.

Lemma 1.4. Let ΓS,α,δ be a 2-player cake sharing game and let (G1, G2) ∈ G × G be a Nash

equilibrium of ΓS,α,δ. Then, S(G1) = S(G2).

Proof. This result is just a consequence of Lemma 1.2.

The following Lemma states we show that the supports of the strategies in a Nash equilibrium

are compact intervals.

Lemma 1.5. Let ΓS,α,δ be a 2-player cake sharing game and let G = (G1, G2) ∈ G×G be a Nash

equilibrium of ΓS,α,δ. Let k := logδ
α2

S−α1
. Then, S(G1) = S(G2) = [0, k].
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Proof. First, we show that S(G1) = S(G2) ⊆ [0, k]. For each t ∈ (k,∞), we have

πG
2 (t) = δt(α2 + (S − α1 − α2)G1(t))

≤ δt(α2 + (S − α1 − α2))

= δt(S − α1)

< δk(S − α1)

= α2

= πG
2 (0).

If G2(k) = G2(k
+) < 1, i.e., if player 2 places positive probability on (k,∞), then he can improve

his payoff strictly by moving all this probability to 0. Hence G2(k) = 1 and S(G1) = S(G2) ⊆
[0, k].

Let k∗ be the largest element in the closed set S(G1). Clearly, k∗ ≤ k. If k∗ = 0, then (G1, G2)

would be an equilibrium in pure strategies, a contradiction. Hence, k∗ > 0. Now, by Lemma 1.3,

S(G1) = S(G2) = [0, k∗].

The only thing which remains to be shown is that k∗ = k. Suppose that k∗ < k. Now, for

each τ ∈ (0, k − k∗),

πG
1 (k∗ + τ) = δk∗+τ (α1 + (S − α1 − α2)G2(k

∗ + τ))

= δk∗+τ (α1 + (S − α1 − α2))

= δk∗+τ (S − α2)

> δk(S − α2)

=
α2(S − α2)

S − α1

≥ α1

= πG
1 (0),

where at the weak inequality we used that α2(S−α2) ≥ α1(S−α1). Hence, if G1(0
+) > 0, i.e., if

player 1 plays pure strategy 0 with positive probability, then he can improve his payoff by moving

some probability from 0 to pure strategy k∗ + τ . Hence, G1(0
+) = 0. Now, there is t ∈ (k∗, k)

such that
πG

2 (t) = δt(α2 + (S − α1 − α2)G1(t))

= δt(α2 + (S − α1 − α2))

= δt(S − α1)

> δk(S − α1)

= α2

= πG
2 (0).

Since 0 ∈ S(G1) and πG
2 (·) is continuous at 0 (because G1(0

+) = 0), player 2 can strictly improve

his payoff by moving some probability from the neighborhood of 0 to t. Contradiction. Hence,

k∗ = k.
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Now, we are ready to prove the main theorem of this Section.

Theorem 1.1. Let ΓS,α,δ be a 2-player cake sharing game and k := logδ
α2

S−α1
. Define G∗ =

(G∗
1, G

∗
2) ∈ G × G by

G∗
1(t) :=







α2 − α2δ
t

δt(S − α1 − α2)
0 ≤ t ≤ k

1 t > k,

G∗
2(t) :=







0 t = 0
α2(S − α2) − α1(S − α1)δ

t

δt(S − α1)(S − α1 − α2)
0 < t ≤ k

1 t > k.

Then, G∗ is the unique Nash equilibrium of ΓS,α,δ. Moreover, the equilibrium payoffs are

π1(G
∗
1, G

∗
2) =

α2(S − α2)

S − α1
,

π2(G
∗
1, G

∗
2) = α2.

Proof. One easily verifies that

πG∗

1 (t) =







α1 t = 0
α2(S − α2)

S − α1
0 < t ≤ k

δt(S − α2) t > k,

and

πG∗

2 (t) =

{

α2 0 ≤ t ≤ k

δt(S − α1) t > k.

Hence,

π1(G
∗
1, G

∗
2) =

α2(S − α2)

S − α1
and π2(G

∗
1, G

∗
2) = α2.

Since for each t ∈ [0,∞),

π1(t,G
∗
2) ≤

α2(S − α2)

S − α1
and π2(G

∗
1, t) ≤ α2,

we have that G∗ is a Nash equilibrium of ΓS,α,δ.

In order to show that there are no other Nash equilibria, let (G1, G2) be a Nash equilibrium of

ΓS,α,δ. By Lemma 1.1, the strategies G1 and G2 are continuous on (0,∞). In the same way as in

the proof of Lemma 1.5, we can show that G1(0
+) = 0. Hence, the function πG

1 (·) is continuous

on (0,∞) and the function πG
2 (·) is continuous on [0,∞). By Lemma 1.5, S(G1) = S(G2) = [0, k].
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Hence, there are constants c and d such that

for each t ∈ (0, k], c = πG
1 (t) = δt(α1 + (S − α1 − α2)G2(t)),

for each t ∈ [0, k], d = πG
2 (t) = δt(α2 + (S − α1 − α2)G1(t)).

Since G1(0) = 0, d = πG
2 (0) = α2. Hence, for each t ∈ [0, k],

G1(t) =
α2 − α2δ

t

δt(S − α1 − α2)
= G∗

1(t).

Now, for each t > k, G1(t) = 1 = G∗
1(t). Hence, G1 = G∗

1. Moreover, since G2(k) = 1,

c = πG
1 (k) = δk(S − α2) = α2(S−α2)

S−α1
. Hence, for each t ∈ (0, k]

G2(t) =
α2(S − α2) − α1(S − α1)δ

t

δt(S − α1)(S − α1 − α2)
= G∗

2(t).

Now, G2(0) = 0 = G∗
2(0) and, for each t > k, G2(t) = 1 = G∗

2(t). Hence, G2 = G∗
2. This finishes

the proof.

1.4 More Players

In this Section we consider cake sharing games with more than two players. Again, we show that

such games admit a unique Nash equilibrium.

First, we show that each mixed strategy in a Nash equilibrium has bounded support.

Lemma 1.6. Let ΓS,α,δ be an n-player cake sharing game, with n ≥ 3. Let G = (Gi)i∈N ∈ GN

be a Nash equilibrium of ΓS,α,δ. For each i ∈ N , let

ki := logδ

αi

1 −∑j 6=i αj
.

Then, k1 > k2 > · · · > kn and, for each i ∈ N , S(Gi) ⊂ [0, ki]. Moreover, S(G1) ⊂ [0, k2].

Proof. Let i, j ∈ N be such that i > j. Let γ :=
∑

l 6=i,j

αl. Then,

αi(S − γ − αi) − αj(S − γ − αj) = αi(S − γ − αi) − αiαj + αiαj − αj(S − γ − αj)

= (αi − αj)(S −
∑

l∈N

αl)

> 0.

Now,

δki

δkj
=

αi

S − γ − αj
αj

S − γ − αi

=
αi(S − γ − αi)

αj(S − γ − αj)
> 1, (1.3)
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and hence, ki < kj .

Now, for each i ∈ N and each t ∈ (ki,∞),

πG
i (t) = δt(αi + (S −∑j∈N αj)

∏

j 6=iGj(t))

≤ δt(αi + (S −∑j∈N αj))

= δt(S −∑j 6=i αj)

< δki(S −∑j 6=i αj)

= αi

= πG
i (0).

Repeating the reasoning of Lemma 1.5, if Gi(ki) = Gi(k
+
i ) < 1, then player i can strictly increase

his payoff by moving all the probability in (ki,∞) to 0. Hence, for each i ∈ N , Gi(ki) = 1.

Now, for each j ∈ N\{1}, k2 ≥ kj . Hence, Gj(k2) ≥ Gj(kj) = 1. Hence, Gj(k2) = 1 and

S(Gj) ⊂ [0, k2]. Now, by Lemma 1.2, we have S(G1) ⊂ [0, k2] as well.

The following Lemma states that pure strategy 0 belongs to the support of every equilibrium

strategy. Moreover, players 2, . . . , n play this strategy with positive probability.

Lemma 1.7. Let ΓS,α,δ be an n-player cake sharing game. Let G = (Gi)i∈N ∈ GN be a Nash

equilibrium of ΓS,α,δ. Then, for each j ∈ N , 0 ∈ S(Gj). Moreover, for each j ∈ N\{1},
Gj(0

+) > 0.

Proof. Suppose that there is i ∈ N such that 0 /∈ S(Gi). Let s > 0 be the smallest element in

the closed set S(Gi). Then, [0, s) ∩ S(Gi) = ∅. Hence, for each t ∈ [0, s], Gi(t) = 0. Hence, for

each j ∈ N\{i} the function

πG
j (t) = δt(αj + (S −

∑

k∈N

αk)
∏

k 6=j

Gk(t)) = αjδ
t

is strictly decreasing on [0, s]. Hence, for each j ∈ N\{i}, (0, s) ∩ S(Gj) = ∅. Let s∗ ∈ (0, s).

Then, for each j ∈ N , s∗ /∈ S(Gj). By Lemma 1.3, (s∗,∞) ∩ S(Gi) = ∅. This is a contradiction

with s ∈ S(Gi). Hence, for each j ∈ N , 0 ∈ S(Gj).

Now suppose i ∈ N\{1} is such that Gi(0
+) = 0. This implies that the function

πG
1 (t) = δt(α1 + (S −

∑

j∈N

αj)
∏

j 6=1

Gj(t))

is continuous at 0. Let k2 := logδ

α2

S −∑j 6=2 αj
. By Lemma 1.6, for each j ∈ N , Gj(k2) = 1.

Hence,

πG
1 (k2) = δk2(S −

∑

j 6=1

αj) =
α2

S −∑j 6=2 αj
(S −

∑

j 6=1

αj) > α1 = πG
1 (0).

By the continuity of πG
1 (·) at 0, for each t ∈ [0, ε] with ε > 0 sufficiently small, we have πG

1 (k2) >

πG
1 (t). Hence, [0, ε) ∩ S(G1) = ∅. This is a contradiction with 0 ∈ S(G1).
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The following Lemma provides the equilibrium payoffs in a Nash equilibrium.

Lemma 1.8. Let G = (Gi)i∈N be a Nash equilibrium of the n-player cake sharing game ΓS,α,δ

and let η = (ηi)i∈N be the corresponding vector of equilibrium payoffs. Then,

η1 =
α2(S −∑j 6=1 αj)

S −∑j 6=2 αj

and, for each j ∈ N\{1}, ηj = αj.

Proof. By Lemma 1.7, we have that, for each j ∈ N\{1}, Gj(0
+) > 0 . Hence, for each j ∈ N\{1},

ηj = πG
j (0) = αj . Again, let k2 := logδ

α2

S−Pj 6=2 αj
. By Lemma 1.6, we have that, for each j ∈ N ,

Gj(k2) = 1. Hence,

η1 ≥ πG
1 (k2) =

α2(S −∑j 6=1 αj)

S −∑j 6=2 αj
.

If η1 > πG
1 (k2), then, by the continuity of πG

1 (·) at k2, for γ > 0 sufficiently small, we have that,

for each t ∈ [k2 −γ, k2], η1 > πG
1 (t). Hence, S(G1) ⊆ [0, k2 −γ]. Now, player 2 can get more than

α2 by placing all his probability at k2 − γ + ε for ε > 0 small enough.

In the following Lemma we show that in a Nash equilibrium players 3, . . . , n claim their initial

right immediately, i.e., they play pure strategy 0.

Lemma 1.9. Let G = (Gi)i∈N be a Nash equilibrium of the n-player cake sharing game ΓS,α,δ,

with n ≥ 3. Then, for each i ∈ N\{1, 2} we have

Gi(t) =

{

0 t = 0

1 t > 0,

i.e., Gi corresponds with pure strategy 0.

Proof. Let i ∈ N\{1, 2} and suppose that it is not true that

Gi(t) =

{

0 t = 0

1 t > 0.

Let t∗ := inf{t : Gi(t) = 1}. Note that t∗ > 0 and t∗ ∈ S(Gi). Moreover, by the continuity of Gi

at t∗, Gi(t
∗) = 1. Now, we have

πG
2 (t∗) = δt∗(α2 + (S −

∑

j∈N

αj)
∏

j 6=2

Gj(t
∗)) ≤ α2 (1.4)

since, otherwise, player 2 could deviate to pure strategy t∗ obtaining strictly more than his

equilibrium payoff α2. Moreover, since t∗ ∈ S(Gi),

πG
i (t∗) = δt∗(αi + (S −

∑

j∈N

αj)
∏

j 6=i

Gj(t
∗)) = αi. (1.5)
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From (1.4) and (1.5) we have

δt∗(S −
∑

j∈N

αj)
∏

j 6=2

Gj(t
∗) ≤ α2(1 − δt∗),

δt∗(S −
∑

j∈N

αj)
∏

j 6=i

Gj(t
∗) = αi(1 − δt∗).

By Lemma 1.7, we have that, for each j ∈ N , Gj(t
∗) > 0. Hence, dividing these two expressions

we have
Gi(t

∗)

G2(t∗)
≤ α2

αi
< 1,

which leads to the conclusion that G2(t
∗) > Gi(t

∗) = 1. Contradiction.

As a consequence of the last result, the only possible Nash equilibrium in a cake sharing game

is one in which players 3, . . . , n play pure strategy 0 and players 1 and 2 play the game with total

cake size S −∑n
i=3 αi.

Theorem 1.2. Let ΓS,α,δ be an n-player cake sharing game, n ≥ 3. Let k2 := logδ
α2

S−Pj 6=2 αj
.

Define G∗ = (G∗
i )i∈N ∈ GN by

G∗
1(t) :=







α2 − α2δ
t

δt(S −∑j∈N αj)
0 ≤ t ≤ k2

1 t > k2,

G∗
2(t) :=







0 t = 0

α2(S −∑j 6=1 αj) − α1δ
t(S −∑j 6=2 αj)

δt(S −∑j∈N αj)(S −∑j 6=2 αj)
0 < t ≤ k2

1 t > k2,

for each i ∈ {3, . . . , n}, G∗
i (t) :=

{

0 t = 0

1 t > 0.

Then, G∗ is the unique Nash equilibrium of ΓS,α,δ.

Proof. Suppose G = (Gi)i∈N ∈ GN is a Nash equilibrium of ΓS,α,δ. By Lemma 1.9, we have that,

for each i ∈ {3, . . . , n}, Gi = G∗
i . Hence, players 3, . . . , n claim their initial rights immediately.

Now, (G1, G2) is a Nash equilibrium of the 2-player cake sharing game with cake size S−∑n
i=3 αi

and initial right vector (α1, α2). By Theorem 1.1, we have G1 = G∗
1 and G2 = G∗

2. Hence,

G = G∗.

Now, we show that G∗ is indeed a Nash equilibrium. Since, by Theorem 1.1, (G∗
1, G

∗
2) is a Nash

equilibrium of the 2-player cake sharing game with cake size S −∑n
i=3 αi and initial right vector

(α1, α2), then players 1 and 2 can not gain by deviating unilaterally. Now, we show that players
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3, . . . , n are not interested in deviating either. It suffices to show that for each i ∈ {3, . . . , n}
and each t ∈ [0,∞), πG∗

i (t) ≤ αi. Let i ∈ {3, . . . , n} and ki := logδ
αi

S−Pj 6=i αj
. By Lemma 1.6,

ki < k2. Hence, for each t ∈ [k2,∞), we have

πG∗
i (t) = δt(αi + (S −∑j∈N αj)

∏

j 6=iG
∗
j (t))

= δt(αi + (S −∑j∈N αj))

= δt(S −∑j 6=i αj)

≤ δk2(S −∑j 6=i αj)

≤ δki(S −∑j 6=i αj)

= αi.

Hence, it suffices to show that for each t ∈ [0, k2], π
G∗
i (t) ≤ αi. Note that for each t ∈ [0, k2]

(t = 0 included), we have

πG∗

i (t) = δt(αi + (S −
∑

j∈N

αj)
∏

j 6=i

G∗
j (t))

= δt(αi + (S −
∑

j∈N

αj)G
∗
1(t)G

∗
2(t))

= δtαi + (α2 − α2δ
t)
α2(S −∑j 6=1 αj) − α1δ

t(S −∑j 6=2 αj)

δt(S −∑j∈N αj)(S −∑j 6=2 αj)

= δt(αi +
α1α2

S −∑j∈N αj
) + δ−t

α2
2(S −∑j 6=1 αj)

(S −∑j∈N αj)(S −∑j 6=2 αj)

−(
α1α2

S −∑j∈N αj
+

α2
2(S −∑j 6=1 αj)

(S −∑j∈N αj)(S −∑j 6=2 αj)
)

= aδt + bδ−t + c,

where
a = αi +

α1α2

1 −∑j∈N αj

b =
α2

2(1 −∑j 6=1 αj)

(1 −∑j∈N αj)(1 −∑j 6=2 αj)

c = − α1α2

1 −∑j∈N αj
−

α2
2(1 −∑j 6=1 αj)

(1 −∑j∈N αj)(1 −∑j 6=2 αj)
.

Now, make the change of variables x = δt. Then, it suffices to show that for the function

f : (0,∞) → IR, defined by

for each x ∈ (0,∞), f(x) := ax+
b

x
+ c,

we have that, for each x ∈ [δk2 , 1], f(x) ≤ αi. Since for each x ∈ [δk2 , 1], f ′′(x) = 2b
x3 > 0, then
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the function f is convex on [δk2 , 1]. Hence, f(x) ≤ max{f(δk2), f(1)}. Finally, since f(1) =

a+ b+ c = αi and f(δk2) = πG∗
i (k2) ≤ αi, we are done.

1.5 Concluding Remarks

Throughout this Chapter we assumed that α1 < α2 < · · · < αn. Scrutinizing the proofs of

Lemmas 1.1-1.5 and Theorem 1.1 we may conclude that for 2-player cake sharing games the

same result (existence and uniqueness of a Nash equilibrium) also holds if α1 = α2. For cake

sharing games with at least three players the existence result is still valid in the more general

case α1 ≤ α2 ≤ · · · ≤ αn (and a Nash equilibrium is still provided by the profile described in

Theorem 1.2). With little additional effort we can show that this Nash equilibrium is unique if

and only if α2 < α3.

Moreover, it would be interesting to study whether similar results to those in the all-pay

auctions model hold for the different configurations of the initial right vector. If so, we would

have a strong parallelism between the results of the two models that, in principle, are very far

from each other.
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2.1 Introduction

Over the past thirty years, necessary and sufficient conditions have been published for numerous

“folk theorems”, asserting that the individually rational feasible payoffs of finitely or infinitely re-

peated games with complete information can be achieved by Nash or subgame perfect equilibria.1

The original folk theorem was concerned with the Nash Equilibria of infinitely repeated games.

This folk theorem stated that every individually rational feasible payoff of the original game can

be obtained as a Nash Equilibrium of the repeated game; no assumption was needed for this

result (a statement and proof can be found in Fudenberg and Maskin (1986)). Then, theorists

turned to study subgame perfection in infinite horizon models and they found a counterpart of the

previous result for undiscounted repeated games; again, no assumptions were needed (Aumann

and Shapley, 1976; Rubinstein, 1979). A few years later, discount parameters were incorporated

again into the model; in this case, some conditions were needed to get the perfect folk theorem

(Fudenberg and Maskin, 1986). These conditions were refined in the mid-nineties (Abreu et al.,

1994; Wen, 1994).

Together with the previous results, also the literature on finitely repeated games grew. The

main results for finite horizon models obtained conditions for the Nash folk theorem (Benoît

and Krishna, 1987), and also for the perfect one (Benoît and Krishna, 1985). This perfect folk

theorem relied on the assumption that mixed strategies were observable; the same result but

without that assumption was obtained in the mid-nineties (Gossner, 1995). Assuming again

observable mixed strategies, Smith (1995) obtained a necessary and sufficient condition for the

arbitrarily close approximation of strictly rational feasible payoffs by subgame perfect equilibria

with finite horizon: that the game have “recursively distinct Nash payoffs”, a premise that relaxes

the assumption in Benoît and Krishna (1985) that each player have multiple Nash payoffs in the

stage game.

Smith claimed that this condition was also necessary for approximation of the individually

rational feasible payoffs of finitely repeated games by Nash equilibria. In this Chapter we show

that this is not so by establishing a similar but distinct sufficient condition that is weaker than

both Smith’s condition and the assumptions made by Benoît and Krishna (1987). Moreover,

our condition is also necessary. Essentially, the difference between the subgame perfect case and

the Nash case hinges on the weakness of the Nash solution concept: in the Nash case it is not

necessary for threats of punitive action against players who deviate from the equilibrium not to

involve loss to the punishing players themselves, i.e., threats need not be credible. The kind of

equilibrium we define in this Chapter requires for its corresponding path ρ, to finish, for each

player i, with a series Qi of rounds in which i cannot unilaterally improve his stage payoff by

deviation from ρi, and for this terminal phase to start with a series Q0
i of rounds in which the other

players, regardless of the cost to themselves, can punish him effectively for any prior deviation

by imposing a loss that wipes out any gains he may have made by deviating.

1The survey by Benoît and Krishna (1996) includes many of these results.
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Many of the results mentioned above concern the approachability of the entire set of individ-

ually rational feasible payoffs. The main theorem in this Chapter is more general in that, for any

game, it characterizes the set of feasible payoffs that are approachable.

Although subgame perfect equilibrium is a desirable refinement of Nash equilibrium, results

for the latter are still needed for games in which the perfect folk theorem does not apply. Game G

in Figure 2.1 shows that, indeed, this is the case for a generic class of games. The assumptions for

the perfect folk theorem do not hold for game G. Moreover, Theorem 2 in Smith (1995) implies

that (3, 3) is the unique payoff achievable via subgame perfect equilibrium in any repeated game

such that G is its stage game. However, every feasible and individually rational payoff, (e.g.,

(4,4)) can be approximated in Nash equilibrium in many of those repeated games (for small

enough discount and big enough number of repetitions).

L M R
T 3,3 6,2 1,0
M 2,6 0,0 0,0
B 0,1 0,0 0,0

Figure 2.1: A game for which the Nash folk theorem is needed.

We have structured this Chapter as follows. We introduce notation and concepts in Section 2.2.

In Section 2.3 we state and prove the main result. Next, in Section 2.4 we are concerned about

unobservable mixed strategies. We conclude in Section 2.5.

2.2 Basic Notation, Definitions and an Example

2.2.1 The Stage Game

A strategic game G is a triplet (N,A,ϕ), where:

N := {1, . . . , n} is the set of players,

A :=
∏

i∈N Ai and Ai is the set of player i’s strategies,

ϕ := (ϕ1, . . . , ϕn) and ϕi : A→ R is the payoff function of player i.

Let GN be the set of games with set of players N .

We assume that, for each i ∈ N , the sets Ai are compact and the functions ϕi are continuous.

Let a−i be a strategy profile for players in N\{i} and A−i the set of such profiles. For each

i ∈ N and each a−i ∈ A−i, let µi(a−i) := maxai∈Ai
{ϕi(a−i, ai)}. Also, for each i ∈ N , let

vi := mina−i∈A−i
{µi(a−i)}. The vector v := {v1, . . . , vn} is the minimax payoff vector. Let F be

the set of feasible payoffs: F := co{ϕ(a) : a ∈ A}. Let F̄ be the set of all feasible and individually

rational payoffs:

F̄ := F ∩ {u ∈ Rn : u ≥ v}.
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To avoid confusion with the strategies of the repeated game, in what follows we refer to the

strategies ai ∈ Ai and the strategy profiles a ∈ A of the stage game as actions and action profiles,

respectively.

2.2.2 The Repeated Game

Let G(δ, T ) be the game consisting in the T-fold repetition of G with payoff discount parameter

δ ∈ (0, 1]. In this game we assume perfect monitoring, i.e., each player can choose his action in

the current stage in the light of all actions taken by all players in all previous stages. Let σ be

a strategy profile of G(δ, T ), and the action profile sequence ρ = {ρ1, . . . , ρT } its corresponding

path. Let ϕt
i(ρ) be the stage payoff of player i at stage t when all players play in accordance

with ρ. Then, player i’s payoff in G(δ, T ) when σ is played is his average discounted stage payoff:

ψi(σ) ≡ ψi(ρ) := ((1 − δ)/(1 − δT ))
∑T

t=1 δ
t−1ϕt

i(ρ).
2

2.2.3 Minimax-Bettering Ladders

Let M be an m-player subset of N . Let AM :=
∏

i∈M Ai and let G(aM ) be the game induced

for the n − m players in N\M when the actions of the players in M are fixed at aM ∈ AM .

By abuse of language, if i ∈ N\M , aM ∈ AM , and σ ∈ AN\M we write ϕi(σ) for i’s payoff

at σ in G(aM ). A minimax-bettering ladder of a game G is a triplet {N ,A,Σ}, where N is

a strictly increasing chain {∅ = N0 ( N1 ( · · · ( Nh} of h + 1 subsets of N (h ≥ 1), A is

a chain of action profiles {aN1
∈ AN1

, . . . , aNh−1
∈ ANh−1

} and Σ is a chain {σ1, . . . , σh} of

Nash equilibria of G = G(aN0
), G(aN1

), . . . , G(aNh−1
), respectively, such that at σl the players of

G(aNl−1
) receiving payoffs strictly greater than their minimax payoff are exactly those inNl\Nl−1:

for each i ∈ Nl\Nl−1, ϕi(σ
l) > vi, and for each i ∈ N\Nl, ϕi(σ

l) ≤ vi.

Let the sets in N be the rungs of the ladder. In algorithmic terms, if the first l − 1 rungs of

the ladder have been constructed, then, for the l-th rung to exist, there must be aNl−1
∈ ANl−1

such that the game G(aNl−1
) has an equilibrium σl. Moreover, σl has to be such that there are

players i ∈ N\Nl−1 for whom ϕi(σ
l) > vi. Let Nl\Nl−1 be this subset of players of G(aNl−1

).

The game played in the next step is defined by some action profile aNl
. The set Nh is the top

rung of the ladder. A ladder with top rung Nh is maximal if there is no ladder with top rung Nh′

such that Nh ( Nh′ . A game G is decomposable as a complete minimax-bettering ladder if it has

a minimax-bettering ladder with N as its top rung. We show below that being decomposable as a

complete minimax-bettering ladder is a necessary and sufficient condition for it to be possible to

approximate all payoff vectors in F̄ by Nash equilibria of G(δ, T ) for some δ and T . Clearly, being

decomposable as a complete minimax-bettering ladder is a weaker property than the requirement

in Smith (1995), that at each step l − 1 of a similar kind of ladder there be action profiles

aNl−1
, bNl−1

such that the games G(aNl−1
) and G(bNl−1

) have Nash equilibria σl
a and σl

b with

ϕi(σ
l
a) 6= ϕi(σ

l
b) for a nonempty set of players (those in Nl\Nl−1).

2Or, ψi(σ) ≡ ψi(ρ) := (1/T )
PT

t=1 ϕ
t
i(ρ) if there are no discounts (δ = 1).
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2.2.4 An Example

Let G ∈ GN , let L be a maximal ladder of G, and Nmax its top rung. For each i ∈ Nmax, let

li be the unique integer such that i ∈ Nli\Nli−1. In the equilibrium strategy profile constructed

in Theorem 2.1 below, the action profile sequence in the terminal phase Qi referred to in the

Introduction, consists of repetitions of (aNli−1
, σli), (aNli−2

, σli−1), . . . , (aN2
, σ1) and σ; and the

σj are Nash equilibria of the corresponding games G(aNj−1
). Since player i is a player in all these

games, he can indeed gain nothing by unilateral deviation during this phase. In the potentially

punishing series of rounds Q0
i , the action profile sequence consists of repetitions of (aNli−1

, σli),

in which i obtains more than his minimax payoff, with the accompanying threat of punishing a

prior unilateral deviation by i by minimaxing him instead.

l m r l m r
T 0, 0, 3 0,-1, 0 0,-1, 0 T 0, 3,-1 0,-1,-1 1,-1,-1
M -1, 0, 0 0,-1, 0 0,-1, 0 M -1, 0,-1 -1,-1,-1 0,-1,-1
B -1, 0, 0 0,-1, 0 0,-1, 0 B -1, 0,-1 -1,-1,-1 0,-1,-1

L R

Figure 2.2: A game that is decomposable as a complete minimax-bettering ladder

As an illustration of the above ideas, consider the three-player game G shown in Figure 2.2.

Its minimax payoff vector is (0, 0, 0), and its unique Nash equilibrium is the action profile σ1 =

(T, l, L), with associated payoff vector (0, 0, 3). Hence, N1 = {3}; player 3 can be punished by 1

and 2 by playing one of his minimax profiles instead of playing (T, l, ·). If player 3 now plays R

(aN1
= R), the resulting game G(aN1

) = G(R) has an equilibrium σ2 = (T, l) with payoff vector

(0, 3). Hence, N2 = {2, 3} and player 2 can be punished by 1 and 3 by playing one of his minimax

profiles instead of playing (T, ·, R). Finally if players 2 and 3 now play r and R (aN2
= (r,R)),

the resulting game G(aN2
) = G(r,R) has the trivial equilibrium σ3 = (T ) with payoff 1 for player

1. Hence, player 1 can be punished by 2 and 3 if they play one of his minimax profiles instead of

playing (·, r, R).

2.2.5 Further Preliminaries

As a consequence of the next Lemma we can unambiguously refer to the top rung of a game G.

Lemma 2.1. Let G ∈ GN . Then, all its maximal ladders have the same top rung.

Proof. Suppose there are maximal ladders L = {N ,A,Σ}, L′ = {N ′,A′,Σ′} with N = {N0 (

N1 ( · · · ( Nh} and N ′ = {N ′
0 ( N ′

1 ( · · · ( N ′
k} such that Nh 6= N ′

k. Assume, without

loss of generality, that N ′
k\Nh 6= ∅. For each j ∈ N ′

k, let lj be the unique integer such that

j ∈ N ′
lj
\N ′

lj−1. Let i ∈ argminj∈N ′
k
\Nh

lj . Then, N ′
li−1 ⊆ Nh. Let aNh

be the action profile
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defined as follows:

for each j ∈ N, (aNh
)j =

{

(a′N ′
li−1

)j j ∈ N ′
li−1

(σ′li)j j ∈ Nh\N ′
li−1,

where σ′li ∈ Σ′ is an equilibrium of the game G(a′N ′
li−1

) induced by the action profile a′N ′
li−1

∈ A′.

Now, let σh+1 be the restriction of σ′li to N\Nh. Since σ′li is an equilibrium of G(a′N ′
li−1

),

and N\Nh ⊆ N\N ′
li−1, σ

h+1 is an equilibrium of G(aNh
). Moreover, the set of players j ∈ N\Nh

for whom ϕj(σ
h+1) > vj is N ′

li
\Nh. Let Nh+1 := N ′

li
\Nh. Since Nh+1 contains i, it is nonempty.

Let L′′ = {N ′′,A′′,Σ′′} be the ladder defined by

N ′′ = {N0 ( N1 ( · · · ( Nh ( Nh+1},

A′′ = {aN1
, . . . , aNh−1

, aNh
},

Σ′′ = {σ1, . . . , σh, σh+1}.

The top rung of L′′ strictly contains that of L. Hence, L is not maximal, which proves the

Lemma.

Let G be a game with set of players N and let N ′ ⊆ N . We say that G ∈ TRN ′(GN ) if the

top rung of any maximal ladder of G is N ′. Hence, a game G is decomposable as a complete

minimax-bettering ladder if and only if G ∈ TRN (GN ).

Let G ∈ TRNmax
(GN ) and â ∈ ANmax

. Let Λ(â) := {λ = (â, σ) ∈ A : σ Nash equilibrium

of G(â)} and Λ :=
⋃

â∈ANmax
Λ(â). Let ϕ(Λ) := {ϕ(λ) : λ ∈ Λ}. Let F̄Nmax

be the set of

Nmax-attainable payoffs of G: F̄Nmax
:= F̄ ∩ coϕ(Λ). Note that, by the definition of Nmax, for

each u ∈ F̄Nmax
and each i ∈ N\Nmax, ui = vi. Moreover, when Nmax = N we have Λ = A and

F̄Nmax
= F̄ .

Lemma 2.2. Let G ∈ TRNmax
(GN ). Then, the set F̄Nmax

is closed.

Proof. First, we show that Λ is closed. Let {(an, σn)} be a sequence of action profiles in Λ with

limit (a, σ). Since ANmax
is compact, a ∈ ANmax

. Since ϕ is continuous, σ is a Nash equilibrium

of G(a). Hence, (a, σ) ∈ Λ.

The set ϕ(Λ) is the image of a closed set under a continuous function. Since ϕ has a compact

domain, ϕ(Λ) is closed. Hence, F̄ ∩ coϕ(Λ) is closed.

The promised result concerning the approachability of all payoffs in F̄ by Nash equilibrium

payoffs is obtained below as an immediate corollary of a more general theorem concerning the

approachability of all payoffs in F̄Nmax
. In this more general case, the collaboration of the players

in Nmax is secured by a strategy analogous to that sketched in the Example of Section 2.2.4, while

the collaboration of the players in N\Nmax is also ensured because none of them is able to obtain

any advantage by unilateral deviation from any action profile in Λ.
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2.3 The Theorem

In the theorem that follows, the set of action profiles A may consist either of pure or mixed action

profiles; in the latter case, we assume that all players are cognizant not only of the pure actions

actually put into effect at each stage, but also of the mixed actions of which they are realizations.

We discuss unobservable mixed actions in Section 2.4. Also, we assume public randomization:

at each stage of the repeated game, players can let their actions depend on the realization of an

exogenous continuous random variable. The assumption of public randomization is without loss

of generality. Given a correlated mixed action, its payoff can be approximated by alternating

pure actions with the appropriate frequencies. More precisely, for each u ∈ F̄ and each ε > 0,

there are pure actions a1, . . . , al such that ||u − (a1 + . . . + al)/l|| < ε. Hence, if the discount

parameter δ is close enough to 1, the same inequality is still true if we consider discounted payoffs.

Then, since we state Theorem 2.1 in terms of approximated payoffs, the public randomization

assumption can be dispensed with.3

Theorem 2.1. Let G ∈ TRNmax
(GN ). Let u ∈ F . Then, a necessary and sufficient condition

for there to be for each ε > 0, an integer T0 and a positive real number δ0 < 1 such that for each

T ≥ T0 and each δ ∈ [δ0, 1], G(δ, T ) has a Nash equilibrium payoff w such that ‖w − u‖ < ε is

that u be Nmax-attainable ( i.e., u ∈ F̄Nmax
).

Proof.
suffic⇐= Let a ∈ Λ be an action profile of G such that ϕ(a) = u, and let L = {N ,A,Σ} be a

maximal minimax-bettering ladder of G with top rung Nmax. By the definition of Λ, players in

N\Nmax have no incentive for unilateral deviation from a. Let ρ be the following action profile

sequence:

ρ := {a, . . . , a
︸ ︷︷ ︸

T−T0+q0

, λh, . . . , λh

︸ ︷︷ ︸

qh

, λh−1, . . . , λh−1

︸ ︷︷ ︸

qh−1

, . . . , λ1, . . . , λ1

︸ ︷︷ ︸

q1

},

where for each l ∈ {1, . . . h}, λl = (aNl−1
, σl) with aNl−1

∈ A and σl ∈ Σ. Let ε > 0. Next, we

obtain (in this order) values for qh, . . . , q1, the discount δ0, q0, and T0 to ensure that for each

T ≥ T0 and each δ ∈ (δ0, 1], there is a Nash equilibrium of G(δ, T ) whose path is ρ and such that

||ϕ(ρ) − u|| < ε.

First, we calculate how many repetitions of G(aNli−1
) are necessary for the players in N\{i}

to be able to punish a player i ∈ Nmax for prior deviation. For each action profile â ∈ A, let

µ̄i(â) := µi(â−i) − ϕi(â), i.e., the maximum “illicit” profit that player i can obtain by unilateral

deviation from â. Let µ̄i = max{µ̄i(a), µ̄i((aNh−1
, σh)), . . . , µ̄i(σ

1)} and mi = min{ϕi(a) : a ∈
A}. Let li ∈ N be such that i ∈ Nli\Nli−1. Let δ0 ∈ (0, 1) and let qh, . . . , q1 be the natural

numbers defined through the following iterative procedure:

Step 0:

For each i ∈ Nh\Nh−1, let ri ∈ N and δi ∈ (0, 1) be

3For further discussion on public randomization refer to Fudenberg and Maskin (1991) and Olszewski (1997).
Also, refer to Gossner (1995) for a paper in which public randomization is not assumed and the approximation
procedure we described above is explicitly made (though discounts are not considered).
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ri := min{r ∈ N : r(ϕi(σ
li) − vi) > µ̄i},4

δi := min{δi ∈ (0, 1) : µ̄i −
∑ri

t=1 δ
t
i(ϕi(σ

li) − vi) < 0}.
Let qh ∈ N be

qh := max{ri : i ∈ Nh\Nh−1}.
Step k (k < h):

Let Tk :=
∑k−1

l=0 qh−l.

For each i ∈ Nh−k\Nh−k−1, let ri ∈ N and δi ∈ (0, 1) be

ri := min{r ∈ N : r(ϕi(σ
li) − vi) > µ̄i + Tk(vi −mi)},

δi := min{δi ∈ (0, 1) : µ̄i +
∑Tk

t=1 δ
t
i(vi −mi) −

∑Tk+ri

t=Tk+1 δ
t
i(ϕi(σ

li) − vi) < 0}.
Let qh−k ∈ N be

qh−k := max{ri : i ∈ Nh−k\Nh−k−1}.
Step h:

δ0 := maxi∈N δi.

The natural numbers qh, . . . , q1 and the discount δ0 are such that for each l ∈ {1, . . . , h}, ql
repetitions of G(aNl−1

) suffice to allow any player in Nl\Nl−1 to be punished. Next, we obtain

the values for q0 and T0. Let q0 be the smallest integer such that:

∥
∥
∥
∥

q0 ϕ(a) + qh ϕ(λh) + · · · + q1 ϕ(λ1)

q0 + qh + · · · + q1
− ϕ(a)

∥
∥
∥
∥
< ε. (2.1)

Let T0 := q0 + q1 + · · · + qh. Let T ≥ T0 and δ ∈ [δ0, 1]. We prescribe for G(δ, T ) the strategy

profile in which all players play according to ρ unless and until there is a unilateral deviation.

In such a deviation occurs, the deviating player is minimaxed by all the others in the remaining

stages of the game. It is straightforward to check that this profile is a Nash equilibrium of G(δ, T ).

Moreover, by inequality (2.1), its associated payoff vector w differs from u by less than T0

T ε if

δ = 1. Hence, the same observation is certainly true if δ < 1, in which case payoff vectors of the

early stages, ϕ(a), receive greater weight than the payoff vectors of the endgame.
necess
=⇒ Let u /∈ F̄Nmax

. Suppose that Nmax = N . Then, F̄Nmax
= F̄ . Hence, u is not

individually rational. Hence, it can not be the payoff associated to any Nash equilibrium. Then,

we can assume Nmax ( N . Since F̄Nmax
is a closed set, there is ε > 0 such that ‖w − u‖ < ε

implies w /∈ F̄Nmax
. Hence, if for some T and δ there is a strategy profile σ of G(δ, T ) such that

‖ϕ(σ) − u‖ < ε, then ϕ(σ) /∈ F̄Nmax
. Hence, by the definition of F̄Nmax

, there is at least one stage

of G(δ, T ) in which, with positive probability, σ prescribes an action profile not belonging to Λ .

Let q be the last such stage and ā = (āNmax
, āN\Nmax

) the corresponding action profile. By the

definition of F̄Nmax
, āN\Nmax

cannot be a Nash equilibrium of G(āNmax
). Hence, there is a player

j ∈ N\Nmax who can increase his payoff in round q by deviating unilaterally from ā. Since, by

the definition of q, σ assigns j a stage payoff of vj in all subsequent rounds, this deviation cannot

subsequently be punished. Hence, σ is not an equilibrium of G(δ, T ).

4The natural number ri is such that, at each step, punishing player i during ri stages suffices to wipe out any
stage gain he could get by deviating from ρ when the discount is δ = 1.
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Corollary 2.1. Let G ∈ GN be decomposable as a complete minimax-bettering ladder, ( i.e.,

G ∈ TRN (GN )). Then, for each u ∈ F̄ and each ε > 0, there is T0 ∈ N and δ0 < 1 such

that for each T ≥ T0 and each δ ∈ [δ0, 1], there is a Nash equilibrium payoff w of G(δ, T ) with

‖w − u‖ < ε.

Proof. N = Nmax ⇒ F̄ = F̄Nmax
. Hence, this result is a consequence of Theorem 2.1.

Corollary 2.2. Let G ∈ GN be not decomposable as a complete minimax-bettering ladder ( i.e.,

G /∈ TRN (GN )). Then, for each T ∈ N, each δ ∈ (0, 1], each i ∈ N\Nmax, and each Nash

equilibrium σ of G(δ, T ) we have ϕi(σ) = vi.

Proof. For each u ∈ F̄Nmax
and for each i ∈ N\Nmax, ui = vi. Hence, this result follows by an

argument paralleling the proof of necessity in Theorem 2.1.

2.4 Unobservable Mixed Actions

In what follows, we drop the assumption that mixed actions are observable. Hence, if a mixed

action is chosen by one player, the others can only observe its realization. To avoid confusion,

for each game G, let Gu be the corresponding game with unobservable mixed actions. We need

to introduce one additional piece of notation to distinguish between pure and mixed actions. Let

Ai and Si be the sets of player i’s pure and mixed actions respectively (with generic elements ai

and si). Similarly, let A and S be the sets of pure and mixed action profiles. Hence, a game is

now a triplet (N,S, ϕ).

The game G (or Gu) in Figure 2.3 illustrates some of the differences between the two frame-

works. Although it is not entirely straightforward, it is not difficult to check that the minimax

payoff of G is v = (0, 0, 0). Let s3 = (0, 0.5, 0.5) be the mixed action of player 3 in which he plays

L with probability 0, and M and R with probability 0.5. Let σ2 ∈ A{1,2}. Let N = {∅, {3}, N},
S = {s3} and Σ = {(T, l, L), σ2}. Then, L = {N ,S,Σ} is a complete minimax-bettering ladder

of G regardless of σ2 (note that in the game G(s3), for each σ2 ∈ A{1,2}, both players 1 and 2

receive the constant payoff 0.5). Hence, G satisfies the assumptions of Corollary 2.1, so every

payoff in F̄ can be approximated in Nash equilibrium.

l r l r l r
T 0, 0, 2 0, 0, 0 T 0, 0,-1 2,-1,-1 T 1, 1,-8 -1, 2,-8
B 0, 0, 0 0, 0, 0 B -1, 2,-1 1, 1,-1 B 2,-1,-8 0, 0,-8

L M R

Figure 2.3: A game where unobservable mixed actions make a difference

Consider now the game Gu. Let u ∈ F̄ , and let a be such that ϕ(a) = u (recall that we

assumed public randomization). If we follow the path ρ constructed in the proof of Theorem 2.1,

there are natural numbers q0, q1, and q2 such that ρ leads to play (i) a during the first q0 stages,

(ii) (σ2, s3) during the following q2 stages, and (iii) (T,l,L) during the last q1 stages. Let Q be the
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phase described in (ii). Since player 3 is not indifferent between the two actions in the support

of s3, we need a device to detect possible deviations from that support. But, once such a device

has been chosen, it is not clear whether we can ensure that there are not realizations for the first

q2 − 1 stages of Q that would allow player three to play L in the last stage of Q without being

detected.5

Next, we revisit the results of Section 2.3 to understand the extent to which their counterparts

hold. Unfortunately, we have not found a necessary and sufficient condition for the folk theorem

under unobservable mixed actions, i.e., we have not found an exact counterpart for Theorem 2.1.

More precisely, as the previous example shows, unobservable mixed actions invalidate the proofs

related to sufficiency conditions. On the other hand, proofs related to necessary conditions still

carry over.

For the next result, we need to introduce a restriction on the ladders. The objective is to

rule out situations as the one illustrated with Figure 2.3. Let L = {N ,S,Σ} be a ladder with

S = {sN1
, . . . , sNh−1

}. L is a p-ladder if, for each l ∈ {1, . . . , h− 1}, sNl
∈ ANl

. That is, at each

rung of the ladder we only look at subgames obtained by fixing pure action profiles.6

Lemma 2.3. Let G ∈ GN . Then, all its maximal p-ladders have the same top rung.

Proof. Analogous to the proof of Lemma 2.1.

Let G (or Gu) be a game with set of players N and let N ′ ⊆ N . We say that G ∈ TRP
N ′(GN ) if

the top rung of any maximal p-ladder of G is N ′. Clearly, if G ∈ TRP
N ′(GN ), then G ∈ TRN ′′(GN )

with N ′ ⊆ N ′′. The game G in Figure 2.3 provides an example in which the converse fails:

G ∈ TRP
{3}(GN ) and G ∈ TR{N}(GN ). Let G ∈ TRP

Nmax
(GN ) and a pure strategy â ∈ ANmax

. We

can define F̄P
Nmax

paralleling the definition of F̄Nmax
in Section 2.2.

Next, we state the results. Note that the sets TR and F̄Nmax
are used for the necessity results

and the sets TRP and F̄P
Nmax

for the sufficiency ones.

Proposition 2.1 (Sufficient condition). Let Gu ∈ TRP
Nmax

(GN ). Then, for each u ∈ F̄P
Nmax

and

each ε > 0, there are T0 ∈ N and δ0 < 1 such that for each T ≥ T0 and each δ ∈ [δ0, 1], there is a

Nash equilibrium payoff w of G(δ, T ), with ‖w − u‖ < ε.

Proof. Analogous to the proof of the sufficiency condition in Theorem 2.1. This is because, as far

as a p-ladder is used to define the path ρ, whenever a player plays a mixed action, all the pure

actions in its support are best replies to the actions of the others.

Corollary 2.3. Let Gu ∈ TRP
N (GN ). Then, for each u ∈ F̄ and each ε > 0, there are T0 ∈ N

and δ0 < 1 such that for each T ≥ T0 and each δ ∈ [δ0, 1], there is a Nash equilibrium payoff w

of G(δ, T ), with ‖w − u‖ < ε.

5Game Gu partially illustrates why the arguments in Gossner (1995) cannot be easily adapted to our case.
First, mutatis mutandi, he applies an existence of equilibrium theorem to the subgame in Q. If we want to do
so, we need to ensure that players 1 and 2 get more than 0 in Q. Second, Gossner also uses the assumption of
full-dimensionality of F to punish all the players who deviate during Q. We do not have that assumption and
hence, it could be the case that we could not punish more than one player at the end of the game.

6Note that the games G and Gu have the same ladders and the same p-ladders.
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Proof. N = Nmax ⇒ F̄ = F̄Nmax
= F̄P

Nmax
. Hence, this result is an immediate consequence of

Proposition 2.1.

Note that the folk theorem in Benoît and Krishna (1987) is a particular case of this corollary.

Next two results show that the exact counterparts of the necessity results in Section 2.3 carry

over.

Proposition 2.2 (Necessary condition). Let Gu ∈ TRNmax
(GN ). If Nmax ( N then, for each

u /∈ F̄Nmax
there is ε > 0 such that for each T ∈ N and each δ ∈ (0, 1], G(δ, T ) does not have a

Nash equilibrium payoff w such that ‖w − u‖ < ε.

Proof. Analogous to the proof of the necessity condition in Theorem 2.1.

Corollary 2.4. Let Gu /∈ TRN (GN ). Then, for each T ∈ N, each δ ∈ (0, 1], each i ∈ N\Nmax,

and each Nash equilibrium σ of G(δ, T ) we have ϕi(σ) = vi.

Proof. Analogous to the proof of Corollary 2.2.

2.5 Concluding Remarks

Recall that Corollaries 2.1 and 2.3 hold for a wider class of games than the result obtained by

Benoît and Krishna (1987). Moreover, Theorem 2.1 requires no use of the concept of effective

minimax payoff, because non-equivalent utilities are irrelevant to the approximation of Nmax-

attainable payoffs by Nash equilibria, in which there is no need for threats to be credible.7

Theorem 2.1 raises the question whether a similarly general result on the approachability of

payoffs by equilibria also holds for subgame perfect equilibria. The main problem is to determine

the subgame perfect equilibrium payoffs of players with “recursively distinct Nash payoffs” (Smith,

1995) when the game is not completely decomposable. Similarly, the results in Section 2.4 raise

the question whether a necessary and sufficient condition exists for the Nash folk theorem under

unobservable mixed strategies.

Finally, note that the results of this Chapter can be easily extended to the case in which

players have different discount rates.

7See Wen (1994) and Abreu et al. (1994) for details on the effective minimax payoff and non-equivalent utilities
respectively.
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3.1 Introduction

The impact of different kinds of commitments in noncooperative models has been widely studied

in game theoretical literature. Most of the contributions wihtin this issue have been devoted to

study delegation models; situations in which the players are represented by agents who play on

their behalf. The concept of delegation, as well as other approaches to the idea of commitment,

was already discussed in Schelling (1960). There has been an extensive research in the topic of

delegation; see, for instance, Vickers (1985), Fershtman (1985), Sklivas (1987), and, more recently,

Fershtman et al. (1991) and Caillaud et al. (1995). The model we present here is specially close

to that in Fershtman et al. (1991). What they do is the following. For each 2-player strategic

game, they associate a delegation game in which the agents play the original game on behalf of

their principals. There is a first stage in which each principal, simultaneously and independently,

provides his agent with a compensation scheme. In the second stage, the compensation schemes

become common knowledge and the agents play the original game and have the payoffs given by

the compensation schemes. Their main result is a folk theorem which, roughly speaking, states

that if the original game has a Nash equilibrium, then every Pareto optimal allocation can be

achieved as a subgame perfect equilibrium of the delegation game.

In this Chapter we study another model with commitments, not far from that of delegation,

but with several differences. We begin with a motivation and then we informally introduce the

model. There are many strategic situations in real life in which one of the players gets rid of

some of his strategies: a department that makes the commitment of not hiring its own graduate

students; a firm announcing a limited edition of a certain product; a party announcing, during

the election campaign, that they are not going to make certain alliances regardless of the final

result of the election;. . .We model these situations by what we call unilateral commitments (UC).

This is not the first time that unilateral commitments are studied in literature (see, for instance,

Faíña-Medín et al. (1998) and García-Jurado et al. (2000)). To each n-player strategic game we

associate its UC-extension as follows. There is a first stage in which each player, simultaneously

and independently, chooses a subset of his set of strategies, i.e., he makes a commitment. In

the second stage, the commitments become common knowledge and the players play the original

game with the restrictions given by the respective commitments.

After the latter (informal) presentation of our model, we can stress some similarities and

differences with the model in Fershtman et al. (1991). We do not have principals and agents,

i.e., we have the same players in the two stages of our game. Nonetheless, our model is very

close to that of delegation; consider the UC-extension of a game in which the strategies of player

1 belong to A1 and he commits to play only strategies in Ac
1. Suppose, for simplicity, that all

the payoffs of the original game are positive. This situation can be seen as a delegation game

in which the principal chooses the following compensation scheme for his agent: (i) if the agent

plays a strategy within Ac
1, then he receives some fixed proportion of his principal’s payoff and

(ii) if he plays some strategy not in Ac
1 then he receives some fixed negative amount of money.

Hence, because of (i), the agent has the same incentives of the principal in the second stage of
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the game, so we can think of him as the principal himself. It is worth to mention that, as far as

the model in Fershtman et al. (1991) is concerned, the compensation schemes are restricted to

functions that are weakly monotonic on the payoff received by the principal. On the contrary,

the compensation scheme we have defined to “imitate” our commitment can be non-monotonic

and, moreover, it can depend not only on the payoffs but also on the specific strategies leading to

them. Anyhow, the monotonicity assumption in Fershtman et al. (1991) responded to technical

reasons and it seems natural that the principal can sign “non-monotonic contracts” with his agent

if both of them agree upon it. One more similarity between the two models is the following: in

the delegation game, the contracts are public and have to be regarded and, in our model, we take

the same assumptions for the commitments.

From the discussion above, we can conclude that our model with unilateral commitments

can be seen as a particular family of delegation games; a family in which only some specific

compensation schemes are possible. Hence, in an economic situation in which there is room for

the contracts needed for the delegation games, there is also room for the kind of commitments

we define in this Chapter. Moreover, recall that in this Chapter we model n-player games and

not only 2-player situations as it is common in the delegation games literature.

We devote this Chapter to study the implications of unilateral commitments within the frame-

work of repeated games with complete information. We show that, when unilateral commitments

are possible, it is easier to find both Nash and subgame perfect equilibria supporting the “cooper-

ative” payoffs of the original game; indeed, most of the folk theorems do not need any assumption

at all when unilateral commitments are considered.

The structure of this Chapter is as follows. In Section 3.2 we introduce the background

concepts, the definition of a new equilibrium concept for extensive games, and the definition

of the model with unilateral commitments. In Section 3.3 we present some folk theorems for

repeated games when unilateral commitments are possible. In addition, we compare our results

with those without unilateral commitments. Finally, we conclude in Section 3.4.

3.2 Notation

A strategic game G is a triplet (N,A,ϕ), where:

N := {1, . . . , n} is the set of players,

A :=
∏

i∈N Ai and Ai is the set of player i’s strategies,

ϕ := (ϕ1, . . . , ϕn) and ϕi : A→ R is the payoff function of player i.

We assume that, for each i ∈ N , the sets Ai are compact and the functions ϕi are continuous.

Let a−i be a strategy profile for the players in N\{i} and A−i the set of such profiles. For

each i ∈ N and each a−i ∈ A−i, let µi(a−i) := maxai∈Ai
{ϕi(a−i, ai)}. Also, for each i ∈ N ,

let vi := mina−i∈A−i
{µi(a−i)}. The vector v := {v1, . . . , vn} is the minimax payoff vector. Let
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F be the set of feasible payoffs, F := co{ϕ(a) : a ∈ A}. Now, for each i ∈ N , let p−i ∈
argmina−i∈A−i

{µi(a−i)}.
To avoid confusion with the strategies of the repeated game, in what follows we refer to the

strategies ai ∈ Ai and the strategy profiles a ∈ A of the stage game as actions and action profiles,

respectively.

Next, given a game G = (N,A,ϕ), we define the repeated game G(δ, T ); the T -fold repetition

of G with discount parameter δ ∈ (0, 1]. A history at stage t ∈ {1, . . . , T} is defined as follows:

(i) for t = 1, an element of A0 = {∗}, where ∗ is any element not belonging to
⋃

k∈N A
k.

(ii) for t ∈ {2, . . . , T}, an element of At−1.

The set of all histories is H :=
⋃T

t=1A
t−1. In the repeated game we assume perfect monitoring,

i.e., each player can choose his action in the current stage in the light of all actions taken by all

players in all previous stages. Hence, let G(δ, T ) be the triplet (N,S, ϕδ), where:

The set of players N remains the same.

S :=
∏

i∈N Si is the set of strategy profiles, where Si := AH
i , i.e., the set of mappings

from H to Ai. Let σ = (σ1, . . . , σn) ∈ S and h ∈ H; then, we denote the action profile

(σ1(h), . . . , σn(h)) by σ(h). A strategy profile σ ∈ S recursively determines the sequence of

action profiles π(σ) ∈ AT as follows: π1(σ) := σ(∗) and, for each t ∈ {2, . . . , T}, πt(σ) =

σ(π1(σ), . . . , πt−1(σ)). We refer to π(σ) as the path determined by σ.

The payoff function ϕδ is defined as follows. Let σ ∈ S. Then, player i’s payoff in G(δ, T )

is his average discounted stage payoff:

ϕδ
i (σ) :=

1 − δ

1 − δT

T∑

t=1

δt−1ϕi(π
t(σ)).1

Finally, recall that, from our definitions, we only use pure actions. If mixed actions are to be

taken into account for a given game, then we just define a new game having them as pure actions.

Hence, we are implicitly assuming that, when working with mixed actions, they are observable,

i.e., the players do not only observe the realization of a mixed action, but also the randomization

process that leads to such a realization.

3.2.1 Virtually Subgame Perfect Equilibrium

A repeated game with perfect monitoring can be represented as an extensive game and, more

specifically, as a multi-stage game with observed actions.2 Subgame perfect equilibrium (Selten,

1965), shortly SPE, is probably the most important equilibrium concept within this class of games.

1If there are no discounts (i.e., if δ = 1), we have ϕδ
i (σ) := (1/T )

PT
t=1 ϕi(π

t(σ)).
2We model extensive games following the framework used in Kreps and Wilson (1982), except for the fact that

we consider that the set of nodes may be infinite.



3.2. Notation 37

Its main target is to disregard those Nash equilibria which are only possible if some players give

credit to irrational plans of others. More formally, a SPE is a Nash equilibrium which, moreover,

induces a Nash equilibrium in every subgame.

In this Section we introduce a new equilibrium concept for extensive games which is essen-

tial for this Chapter: the virtually subgame perfect equilibrium, shortly VSPE. This equilibrium

concept has the same effect as subgame perfection, but it only concentrates on those subgames

which are relevant for a given strategy profile; relevant in the sense that they are reachable if

exactly one player deviates from the strategy profile in any subgame which has already been

classified as relevant. Despite of being based on the same idea, SPE and VSPE are different

concepts, the latter existing in many games which do not have SPE. Hence, VSPE is especially

useful when dealing with extensive games having large trees. There are many extensive games

without SPE, but still, they can have sensible equilibria. This is the case when the non-existence

of SPE is because some subgames which are irrelevant for a certain strategy profile do not have

Nash equilibria.

Let Γ be an extensive game and let x and σ be a single-node information set and a strategy

profile, respectively. Then, Γx denotes the subgame of Γ that begins at node x and σx the

restriction of σ to Γx. Now, let Γ be an extensive game, σ a strategy profile of Γ, and x a single-

node information set. Then, the subgame Γx is σ-relevant if either (i) Γx = Γ, or (ii) there are a

player i, a strategy σ′
i, and a single-node information set y such that Γy is σ-relevant and node x

is reached by (σ−i, σ
′
i)y.

Definition 3.1. Let Γ be an extensive game. The strategy profile σ is a virtually subgame perfect

equilibrium of Γ if for each σ-relevant subgame Γx, then σx is a Nash equilibrium of Γx.

Let SPE(Γ) and VSPE(Γ) denote the sets of SPE and VSPE of game Γ, respectively. By

definition, for each extensive game Γ, we have SPE(Γ) ⊆ VSPE(Γ). However, the reciprocal is

not true as the following example illustrates.

Example 3.1. Consider the extensive game depicted in Figure 3.1.

Let σ =
(
(D1, a

i
1), (D2, a

i
2)
)
, with i ∈ {1, 2}. Clearly, since the subgame that begins after

playing (U1, U2) is σ-irrelevant, σ is a VSPE. However, this game does not have any SPE (in

pure strategies). Moreover, the equilibrium σ is a sensible one.

Next, we point out one more relation between SPE and VSPE. Let Γ be an extensive game.

Let σ and σ̂ be two strategy profiles of Γ. Now, let σ̄ be the strategy profile which consists of

playing in accordance with σ in the σ-relevant subgames and in accordance with σ̂ elsewhere.

Then, the following statements hold:

(i) The payoffs associated with σ and σ̄ coincide (they define the same path).

(ii) If σ ∈ VSPE(Γ), then σ̄ ∈ VSPE(Γ).

(iii) If σ ∈ VSPE(Γ) and σ̂ ∈ SPE(Γ), then σ̄ ∈ SPE(Γ).
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Figure 3.1: A game without SPE, but with VSPE.

Remark. In this Chapter we study a special family of multistage games with observed actions.

The main reason why we need the concept of VSPE is that we work with pure strategies. Hence,

although we mainly deal with finite extensive games with perfect recall, we cannot apply the

general results for the existence of subgame perfect equilibria.

3.2.2 Unilateral Commitments

The main objective of this Chapter is to study the effect of unilateral commitments on the

appearing of constructive behavior in repeated games. Given a game G, the corresponding game

with unilateral commitments consists of adding an initial stage to G; in this new stage each player

can commit not to play certain strategies of game G. Moreover, these commitments are made

simultaneously and unilaterally. The fact that the commitments have to be unilateral is quite

important; if players could condition their commitments on the commitments of the others, then

we would be in a completely cooperative model, and hence, the players could easily achieve in

equilibrium the cooperative payoffs of the game.

The problem of unilateral commitments, henceforth UC, has already been tackled in García-

Jurado et al. (2000). They obtained a Nash folk theorem for finitely repeated games with UC. In

this Chapter we study a little bit more the impact of UC in the assumptions needed for the folk

theorems. Next, following García-Jurado et al. (2000), we formally define the UC-extension of a

game.

Given a game G = (N,A,ϕ), we define the UC-extension of G, U(G), as follows. There

is a preliminary stage in which players choose, simultaneously and independently, a nonempty

subset of their sets of strategies. Formally, each player i ∈ N chooses Ac
i ⊆ Ai, where Ac

i has

to be a compact set. This election is interpreted as a commitment to play strategies only in Ac
i .

Then, this preliminary stage ends and the commitments of the players, Ac, are made public, i.e.,

they become common knowledge. Finally, a reduced version of game G in which players have

to respect their commitments is played. Note that, as we have already pointed out, this kind of
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commitments are unilateral because we do not allow them to be conditional on the other players’

commitments. The compactness assumption for the sets Ac
i responds, as usually, to technical

reasons; it ensures that the subgames starting after the stage of commitments belong to the class

of games defined at the beginning of this Section. Note that, in the particular case in which the

sets of strategies of the game under consideration are finite, the compactness requirement imposes

no restriction at all. Throughout the rest of this Section, with a slight abuse of notation, given a

set A, we use 2A to denote the set of compact subsets of A. Now, U(G) := (N,AU , ϕU ), where:

The set of players N remains the same.

AU :=
∏

i∈N AU
i , where AU

i is the set of all couples (Ac
i , αi) such that

(i) ∅ ( Ac
i ⊆ Ai,

(ii) αi :
∏

j∈N 2Aj −→ Ai and, for each Ac ∈∏j∈N 2Aj , αi(A
c) ∈ Ac

i .

The payoff associated with a strategy profile (Ac, α) is ϕU (Ac, α) := ϕ(α(Ac)).

3.3 The Folk Theorems

The appearing of constructive behavior in repeated games has been widely treated in the game

theoretical literature.3 Given a game G, the classic Nash folk theorem for finitely repeated games

(Benoît and Krishna, 1987) states that if the game G is such that, for each player i, there are two

Nash equilibria that give i different payoffs, then every feasible and individually rational payoff

of G can be approximated by a Nash equilibrium of G(δ, T ) for big enough T and δ close enough

to 1. Recently, González-Díaz (2003) introduced a new condition, namely that the game G is

decomposable as a complete minimax-bettering ladder; this new condition, besides being weaker

than the former, turned out to be both necessary and sufficient for the finite horizon Nash folk

theorem.

Next, we state and prove a Nash folk theorem for finitely repeated games with unilateral

commitments. This result, Theorem 3.1, is a variation of the main result in García-Jurado et al.

(2000) to place it within our framework. More precisely, here we deal with utilities instead of with

preferences, we allow for discounts, and we consider the set F instead of the set {ϕ(a) : a ∈ A}.
We assume public randomization: at each stage of the repeated game, the players can let their

actions depend on the realization of an exogenous continuous random variable. The assumption

of public randomization is without loss of generality. Given a correlated action, its payoff can be

approximated by alternating actions with the appropriate frequencies. More precisely, for each

u ∈ F and each ε > 0, there are actions a1, . . . , al such that ||u− (a1 + . . .+ al)/l|| < ε. Hence,

if the discount parameter δ is close enough to 1, the same inequality is still true if we consider

discounted payoffs. Then, since we state Theorem 3.1 in terms of approximated payoffs, public

randomization assumption can be dispensed with.4

3Refer to Benoît and Krishna (1996) for a complete survey on the topic.
4For further discussion on public randomization refer to Fudenberg and Maskin (1991) and Olszewski (1997).



40 Chapter 3. Unilateral Commitments in Repeated Games

Theorem 3.1. Let G = (N,A,ϕ) and let v be its minimax payoff vector. Let u ∈ F , u > v.

Then, for each ε > 0, there are δ0 ∈ (0, 1) and T0 ∈ N such that for each δ ∈ [δ0, 1] and each

T ≥ T0, the game U(G(δ, T )) has a Nash equilibrium payoff w such that ‖w − u‖ < ε.

Proof. Let G = (N,A,ϕ). Let u ∈ F and let ā ∈ A be a (possibly correlated) action profile such

that ϕ(ā) = u. Now, for each δ ∈ (0, 1] and each T ∈ N, let G(δ, T ) = (N,S, ϕδ). We define the

following strategy profile (S̄c, ᾱ) of U(G(δ, T )):

(i) For each i ∈ N , S̄c
i := “If ā is played in the first stage, then I play āi forever”.

(ii) For each i ∈ N and each Sc ∈∏j∈N 2Sj , we define ᾱi(S
c) as follows:

If Sc = S̄c:

– i plays āi in the first stage.

– If ā is played in the first stage, then i plays āi forever.

– If in the first stage only player j 6= i has deviated from ā, then, i plays (p−j)i

forever.

– Otherwise, i plays ad libitum.

If Sc = (Sc
j , S̄

c
−j), where j 6= i and Sc

j 6= S̄c
j : i plays (p−j)i forever.

Otherwise: i plays ad libitum.

Note that ϕc(S̄c, ᾱ) = ϕδ(ᾱ(S̄c)) = ϕ(ā) = u. For each i ∈ N , let Ti be such that Tiui >

µi(ā−i)+(T −1)vi and let δi ∈ (0, 1) be such that
∑Ti

t=1 δ
t−1ui > µi(ā−i)+

∑Ti

t=2 δ
t−1vi. Finally,

let T0 := maxi∈N Ti and δ0 := maxi∈N δi.

Now, it is straightforward to check that for each δ ∈ [δ0, 1] and each T ≥ T0, the strategy

profile (S̄c, ᾱ) is a Nash equilibrium of U(G(δ, T )) whose payoff w is such that ‖w − u‖ = 0 < ε

(Note that we have obtained an exact result, i.e., w = u because of the public randomization

assumption).5

The main purpose for the rest of this Section is to state and prove a subgame perfect folk

theorem with UC. The trick of the proof of Theorem 3.1, in which the strategies corresponding

with many subgames were defined ad libitum, does not work for subgame perfection. Moreover,

when dealing with unilateral commitments, we face extremely large game trees. They have many

subgames, some of which may correspond to senseless commitments. Thus, we need to use the

VSPE concept instead of the classical SPE. Theorem 3.1 says that, when unilateral commitments

are possible, no condition is needed for the Nash folk theorem to hold. Note that the Nash

equilibrium profile (S̄c, ᾱ) defined in the proof of Theorem 3.1 is neither a SPE nor a VSPE; this

is because, in general, the punishments to a player who deviates from the commitment are not

credible. Now, Proposition 3.1 shows that not only the proof of Theorem 3.1 fails when we write

VSPE instead of Nash equilibrium, but also the result itself is false.

5The reader willing to deepen into the arguments of this proof is referred to García-Jurado et al. (2000).
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Proposition 3.1. The counterpart of Theorem 3.1 for VSPE does not hold.

Proof. We do the proof by means of an example. Let G = (N,A,ϕ) be the game defined in

Figure 3.2. The game G does not have a Nash equilibrium. Moreover, v = (1, 1) and ϕ(U,L) =

L R
U 10,11 1,10
D 11,0 0,1

Figure 3.2: A counterexample for Proposition 3.1

(10, 11) > v. However, for each T ∈ N and each δ ∈ (0, 1], U(G(δ, T )) does not have a VSPE.

Suppose, on the contrary, that there are δ ∈ (0, 1] and T ∈ N such that (Sc, α) is a VSPE of

U(G(δ, T )). If Sc contains a unique element, then one of the players can change his commitment

to no commitment at all (i.e., Sc
i = Si if i is such a player) and deviate from the strategy in the

final stage. Hence, there is a last stage in which, according to the path defined by (Sc, α), one of

the players is free to play any action. Let t be that stage and assume, without loss of generality,

that, following the path of (Sc, α), player 1 can play both U and D at stage t. Moreover, let x∗

be the corresponding single-node of G(δ, T ).

Now, let player 2 deviate to the strategy (S̄c
2, ᾱ2) defined as follows: (i) S̄c

2 := “from stage

t+1 on, I play according to the path defined by (Sc, α)” and (ii) for each Ŝc
1 ∈ 2S1 , ᾱ2(Ŝ

c
1, S̄

c
2) :=

α2(S
c). Let y be the single-node reached after (Sc

1, S̄
c
2) is played. By definition, U(G(δ, T ))y

is a relevant subgame. Let now player 1 deviate, in U(G(δ, T ))y, to the strategy ᾱ1 defined as

follows: for each Ŝc
2 ∈ 2S2 , ᾱ1(S

c
1, Ŝ

c
2) := α1(S

c). The subgame U(G(δ, T ))y is such that, when

playing according to (α1, α2), the single-node x∗ of G(δ, T ) is reached again at stage t. Hence,

the subgame beginning at the corresponding single-node of U(G(δ, T )), namely x, is relevant for

(Sc, α). According to the commitments, both players can choose their two actions at x and, from

the stage t+1 on, player 2’s actions are determined by the commitment. Now, it is immediate to

check that the relevant subgame U(G(δ, T ))x does not have any Nash equilibrium. Hence, (Sc, α)

cannot be a VSPE.

In the counterexample we used in the proof above, we defined a game G with no Nash equi-

librium. Moreover, for each T ∈ N and each δ ∈ (0, 1], the game G(δ, T ) did not have any Nash

equilibrium. On the other hand, we have the following positive result concerning the existence of

VSPE for games with UC.

Proposition 3.2. Let G = (N,A,ϕ) and let ā ∈ A be a Nash equilibrium of G. Then, the game

U(G) has a VSPE (Āc, ᾱ) with payoff ϕ(ā).

Proof. Let (Āc, ᾱ) be such that for each i ∈ N , we have

(i) Āc
i = {āi},

(ii) for each j 6= i and each Ac
j ∈ 2Aj , ᾱi(Ā

c
−j , A

c
j) = āi. Finally, for each Ac

i ∈ 2Ai ,

ᾱi(Ā
c
−i, A

c
i ) = âi, where âi ∈ argmaxai∈Āc

i
{ϕi(ā−i, ai)}.
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It is immediate to check that each such strategy profile (Āc, ᾱ) is a VSPE of U(G).

In view of Proposition 3.2, it is clear that every Nash folk theorem for finitely repeated

games can be easily adapted to provide a subgame perfect folk theorem for finitely repeated

games with unilateral commitments. More precisely, the necessary and sufficient condition for

the Nash folk theorem in González-Díaz (2003), “that the game is decomposable as a complete

minimax-bettering ladder”, is a sufficient condition for the VSPE folk theorem with UC. The

former condition implies among other things, the existence of a Nash equilibrium in the stage

game G; this implication is all we use in this Chapter. Example 3.2 shows that such condition is

not necessary.

Example 3.2. Let G = (N,A,ϕ) be the game defined in Figure 3.3.

L M R
U 10,10 0,1 1,0
D 11,0 1,1 0,2

Figure 3.3: A game without Nash equilibria

The game G does not have a Nash equilibrium. Hence, G is not decomposable as a complete

minimax-bettering ladder. Moreover, v = (1, 2). Now, for each T ∈ N and each δ ∈ (0, 1], the

payoff (10, 10) can be supported by a VSPE of U(G(δ, T )) = (N,SU , ϕU ). To check this assertion,

consider the strategy profile (S̄c, ᾱ) of U(G(δ, T )) defined as follows: (i) S̄c
1 := “I play U in every

stage”, (ii) S̄c
2 := “I never play R”, and (iii) for each i ∈ {1, 2} and each Sc

i ∈ 2Si , ᾱ(S̄c
−i, S

c
i )

consists of playing, at each stage, the unique Nash equilibrium of the corresponding one stage

game. Then, (S̄c, ᾱ) is a VSPE and ϕU (S̄c, ᾱ) = (10, 10).

Proposition 3.2 says that we can use the UC to make actions credible, even actions that in the

original game could be dominated. On the other hand, Example 3.2 shows that we can use the UC

to go further than that. Hence, some more research is needed to find new sufficient conditions for

the VSPE folk theorem; conditions weaker than the existence of a complete minimax-bettering

ladder. Although we have made some research in this specific issue, we have not found any

satisfactory condition. Nevertheless, we have found the following result, which, with the aid of

Proposition 3.2, is straightforward.

Theorem 3.2. Let G = (N,A,ϕ) and let v be its minimax payoff vector. Let u ∈ F , u > v.

Then, for each ε > 0, there are δ0 ∈ (0, 1) and T0 ∈ N such that for each δ ∈ [δ0, 1] and each

T ≥ T0, the game U(U(G(δ, T ))) has a VSPE with payoff w such that ‖w − u‖ < ε.

Proof. Immediate from the combination of Theorem 3.1 and Proposition 3.2.

Theorem 3.2 implies that, when two stages of commitments are possible, any feasible and

individually rational payoff of the original game can be achieved as a VSPE of the repeated

game with unilateral commitments. No assumption is needed for the original game, not even the

existence of a Nash equilibrium.
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Next, we briefly discuss the impact of Theorem 3.2 within the delegation framework discussed

in the Introduction. First, from the point of view of our model with unilateral commitments,

the game U(U(G(δ, T ))) can be difficult to motivate. It is true that we get a very strong result

for the set of equilibrium payoffs of this game, but the fact that we allow for commitments

on commitments might have unnatural features in some models. The point is that, when we

introduced unilateral commitments, we emphasized the fact that they were unilateral, i.e., the

commitments of one player could not be conditional on the other players’ commitments; if we allow

for two stages of commitments, then we are indirectly allowing for commitments on commitments,

and hence, we achieve the same payoffs we could get with a cooperative model. On the other hand,

if we reassess the delegation situation corresponding with our unilateral commitments model, and

we do it in a similar way to that in the Introduction, then we have the following interpretation

for the two stages of commitments. Consider a situation in which two firms are engaged in a

competitive situation. Initially, the players are the presidents, and hence, in the first stage each

president signs a contract with his principal in which the latter is committed not to play certain

strategies and he will be paid proportionally to the payoff he finally gets. Then, in a second

stage, a similar contract is signed between each principal and his agent. Finally, the agents play

the original game but honoring the commitments. This situation has some important differences

with the one stage situation: (i) the commitments that the president includes in the contract

in the first stage can take into account the commitments that the principal will make with the

agent at stage two, i.e., the contract between each president and his principal also commits the

latter on the commitments he can sign with his agent, (ii) in the second stage the principals,

being consistent with the commitments of their contract with the principals and in view of the

commitments made by the rivals, choose a new commitment for the agents, i.e., a commitment on

the commitment, and (iii) finally, the agents have to play being consistent with all the previous

commitments. The hierarchical delegation model we have just described is quite natural and it

is not difficult to think of real life situations with these sub-delegation structures. Hence, if such

situations also correspond to some repeated game, then Theorem 3.2 says that, regardless of the

properties of the underlying stage game, the “cooperative” (collusive) payoffs can be supported

as a VSPE in the game with two stages of commitments.

3.3.1 Infinitely Repeated Games

Although we have not formally introduced the model with infinitely repeated games, the defini-

tions can be immediately extended to encompass also this family of games; basically, replacing T

by ∞ in the definition of history and in the subsequent ones. Now, within this new framework,

Proposition 3.2 still carries over. Now, recall that the classic Nash folk theorem for infinitely re-

peated games (see, for instance, Fudenberg and Maskin (1986)) states that, if the discount is close

enough to 1, every feasible and individually rational payoff can be achieved as a Nash equilibrium

of the infinitely repeated game. Hence, if we combine this classic result with Proposition 3.2 we

get the following Corollary:
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Corollary 3.1. Let G = (N,A,ϕ) and let v be its minimax payoff vector. Let u ∈ F , u > v.

Then, there is δ0 ∈ (0, 1) such that for each δ ∈ [δ0, 1] the game U(G(δ,∞)) has a VSPE with

payoff u.

Proof. It is immediate from the combination of Proposition 3.2 with the classic Nash folk theorem

for infinitely repeated games.

3.3.2 The State of Art

Table 3.1 summarizes the results we have proved in this Chapter along with the classic folk

theorems for repeated games with complete information. In particular, it shows the strength of

Proposition 3.2, that allows to obtain many folk theorems for repeated games with unilateral

commitments as immediate corollaries of the classic ones. Hence, by looking at Table 3.1, one

easily understands the strength of unilateral commitments within this framework. Note that

all the cells in the Table contain necessary and sufficient conditions, all of them but the one

corresponding with the virtual subgame perfect folk theorem for finitely repeated games with

unilateral commitments; some more research is still needed concerning this case.

Without UC 1 stage of UC
2 stages
of UC

Nash Theorem None None None
Infinite Horizon (Fudenberg and Maskin, 1986) (Prop. 3.2) (Prop. 3.2)

(Virtual) Perfect Th. Non-Equivalent Utilities None None
Infinite Horizon (Abreu et al., 1994) (Prop. 3.2) (Prop. 3.2)

Nash Theorem Minimax-Bettering Ladder None None
Finite Horizon (González-Díaz, 2003) (García-Jurado et al., 2000) (Prop. 3.2)

(Virtual) Perfect Th. Recursively-distinct Minimax-Bettering Ladder None
Finite Horizon Nash payoffs (Smith, 1995) (Prop. 3.2, only sufficient) (Th. 3.2)

Table 3.1: Necessary and Sufficient conditions for the folk theorems

3.4 Concluding Remarks

In this Chapter we have deepened in the literature of commitments. More specifically, we have

studied the impact of unilateral commitments in the folk theorems for repeated games.

We want to emphasize again the following fact. Because of the way we have modeled unilateral

commitments, it could seem that they are very far from the more standard models of commitment

via delegation. But, as we pointed out in the Introduction and in the discussion of Theorem 3.2,

unilateral commitments can be used to model situations in which there is a principal who signs a

contract with his agent with two natural features: (i) The agent has committed not play certain

strategies and (ii) among the remaining ones his payoff is proportional to that of the principal,

i.e., the agent can be thought of as a shareholder of the firm.
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Moreover, we have shown that unilateral commitments have very strong implications within

the literature of repeated games with complete information. They lead to new folk theorems in

which the assumptions needed for the classic results have been notably relaxed.

Finally, there are several open questions that should be tackled in the future. One of them

is to refine the conditions for the finite horizon perfect folk theorem with unilateral commit-

ments. There is another important issue where some research is needed: the impact of unilateral

commitments in repeated games with incomplete information.
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4.1 Introduction

To motivate the discussion think of the President of a University who has to allocate a given

budget among a set N of Departments. Each Department, depending on its size, teaching duties,

research commitments, etc. demands a total amount di.Most likely the aggregate amount claimed

by the Departments,
∑

i∈N di, exceeds the budget available, E. This is a standard bankruptcy

problem which requires devising some procedure to allocate what is available as a function of

what is demanded.

More generally, a bankruptcy problem describes a case in which a planner has to allocate a

given amount of a divisible good E among a set N of players, when their claims (di)i∈N exceed the

available amount (i.e.,
∑

i∈N di > E). Most rationing situations can be given this form. Relevant

examples are the execution of a will with insufficient assets, the allocation of a commodity with

excess demand in a fixed price setting, the collection of a given amount of taxes, and, of course,

the liquidation of a bankrupt firm among its creditors. Rationing problems encompass a wide

range of distributive situations and are analytically very simple (indeed, a bankruptcy problem

can be summarized by a triple (N,E, d)).

A solution to a bankruptcy problem, also called a rule, is a function that specifies, for each

admissible problem (N,E, d), a vector R(N,E, d) ∈ Rn satisfying the following two restrictions:

(i) for each i ∈ N , 0 ≤ Ri(N,E, d) ≤ di and (ii)
∑

i∈N Ri(N,E, d) = E. The first restriction says

that no claimant gets more than he claims or less than zero. The second is an efficiency require-

ment: the available amount of the good is fully distributed. Alternative solutions correspond to

the application of different ethical and procedural criteria.

The literature on bankruptcy problems is large and keeps growing. The main contributions

refer to the analysis of different solutions following an axiomatic approach or translating to this

context some of the standard solutions to coalitional games. The reader is referred to the works

of Moulin (2002) and Thomson (2003) for comprehensive surveys of this literature.

There is also a number of contributions that study different strategic aspects of the problem

(see Thomson (2003)). The first one already appears in O’Neill’s seminal paper (see O’Neill

(1982)), where the minimal overlap rule is analyzed as the Nash equilibrium of a noncooperative

game. Chun (1989) introduces a different strategic consideration in the bankruptcy problem by

allowing the players involved to propose solution concepts, rather than allocations. He devises

a procedure that converges to the outcome associated with the constrained equal awards rule.

A dual formulation is presented in Herrero (2003); in this case the procedure converges to the

constrained equal losses rule. Sonn (1992) obtains the constrained equal awards rule as the limit

of a process in which each player makes a proposal for someone else, who either accepts and leaves

or rejects and takes the place of the proposer. Dagan et al. (1997) define a sequential game whose

unique subgame perfect equilibrium outcome corresponds to the allocation of a given resource

monotonic and consistent rule (an extension of the result in Serrano (1995)). The sequential

game, which depends on the consistency assumption, can be summarized as follows. The player

with the highest claim proposes a distribution of the amount available. The other players can
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either accept and leave, or else reject and leave, obtaining what the two-person rule recommends

for the problem having him and the proposer as players, with a budget defined by the amounts

allotted initially for them by the proposer. See also Dagan et al. (1999) for a further extension.

Along these lines, Corchón and Herrero (2004) discuss the implementation of bankruptcy rules

when the proposals made by the players are bounded by their claims. Herrero et al. (2003) provide

an experimental analysis of the strategic behavior in bankruptcy problems.

Somewhere between the axiomatic and the strategic approaches are the contributions on the

manipulation of the rules via merging or splitting claims (see de Frutos (1999), Ju (2003) and

Moreno-Ternero (2004)).

In this Chapter we provide noncooperative support to the resolution of bankruptcy problems.

The basic idea is the following. Each player is asked to declare what would be the minimal

admissible reward he is ready to admit, given that there is not enough to satisfy all the demands.

This is a familiar requirement in many discussions of this sort. It is not difficult to imagine the

President of the University putting this question to the Heads of the different Departments: “Tell

me what is the minimum you need to keep going; I’ll try to ensure that you receive that amount

and then we shall see how to allocate the rest”. Of course this is a strategic situation and each

player will declare the amount that maximizes his expected payoff. We propose here an elementary

game form in which those who “demand less” are given priority in the distribution, such that in

a Nash equilibrium all players “demand the same”. Interestingly enough the equilibrium payoff

vector is unique and so is, in many cases, the strategy profile. Moreover, the Nash equilibria of

this game are all strong. By specifying properly what we mean by “demanding less” and “getting

the same” through the rules of each particular game of this type, we obtain all the different

solutions to bankruptcy problems as Nash equilibria.

We implicitly assume, as it is usual in this literature, that both the amount to divide and the

claims are known by all the players. There are, however, two features that make this game form

much simpler than those in other contributions: (i) no sequential procedure is involved (which,

incidentally, makes the result independent of consistency) and (ii) each player’s message only

refers to his decision variable, in contrast with most of the results in which each player proposes a

whole allocation. Moreover, our results apply to virtually all acceptable bankruptcy rules (where

“unacceptable” rules are those that allow some player to get his full claim and, at the same time,

give zero to some else).

The Chapter is organized as follows. Section 4.2 presents the formal model and the main

results. Section 4.3 applies those results to the bankruptcy problem. It is shown that the alloca-

tion proposed by any acceptable bankruptcy rule can be obtained as the Nash equilibrium of a

specific game within the family presented in Section 4.2. We conclude with a few final comments

in Section 4.4.



50 Chapter 4. A Noncooperative Approach to Bankruptcy Problems

4.2 The Model and the Main Results

A bankruptcy problem is a triple (N,E, d), where N = {1, 2, . . . , n} is a collection of players, E > 0

is the amount to divide, and d ∈ Rn
++ is the vector of claims. The very nature of the problem

under consideration implies that
∑

i∈N di > E > 0. A bankruptcy rule R is a function mapping

each bankruptcy problem (N,E, d) onto Rn
+, such that for each i ∈ N , Ri(N,E, d) ∈ [0, di] and

∑

i∈N Ri(N,E, d) = E. The rule R represents a sensible way of distributing the available amount

E, with two natural restrictions. One is that no player gets more than he claims or less than

zero, the other that the total amount E is divided among the players.

Our noncooperative bankruptcy game for the bankruptcy problem (N,E, d) is a strategic game

with N as the set of players, who are equipped with strategy spaces Di, and payoff functions

(πi)i∈N that describe what each player gets as a function of the joint strategy vector.

In our game, player i’s strategy space is a closed interval Di = [0,mi], for some scalar mi > 0.

Let αi be a strategy for player i, α ∈ D =
∏

i∈N Di a strategy profile, and α−i an (n − 1)-

vector consisting of the strategies of all players other than player i. We interpret αi as a message

monotonically related to the amount of the total payoff that he declares admissible, given the

rationing situation. For instance, αi may describe the share of di that player i would be ready to

accept. Or it may correspond to the loss he is ready to admit. We describe this message through

a function fi : Di → [0, di] that specifies the relationship between the player’s message and his

intended reward. For instance fi(αi) = αidi, when αi corresponds to player i’s admissible share.

A strategy profile α is feasible if
∑

i∈N fi(αi) ≤ E.

Concerning the functions fi we assume:

Axiom 4.1. For each i ∈ N, fi is a monotone function that defines a bijection from [0,mi] to

[0, di].

Axiom 4.2. All fi’s are simultaneously increasing or decreasing.

Note that Axiom 4.1 implies that the functions fi are continuous and strictly monotone func-

tions. Hence, we refer to the functions fi as increasing or decreasing meaning strictly increasing

or strictly decreasing, respectively. For simplicity we assume in Axiom 4.2 that the orientation of

the messages of the players is uniform, which means that functions fi are either all increasing or

all decreasing. It follows from Axioms 4.1 and 4.2 that (i) if the functions fi are increasing, then

fi(0) = 0 and fi(mi) = di and (ii) if they are decreasing, then fi(0) = di and fi(mi) = 0. Let f

be (f1, . . . , fn).

If the fi’s are increasing (decreasing) functions, we denote by [i] the player whose message

occupies the i-th position in the increasing (decreasing) ordering of messages. Although it is not

important for the results of this Chapter, a tie-breaking rule must be considered in order to have

a well defined reordering of the players. Here we consider the following: if there is a tie between

two or more players, the ranking is made in increasing ordering of their indices within N. Hence:

If the functions fi are increasing: α[1] ≤ α[2] ≤ . . . ≤ α[n].



4.2. The Model and the Main Results 51

If the functions fi are decreasing: α[1] ≥ α[2] ≥ . . . ≥ α[n].

Consider now the following procedure. Player i chooses his message αi. If the profile α =

(αi, α−i) is feasible, then player i gets fi(αi) and, since each player obtains the payoff associated

with the demand corresponding with his message, the game ends. If α is not feasible, then E is

allocated among the players with lowest ranking. That is, let [h] denote the smallest index for

which
∑

[i]≤[h] f[i](α[i]) > E. Then:

π[i](α) =







f[i](α[i]) [i] < [h]

E −∑[i]≤[h−1] f[i](α[i]) [i] = [h]

0 [i] > [h].

We denote this noncooperative bankruptcy game by 〈N,D, π〉. Note that, under Axioms 4.1

and 4.2, the strict monotonicity of the functions fi is translated, for each α−i and provided that
∑

i∈N fi(αi) < E, to the functions πi(α−i, ·). By construction, for each α ∈ D,
∑

i∈N πi(α) ≤ E.

We can define a Nash equilibrium of the game 〈N,D, π〉, associated with a bankrupcty problem

(N,E, d), as a strategy profile α∗ ∈ D such that for each i ∈ N and each αi ∈ Di, πi(α
∗) ≥

πi(α
∗
−i, αi).

A strategy profile α∗ ∈ D is a strong equilibrium (Aumann, 1959) if there do not exist T ⊆ N

and αT ∈∏i∈T Di such that for each i ∈ T , πi(α
∗) < πi(α

∗
N\T , αT ).

Lemma 4.1. Under Axioms 4.1 and 4.2, if α∗ ∈ D is a Nash equilibrium of the bankruptcy game

〈N,D, π〉, then
∑

i∈N πi(α
∗) = E, i.e., all the Nash equilibria are efficient.

Proof. Assume that the fi’s are increasing (the case of decreasing functions is fully symmetric).

By the definition of 〈N,D, π〉, ∑i∈N πi(α
∗) ≤ E. Moreover, if

∑

i∈N πi(α
∗) < E, then there is

i ∈ N that can increase his claim and get a larger payoff. Hence,
∑

i∈N πi(α
∗) = E.

The following result is now obtained.

Proposition 4.1. Let (N,E, d) be a bankruptcy problem and 〈N,D, π〉 an associated noncooper-

ative bankruptcy game. The following statements are true under Axioms 4.1 and 4.2:

(i) There is a constant ρ such that the game has a Nash equilibrium in which α∗
i = min{ρ,mi},

i.e., each player selects the strategy in [0,mi] which is closer to ρ.

(ii) The equilibrium payoff for this game is unique.

Proof. Case 1: Functions fi are increasing.

Let F : R+ −→ R+ be such that for each x ∈ R+, F (x) =
∑

i∈N fi(xi), where xi =

min{x,mi}. The continuity of all fi’s implies the continuity of F. Hence, since (i) F (0) =

0, (ii) F (maxi∈N{mi}) =
∑

i∈N di > E, and iii) F is strictly increasing in the interval [0,

maxi∈N{mi}], there is a unique ρ ∈ (0, maxi∈N{mi}) such that F (ρ) = E.
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Suppose that the profile α∗ is a Nash equilibrium and that, for some fixed i, j ∈ N , we have

α∗
j > α∗

i and mi > α∗
i . If πj(α

∗) = 0, then player j can ensure for himself a positive payoff with

the strategy ε, for ε small enough. Hence, πj(α
∗) must be positive. Now, player i can obtain a

greater payoff by switching to strategy α′
i ∈ (α∗

i ,min{α∗
j ,mi}); player i has still a lower index

than player j and, since fi is increasing, his payoff increases. Hence, if α∗ is a Nash equilibrium

and α∗
j > α∗

i for some i, j ∈ N, we have α∗
i = mi. Combining this with the fact that ρ is the

unique positive real number for which F (ρ) = E, we get that the strategies α∗
i = min{ρ,mi}

define a Nash equilibrium.

Let ᾱ be a Nash equilibrium of 〈N,D, π〉. Suppose that π(ᾱ) 6= π(α∗). Then, by Lemma

4.1, there are i, j ∈ N such that πi(ᾱ) > πi(α
∗) and πj(ᾱ) < πj(α

∗). Since for each k ∈ N ,

πk(α∗) = fk(α∗), then ᾱi > α∗
i and ᾱj < α∗

j . Hence, ᾱi > ρ. Hence, j can deviate to strategy ρ

and get a higher profit.

Case 2: Functions fi are decreasing.

Take again the function F , now we have (i) F (0) =
∑

i∈N di > E and (ii) F (maxi∈N{mi}) = 0.

Define again ρ as the unique real number in (0, maxi∈N{mi}) such that F (ρ) = E. The situation

is similar to the case with increasing functions: the profile α∗ with α∗
i = min{ρ,mi} is again a

Nash equilibrium.

The part for the uniqueness of the equilibrium payoff is analogous.

Moreover, all the Nash equilibria in the Proposition above are in fact strong equilibria, as the

following Proposition states.

Proposition 4.2. Let (N,E, d) be a bankruptcy problem, 〈N,D, π〉 an associated noncooperative

bankruptcy game, and α∗ a strategy profile. Then, under Axioms 4.1 and 4.2, α∗ is a Nash

equilibrium if and only if α∗ is a strong equilibrium.

Proof. Since a strong equilibrium is a Nash equilibrium only one implication has to be proved.

Assume that the functions fi are increasing. Let α∗ be the Nash Equilibrium defined in Propo-

sition 4.1, i.e., there is ρ such that α∗
i = min{ρ,mi}. Suppose that ᾱ is a Nash equilibrium that

is not strong. Then, there are a coalition T ⊆ N with at least two players and αT ∈ ∏j∈T Dj

such that for each j ∈ T , πj(ᾱ) < πj(ᾱN\T , αT ). Since ᾱ is a Nash equilibrium, for each i ∈ N ,

πi(ᾱ) = πi(α
∗) = fi(α

∗
i ). Now, for each j ∈ T , fj(αj) ≥ πj(ᾱN\T , αT ) > πj(ᾱ) = fj(α

∗
j ). Hence,

αj > α∗
j . Hence, α∗

j < mj . Hence, α∗
j = ρ and, finally, we have that αj > ρ. Now, we distinguish

two cases:

Case 1: For each i ∈ T , ᾱi ≤ ρ. Take now the player k ∈ T with the lowest priority for

(ᾱN\T , αT ). Then, since k’s priority does not get worse when moving from (ᾱN\T , αT ) to (ᾱ−j , αj)

and for each i ∈ N , fi((ᾱN\T , αT )i) ≥ fi((ᾱ−j , αj)i), we have that πk(ᾱ−j , αj) > πk(ᾱ). Hence,

ᾱ is not a Nash equilibrium.

Case 2: There is i ∈ T such that ᾱi > ρ. Now, each j 6= i, j ∈ N\T can profitably deviate

from ᾱ to a strategy belonging to (ρ, αj). Hence, ᾱ is not a Nash equilibrium.

In the decreasing case, a similar argument can be formulated.
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4.3 Bankrupcty Games and Bankruptcy Rules

Now, we illustrate how the results in Section 4.2 apply to the standard bankruptcy rules.

The proportional rule, P, which is probably the best known and most widely used solution

concept, distributes awards proportionally to claims. It is defined as follows: for each (N,E, d),

P (N,E, d) = λd, with λ = EP
i∈N di

. It is easy to see that, if we take, for each i ∈ N , Di = [0, 1]

and fi(αi) = αidi, then the (unique) Nash equilibrium of the game produces the proportional

solution to the bankruptcy problem.

The constrained equal-awards rule, A, applies an egalitarian principle on the awards received,

provided no player gets more than his claim. It is defined as follows: for each (N,E, d) and each

i ∈ N , Ai(N,E, d) = min{di, λ}, where λ solves
∑

i∈N min{di, λ} = E. By letting Di = [0, di]

and fi(αi) = αi, we get the constrained equal awards solution as the unique Nash equilibrium of

the associated bankruptcy game.

The constrained equal-loss rule, L, is the dual of the latter. It distributes equally the difference

between the amount available and the aggregate claim, with one proviso: no player ends up with a

negative transfer. Namely, Li(N,E, d) = max{0, di−λ}, where λ solves
∑

i∈N max{0, di−λ} = E.

Taking Di = [0, di] and defining fi(αi) = di − αi, we obtain the constrained equal-losses solution

as the Nash equilibrium payoff of the game.

Aumann and Maschler (1985) introduced the Talmud rule as the consistent extension of the

contested garment rule. It is defined as follows: for each (N,E, d) and each i ∈ N, Ti(N,E, d) =

min{ 1
2di, λ} if E ≤ 1

2

∑

i∈N di, and Ti(N,E, d) = max{ 1
2di, di − µ} if E ≥ 1

2

∑

i∈N di, where λ

and µ are chosen such that
∑

i∈N Ti(N,E, d) = E. If we let Di = [0, di] and

fi(αi) =

{
1
2αi E ≤ 1

2

∑

i∈N di

1
2di − αi E ≥ 1

2

∑

i∈N di,

the Nash equilibrium payoff of the game yields the allocation corresponding to the Talmud rule.

More generally, if we let Di = [0, di] and

fi(αi) =

{

θαi E ≤ θ
∑

i∈N di

θdi − αi E ≥ θ
∑

i∈N di,

we generate the solutions corresponding to the TAL-family (Moreno-Ternero and Villar, 2003)

which encompasses the constrained equal awards, the constrained equal losses, and the Talmud

rule.1

These results illustrate the applicability of this procedure to provide a noncooperative support

1The TAL-family consists of all rules with the following form: there is θ ∈ [0, 1] such that for each bankruptcy
problem (N,E, c) and each i ∈ N ,

Rθ
i (N,E, d) =

�
min {θdi, λ} E ≤ θ

P
i∈N di

max {θdi, di − µ} E ≥ θ
P

i∈N di,

where and λ and µ are chosen such that
P

i∈N Rθ
i (N,E, d) = E.
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to the best known bankruptcy rules. But these results can actually be extended to virtually

any meaningful rule. Consider now the following definition which introduces an extremely mild

requirement on bankruptcy rules:

Definition 4.1. A bankruptcy rule R is called acceptable if there are no bankruptcy problem

(N,E, d) and players i, j ∈ N such that Ri(N,E, d) = 0 and Rj(N,E, d) = dj .

Acceptable rules are those which never concede a player his claim in full whereas some other

player gets nothing. Most of the rules which have been studied in the literature are acceptable.

The following proposition shows that for each acceptable bankruptcy rule there is a bankruptcy

game whose equilibrium payoff coincides with the allocation proposed by the rule. Formally:

Proposition 4.3. Let R be an acceptable bankruptcy rule and (N,E, d) a bankruptcy problem.

Then, there is a noncooperative bankruptcy game 〈N,D, π〉, satisfying Axioms 4.1 and 4.2, whose

unique equilibrium payoff coincides with R(N,E, d).

Proof. The proof consists of showing that we can define sets of strategies Di and functions fi in

such a way that the result is a consequence of Proposition 4.1.

Let (N,E, d). To simplify notation we write Ri instead of Ri(N,E, d). Since the rule is ac-

ceptable, either for each i ∈ N , Ri > 0, or for each i ∈ N , Ri < di. Next, we define the sets of

strategies and the functions fi.

Case 1: For each i ∈ N , Ri > 0. Let

mi :=
R1

Ri
di and fi(αi) :=

Ri

R1
αi.

It is clear that the functions fi are monotone (in fact, increasing) and that, for each i ∈ N, fi

is a bijection mapping [0,mi] onto [0, di].

By Proposition 4.1, the noncooperative bankruptcy game has a unique equilibrium payoff.

Clearly, in this case, ρ = R1. Hence, α∗ = (R1, . . . , R1) is a Nash equilibrium (which is, moreover,

strong by Proposition 4.2); its associated payoff is R(N,E, d).

Case 2: For each i ∈ N , Ri < di.

The reasoning is the same as before, except in that, now, we define:

mi :=
d1 −R1

di −Ri
di and fi(αi) := di −

di −Ri

d1 −R1
αi.

Now, since (d1 −R1, . . . , d1 −R1) is a Nash equilibrium of this game and its associated payoff

vector is R(N,E, d), then Proposition 4.1 gives again the desired result.

4.4 Concluding Remarks

We have presented in this Chapter a simple and intuitive game form which supports virtually all

bankruptcy rules. The allocation proposed by each rule is obtained as the unique payoff vector
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corresponding to the Nash equilibrium of a specific game. In this respect, choosing the rules of

the game (and most particularly the strategy space of the players) determines the bankruptcy

rule that will emerge.

Interestingly enough, the game form that allows to implement those bankruptcy rules is a one-

shot game in which every player sends a message concerning his own awards exclusively. Those

messages refer to the cuts in their claims they might be ready to accept, given their claims and the

existing shortage. The game form induces an equilibrium in which all players choose “the same”

message. Selecting the nature of those messages (e.g. awards, shares, losses) amounts to deciding

on the bankruptcy rule whose allocation will result (the equal awards-rule, the proportional rule,

the equal-losses rule).

The game form proposed here implicitly assumes that all the data of the problem are public

knowledge. In particular, it is assumed that the planner may know both the players’ claims and

the amount to divide. This is a natural assumption in most of the bankruptcy situations, where

claims have to be eventually credited. The case of taxation problems may be an exception in this

respect. Dagan et al. (1999) show that those problems are implementable when all players other

than the planner know all the data of the problem. Even though this is an arguable assumption

in this context, they also show an impossibility result when this is not the case (see also Corchón

and Herrero (2004) on this point).
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Introduction to Cooperative Game Theory

This second Part is devoted to cooperative game theory. We set the focus on the geometry

underlying some of the best known solution concepts in the TU games literature. We describe

the structure of this Part below.

The first three Chapters deal with the geometry of the core of a TU game. More specifically,

we define a new solution concept for balanced games, the core-center, and study it in detail

in this Part of the dissertation. These three Chapters are based on the papers González-Díaz

and Sánchez-Rodríguez (2003a,b). In Chapter 5 we formally introduce the core-center as the

barycenter of the core and we carry out an analysis of the properties satisfied by this new allocation

rule. The main focus is on continuity, which turns out to be a serious concern. We have also made

an important effort studying the monotonicity properties of the core-center; the necessity of this

effort comes from the existing negative results concerning the possibility of defining monotonic

selections from the core of a TU game (Young, 1985; Housman and Clark, 1998). In Chapter 6 we

combine some of the properties studied in Chapter 5 with an additivity property and obtain an

axiomatic characterization of the core-center. In Chapter 7, we develop some tools to establish

a connection between the core-center and the Shapley value (Shapley, 1953) within the class of

convex games. In this Chapter, we describe the formation of the core as the result of a dynamic

process among coalitions. Based on this interpretation, we define the utopia games, a family of

games associated with each TU game which naturally arise from the mentioned description. The

utopia games are the cornerstone for the connection between the core-center and the Shapley

value.

Finally, in Chapter 8 we switch to the geometry underlying the τ value (Tijs, 1981). In this

Chapter, which is based on the paper by González-Díaz et al. (2005), we characterize the τ value

as the barycenter of the edges of the core-cover of a quasi-balanced game (multiplicities have to

be taken into account).

Summarizing, in this second Part we deepen the geometry of TU games. We achieve this by

establishing connections between set valued solutions and allocation rules. It is a well known

property of the Shapley value that it is the center of gravity of the vectors of marginal contribu-

tions. On the other hand, the nucleolus is often referred to as the lexicographic center of the core.

These two “central” properties of the Shapley value and the nucleolus have been used many times

to motivate the use of these two rules. Here, we add two more “central” relations, namely, (i) we

introduce the core-center, defined as the center of gravity of the core, and hence, an allocation

rule occupying a central position within the core and (ii) we show that the τ value lies, in general,

in a central position inside the core-cover of a quasi-balanced game.
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Introduction

In the framework of cooperative games with transferable utility there are several solution concepts

that give rise to different ways of dividing the worth of the grand coalition, v(N), among the

players. Although solution concepts admit different classifications, we divide them into two

groups: set-valued solutions and allocation rules (single-valued solutions). Roughly speaking,

set-valued solutions provide a set of outcomes that can be infinite, finite, or even empty. The

way to determine a set-valued solution can be seen as a procedure in which the set of all possible

assignments is gradually reduced, until the final solution (not necessarily a singleton) is reached.

This reduction is done by imposing some desirable properties that a solution should possess.

Examples of this approach are the stable sets (von Neumann and Morgenstern, 1944), the core

(Gillies, 1953), the kernel (Davis and Maschler, 1965), the bargaining sets (Aumann and Maschler,

1964) etc. On the other hand, one can establish some properties or axioms that determine a unique

outcome for each game, this is known as an allocation rule. The Shapley value (Shapley, 1953),

the nucleolus (Schmeidler, 1969), and the τ -value (Tijs, 1981) are solutions of this type.

Each solution concept has its interpretation and attends to specific principles (fairness, equity,

stability...) and all of them enrich the field of cooperative game theory. Besides, there have

been many papers discussing relations between allocation rules and set-valued solutions. Just to

mention a couple of these relations: when the core of a game is nonempty the nucleolus selects

an element inside it and, for the class of convex games, the Shapley value is in the core.

Our main purpose is to introduce a new allocation rule for balanced games summarizing all

the information contained in the core, i.e., obtain a single-valued solution from a set-valued one.

This allocation should be a fair compromise among all the stable allocations selected by the core.

In Maschler et al. (1979) it is shown that the nucleolus can be characterized as a “lexicographic

center” for the core. With that in mind, we study the real center of the core, which we call the

core-center, and discuss its game theoretical properties and interpretations. Now, we provide

a natural motivation for this concept: assume that we have chosen all the efficient and stable

allocations of a given game, i.e., its core. If we want to select only one of all these outcomes as a

proposal to divide v(N), how to do it in a fair way? What we suggest is to select the expectation

of a uniform distribution defined over the core of the game, in other words, its center of gravity.

From the point of view of physics, the core-center is the point of the equilibrium of the core of a

game. We have rewritten this notion in terms of a fairness (impartiality) property.

This Chapter deals with the axiomatic properties of the core-center. The main focus of this

axiomatic study is in the continuity property, since it turns out to be the case that it is not

easy to prove that the core-center is continuous. The problem of continuous selection from multi-

functions has been widely studied in mathematics and Michael (1956) is a central paper in this

literature. More specifically, the issue of selection from convex-compact-valued multi-functions

(as the core) is discussed in Gautier and Morchadi (1992); they study, as an alternative to the

barycentric selection, the Steiner selection, for which continuity is not a problem. Moreover, they

briefly discuss the regularity problems one can face when working with the barycentric selection.
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In this Chapter we show that, because of the special structure of the core of a TU game, the

barycentric selection from the core (the core-center) is continuous as a function of the underlying

game. Section 5.3 is entirely devoted to the discussion of the continuity of the core-center.

We also discuss in detail the monotonicity properties of the core-center. In fact, we show that,

as far as monotonicity is concerned, there is a parallelism between the behavior of the core-center

and that of the nucleolus.

As we have already said, this is not the first time that a central approach is used to obtain an

allocation rule. It is widely known that the Shapley value is the center of gravity of the vectors

of marginal contributions and, for convex games, it coincides with the center of gravity of the

extreme points of the core (taking multiplicities into account). Besides, in González-Díaz et al.

(2005) it is proved that the τ -value corresponds with the center of gravity of the edges of the

core-cover (again multiplicities must be considered).

The structure of this Chapter is as follows. In Section 5.1 we introduce the preliminary game

theoretical concepts. In Section 5.2, we define the core-center, provide some interpretations, and

study its main properties. In Section 5.3 we discuss in depth the issue of the continuity of the

core-center. Finally, we conclude in Section 5.4.

5.1 Game Theory Background

A transferable utility or TU game is a pair (N, v), where N = {1, . . . , n} is a set of players and

v : 2N → R is a function assigning to every coalition S ⊆ N a worth v(S). By convention,

v(∅) = 0. Since each game assigns a real value to each nonempty subset of N , it is a vector in

R2n−1. Let |S| denote the number of members of coalition S. Saving notation, when no ambiguity

arises, we use i to denote {i}. Let Gn be the set of all n-player games.

Let (N, v) ∈ Gn and x ∈ Rn be an allocation. Then, x is efficient for (N, v) if
∑n

i=1 xi = v(N)

and x is individually rational for (N, v) if, for each i ∈ N , xi ≥ v(i). Moreover, x is stable for

(N, v) if for each S ( N ,
∑

i∈S xi ≥ v(S), i.e., no coalition can improve by not joining to the

grand coalition. An allocation rule is a function which, for each game (N, v), selects an allocation

in Rn, i.e.,
ϕ : Ω ⊆ Gn −→ Rn

(N, v) 7−→ ϕ(N, v).

Next, we define some properties for allocation rules. Let (N, v) ∈ Gn and ϕ be an allocation

rule: ϕ is continuous if the function ϕ : R2n−1 → Rn is continuous; ϕ is efficient if it always

selects efficient allocations; ϕ is individually rational if it always selects individually rational

allocations; ϕ is scale invariant if for each two games (N, v) and (N,w), and each r ∈ R such

that, for each S ⊆ N , w(S) = rv(S), then ϕ(N,w) = rϕ(N, v); ϕ is translation invariant if

for each two games (N, v) and (N,w), and each α = (α1, . . . , αn) ∈ Rn such that for each

S ⊆ N , w(S) = v(S) +
∑

i∈S αi, then ϕ(N,w) = ϕ(N, v) + α; ϕ is symmetric if for each pair

i, j ∈ N such that for each S ⊂ N\{i, j}, v(S ∪ {i}) − v(S) = v(S ∪ {j}) − v(S), we have
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ϕi(N, v) = ϕj(N, v); ϕ satisfies the dummy player property if for each i ∈ N such that for each

S ⊂ N\{i}, v(S ∪ {i}) − v(S) = v({i}), we have ϕi(N, v) = v({i}).
The core of a game (N, v) (Gillies, 1953), C(N, v), is defined by C(N, v) := {x ∈ Rn :

∑

i∈N xi = v(N) and, for each S ( N,
∑

i∈S xi ≥ v(S)}. The class of games with a nonempty

core is the class of balanced games.

5.2 The Core-Center:

Definition, Interpretations, and Properties

The core of a game is the set of all its stable and efficient allocations. Now, if we consider that

all these points are equally valuable, then it makes sense to think of the core as if it was endowed

with a uniform distribution. The core-center summarizes the information of such a distribution

of probability. Let U(A) denote the uniform distribution defined over the measurable set A and

E(P) the expectation of the probability distribution P.

Definition 5.1. Let (N, v) be a balanced game with core C(N, v), the core-center of (N, v),

µ(N, v), is defined as follows:

µ(N, v) := E [U(C(N, v))] .

The idea underlying our motivation for the core-center can be summarized as follows: if in

accordance with some properties and/or criteria we have selected a (convex) set of allocations

(the core) and we want to choose one, and only one, of these allocations, why not choose the

center of the set?

Also, from the point of view of physics, if we think of the core as a homogeneous body, then

the core-center selects its center of gravity. In physics, the center of gravity is a fundamental

concept because it allows to simplify the study of a complex system just by reducing it to a point;

for instance, the movement of a body can be analyzed by describing the movement of its center

of gravity. Roughly speaking, the core-center is the unique point in the core such that all the

core allocations are “balanced” with respect to it.

The fact that the core-center belongs to the core implies that it inherits many of the properties

of the allocations in the latter. Hence, either because they are inherited from core properties or

because they are a consequence of the properties of the center of gravity, the core-center satisfies,

among others, the following properties:

Efficiency Individual rationality Stability

Symmetry Scale Invariance Translation Invariance

Dummy player property.

In the rest of this Section, we first discuss a new property that the core-center satisfies,

second, we discuss the monotonicity properties of the core-center, and, finally, we introduce a

first approach to the issue of the continuity of the core-center.
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5.2.1 A Fairness Property

In Dutta and Ray (1989) the problem of selecting an allocation in the core is studied assuming

that all members of the society have subscribed to equality as a desirable end. They propose an

egalitarian allocation which is characterized in terms of Lorenz domination. The motivation for

the core-center is from the angle of impartiality as opposed to that of egalitarianism. Assume

that the situation the game models is the consequence of some previous efforts or investments

made by the different agents, i.e., the core allocations can be seen as the possible rewards arising

from their contributions (possibly unequal) to a common purpose. In this situation the equity

principle would not be an appropriate one. We present now a fairness property for the core-center

to show the justice foundations it obeys to.

Let D ⊆ Rn, i ∈ N, and an allocation x ∈ Rn. Let Wi(x) denote the set of all allocations in

D which are worse than x for i, and Bi(x) is the set of all allocations which are better than x for

i (Figure 5.1). Formally, Wi(x) := {y ∈ D : yi < xi} and Bi(x) := {y ∈ D : yi > xi}. Also, let

Ei(x) := {y ∈ D : yi = xi}.

3

21

x

B2(x)

W2(x)

Figure 5.1: The sets B2(x) and W2(x) in the core of a game

Consider now the situation in which there is a probability distribution P defined over D (for

the core-center the uniform distribution is defined over the core). Let x ∈ Rn and i ∈ N , then

the relevance (weight) for player i of a point y ∈ D, with respect to x, is the weight of the point

according to P, but re-scaled proportionally to |xi − yi|. The relevance for player i of y with

respect to x depends on the weight of y according to P but also on the difference between xi and

yi, i.e., how good or bad yi is compared to xi.

Let P be a distribution of probability defined over Rn and let x ∈ Rn. The degree of satisfaction

of player i with respect to x is defined as the quotient

DSP
i (x) =

∫

Wi(x)
|xi − yi|dP(y)

∫

Bi(x)
|xi − yi|dP(y)

=

∫

Wi(x)
(xi − yi)dP(y)

∫

Bi(x)
(yi − xi)dP(y)

.

According to this definition, a degree of satisfaction of 1 for a player i with respect to an allocation
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x means that, in some way, he perceives the sets Bi(x) and Wi(x) as equal (with regard to P

and x). A small observation concerning the indeterminacy 0/0 is needed, if both numerator and

denominator in DSP
i (x) are 0, i.e., player i receives xi at all the points in the support of P, then,

in line with the former comment, DSP
i (x) = 1. Besides, when the denominator takes the value

0 but the numerator does not, there is no problem in letting the degree of satisfaction take the

value +∞.

Definition 5.2. Let P be a distribution of probability defined over Rn. An allocation x ∈ Rn is

impartial with respect to P if for each pair i, j ∈ N , DSP
i (x) = DSP

j (x).

Definition 5.3. Let ϕ be an allocation rule. For each (N, v) ∈ Gn, let P(N, v) be a distribution

of probability defined over Rn. Then, ϕ is impartial with respect to P if for each (N, v) ∈ Gn,

ϕ(N, v) is impartial with respect to P(N, v).

Lemma 5.1. For each balanced game (N, v), let U(N, v) be the uniform distribution defined

over C(N, v). Then, the core-center is the unique efficient allocation rule which is impartial with

respect to U .

Proof. This Lemma is almost an immediate consequence of the properties of the center of gravity.

Let ȳ be the expectation of the uniform distribution over C(N, v) and let x be an efficient

allocation in Rn. Let f be the density function associated with U . First, we show that for each

i ∈ N , DSU
i (x) = 1 if and only if xi = ȳi, i.e., for each i ∈ N ,

∫

Wi(x)

(xi − yi)f(y)dy =

∫

Bi(x)

(yi − xi)f(y)dy ⇔ xi = ȳi.

Note that ∫

Rn

(xi − yi)f(y)dy = xi

∫

Rn

f(y)dy −
∫

Rn

yif(y)dy = xi − ȳi.

Moreover, since either the probability of Ei(x) is 0 or for each y ∈ C(N, v), yi = xi, we have
∫

Ei(x)
(xi − yi)f(y)dy = 0. Hence,

∫

Rn

(xi − yi)f(y)dy =

∫

Wi(x)

(xi − yi)f(y)dy −
∫

Bi(x)

(yi − xi)f(y)dy.

Now, ∫

Wi(x)

(xi − yi)f(y)dy =

∫

Bi(x)

(yi − xi)f(y)dy ⇔ xi = ȳi.

Now, suppose that there is i ∈ N such that DSU
i (x) < 1 (the case DSU

i (x) > 1 is analogous).

Then, xi < ȳi. Now, because of efficiency, there is j 6= i such that xj > ȳj . Hence, by the first

part of the proof, DSU
j (x) > DSU

i (x).

Note that in the previous proof we also showed that the unique outcome (not necessarily

efficient) such that for each i ∈ N , DSU
i (x) = 1 is the core-center. Hence, the only case in which
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each i ∈ N perceives the sets Bi(x) and Wi(x) as equal (with regard to U and x), is in that in

which the core-center is chosen.

5.2.2 An Example

Consider the following 4-player game taken from Maschler et al. (1979),

v(S) =







2 S = N

1 2 ≤ |S| ≤ 3 and S 6= {1, 3}, {2, 4}
0.5 S = {1, 3}
0 otherwise.

This game is almost symmetric. Its main asymmetry is that coalition {1, 3} can obtain 0.5

whereas the coalition {2, 4} cannot obtain anything. For this game the Shapley value selects

(13/24, 11/24, 13/24, 11/24) and the nucleolus (0.5, 0.5, 0.5, 0.5). The core is the segment joining

the points (1, 0, 1, 0) and (0.25, 0.75, 0.25, 0.75); and the core-center is its midpoint, the allocation

(5/8, 3/8, 5/8, 3/8).

The asymmetry of the game is reflected in the Shapley value: players 1 and 3 obtain higher

payoffs, but not in the nucleolus which gives the same payoff to the four players. Besides, these

two allocations lie within the core. As one should expect, the core-center is very sensitive to the

asymmetries which directly affect the structure of the core, and this is the case in this example.

5.2.3 Monotonicity

Next, we study the behavior of the core-center with respect to monotonicity. To do so, we

define four different monotonicity properties. Let ϕ be an allocation rule. We say ϕ is strongly

monotonic if for each pair (N, v), (N,w) ∈ Gn, and each i ∈ N such that for each S ⊆ N\{i},
w(S ∪ {i}) − w(S) ≥ v(S ∪ {i}) − v(S), we have ϕi(N,w) ≥ ϕi(N, v). Let (N, v), (N,w) ∈ Gn,

let T ⊆ N be such that w(T ) > v(T ) and for each S 6= T , w(S) = v(S): ϕ satisfies coalitional

monotonicity if for each i ∈ T , ϕi(N,w) ≥ ϕi(N, v); ϕ satisfies aggregate monotonicity if T = N

implies that for each i ∈ N , ϕi(N,w) ≥ ϕi(N, v); ϕ satisfies weak coalitional monotonicity if
∑

i∈T ϕi(N,w) ≥∑i∈T ϕi(N, v).

Young (1985) characterized the Shapley value as the unique strongly monotonic and symmetric

allocation rule. Since the core-center is symmetric, it is not strongly monotonic. Also Young

(1985) and Housman and Clark (1998) showed that if an allocation rule always selects an allocation

in the core, it cannot satisfy coalitional monotonicity when the number of players is greater than

three. Hence, the core-center violates coalitional monotonocity. Things do not get better if we

weaken the monotonicity property to aggregate monotonicity.

Proposition 5.1. Let n ≥ 4. Then, the core-center does dot satisfy aggregate monotonicity

within the class of balanced games with n players.
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Proof. The proof is by means of an example with n = 4. If n > 4 the example can be adapted by

adding dummy players. Let (N, v) ∈ Gn be such that N = {1, 2, 3, 4} and v is defined as follows:

S 1 2 3 4 12 13 14 23 24 34 123 124 134 234 N

v(S) 0 0 0 0 0 1 1 1 1 0 1 1 1 2 2

Now, C(N, v) = {(0, 0, 1, 1)} and hence, µ(N, v) = (0, 0, 1, 1). Let co(A) stand for the convex hull

of the set A. Let (N,w) be such that w(N) = 3 and for each S 6= N , w(S) = v(S). Then,

S 1 2 3 4 12 13 14 23 24 34 123 124 134 234 N

w(S) 0 0 0 0 0 1 1 1 1 0 1 1 1 2 3

and

C(N,w) = co{(1, 0, 1, 1), (0, 0, 2, 1), (0, 0, 1, 2), (0, 1, 1, 1), (1, 1, 1, 0), (1, 1, 0, 1), (1, 2, 0, 0)}.

Next, we prove that the core-center does not satisfy aggregate monotonicity by showing that

µ3(N, v) > µ3(N,w). Let (N, ŵ) be the game defined as follows:

S 1 2 3 4 12 13 14 23 24 34 123 124 134 234 N

ŵ(S) 0 0 0 0 0 1 1 1 1 0 1 1 2 2 3

with core

C(N, ŵ) = co{(1, 0, 1, 1), (0, 0, 2, 1), (0, 0, 1, 2), (0, 1, 1, 1), (1, 1, 1, 0), (1, 1, 0, 1)}.

The game (N, ŵ) only differs from (N,w) in the value for the coalition {1, 3, 4}. Figures 5.2

and 5.3 show the cores of (N,w) and (N, ŵ) (the core of a 4-player game is a 3-dimensional

polytope), respectively. Note that, because of the stronger restriction for coalition {1, 3, 4},
C(N, ŵ) ( C(N,w). Now, C(N, ŵ) is symmetric with respect to the point (0.5, 0.5, 1, 1), i.e.,

x ∈ C(N, ŵ) ⇔ −
(
x− (0.5, 0.5, 1, 1)

)
+(0.5, 0.5, 1, 1) ∈ C(N, ŵ). Hence, µ(N, ŵ) = (0.5, 0.5, 1, 1).

Now, C(N,w)\C(N, ŵ) ( co{(1, 1, 1, 0), (0, 1, 1, 1), (1, 1, 0, 1), (1, 2, 0, 0)}. Hence, for each

x ∈ C(N,w)\C(N, ŵ), x3 ≤ 1. Moreover, the volume of the points in C(N,w)\C(N, ŵ) whose

third coordinate is smaller than 1 is positive. Hence, by the definition of the core-center, since

µ3(N, ŵ) = 1, we have µ3(N,w) < 1 = µ3(N, v). Hence, the core-center does not satisfy aggregate

monotonicity.

The nucleolus (Schmeidler, 1969) also violates the three monotonicity properties we have

studied so far. Zhou (1991) introduces weak coalitional monotonicity and shows that the nucleolus

satisfies it. This weakening of coalitional monotonicity only requires that, when one coalition

improves moving from (N,w) to (N, v) and there is no difference for all the other coalitions, then,

the coalition as a whole (instead each player separately) has to be better off in the allocation

selected for (N, v).

Proposition 5.2. The core-center satisfies weak coalitional monotonicity.
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1

2

4

3

Figure 5.2: The core of the game (N,w)

1

2

4

3

Figure 5.3: The core of the game (N, ŵ)

Proof. Let (N, v) and (N,w) be two balanced games as in the definition of weak coalitional

monotonicity, i.e., they only differ in that w(T ) > v(T ) for a given coalition T . If T = N the result

is immediately derived from efficiency. Hence, we can assume T ( N . If C(N,w) = C(N, v), then

µ(N,w) = µ(N, v) and
∑

i∈T µi(N,w) ≥∑i∈T µi(N, v). Hence, we can assume that C(N,w) (

C(N, v). Let x ∈ C(N, v)\C(N,w) and y ∈ C(N,w), then
∑

i∈T yi ≥ w(T ) >
∑

i∈T xi. Since the

core-center is the expectation of the uniform distribution over the core, and passing from C(N, v)

to C(N,w) we have removed the “bad” allocations for coalition T (as a whole), this coalition is

better off in the core-center of (N,w).

Hence, the core-center and the nucleolus have an analogous behavior with respect to all

monotonicity properties discussed in this Chapter.

5.2.4 Continuity

When introducing a new allocation rule, one of the first things to study its continuity. Intuitively,

one could think that the center of gravity of the core of a game (N, v) varies continuously as a

function of (N, v). Although the result is true, that intuition could lead to wrong arguments.

The core is a set-valued mapping from R2n−1 to Rn, and there is an extensive literature studying

the problem of continuous selection from set-valued mappings (see, for instance, Michael (1956)).

If two balanced games are close enough (as vectors of R2n−1), then the corresponding cores

are also close to each other (as sets). We are computing the center of gravity of these sets

when endowed with the uniform distribution. Hence, the question is: are also the corresponding

measures (associated with the uniform distribution) close to each other? This problem is not

trivial. The following example shows what the problem is:

Example 5.1. Consider the triangle with vertices (a, 0), (−a, 0) and (0, 1). The center of gravity

of this triangle is (0, 1/3), no matter the value a takes. If we let a tend to 0 then, “in the limit”,
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we get the segment joining the points (0, 0) and (0, 1), whose center of gravity is (0, 1/2), which

is not the limit of the centers of gravity.

The problem with the continuity arises when the number of dimensions of the space under

consideration is not fixed, i.e., an (n − 2)-polytope can be expressed (as a set) as the limit of

(n − 1)-polytopes. As we have shown in the previous example, the continuity property is quite

sensitive to this kind of degenerations. Hence, this problem must be handled carefully, taking into

account that the center of gravity of a convex polytope does not necessarily vary with continuity

if degenerations are permitted. Even so, the following statement is true:

Theorem 5.1. The core-center is continuous.

The proof of this statement is quite technical. In Section 5.3 we formally introduce the problem

along with the concepts needed for the proof.

5.2.5 Computation

The complexity of the computation of any allocation rule is a concept which also needs to be

studied. Here, we provide some insights to this problem when working with the core-center. The

computation of the center of gravity of a convex polytope is a problem which has been widely

studied in computational geometry. There are many negative results concerning the complexity

of this problem. In the case of the core-center, even if we are given a polynomial description of

the game (i.e., of the function v), the computation time can grow exponentially with the number

of players. Basically, there are two ways for obtaining the center of gravity of a convex polytope.

The classical one consists of the exact computation; many algorithms have already been developed

for this issue, but all of them are exponential in the number of players. The second approach

consists of using randomizing procedures to estimate the center of gravity. Roughly speaking,

these procedures lead to algorithms which allow to obtain the estimations in polynomial time

whenever we are able to find out whether a point belongs to the core or not in polynomial time;

this is not a mild assumption, but it cannot be dispensed with.

5.3 Continuity of the Core-Center

5.3.1 The Problem

First, we introduce the exact formulation of the problem to be solved. Henceforth, we denote a

game (N, v) by v. Note that in order to prove Theorem 5.1 it is enough to show that for each

balanced game v, and each sequence of balanced games converging to v (under the usual conver-

gence of vectors in R2n−1), the associated sequence of the core-centers of the games converges to

the core-center of v. Formally,

Theorem 5.2. Let v̄ be a balanced game and {vt} a sequence of balanced games such that

limt→∞ vt = v̄. Then, limt→∞ µ(vt) = µ(v̄).
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Clearly, Theorems 5.1 and 5.2 are equivalent. The next Proposition, which is a weaker ver-

sion of the previous Theorem contains the difficult part of the proof. Theorem 5.2, and hence

Theorem 5.1, are an easy consequence.

Proposition 5.3. Let v̄ be a balanced game and {vt} a sequence of balanced games such that

(i) for each t ∈ N, we have v̄(N) = vt(N),

(ii) limt→∞ vt = v̄.

Then, limt→∞ µ(vt) = µ(v̄).

In contrast with Theorem 5.2, where every possible sequence of games is considered, Propo-

sition 5.3 only concerns specific sequences. Next, we prepare the ground for Proposition 5.3. We

do it by stating and proving a general result. Then, Proposition 5.3 is easily derived. We make

use of some measure theory and functional analysis results, which help us to place our result on

a firm basis.

5.3.2 A New Framework

Next, we introduce a new framework in which we state and prove a general convergence result for

uniform measures. Then, the main part of the proof of Proposition 5.3 is a particular case. The

idea of the whole procedure can be summarized as follows: whenever we think about a balanced

game and its core-center, we can just think of a polytope (its core) and its center of gravity.

Similarly, whenever we have a polytope and its center of gravity, we can just think of the uniform

measure defined over the polytope and the integral of the identity function with respect to it.

Following this idea, if we want to prove that the core-center of a sequence of games converges to

the core-center of the limit game (Theorem 5.2), it is enough to prove that the integrals over the

corresponding uniform measures also converge.

Notation

A (convex) polyhedron is defined as the intersection of a finite number of closed halfspaces. A

polyhedron P is an m-polyhedron if its dimension is m, i.e., the smallest integer such that P

is contained in an m-dimensional space. A (convex) polytope is a bounded polyhedron. Let

Mm
λ stand for the Lebesgue measure on Rm. Let A ⊆ Rm be a Lebesgue measurable set and let

m′ ≥ m; we denote Mm′

λ (A) by Volm′(A) , i.e., the m′-dimensional volume of A; hence, if A ⊆ Rm

and m′ > m, then, Volm′(A) = 0. Let P be an m-polytope and XP its characteristic function;

let MP be the Borel measure such that MP := 1
Volm(P )XPM

m
λ , i.e., the uniform measure defined

over polytope P .

Let u be a vector in Rm. Let Hu
α be the following hyperplane normal to u, Hu

α := {x ∈ Rm :
∑m

j=1 ujxj = α}. Let BH be the halfspace below hyperplane H. Let P be a polytope, then

we say that hyperplane H is a supporting hyperplane for P if H ∩ P 6= ∅ and BH contains P .
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Usually, a face of a polytope P is defined as (i) P itself, (ii) the empty set, or (iii) the intersection

of P with some supporting hyperplane. With a slight abuse of language, we use the term face to

designate only (m− 1)-dimensional faces of an m-polytope. Let F(P ) be the set of all faces of P

and F be an arbitrary face.

Let P be an m-polytope. Then, the finite set of polytopes {P1, . . . , Pk} is a dissection of P if

(i) P =
⋃k

j=1 Pj and (ii) for each pair {j, j′} ⊆ {1, . . . , k}, with j 6= j′, Volm(Pj ∩ Pj′) = 0.

Next, we state, without proof, two elemental results.

Lemma 5.2. Let P and P ′ be two m-polytopes such that P ′ ⊆ P . Then, P ′ belongs to some

dissection of P .

Lemma 5.3. Let P be an m-polyhedron, let u ∈ Rm, and let α, β ∈ R. Let P ∩ Hu
α 6= ∅ and

P ∩Hu
β 6= ∅. Then, P ∩Hu

α is bounded if and only if P ∩Hu
β is bounded.

Let P be an m-polytope, let r > 0 be such that P ( (−r, r)m ( Rm. Let R := [−r, r]m. The

pair (R,B), where B stands for the collection of Borel sets of R, is a measure space. Let M(R) be

the set of all complex-valued regular Borel measures defined on (R,B) and M+(R) the subset of

real-valued and positive Borel measures. Also, let C(R) and CR(R) be the sets of all continuous

functions f : R→ C and f : R→ R respectively.

As a consequence of the Riesz Representation Theorem, C(R)∗ = M(R), i.e., M(R) is the

dual of C(R). This allows us to use the weak∗ topology (henceforth w∗) in M(R). According

to this topology, a sequence of measures {Mt} converges to a measure M if and only if for each

f ∈ C(R), limt→∞
∫
fdMt =

∫
fdM . For each f ∈ C(R), and each measure M ∈ M(R), 〈f,M〉

denotes
∫
fdM .

Remark. We apologize for the readers that are not familiar with these concepts. They lead to

a more consistent notation, cleaner statements, and less tedious proofs. Henceforth, convergence

of a sequence of measures {Mt} to a measure M under w∗ just means that, for each continuous

function f , the sequence of real numbers obtained by integration of f under the Mt’s converges to

the integral under M . Moreover, for notational convenience, we denote those integrals by 〈f,Mt〉
and 〈f,M〉, respectively.

The results

Next, we prove two technical lemmas.

Lemma 5.4. Let f : R2 → R be a continuous function and K ( R a compact set. Then, the

function h : R → R defined by h(x) := maxy∈K f(x, y) is continuous.

Proof. Suppose, on the contrary, that h is not continuous. Then, there is a sequence of real

numbers {xt} such that (i) limt→∞ xt = x, and (ii) the sequence {h(xt)} does not converge to

h(x). Let y∗ ∈ K be such that f(x, y∗) = maxy∈K f(x, y) = h(x).

For each t ∈ N, let yt ∈ K be such that h(xt) = f(xt, yt). Since each yt ∈ K, the sequence

{yt} has a convergent subsequence. Assume, without loss of generality, that {yt} itself converges
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and let y′ be its limit. Then,

f(x, y∗) = h(x)
assumpt

6= lim
t→∞

h(xt) = lim
t→∞

f(xt, yt)
fcont
= f(x, y′).

Hence, f(x, y∗) > f(x, y′). Then, there is δ > 0 such that

|xt − x| < δ

|yt − y′| < δ

}

fcont
=⇒ f(xt, y

∗) − f(xt, yt) > 0, contradicting h(xt) = f(xt, yt).

Corollary 5.1. Let f : Rm → R be a continuous function and K ( Rl, 1 < l < m, a compact

set. Then, the function h : Rm−l → R defined by h(x) := maxy∈K f(x, y) is continuous.

Proof. The proof of Lemma 5.4 can be immediately adapted to this general case.

Note that analogous results to Lemma 5.4 and Corollary 5.1 can be stated using min instead

of max.

Lemma 5.5. Let M ∈ M(R) and let {Mt} be a sequence of measures in M(R) such that for

each f ∈ CR(R), limt→∞〈f,Mt〉 = 〈f,M〉. Then, for each f ∈ C(R), limt→∞〈f,Mt〉 = 〈f,M〉.

Proof. For each f ∈ C(R), there exist functions f1 and f2 in CR(R) such that for each x ∈ R,

f(x) = f1(x) + f2(x)i. Then,

〈f,Mt〉 =

∫

f dMt =

∫

f1 dMt + i

∫

f2 dMt
t→∞−→

∫

f1 dM + i

∫

f2 dM = 〈f,M〉.

As a consequence of Lemma 5.5, to prove a convergence under w∗, it suffices to study functions

in CR(R).

Now we are ready to state the main result.

Theorem 5.3. Let P be an m-polytope and R an m-dimensional cube [−r, r]m containing P in

its interior. Let u ∈ Rm. Let ᾱ ∈ R and let {αt} be a sequence in [ᾱ,∞) with limit ᾱ. Let

Pt := P ∩BHu
αt

and P̄ := P ∩BHu
ᾱ. Then, MPt

w∗
−→MP̄ .

Proof. Without loss of generality, we assume that u = e1 = (1, 0, . . . , 0) (otherwise a change of

coordinates can be carried out) and that {αt} is a decreasing sequence of positive numbers. If P̄

is an m-polytope, there are no degeneracies and the result is straightforward. Hence, we assume

that P̄ is not an m-polytope. Hence, ᾱ = minx∈P x1. Now, we distinguish two cases: P̄ is an

(m− 1)-polytope, and P̄ is an (m− l)-polytope, with l > 1 (multiple degeneracy).

Case 1: P̄ is an (m− 1)-polytope.

Let Q be the polyhedron defined as follows,

Q := {y ∈ Rm : y = x+ γe1, where x ∈ P̄ and γ > 0}.
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Now, for each t ∈ N, we define the auxiliary polytopes Qt := Q ∩ BHe1

αt
. Also, let Q̄ :=

Q ∩BHe1

ᾱ (see Figure 5.4). Note that, by definition, Q̄ = P̄ .

P̄

Qt−1 Qt

He1

αt
He1

αt−1
· · ·He1

ᾱ

x Qt(x)

R
P

Figure 5.4: The Qt polytopes

The proof is in three steps. In Step 1 we prove that the sequence of measures induced by

the auxiliary polytopes, {MQt
}, converges to MQ̄. In Step 2, we study the relations between the

volumes of Pt\Qt, Qt\Pt, and Qt. Finally, in Step 3 we obtain the desired convergence result,

i.e., that of the sequence {MPt
} to MP̄ . Recall that, by Lemma 5.5, we can restrict our attention

to functions in CR(R) whenever we have to prove some convergence under w∗.

Step 1: MQt

w∗
−→MQ̄.

We want to prove that for each f ∈ CR(R), limt→∞〈f,MQt
〉 = 〈f,MQ̄〉.

Step 1.a: Let f ∈ CR(R) be such that there exists c : [−r, r]m−1 → R with the following

property: for each x ∈ [−r, r]m, f(x) = c(x−1). Let dx−1 stand for dx2 . . . dxm. Also, for each

x ∈ Q̄ and each t ∈ N, we define the 1-polytopes Qt(x) := {y ∈ Qt : y−1 = x−1}. Note that, if

x 6= x′, then Qt(x) ∩ Qt(x
′) = ∅ and Vol1(Qt(x)) = Vol1(Qt(x

′)) = αt − ᾱ. Moreover, for each

x ∈ Q̄, f is constant in Qt(x). Then,

〈f,MQt
〉 =

1

Volm (Qt)

∫

Q̄

∫

Qt(x)

c(x−1)dx−1dx1

=
αt − ᾱ

Volm (Qt)

∫

Q̄

c(x−1)dx−1

=
1

Volm−1 (Q̄)

∫

Q̄

c(x−1)dx−1

= 〈f,MQ̄〉.
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Step 1.b: Let f ∈ CR(R). Define the three auxiliary functions

f∗(x1, x−1) := f(ᾱ, x−1),

ct(x1, x−1) := max
z∈[ᾱ,αt]

f(z, x−1), and

ct(x1, x−1) := min
z∈[ᾱ,αt]

f(z, x−1).

By Corollary 5.1, functions ct and ct are continuous. Hence, by Step 1.a, we have 〈ct,MQt
〉 =

〈ct,MQ̄〉 and 〈ct,MQt
〉 = 〈ct,MQ̄〉. By the continuity of f , for each x ∈ R, limt→∞ ct(x) =

f∗(x) = limt→∞ ct(x). Let g be the constant function such that for each x ∈ R, g(x) :=

maxx∈R |f(x)|. Since
∫
g dMQ̄ = maxx∈R |f(x)|, g is Lebesgue integrable with respect to MQ̄.

Moreover, for each x ∈ R, |ct(x)| ≤ g(x) and |ct(x)| ≤ g(x). Since MQt
∈ M+(R), then

〈ct,MQt
〉 ≤ 〈f,MQt

〉 ≤ 〈ct,MQt
〉. Now, the Lebesgue’s Dominated Convergence Theorem

completes Step 1,

〈ct,MQt
〉 ≤ 〈f,MQt

〉 ≤ 〈ct,MQt
〉

Step 1.a

〈ct,MQ̄〉
t → ∞ ↓ Dom Conv

〈f∗,MQ̄〉
f∗(x) = f(x), x ∈ Q̄

〈f,MQ̄〉

Step 1.a

〈ct,MQ̄〉
t → ∞ ↓ Dom Conv

〈f∗,MQ̄〉
f∗(x) = f(x), x ∈ Q̄

〈f,MQ̄〉.

Hence, for each f ∈ CR(R), limt→∞〈f,MQt
〉 = 〈f,MQ̄〉.

Step 2: lim
t→∞

Volm(Pt\Qt)

Volm(Qt)
= lim

t→∞
Volm(Qt\Pt)

Volm(Qt)
= 0 and lim

t→∞
Volm(Pt)

Volm(Qt)
= 1.

We show that limt→∞
Volm(Pt\Qt)

Volm(Qt)
= 0, being the proof for Qt\Pt analogous. By Lemma 5.2,

there are polytopes P 1
1 , . . . , P

k
1 , k ≥ 1, such that {P 1

1 , . . . , P
k
1 , Q1 ∩ P1} is a dissection of P1.

Hence, P1\Q1 ( ∪k
j=1P

j
1 = co(P1\Q1). Note that co(P1\Q1) coincides with the closure of

P1\Q1. Now, for each t ∈ N and each j ∈ {1, . . . , k}, let P j
t := P j

1 ∩ BHe1

αt
. Then, for each

t ∈ N, {P 1
t , . . . , P

k
t , Qt ∩ Pt} is a dissection of Pt and Pt\Qt ( ∪k

j=1P
j
t = co(Pt\Qt). Hence,

Volm(Pt\Qt) ≤
∑k

j=1 Volm(P j
t ) (actually, they are equal).

Now, since Volm(Qt) = Volm−1(P̄ )(αt − ᾱ), Volm(Qt) = O(αt − ᾱ), i.e., Volm(Qt) is a linear

function of (αt − ᾱ).1 Let j ∈ {1, . . . , k}, since Q̄ = P̄ , P j
1 ∩ BHe1

ᾱ is contained in some face

of P̄ , i.e., it is in the boundary of P̄ . Hence, P j
1 ∩ BHe1

ᾱ is, at most, an (m − 2)-polytope.

Hence, if for each t ∈ N , P j
t is an m-polytope, we have that, in the limit, there is, at least, a

2-dimensional degeneracy. Hence, Volm(P j
t ) = o((αt− ᾱ)2).2 Now, since the number of polytopes

in the dissection is finite, we have Volm(Pt\Qt) = o((αt − ᾱ)2).

1We say that f(t) = O(g(t)) if there are c1, c2 > 0 and t′ ∈ N such that, for each t > t′, c1|g(t)| ≤ |f(t)| ≤
c2|g(t)|. The notation f(t) = o(g(t)) means that there is c > 0 and t′ ∈ N such that, for each t > t′, |f(t)| ≤ c|g(t)|.

2Just because, roughly speaking, the volume of a polytope is a linear function of its “length” in each dimension.
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Finally, lim
t→∞

Volm(Pt\Qt)

Volm(Qt)
= lim

t→∞
o((αt − ᾱ)2)

O(αt − ᾱ)
= 0.

We turn now to Volm(Pt)
Volm(Qt)

. Since Pt = Qt\(Qt\Pt) ∪ (Pt\Qt), and Qt\(Qt\Pt) and Pt\Qt are

disjoint sets, then Volm(Pt) = Volm(Qt) − Volm(Qt\Pt) + Volm(Pt\Qt). Hence,

lim
t→∞

Volm(Pt)

Volm(Qt)
= lim

t→∞

(

1 − Volm(Qt\Pt)

Volm(Qt)
+

Volm(Pt\Qt)

Volm(Qt)

)

= 1.

Step 3: MPt

w∗
−→MP̄ .

∫

f dMPt
=

∫
fXPt

Volm(Pt)
dMm

λ

=
1

Volm(Pt)

∫

f(XQt
−XQt\Pt

+ XPt\Qt
) dMm

λ

=

∫
fXQt

Volm(Pt)
dMm

λ −
∫

fXQt\Pt

Volm(Pt)
dMm

λ +

∫
fXPt\Qt

Volm(Pt)
dMm

λ .

We want to show that both the second and the third addend tend to 0. We can assume

that Volm(Qt\Pt) 6= 0, otherwise,
∫
fXQt\Pt

dMm
λ = 0 and we are done with the corresponding

addend. Similarly, we assume that Volm(Pt\Qt) 6= 0. Now,

∫

f dMPt
= A1 −A2 +A3,

where,

A1 =
Volm(Qt)

Volm(Pt)

∫
fXQt

Volm(Qt)
dMm

λ =
Volm(Qt)

Volm(Pt)

∫

f dMQt
,

A2 =
Volm(Qt\Pt)

Volm(Pt)

∫
fXQt\Pt

Volm(Qt\Pt)
dMm

λ =
Volm(Qt\Pt)

Volm(Pt)

∫

fdMQt\Pt
, and

A3 =
Volm(Pt\Qt)

Volm(Pt)

∫
fXPt\Qt

Volm(Pt\Qt)
dMm

λ =
Volm(Pt\Qt)

Volm(Pt)

∫

f dMPt\Qt
.

Since
∫
fdMQt\Pt

≤ maxx∈R f(x) and
∫
fdMPt\Qt

≤ maxx∈R f(x), then, by Step 2, both A2

and A3 tend to 0. We move now to A1. By Step 2, limt→∞
Volm(Qt)
Volm(Pt)

= 1. Since, by Step 1,

limt→∞
∫
f dMQt

=
∫
f dMP̄ , we have limt→∞

∫
f dMPt

=
∫
f dMP̄ .

Case 2: P̄ is an (m− l)-polytope, l > 1.

We have multiple degeneracy. To study this case, new auxiliary polytopes Qt and Q̄ have to

be defined, but the idea of the proof is the same. Assume that the degeneracies are in the first l

components. Then, there exist a1, . . . , al ∈ R such that for each x ∈ P̄ , x1 = a1, . . . , xl = al. Let

{F1, . . . , Fk} ⊆ F(P ) be the set of the faces of P containing P̄ ; since P̄ is an (m − l)-polytope,

k ≥ 2. For each j ∈ {1, . . . , k}, let Hj be the hyperplane containing Fj and assume, without loss
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of generality, that P ( BHj . For each i ∈ {1, . . . ,m}, let ei ∈ Rm be the i-th canonical vector.

Let Q be the polyhedron defined as follows,

Q :=

{

y ∈ Rm :
for each j ∈ {1, . . . , k}, y ∈ BHj and

y = x+
∑l

i=1 γie
i, where x ∈ P̄ and, for each i ∈ {1, . . . , l}, γi > 0

}

.

Now, for each t ∈ N, we define the auxiliary polytopes Qt := Q ∩ BHe1

αt
. Also, let Q̄ :=

Q ∩ BHe1

ᾱ (see Figure 5.5). Note that, by definition, Q̄ = P̄ . Since Qt ∩ He1

ᾱ = Q̄ is bounded,

applying Lemma 5.3, we have that Qt is bounded. Hence, each Qt is indeed a polytope.

Now, all the steps in Case 1 can be adapted for the Qt’s. Only some minor (and natural)

changes have to be made. Next, we go through these steps, stressing where modifications are

needed.

Step 1: MQt

w∗
−→MQ̄.

Step 1.a: Let xL := (x1, . . . , xl) and xL̄ := (xl+1, . . . , xm). Let f ∈ CR(R) be such that there

exists c : [−r, r]m−l → R with the following property: f(xL, xL̄) = c(xL). Also, for each x ∈ Q̄

and each t ∈ N, we define the l-polytope Qt(x) := {y ∈ Qt : y−L = x−L} (Figure 5.6). Again, if

x 6= x′, then Qt(x) ∩Qt(x
′) = ∅ and Voll(Qt(x)) = Voll(Qt(x

′)) = Volm(Qt)
Volm−l(Q̄)

. Moreover, for each

x ∈ Q̄, f is constant in Qt(x). The rest is analogous to Case 1.

Step 1.b: Let f ∈ CR(R). Let x̂ ∈ Q̄. For each t ∈ N, we define the compact set

Kt := {z ∈ Rl : z = yL, where (yL, yL̄) = y ∈ Qt(x̂)}, i.e., Kt is the projection of Qt(x) into Rl.

Note that the definition of Kt is independent of the selected x̂ ∈ Q̄. Define the three auxiliary

functions

f∗(xL, xL̄) := f(a1, . . . , al, xL̄),

ct(xL, xL̄) := max
z∈Kt

f(z, xL̄), and

ct(xL, xL̄) := min
z∈Kt

f(z, xL̄).

With these definitions Corollary 5.1 still applies. The rest is analogous to Case 1.

Step 2: lim
t→∞

Volm(Pt\Qt)

Volm(Qt)
= lim

t→∞
Volm(Qt\Pt)

Volm(Qt)
= 0 and lim

t→∞
Volm(Pt)

Volm(Qt)
= 1.

Now, P j
1 ∩ BHe1

ᾱ is, at most, an (m − (l + 1))-polytope; Volm(Pt\Qt) = o((αt − ᾱ)l+1); and

Volm(Qt) = O(αt − ᾱ)l. The rest is analogous to Case 1.

Step 3: MPt

w∗
−→MP̄ . Analogous to Case 1.

Remark. Now, if we go back to Example 5.1, the one we used to illustrate the problem with

continuity, we can wonder why the scheme of the proof above does not apply. The reason is that

the vector u we used to define the sequence of polytopes was fixed for the whole proof and, in

Example 5.1, we would need an infinite number of different vectors to construct the corresponding

sequence of polytopes.
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P

He1

α1
He1

αt
He1

ᾱ

P̄

R

Qt

Q1

Figure 5.5: Defining the polytopes Qt (P is a 2-polytope and P̄ a 0-polytope)

front face

He1

ᾱ

He1

αt

Qt(x)

x

Q̄ = P̄

Qt

R

Figure 5.6: The set Qt(x) (P is a 3-polytope and P̄ a 1-polytope)
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So far, measures MP have belonged to M(R). These measures can be extended to (Borel)

measures in Rm by letting the measure of each A ⊆ Rm be MP (A ∩ R). With a slight abuse of

notation, we also denote these extensions by MP .

Corollary 5.2. Let P ( Rm be an (m − l)-polytope, 0 ≤ l ≤ m. Let u ∈ Rm. Let ᾱ ∈ R and

let {αt} be a sequence in [ᾱ,∞) with limit ᾱ. Let Pt := P ∩ BHu
αt

and P̄ := P ∩ BHu
ᾱ. Let

f : Rm → R be a continuous function. Then, limt→∞
∫
f dMPt

=
∫
f dMP̄ .

Proof. We distinguish two cases:

Case 1: l = 0. Let r > 0 be such that P is contained in the interior of R = [−r, r]m. Let

fR : R→ R be the restriction of f to R. Then,

∫

f dMPt
=

∫

fR dMPt

Th. 5.3−→
∫

fR dMP̄ =

∫

f dMP̄ .

Case 2: l > 0. There exist a1, . . . , al ∈ R such that x ∈ P if and only if x1 = a1, . . . , xl = al.

Let R = a1 × . . . × al × [−r, r]m−l be such that P belongs to its interior. Now, everything in

Theorem 5.3 can be adapted for the MPt
’s, MP̄ and this new R. Hence, the same argument of

Case 1 leads to the result.

5.3.3 Back to Game Theory

Now, we turn back to the game theoretical framework and prove the results stated in Section 5.3.1.

Proof of Proposition 5.3. We distinguish two cases in this proof. In Case 1, only the value of

a fixed coalition S varies throughout the sequence {vt}. Next, in Case 2, all the coalitions but

coalition N can change.

Case 1: There is S ( N such that for each T 6= S and each t ∈ N, v̄(T ) = vt(T ).

First, we define a new game whose core contains the cores of all vt’s and of v̄. Let v be

defined, for each S ⊆ N , by v(S) := min{v̄(S), {vt(S) : t ∈ N}}. Game v is well-defined because

the set v̄(S) ∪ {vt(S) : t ∈ N} is compact for each S (otherwise the sequence {vt} would not

be convergent). Let P := C(v), Pt := C(vt) and P̄ := C(v̄). Clearly, by definition of v, P

contains polytopes Pt and P̄ . Let HS
vt(S) be the hyperplane of equation

∑

i∈S xi = vt(S). Let

eS ∈ Rn be such that eS
i = 1 if i ∈ S and eS

i = 0 if i /∈ S. Then, eS is the normal vector

of HS
vt(S). The sequence {vt(S)} has limit v̄(S). Now, using the notation of Section 5.3.2, let

Pt = P ∩ BHeS

vt(S), and P̄ = P ∩ BHeS

v̄(S). Let h : Rn → Rn be defined by h(x) := x. Then,

µ(vt) =
∫
h dMPt

and µ(v̄) =
∫
h dMP̄ . For each i ∈ {1, . . . , n}, the function hi : Rn → R defined

by hi(x) = (h(x))i = xi is continuous. Hence, by applying Corollary 5.2 to each hi, we have

limt→∞ µ(vt) = µ(v̄).

Case 2: For each t ∈ N, v̄(N) = vt(N). Only the value for the grand coalition is fixed now.
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Assume that there are coalitions S, S̄ ( N such that, for each T 6= S, S̄ and each t ∈ N,

v̄(T ) = vt(T ). Let BHeS

vt(S) and BHeS̄

vt(S̄)
be the corresponding halfspaces. The key now, is that

we can change the order in which we make the intersections with the halfspaces, i.e., the same

polytope arises if we intersect first with a (BHeS

)-like halfspace and then with a (BHeS̄

)-like

one, or we intersect the other way around. Then, we can see the sequence of polytopes as a

sequence with two indices. Polytope Pi,j is obtained by intersecting P with the ith (BHeS

)-like

halfspace and the jth (BHeS̄

)-like halfspace. Polytope P̄ is the “limit” of the polytopes Pi,j when

both i and j go to infinity. Hence, using Case 1 first for index i and second for index j, we

prove the convergence of the centers of gravity. Intuitively, we carry out all the intersections with

one halfspace, and then we do so with the other one (limits are inter-changeable). If there are

more than two different types of halfspaces (more coalitions with non-fixed values throughout the

sequence), the same argument works because there is always a finite number of such types.

Proof of Theorem 5.2. Now we consider the general case, when the worths of all coalitions can

vary along the sequence {vt} .

Let εt := v̄(N) − vt(N) (note that εt can be either positive or negative). For each t ∈ N,

let v̂t be the auxiliary game such that for each S ⊆ N , v̂t(S) = vt(S) + |S|
n εt. Now, for each

t ∈ N, we have (i) v̂t(N) = v̄(N), and (ii) C(v̂t) is obtained by translation of C(vt) by the

vector 1
n (εt, . . . , εt). Since {εt} tends to 0, limt→∞ vt = v̄ implies that limt→∞ v̂t = v̄. Hence,

by Proposition 5.3, limt→∞ µ(v̂t) = µ(v̄). Since the core-center is translation invariant, µ(vt) =

µ(v̂t) − 1
n (εt, . . . , εt). Now, using again that {εt} → 0 we have

lim
t→∞

µ(vt) = lim
t→∞

(

µ(v̂t) − 1

n
(εt, . . . , εt)

)

= lim
t→∞

µ(v̂t) − lim
t→∞

1

n
(εt, . . . , εt) = µ(v̄),

and the Theorem is proved.

5.4 Concluding Remarks

In this Chapter we introduced a new allocation rule for the class of balanced games: the core-

center. Then, we provided a detailed discussion of the axiomatic properties of the core-center.

Special emphasis was made in two of them. First, we showed that the core-center does not satisfy

some of the standard monotonicity properties; even though, we showed that it satisfies weak

coalitional monotonicity and we established a certain parallelism with the nucleolus. Second, we

deeply discussed the continuity property of the core-center. This property is finally derived from a

more general result. Indeed, using Corollary 5.2, it can be shown that any allocation rule defined

as the integral, with regard to the Lebesgue measure, of a continuous function (not necessarily

the identity) is also continuous.
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5.A Appendix (Classical Results in Measure Theory and

Functional Analysis)

This appendix contains the statements of the main classic results used along the chapter. For a

deeper discussion refer to Rudin (1966) and/or Conway (1990) and/or Billingsley (1968).

Let X be any set and let Ω be a σ-algebra of subsets of X. Hence, (X,Ω) is a measurable

space. If X is a locally compact set and Ω denotes the smallest σ-algebra of subsets of X that

contains the open sets, then sets in Ω are called Borel sets. Let (X,B) denote this particular

measurable space and let M(X) be the set of complex-valued regular Borel measures on X.

5.A.1 The Riesz Representation Theorem

Let X be a locally compact set. Let C0(X) be the set of all continuous functions f : X → C such

that for each ε > 0, the set {x ∈ X : |f(x)| ≥ ε} is compact. Let C0(X)∗ be the dual of C0(X).

Next theorem shows that the dual of C0(X) is M(X).

Theorem 5.4 (Riesz Representation Theorem3). Let X be a locally compact space and M ∈
M(X). Let FM : C0(X) → C be such that FM(f) :=

∫
f dM. Then, FM ∈ C0(X)∗ and the map

η 7→ Fη is an isometric isomorphism of M(X) onto C0(X)∗.

In this chapter X = R, a compact space. Hence, C0(R) = C(R), and the Riesz Representation

Theorem can be used to conclude that C(R)∗ = M(R).

5.A.2 The Weak∗ Topology

Seminorms and generated topologies

Let X be a normed space. A natural metric can be defined considering the distance d(x, y) :=

||x − y||. Let τ be the topology induced by this metric. This topology is usually referred to as

the topology induced by the norm.

If X is a vector space over K, a seminorm is a function q : X → [0,∞) having the following

properties,

(i) for each pair x, y ∈ X, q(x+ y) ≤ q(x) + q(y),

(ii) for each α in K, and each x in X, q(αx) = |α|q(x).

A norm is a seminorm such that q(x) = 0 implies x = 0. Seminorms can be used to generate

topologies, indeed, the weak∗ topology is defined in this way.

Let X be a vector space and {qα, α ∈ I} be a family of seminorms. The smallest translation

invariant topology that makes all the qα continuous, is the topology generated by {qα, α ∈ I}. It

3There are many similar theorems in literature which have been named “Riesz Representation Theorem”, the
one we present here has been extracted from Conway (1990).
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can be proved that the collection {⋂∞
k=1 q

−1
αk

([0, εk)) : ε1, . . . , εn ∈ (0,∞) , α1, . . . , αn ∈ I , n ∈
N}, is a local base in the origin for this topology (now, by the translation invariance property a

base can be obtained). Under this topology, V ⊆ X is open if and only if for each x ∈ V , there

exist α1, . . . , αn ∈ I, and ε1, . . . , εn ∈ (0,∞), such that x +
⋂∞

k=1 q
−1
αk

([0, εk)) ⊆ V . Moreover,

limn→∞{xn} = 0 if and only if for each ε > 0, and each α ∈ I, there exists Nαε
such that

for each n > Nαε
, xn ∈ q−1

α ([0, ε)). Then, limn→∞{xn} = 0 if and only if for each α ∈ I,

limn→∞ qα(xn) = 0. Since this topology is translation invariant, then limn→∞{xn} = x if and

only if limn→∞{xn − x} = 0.

Weak∗ topology

Next, the weak∗ topology, henceforth w∗, in introduced. Let X be a normed space, X∗ its dual

and τ and τ∗ the topologies induced by the corresponding norms. For each x ∈ X, let qx be the

function in X∗ such that for each ϕ ∈ X∗, qx(ϕ) = |ϕ(x)| = |〈ϕ, x〉|. Function qx is a seminorm

in X∗. The family of seminorms {qx : x ∈ X}, generates a topology in X∗, w∗. Recall that w∗

is, therefore, the smallest topology under which all the seminorms are continuous. It is also true

that w∗ ≤ τ∗; the equality holds if and only if dim(X∗) <∞.

Borel measures and the weak∗ topology

In this chapter X = C(R) and X∗ = M(R). Consider the topology w∗ in M(R). The sequence of

measures {Mn} converges to the measure M if and only if {Mn −M} converges to the measure

0, i.e., for each f ∈ C(R), limn→∞ qf (Mn −M) = 0. Then, the sequence converges if and only

if for each f ∈ C(R), limn→∞
∫
fdMn =

∫
fdM. The latter formulation is the appropriate for

this chapter.

5.A.3 Lebesgue’s Dominated Convergence Theorem

Let X be a measurable space, Y a topological space and f a mapping of X into Y . Then, f

is a measurable function if for each open set V in Y , f−1(V ) is a measurable set in X. Let

M ∈ M(X), and let L1(M) be the collection of all complex measurable functions f on X for

which
∫
|f |dM < ∞. Functions in L1(M) are called Lebesgue integrable functions with respect

to M.

Theorem 5.5 (Lebesgue’s Dominated Convergence Theorem). Let {fn} be a sequence of complex

measurable functions on X such that for each x ∈ X, f(x) := limn→∞ fn(x) exists. If there is a

function g ∈ L1(M) such that for each n ∈ N, and all x ∈ X, |fn(x)| ≤ g(x), then f ∈ L1(M),

limn→∞
∫

X
|fn − f | dM = 0, and limn→∞

∫

X
fn dM =

∫

X
f dM.

In this chapter we apply this theorem to the sequences of functions {ct} and {ct} defined

in Step 1.a of the proof of Theorem 5.3. It is easy to verify that they are, indeed, under the

assumptions needed for the theorem. They are continuous and, since we work with Borel measures,
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they are also measurable. It is also easy to define a function dominating them because we work

in a compact set. Finally, the punctual convergence in R is also fulfilled.
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6.1 Introduction

In González-Díaz and Sánchez-Rodríguez (2003), the core-center, a new allocation rule for the

class of balanced games is introduced. That paper contains a first approach both to the study of

the axiomatic properties of the core-center and to the search for an axiomatic characterization.

This Chapter focuses in the latter. We formally develope and refine the characterization provided

there.

The key property for the characterization is a weighted additivity, based on a principle of

fairness with regard to the core, that we call fair additivity. This property, along with other

standard properties in game theory, leads to the axiomatic characterization of the core-center. It

has a certain parallelism with the characterization of the Shapley value based on the additivity

property. First, we prove the result for games with a simplicial core, which play the role of the

unanimity games in Shapley’s characterization. Second, we prove the result for arbitrary games

by means of simplicial dissections of their cores.

In the fair additivity property the weights depend on the volumes of the cores. There are

antecedents in game theory that look for this kind of fairness. One of the solutions for two person

bargaining problems which depends on the whole feasible set is the Equal Area Solution. Anbarci

and Bigelow (1994) interpreted equal area as equal concessions. Later, Calvo and Peters (2000)

looked at the underlying dynamic process.

The structure of this Chapter is as follows. In Section 6.2 we introduce the preliminary game

theoretical concepts along with the definition of the core-center. In Section 6.3 we introduce and

discuss the fair additivity property. In Section 6.4 we state and prove the characterization of the

core-center. Finally, in the Appendix we provide rigorous proofs of some technical statements

which have been skipped in the text; moreover, it also includes formal definitions and properties

of some geometric concepts used along the Chapter.

6.2 Game Theory Background

A transferable utility or TU game is a pair (N, v), where N := {1, . . . , n} is a set of players

and v : 2N → R is a function assigning to each coalition S ⊆ N a payoff v(S). By convention,

v(∅) = 0. Since each game assigns a real value to each nonempty subset of N , it corresponds with

a vector in R2n−1. Let |S| be the number of elements of coalition S. Saving notation, when no

ambiguity arises, we use i to denote {i}. Given a game (N, v), the imputation set is defined by

I(N, v) := {x ∈ Rn :
∑

i∈N xi = v(N) and, for each i ∈ N , xi ≥ v(i)}.
Let x ∈ Rn be an allocation. Then, x is efficient if

∑n
i=1 xi = v(N). A game (N, v) is

superadditive if for each S, T ⊆ N such that T ∩ S = ∅, we have v(S ∪ T ) ≥ v(S) + v(T ). We

restrict our attention to efficient allocations. Within this framework, it is widely accepted that

superadditivity is quite a reasonable requirement for the game. This is because we expect the

grand coalition to form, and then, share the amount v(N) among the players; if the game was not
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superadditive this expectation might be unfounded. Hence, in the present Chapter we restrict to

the class of superadditive TU games, denoted by G (Gn denotes the superadditive games with n

players).

An allocation rule is a function which, given a game (N, v), selects an allocation in Rn, i.e.,

ϕ : Ω ⊆ Gn −→ Rn

(N, v) 7−→ ϕ(N, v).

Next, we define some properties for allocation rules. Let (N, v) ∈ Gn and let ϕ be an allocation

rule: ϕ is continuous if the function ϕ : R2n−1 → Rn is continuous; ϕ is efficient if it always

select efficient allocations; ϕ is translation invariant if for each two games (N, v) and (N,w),

and each α = (α1, . . . , αn) ∈ Rn such that for each S ⊆ N , w(S) = v(S) +
∑

i∈S αi, then

ϕ(N,w) = ϕ(N, v) + α.

Next, we define some properties regarding symmetry. Let (N, v) ∈ Gn and let i, j ∈ N . Then,

i and j are symmetric if for each S ⊆ N\{i, j}, v(S ∪ i) − v(S) = v(S ∪ j) − v(S); i and j are

quasi-symmetric if for each S ⊆ N\{i, j}, v(S∪ i)− (v(S)+v(i)) = v(S∪ j)− (v(S)+v(j)). Now,

(N, v) is symmetric if for each pair i, j ∈ N , i and j are symmetric; (N, v) is quasi-symmetric if for

each pair i, j ∈ N , i and j are quasi-symmetric or, equivalently, a game is quasi-symmetric if the

corresponding 0-normalized game is symmetric. Note that, for a symmetric game, v(S) depends

only on the cardinality of S (this gives an idea of the strength of this property). Quasi-symmetric

games are important in this Chapter because their cores are symmetric sets from the geometric

point of view.

Finally, we define two symmetry properties for an allocation rule. Let ϕ be an allocation

rule. We say ϕ satisfies weak symmetry if for each symmetric game (N, v) and each pair i, j ∈ N ,

ϕi(N, v) = ϕj(N, v); ϕ satisfies extended weak symmetry if for each quasi-symmetric game (N, v)

and each pair i, j ∈ N , ϕi(N, v)− v(i) = ϕj(N, v)− v(j). The extended weak symmetry property

says that if for each pair i, j ∈ N , their contribution to any coalition differs only in v(i) − v(j),

then, the difference in the payoffs is also v(i) − v(j). This property, besides being a symmetry

property (it implies weak symmetry) has some flavor to translation invariance; roughly speaking,

it says that the allocation rule satisfies weak symmetry and, moreover, translation invariance

within the class of quasi-symmetric games. Next Lemma illustrates this point.

Lemma 6.1. Translation invariance + weak symmetry ⇒ extended weak symmetry.

Proof. Let ϕ be an allocation rule satisfying both translation invariance and weak symmetry. Let

(N, v) be a quasi-symmetric game and α = (−v(1), . . . ,−v(n)). Now, let (N,w) ∈ Gn be such

that, for each S ⊆ N , w(S) = v(S) +
∑

i∈S αi. Then (N,w) is symmetric. Hence, by weak

symmetry, for each pair i, j ∈ N , ϕi(N,w) = ϕj(N,w). Now, by translation invariance, we have

ϕi(N, v) + αi = ϕj(N, v) + αj . Since αi = −v(i) and αj = −v(j), the result is proved.
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6.2.1 The Core and its Relatives

We introduce now the notions of core (Gillies, 1953) and strong ε-core (Maschler et al., 1979);

both of them are based on efficiency and stability. An allocation x ∈ Rn is stable if there is no

coalition S ⊆ N such that
∑

i∈S xi < v(S), analogously, for each ε ∈ R, x is ε-stable if there is

no coalition S ⊆ N such that
∑

i∈S xi < v(S) − ε.

The core of a game (N, v), C(N, v), is the set of all efficient and stable allocations

C(N, v) := {x ∈ Rn :
∑

i∈N

xi = v(N) and, for each S ( N,
∑

i∈S

xi ≥ v(S)}.

The class of games with nonempty core is the class of balanced games. Let BG ( G be the

class of superadditive balanced games (BGn ( Gn denotes the set of superadditive balanced

games with n players).

Let ε ∈ R. The strong ε-core of a game (N, v), Cε(N, v) is the set of all efficient and ε-stable

allocations:

Cε(N, v) := {x ∈ Rn :
∑

i∈N

xi = v(N) and, for each S ( N,
∑

i∈S

xi ≥ v(S) − ε }.

By definition, if ε = 0, C0(N, v) ≡ C(N, v). The least core of (N, v), LC(N, v), is the intersection

of all nonempty strong ε-cores. Equivalently, let ε0(N, v) be the smallest ε such that Cε(N, v) 6= ∅,
then LC(N, v) = Cε0(N,v)(N, v).

1

Let (N, v) ∈ Gn. The family of “shifted” games (N, vε) is defined by:2

vε(S) :=

{

v(S) − ε ∅ ( S ( N

v(S) S = ∅ or S = N.

Finally, we introduce a last concept related to balanced games: a balanced game (N, v) is

exact (Schmeidler, 1972) if for each S ⊆ N , there is x ∈ C(N, v) such that
∑

i∈S xi = v(S).

Moreover, let (N, v) ∈ BGn with core C(N, v), then, there is a unique exact game (N, v̂) such

that C(N, v̂) = C(N, v); this game is the exact envelope of (N, v). Note that if we have two exact

games with the same core, then they are the same game. From the point of view of stability, we

can say that (N, v̂) throws away the redundant information of (N, v).

6.2.2 Some Geometric Considerations

For the sake of clarity, and if it does not entail confusion, henceforth we denote a game (N, v) by

v. We need to introduce some notation and make some considerations regarding the underlying

geometry of a TU game. We denote the efficient hyperplane by HN
v ; hence, HN

v := {x ∈ Rn :

1In Maschler et al. (1979) it is shown that ε0(N, v) exists and is unique.
2This concept has also been taken from Maschler et al. (1979)
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∑

i∈N xi = v(N)}. All the sets we consider in this Chapter are contained in HN
v and hence, we

develop all our framework in an (n− 1)-dimensional euclidean space.

A (convex) polytope P is the convex hull of a finite set of points V = {x1, . . . , xk} in Rn,

equivalently, it is a bounded subset of Rn which can be expressed as the intersection of a finite

number of halfspaces. The core of a game, when nonempty, is a convex polytope (it is the

intersection of halfspaces in HN
v ). An m-polytope is a polytope that lies in an m-dimensional

space but there is no (m − 1)-dimensional space containing it. Let P be an m-polytope and let

m′ ≥ m, then, Volm′(P ) denotes the m′-dimensional volume of P . Let P be an m-polytope.

Then, a set of polytopes {P1, . . . , Pk} define a dissection of P if (i) P =
⋃k

l=1 Pl and (ii) for each

pair l, l′ ∈ {1, . . . , k}, with l 6= l′, Volm(Pl ∩ Pl′) = 0.

Lemma 6.2. Except for the least core, all nonempty strong ε-cores are (n − 1)-polytopes. The

least core is always an m-polytope with m < n− 1.

Proof. The statement in this lemma has been taken from Maschler et al. (1979). Hence, we do

not prove it. Anyway, not being a completely straightforward result, it is quite intuitive.

Whenever the core of a game in Gn is an (n − 1)-polytope, we say it is a full dimensional

core. Otherwise, it is degenerate. By definition, all the restrictions in the core of a game are as

follows: let S ( N , RS
v := {x ∈ Rn :

∑

i∈S xi ≥ v(S)}. Let RS
v be a restriction, then we say

that RS
v is a |S|-restriction. The 1-restrictions play a special role in this Chapter; we call them

elemental restrictions. We say a restriction is redundant in the core if removing it does not change

the core. Conversely, the restrictions which are not redundant ones are active restrictions. Let

HS
v be the hyperplane associated with the restriction RS

v , i.e., x ∈ HS
v if and only if x ∈ HN

v

and
∑

i∈S xi = v(S). Note that, because of the efficiency condition, the hyperplanes HS
v have

dimension n− 2.

Lemma 6.3. Let v ∈ Gn and let ∅ ( S ( N . Then, the hyperplanes HS
v and HN\S

v are parallel

in HN
v .

Proof. Let v ∈ Gn and ∅ ( S ( N . Then, HS
v := {x ∈ Rn :

∑

i∈S xi = v(S)}. We claim that

there is k ∈ R such that HS
v can be expressed as

∑

i∈N\S xi = k. Once this claim is proved, the

statement of the Lemma is immediately derived. Since we work in HN
v ,
∑

i∈S xi +
∑

i∈N\S xi =

v(N). If we impose the restriction
∑

i∈S xi = v(S), we have v(S) +
∑

i∈N\S xi = v(N). Hence,
∑

i∈N\S xi = v(N) − v(S) = k.

6.2.3 The Core-Center

The core of a game is the set of all the stable and efficient allocations. Now, if we consider

that all these allocations are equally reasonable, then it makes sense to think of the core as if it

was endowed with a uniform distribution. The core-center summarizes the information of such

a distribution of probability. Let U(A) be the uniform distribution defined over the set A and

E(P) the expectation of the probability distribution P.
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Definition 6.1. Let (N, v) be a balanced game with core C(N, v). The core-center of (N, v),

µ(N, v), is defined as follows:

µ(N, v) := E [U(C(N, v))] .

6.3 Fair Additivity

We devote this Section to the motivation and definition of the fair additivity property. This

property is crucial in the characterization of the core-center we obtain in Section 6.4. First,

before introducing the fair additivity property, we define a general family of allocation rules, that

we call T -solutions. Then, we say that an allocation rule satisfies the fair additivity property if

it belongs to a special subfamily of T -solutions.

6.3.1 T -Solutions and RT -Solutions

We need to introduce some concepts before formally defining what a T -solution is. Let v ∈ Gn,

∅ ( T ( N , and k ≥ v(T ). We use constant k to define two games: v, a good game for coalition

T , and v a good game for coalition N\T . Suppose that, because of some change in the situation

underlying our TU game, coalition T alone can obtain k instead of v(T ). We define v as the game

obtained when introducing this change in v:

v(S) =

{

max{v(S), v(S\T ) + k} T ⊆ S

v(S) otherwise.

We define v̄(S) as max{v(S), v(S\T ) + k} to ensure that v is a superadditive game. Super-

additivity also implies that v(T ) ≤ v(N) − v(N\T ). Hence, if we want game v to remain in the

class of superadditive games, k must belong to the interval [v(T ), v(N) − v(N\T )].

So, for value k, we have naturally defined a game v in which coalition T has improved with

respect to v. Now, for this constant k, we define a game v in which coalition T is worst-off. We

do it by letting coalition N\T improve, i.e., defining v(N\T ) := v(N) − k. The motivation for

this definition comes from the idea of stability. Since v(T ) = k, coalition T should receive at

least k in game v. On the other hand, v(N\T ) = v(N) − k implies that coalition N\T should

receive, at least, v(N) − k and hence, coalition T should obtain at most k. This change leads to

the superadditive game:

v(S) =

{

max{v(S), v(S\(N\T )) + v(N) − k} N\T ⊆ S

v(S) otherwise.

At this point, we have defined two games: v, in which coalition T has improved with respect

to v, and v, in which coalition N\T is the one that is better-off. A cut on the game v for coalition

T at height k ∈ [v(T ), v(N) − v(N\T )] is denoted by χT,k(v) and defined as the pair of games

{v, v}. The reason for the name cut becomes clear when dealing with balanced games below.
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An extra condition needs to be imposed on cuts, namely, if v(T ) = v(N) − v(N\T ), then no

cut is permitted for coalition T . This last requirement is quite natural, if omitted, we could

have a situation in which v = v = v, and the cut makes no sense. Note that, by definition, if

χT,k(v) = {v, v} and χN\T,v(N)−k(v) = {v′, v′}, then v = v′ and v = v′. Lemma 6.4 shows that

the games v and v are superadditive.

Lemma 6.4. Let v ∈ Gn. Let ∅ 6= T ( N be such that v(T ) < v(N) − v(N\T ). Let χT,k(v) =

{v, v}. Then, both v and v are superadditive games.

Proof. Let χT,k(v) = {v, v}. We do the proof for the superadditivity of v, being the one for

v analogous (just think of the cut χN\T,v(N)−k(v) = {v′, v′} where v′ = v). Let S, S′ ⊆ N ,

S ∩ S′ = ∅. We want to show that v(S) + v(S′) ≤ v(S ∪ S′). Now we have four possibilities:

(i) T * S ∪ S′. Now, v(S) = v(S), v(S′) = v(S′), and v(S ∪ S′) = v(S ∪ S′). Hence, the result

follows from the superadditivity of v.

(ii) T ⊆ S∪S′, T * S, and T * S′. Now, v(S) = v(S), v(S′) = v(S′), and v(S∪S′) ≥ v(S∪S′).

Hence, the result follows from the superadditivity of v.

(iii) T * S and T ⊆ S′. By definition of v, v(S) = v(S) and v(S′) = max{v(S′), v(S′\T ) +

k}. If v(S′) = v(S′), then, since v(S ∪ S′) ≥ v(S ∪ S′), we are done. Hence, we can

assume that v(S′) = v(S′\T ) + k. Now, since S ∩ S′ = ∅, we have T ∩ S = ∅ and hence,

(S ∪ S′)\T = S ∪ (S′\T ). Hence, by the definition of v and the superadditivity of v,

v(S ∪ S′) ≥ v((S ∪ S′)\T ) + k ≥ v(S) + v(S′\T ) + k = v(S) + v(S′).

(iv) T ⊆ S and T * S′. Analogous to (iii).

Next, we introduce the definition of T -solution, where T stands for trade-off.

Definition 6.2. An allocation rule ϕ is a T -solution if for each game v and each cut χT,k(v) =

{v, v}, there is α ∈ [0, 1] such that

ϕ(v) = αϕ(v) + (1 − α)ϕ(v).

The idea of a T -solution is that ϕ(v), the solution of the original game, must be a trade-off

between ϕ(v) and ϕ(v). The result of a give and take between coalitions T and N\T . The

coefficient α measures how important v and v are for the original game v when ϕ is being

considered. Once the allocation rule is fixed, the coefficient α is a function depending on the

game v, the coalition T , and the constant k. Therefore, the concept of T -solution is very general

and dealing with the whole family of T -solutions is not an easy task. Next, we impose a regularity

condition on how the trade-off has to be made.

Let v ∈ Gn and let {v1, v2} be a cut on v. Now, a new cut {v2, v2} can be defined on v2.

Hence, we have cut the original game v into the games {v1, v2, v2}. The generalization of this idea

leads to the definition of dissection. The collection of games G = {v1, v2, . . . , vr} is a dissection
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of v if it can be obtained by cutting successively game v. Now, if ϕ is a T -solution, then there

are constants α1, . . . , αr such that
∑r

i=1 αi = 1, for each i ∈ {1, . . . , r}, αi ≥ 0, and finally

ϕ(v) =

r∑

i=1

αiϕ(vi).

Again, each αi measures the importance of vi for the original game v within the dissection G.

Next, we impose a regularity condition on the T -solutions.

Definition 6.3. An allocation rule ϕ is an RT -solution if it satisfies the following properties:

(i) ϕ is a T -solution.

(ii) (Translation Invariance) Let v ∈ Gn. Let v1 and v2 be such that each of them belongs to

some dissection of v. Let β ∈ Rn be such that for each S ⊆ N , v1(S) = v2(S) +
∑

i∈S βi.

Then, the coefficients associated with v1 and v2 in the corresponding dissections coincide.3

The translation invariance requirement is quite natural and needs no motivation. It implies, in

particular, that if a game v′ belongs to two different dissections of a game v, then the correspond-

ing coefficients associated with v′ must coincide. Hence, let v ∈ Gn and let G = {v1, . . . , vr}, then

we can interpret each coefficient αi as dependent only on the original game v and on the game

vi; we do not need to know the cut that led to game vi. The coefficients are now a function of v

and vi. Once ϕ and v are fixed, if v′ belongs to some dissection of v then we denote the relevance

of v′ for game v by αv(v′).

6.3.2 RT -Solutions and Balanced Games: Fair Additivity

Next, we show that being an RT -solution has strong implications when working with balanced

games. Besides, we introduce the fair additivity; a property that leads to RT -solutions with an

extra regularity condition within the class of balanced games. Next, Figure 6.1 and Lemma 6.5

illustrate why given a game v, χT,k(v) = {v, v} is called a cut.

Lemma 6.5. Let v be balanced game. Then, a cut χT,k(v) = {v, v} has the following properties:

(i) C(v) ∪ C(v) = C(v).

(ii) If C(v) is an (n − 1)-polytope and C(v) ∩ C(v) 6= ∅ then this intersection lies in an m-

dimensional space with m < n− 1, i.e., its (n− 1)-dimensional volume is 0.

Proof. Let χT,k(v) = {v, v}.
(i) “ ⊆ ” For each S ⊆ N , we have v(S) ≥ v(S) and v(S) ≥ v(S). Hence, C(v) ⊆ C(v) and

C(v) ⊆ C(v). Hence, C(v) ∪ C(v) ⊆ C(v).

3Note that for each v′ ∈ G, v′(N) = v(N). Hence, if for each S ⊆ N , v1(S) = v2(S) +
P

i∈S βi, thenP
i∈N βi = 0.
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3

s

C(v)

k

C(v)

C(v)

Figure 6.1: The cut χ3,k(v) for the three-player balanced game v

“ ⊇ ” Let x ∈ C(v). Suppose that x /∈ C(v) ∪ C(v). Then, since x /∈ C(v), there is S ( N

such that T ⊆ S and
∑

i∈S xi < v(S). Moreover, since x ∈ C(v), we have v(S) ≤ ∑

i∈S xi and

hence, v(S) = v(S\T ) + k. Similarly, since x /∈ C(v), there is S′ ( N such that T ⊆ S′ and
∑

i∈S′ xi < v(S′) = v(S′\(N\T )) + v(N) − k. Hence,

∑

i∈S

xi +
∑

i∈S′

xi < v(S\T ) + k + v(S′\(N\T )) + v(N) − k = v(N) + v(S\T ) + v(S′\(N\T ))

and, on the other hand,

∑

i∈S

xi +
∑

i∈S′

xi =
∑

i∈N

xi +
∑

i∈S\T

xi +
∑

i∈S′\(N\T )

xi

x∈C(v)

≥ v(N) + v(S\T ) + v(S′\(N\T )).

Contradiction.

(ii) A cut χT,k(v) on game v leads to a cut in C(v). This cut consists of taking the hyperplane
∑

i∈T xi = k, that cuts it in two pieces (one of them can be empty if the hyperplane does not

intersect the core). Once this consideration has been made the result follows immediately.

Note that a cut on a game defines a unique cut on its core. Therefore, we use the expression

cut to refer to both cuts on games and cuts on cores. Moreover, it is important to note that a

dissection G of a game v induces, by Lemma 6.5, a dissection on its core. Let v be a balanced

game and G a dissection of v. We say that G is a balanced dissection of v if for each v′ ∈ G, v′ is

balanced. Next, we introduce a strengthening of the RT -property: the fair additivity.

Definition 6.4. Let ϕ be an allocation rule. Let v be a balanced game. Let v′ and v′′ be two

balanced games such that each of them belongs to some dissection of v. Then, ϕ satisfies fair
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additivity with respect to the core if:

(i) ϕ is a RT -solution.

(ii) C(v′) = C(v′′) implies that αv(v′) = αv(v′′).

The idea of this property is that, from the point of view of stability, games v′ and v′′ are equal.

For instance, if we think of v′ as the exact envelope of v′′, then v′ is obtained from v′′ by removing

redundant information. Hence, their relevance for game v should be the same. An immediate

consequence of this property is that the coefficients αv(v′) can be denoted by αv(C(v′)), i.e., the

weight only depends on the core.

Example 6.1. Let v be the game described in Table 6.1. Consider the cut χ3,2(v) = {v1, v2}
and then, the cut χ3,2(v1) = {v3, v4}. The values associated to each of these games are also

summarized in Table 6.1. After these two cuts, we have the following dissection of v: G =

{v2, v3, v4}.

S v v1 (= v) v2 (= v) v3 (= v1) v4 (= v1)

{1} 0 0 0 0 0
{2} 0 0 0 0 0
{3} 0 2 0 2 2

{1,2} 6 6 8 6 8
{1,3} 6 6 6 6 6
{2,3} 6 6 6 6 6
N 10 10 10 10 10

Table 6.1: The game v and the cuts χ3,2(v) and χ3,2(v1)

Now, it is straightforward to check that C(v), C(v1), and C(v3) are 2-polytopes. However,

C(v2) and C(v4) are 0-polytopes; their core coincides with the point (4, 4, 2). Now, if ϕ is a RT -

solution, we have that ϕ(v) = αv(v1)ϕ(v1)+αv(v2)ϕ(v2) and ϕ(v) = αv(v2)ϕ(v2)+αv(v3)ϕ(v3)+

αv(v4)ϕ(v4) with αv(v1)+αv(v2) = 1 and αv(v2)+αv(v3)+αv(v4) = 1. Moreover, since v1 = v3

we also have αv(v1) = αv(v3). Finally, if ϕ also satisfies fair additivity, although v2 6= v4, we

have that C(v2) = C(v4) and hence αv(v2) = αv(v4). Now, combining the two equations we easily

conclude that αv(v2) = αv(v4) = 0, i.e., the weight of the games with a degenerate core is 0.

Lemma 6.6 shows that what happens in Example 6.1 is a general feature of the fair additivity

property. More precisely, if we have a balanced dissection of a game with a full dimensional core,

then fair additivity pins down to 0 the coefficients of the games whose core is degenerate.

Lemma 6.6. Let ϕ be an allocation rule satisfying fair additivity. Let v be a balanced game

and let χT,k(v) = {v1, v2} be a balanced dissection of v. If C(v) is an m-polytope and there is

i ∈ {1, 2} such that C(vi) is an l-polytope with l < m, then αv(vi) = 0.

Proof. Take a balanced game v, and a cut χT,k(v) = {v1, v2} such that C(v) is an m-polytope

and C(v2) is an l-polytope with l < m. Then, v1 can be cut using again coalition T and height
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k, i.e., cut χT,k(v1) = {v3, v4}. Then,

ϕ(v) = αv(v1)ϕ(v1) + αv(v2)ϕ(v2)

and

ϕ(v) = αv(v2)ϕ(v2) + αv(v3)ϕ(v3) + αv(v4)ϕ(v4),

where αv(v1) + αv(v2) = 1, αv(v2) + αv(v3) + αv(v4) = 1, and v3 = v1. Moreover, we claim

that C(v4) = C(v2). The restrictions in C(v4) are stronger than those defining C(v2) and hence,

C(v4) ⊆ C(v2). Now, suppose that there is x ∈ C(v2)\C(v4). Note that, since C(v2) is degenerate

we have that C(v1)∩C(v2) = C(v2). Hence, C(v2) ( C(v1). Since x /∈ C(v4), there is S′ ( N such

that
∑

i∈S′ xi < v4(S
′). Now, for each S ⊆ N such that T * S, we have v2(S) = v4(S). Hence,

since x ∈ C(v2), we have T ⊆ S′. Since we also have that x ∈ C(v1), then
∑

i∈S′ xi ≥ v1(S
′).

But, by definition of v1 and v4, v4(S
′) = v1(S

′). Contradiction.

Now, by fair additivity, αv(v4) = αv(v2) and αv(v3) = αv(v1). Then, αv(v1)+αv(v2) = 1 and

αv(v2) + αv(v3) + αv(v4) = αv(v1) + 2αv(v2) = 1. Hence, αv(v2) = 0.

In the previous proof we used that, after the second cut, C(v4) = C(v2). Note that, as

Example 6.1 shows, it might be the case v4 6= v2 and hence, fair additivity is needed. Next

result describes RT -solutions satisfying fair additivity property within the class of balanced

games. The idea of Proposition 6.1 is similar to the idea of one classical result in measure

theory, namely, “If m is the Lebesgue measure, and η is a positive translation invariant Borel

measure on Rk such that η(K) <∞ for every compact set K, then there is a constant c such that

η(E) = cm(E) for all Borel sets E ⊂ Rk” (Rudin, 1966). Although Lemma 6.6 is a weaker result

than Proposition 6.1, we obtain the two results independently, i.e., we do not use Lemma 6.6 in

the proof of Proposition 6.1.

Proposition 6.1. Let ϕ be an allocation rule satisfying fair additivity. Let v and v′ be two

balanced games such that v′ belongs to some dissection of v. If C(v) is an m-polytope, then

αv(v′) = Volm(C(v′))
Volm(C(v)) .

Proof. Let v be a balanced game with anm-dimensional core. Let v′ be a balanced game belonging

to some dissection of v and let w(v′) := αv(v′)Volm(C(v)). We claim that w(v′) = Volm(C(v′)).

Next, we show that there is ε > 0 such that if Volm(C(v′)) < ε, then w(v′) = Volm(C(v′)).

Suppose, on the contrary, that for each ε > 0, there is vε such that w(vε) 6= Volm(C(vε)).

Now, let {εl}l∈N be a sequence of positive numbers with limit 0 and, for each l ∈ N, let vεl
be

such that w(vεl
) 6= Volm(C(vεl

)). Now, either |{l ∈ N : w(vεl
) > Volm(C(vεl

))}| = ∞, or

|{l ∈ N : w(vεl
) < Volm(C(vεl

))}| = ∞ (or both of them are true at the same time). Hence, we

can consider the two following cases:

Case 1: For each ε > 0, there is vε such that Volm(C(vε)) < ε and w(vε) > Volm(C(vε)).

Let ε > 0. Let vε be such that w(vε) > Volm(C(vε)). Let δ = w(vε) − Volm(C(vε)). Let

{εk}k∈N be a sequence of positive numbers with limit 0 and, for each k ∈ N, let vεk
be such that
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w(vεk
) > Volm(C(vεk

)). Now, we can define a balanced dissection G of v, G = vε ∪G1 ∪G2, where

G1 is such that,

(i) For each v̂ ∈ G1, there is k ∈ N such that v̂ is a translation of vεk
and hence, C(v̂) is a

translation of C(vεk
).

(ii)
∑

v̂∈G1
Volm(C(v̂)) > Volm(C(v)) − Volm(C(vε)) − δ.

Now, by the translation invariance of the RT -solution and the fair additivity, for each v̂ ∈ G1

there is k ∈ N such that, w(v̂) = w(vεk
) > Volm(C(vεk

)) = Volm(C(v̂)). Hence,

∑

v̂∈G
w(v̂) ≥ w(vε) +

∑

v̂∈G1

w(v̂) > Volm(C(vε)) + δ+ Volm(C(v))−Volm(C(vε))− δ = Volm(C(v)).

Hence,
∑

v̂∈G αv(v̂) > 1. Contradiction.

Case 2: For each ε > 0 there is vε such that Volm(C(vε)) < ε and w(vε) < Volm(C(vε)).

We proof now that Case 2 implies Case 1. Let {εk}k∈N be a sequence of positive numbers

with limit 0 and, for each k ∈ N, let vεk
be such that w(vεk

) < Volm(C(vεk
)). Let δ > 0. Now,

we can define a balanced dissection Gδ of v, Gδ = G1 ∪ G2, where G1 is such that,

(i) For each v̂ ∈ G1, there is k ∈ N such that C(v̂) is a translation of C(vεk
).

(ii)
∑

v̂∈G1
Volm(C(v̂)) > Volm(C(v)) − δ.

Now, by the translation invariance of the RT -solution and the fair additivity, for each v̂ ∈ G1,

w(v̂) = w(vεk
). Now, since

∑

v̂∈G αv(v̂) = 1 implies that
∑

v̂∈G w(v̂) = Volm(C(v)), there is

vδ ∈ G2 such that w(vδ) > Volm(C(vδ)). Hence, we can construct a sequence {δl}l∈k converging

to 0 and such that for each l ∈ N, there is vδl
such that w(vδ) > Volm(C(vδ)), Hence, Case 2

implies Case 1 and we are done.

Hence, we have shown that there is ε > 0 such that if Volm(C(v′)) < ε, then w(v′) =

Volm(C(v′)). Now, for each balanced game v′ belonging to a dissection of v, we can dissect v′ in

such a way that the cores of the games of the dissection cover C(v′) and their volumes do not

exceed ε. Hence, w(v′) = Volm(C(v′)).

Corollary 6.1. Let ϕ be an allocation rule satisfying fair additivity. Let v be a balanced game

and G = {v1, . . . , vr} a balanced dissection of v. If C(v) is an m-polytope, then

ϕ(v) =
r∑

i=1

αv(vi)ϕ(vi), where αv(vi) =
Volm(C(vi))

Volm(C(v))
.

Proof. Immediate from Proposition 6.1

As a consequence of Proposition 6.1 and Corollary 6.1, if ϕ is a solution satisfying fair addi-

tivity, then we have completely characterized the coefficients associated with ϕ and a dissection

of a balanced game. Indeed, we have shown that such weights are proportional to the volumes of

the cores of the games in the dissection.
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6.4 The Characterization

We state now the main result in this Chapter, a characterization of the core-center.

Theorem 6.1. Let ϕ be an allocation rule satisfying

T1) Efficiency

T2) Continuity

T3) Extended Weak Symmetry

T4) Fair Additivity with respect to the core.

Then, for each v ∈ BG, ϕ(v) = µ(v).

Let TG denote the subclass of games in which the four properties of Theorem 6.1 characterize

the core-center. The proof of Theorem 6.1 will be focused in showing that BG ⊆ TG.

Next, we provide an outline of the proof with the main steps in which we have divided it:

Step 1 We show that extended weak symmetry and efficiency characterize the core-center when

the core is simple enough (Section 6.4.1).

Step 2 We show that the four properties T1-T4 characterize the core-center for the class of games

with full dimensional core (Section 6.4.2).

Step 3 Finally, we show that the core of a balanced game can be approximated by full dimensional

cores. Hence, the previous results along with the continuity property lead to the proof of

Theorem 6.1 (Section 6.4.3).

In the first two steps we study full dimensional cores. We only deal with the degenerate case,

when the core coincides with the least core, in the last step.

6.4.1 An Elemental Core

In this Subsection we show that, when the core is simple enough, the core-center can be char-

acterized using extended weak symmetry and efficiency. Let v ∈ BGn, and let A denote the

set of active restrictions in C(v). We say C(v) is elemental if A = {xi ≥ v(i) : i ∈ N} =

{elemental restrictions}. If C(v) is an elemental core, then C(v) = I(v).

Lemma 6.7. Let v ∈ BGn be such that C(v) is elemental. Then, C(v) it is a regular simplex

and its center of gravity is the allocation x such that, for each i ∈ N ,

xi =
v(N) −∑j∈N v(j)

n
+ v(i).
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Proof. If C(v) is elemental, C(v) = I(v). For each v ∈ Gn, I(v) is a regular simplex4 with vertices

u1, . . . , un where, for each i ∈ N ,

ui = (v(1), v(2), . . . ,

i
︷ ︸︸ ︷

v(N) −
∑

j 6=i

v(j), . . . , v(n)).

Hence, to obtain the result, we only need to calculate the center of gravity of the simplex, i.e.,

the average of the vertices.

Lemma 6.8. Let v ∈ BGn. If C(v) = I(v), then, v is quasi-symmetric.

Proof. I(v) is a regular (n−1)-simplex. Hence, if C(v) = I(v), then, for each S ( N , with |S| > 1,

the restrictions RS
v are redundant. Let S ( N , |S| > 1. By superadditivity, v(S) ≥ ∑

i∈S v(i).

Moreover, since RS
v is redundant, v(S) ≤ ∑i∈S v(i). Hence, v(S) =

∑

i∈S v(i). Now, regardless

of v(N), the game is quasi-symmetric.

Proposition 6.2. Let v ∈ BGn be such that C(v) is elemental. Let ϕ be an allocation rule

satisfying efficiency and extended weak symmetry. Then, ϕ(v) = µ(v).

Proof. Since v has an elemental core, C(v) = I(v). By Lemma 6.8, v is quasi-symmetric. Now,

by extended weak symmetry, we have that, for each pair i, j ∈ N , ϕi(v) − v(i) = ϕj(v) − v(j).

Hence, there is k ∈ R such that, for each i ∈ N , ϕi(v) = k + v(i). The latter comment, along

with the efficiency property, implies that, for each i ∈ N ,

ϕi(v) =
v(N) −∑j∈N v(j)

n
+ v(i).

Now, by Lemma 6.7, ϕ(v) is the center of gravity of C(v), i.e., the core-center. Hence, ϕ(v) =

µ(v).

6.4.2 The Core is Full Dimensional

In this Section we combine Proposition 6.2 with the continuity and the fair additivity properties

to show that a game with a non degenerate core belongs to TG.

At this point we know that games with an elemental core belong to TG. The class of games

with an elemental core plays an important role in the forthcoming results. This role is similar to

that of the unanimity games in the characterization of the Shapley value using additivity. The

outline of this part of the proof is as follows. Let v be a balanced game and let C(v) be full

dimensional. First, successively cutting v, we obtain a dissection of C(v); being this dissection

primarily composed by small parallelepipeds. Second, we cut the games corresponding to these

parallelepipeds, obtaining an elemental core inside each of them. Then, we successively repeat

this procedure with the remaining non-elemental cores. Finally, we show that, using cuts, the

4Go over the Appendix to find a rigorous definition of a simplex and related concepts.
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core of v can be covered with elemental cores (this is indeed a kind of triangulation). Finally,

the fair additivity property leads to the conclusion of this part of the proof. Figure 6.2 illustrates

this outline.

=⇒

Original situation, I(v), C(v) Dissecting I(v) into parallelepipeds

=⇒

All dark shaded cores Cutting the parallelepipeds

are parallelepipeds to obtain elemental cores

Figure 6.2: Scheme of the proof for full dimensional cores

Proposition 6.3. Let v ∈ BGn be such that C(v) is full dimensional. Let ϕ be an allocation

rule satisfying the four properties T1-T4. Then, ϕ(v) = µ(v).

Proof. Let ϕ be an allocation rule satisfying the properties T1-T4. Let v ∈ BGn be a game with

a full dimensional core. The body of the proof consists of dissecting C(v) into elemental cores;

we do it in such a way that we can combine Proposition 6.2 with the continuity and the fair

additivity properties to get ϕ(v). Hence, we describe a procedure which “nearly” triangulates any

full dimensional core. Henceforth, till the end of the proof, Vol(P ) denotes the (n−1)-dimensional

volume of polytope P .

First, we divide I(v) into small (n − 1)-parallelepipeds.5 Let i ∈ N , i’s payoff in his best

allocation within I(v) is v(N)−∑j 6=i v(j), and in his worst one is v(i); hence, regardless of i, the

5A rigorous definition of a k-parallelepiped can be found in the Appendix.
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difference between these two payoffs is v(N) −∑j∈N v(j). Let L := v(N) −∑j∈N v(j). From

now on, and for the sake of clarity, v(i) is denoted by mi. Let q ∈ N (for simplicity we assume

q > 2), and let δ = L/q. For each face in I(v), different to that corresponding with the hyperplane

xn = mn, we make q + 1 cuts on it, all of them parallel to the hyperplane in which that face

lies. Hence, we partition I(v) using the following hyperplanes: for each i ∈ N , i 6= n, and for

each k ∈ {0, . . . , q}, Hi
k := {x ∈ Rn : xi = mi + kδ}. We use these hyperplanes to define a

dissection of C(v). Let χi,k be a cut, and let G be a collection of games. We denote by χi,k(G) the

result of cutting successively all the cores of the games in G with the hyperplane xi = k. Hence,

χi,k({w,w′, w′′, . . . }) = {w,w,w′, w′, w′′, w′′, . . . }. It can be the case that some of these cuts is

not permitted, i.e., k /∈ [w(i), w(N) − w(N\i)]; besides, it is also possible that one of the games

in χi,k(w) is not balanced. In the last two cases we take {w} instead of χi,k(w), i.e., we do not

consider those cuts.

Let v ∈ BGn be such that C(v) is full dimensonal. Let Gδ be the collection of games defined

as follows:

Stage 0: We begin with the set of games G0 ≡ G0,q = {v}.

...

Stage i, i ∈ N, i 6= n: We define the cuts for player i.

Step i.0: We cut I(v) with xi = mi; Gi,0 = χi,mi
(Gi−1,q).

Step i.1: Gi,1 = χi,mi+δ(Gi,0).

...

Step i.k: Gi,k = χi,mi+kδ(Gi,k−1).

...

Step i.q: Gi,q = χi,mi+qδ(Gi,q−1).

Let Gδ denote the set Gn−1,q. In order to save notation, if no ambiguity arises, we denote

C(v′) by C ′. Now,
⋃

v′∈Gδ C ′ = C and, for each pair v1, v2 ∈ Gδ, Vol(C(v1)∩C(v2)) = 0, i.e., the

cores of the games in Gδ define a dissection of C. It is quite intuitive that, for each 0 < ε < 1,

we can find δ > 0 such that the sum of the volumes of the cores of games in Gδ which are

not parallelepipeds is, at most, εVol(C) (note that ε is fixed now for all the proof). All these

parallelepipeds are equal and they have positive (n − 1)-dimensional volume. Let GNP ( Gδ

be the set of games such that their core is not a parallelepiped. The second part of the proof

consists of cutting each one of the parallelepipeds to obtain an elemental core, a simplex, inside

the parallelepiped. It is quite intuitive, and not difficult to check, that for 0 < α < 1 small

enough, we can find a procedure which divides each parallelepiped P in such a way that the core
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of one of the resulting games is elemental and its volume is, at least, αVol(P ).6 Let GNE be the

set of games obtained in this second step such that their core is not elemental.

We can ensure now that at least a volume α(1 − ε)Vol(C) has been covered by elemental

cores. Period 1 is finished. The procedure continues as follows. We begin period 2: for each

game v′ ∈ GNP ∪ GNE , we repeat the procedure we have made for v (we have to find a new

constant δ′ which will probably be smaller than δ), covering at least a volume α(1 − ε)Vol(C ′)

of its core with elemental cores. Note that the constant α keeps constant. This is because in this

second period we obtain the same kind of parallelepipeds we had in the first one (but smaller).

Hence, the procedure obtained to “put” a simplex inside each parallelepiped is the same, and the

proportion of covered volume also remains unchanged.

Note that δ varies as the period changes but both α and ε keep constant. We claim that if

we repeat successively this procedure, the volume of C which is not covered by elemental cores

tends to 0. We begin with a volume RV 0 = Vol(C) which needs to be covered by elemental cores.

After the first period, this volume has been reduced to RV 1 = (1 − α)(1 − ε)Vol(C) + εVol(C).

Then, after t periods we have RV t = (a + b)t Vol(C), where a = (1 − α)(1 − ε) and b = ε. The

proof of this statement is easily done by induction:

Case 1: RV 1 = (1 − α)(1 − ε)Vol(C) + εVol(C) = (a+ b)Vol(C).

Case t: Assume the result is true for this case (induction assumption).

Case t+1: Finally, we have RV t+1 = (1 − α)(1 − ε)RV t + εRV t = aRV t + bRV t induc

=

a(a+ b)t Vol(C) + b(a+ b)t Vol(C) = (a+ b)t+1 Vol(C).

Hence, since a+ b = (1 − α)(1 − ε) + ε < 1, we have limt→∞RV t = limt→∞(a+ b)t Vol(C) = 0.

This means that, in the limit, this procedure defines an infinite dissection of C(v). Let Gt be

the collection of games after period t and EGt those with an elemental core. Now, by the fair

additivity of ϕ:

ϕ(v) =
∑

v′∈Gt

Vol(C ′)

Vol(C)
ϕ(v′) =

1

Vol(C)

(
∑

v′∈EGt

Vol(C ′)ϕ(v′) +
∑

v′∈Gt\EGt

Vol(C ′)ϕ(v′)

)

. (6.1)

By Proposition 6.2, we have already characterized ϕ for the games in the first addend of the last

term in Equation (6.1). Moreover, since ϕ is continuous, it is uniformly continuous in the set

B = {w ∈ Gn : for each S ⊆ N, v(S) ≤ w(S) ≤ v(N)}. Hence, ϕ is bounded in B. Since all the

games we have defined so far belong to B, we have limt→∞
∑

v′∈Gt\EGt Vol(C ′)ϕ(v′) = 0. Now,

6We prove in the Appendix that the cuts divide the core of the original game in many parallelepipeds and that
the proportion of the core covered by these sets is as close to one as needed. We also provide there an example of
a procedure to “put” an elemental core inside each parallelepiped.
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for each t ∈ N, ϕ(v) =
∑

v′∈Gt

Vol(C′)
Vol(C) ϕ(v′). Then,

ϕ(v) = lim
t→∞

∑

v′∈Gt

Vol(C ′)

Vol(C)
ϕ(v′)

=
1

Vol(C)

(

lim
t→∞

∑

v′∈EGt

Vol(C ′)ϕ(v′) + lim
t→∞

∑

v′∈Gt\EGt

Vol(C ′)ϕ(v′)

)

= lim
t→∞

1

Vol(C)

∑

v′∈EGt

Vol(C ′)ϕ(v′)

Prop 6.2
= lim

t→∞
1

Vol(C)

∑

v′∈EGt

Vol(C ′)µ(v′)

= µ(v).

6.4.3 The Core is Not Full Dimensional

Now, the core is an m-polytope with 1 ≤ m ≤ n− 2.

Proposition 6.4. Let v ∈ BGn be such that C(v) is not full dimensional. Let ϕ be an allocation

rule satisfying the properties T1-T4. Then, ϕ(v) = µ(v).

Proof. By Lemma 6.2, C(v) is the least core of v. Let {v1/t}t∈N be a sequence of shifted games.

Now, limt→∞ v1/t = v. The core of v1/t coincides with the 1
t -core of v. By Lemma 6.2, all these

1
t -cores are full dimensional, and now, by Proposition 6.3 we know that these games have already

been characterized. Hence,

ϕ(v)
cont
= lim

t→∞
ϕ(v1/t)

Prop 6.3
= lim

t→∞
µ(v1/t)

cont
= µ(v).

Proof of Theorem 6.1. The assertion of the theorem follows from Propositions 6.2, 6.3, and 6.4.

Next, we prove that the properties in Theorem 6.1 are tight. In order to do this we need a

last Lemma.

Lemma 6.9. Let v be a quasi-symmetric game. Then, C(v) either is a point or is full dimen-

sional.

Proof. This is a geometric result. As we have already seen, the core of a quasi-symmetric game

can be transformed in that of a symmetric game just using a translation. To prove this Lemma it

suffices to show that the result is true for symmetric games. Hence, let v be a symmetric game,

and assume that it has a degenerate core. Hence, there are 1 ≤ s ≤ n−1 and an s-player coalition

S, such that v(S)+ v(N\S) = v(N). By efficiency and stability, we have that there is k ∈ R such

that, for each x ∈ C(v),
∑

i∈S xi = v(S) = k (this is the reason for the degeneration). Now, by
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symmetry, for each x ∈ C(v) and each s-player coalition S′, we have
∑

i∈S′ xi = k. If s = 1, we

have that, for each i ∈ N and each x ∈ C(v), xi = k and we are done. Hence, we can assume

that s > 1. Now, we claim that, for each x ∈ C(v) and each i ∈ N , xi = k/s. Suppose, on the

contrary, that there are x ∈ C(v) and i ∈ N such that xi > k/s. Hence, for each s-player coalition

S containing i, there is j ∈ S sucht that xj < k/s. But this contradicts that, for each s-player

coalition
∑

i∈S xi = k (just taking an s-player coalition with all these j’s such that xj < k/s and

the lower of the remaining to have s players). Hence, we have that, for each i ∈ N , xi = k/s.

Now, by efficiency, k = sv(N)/n. Hence C(v) = {x}, where, for each i ∈ N , xi = v(N)/n.

Proposition 6.5. None of the properties used in Theorem 6.1 to characterize the core-center is

redundant.

Proof. Next, we show that if we remove one of these properties there are allocation rules different

from the core-center satisfying the remaining ones.

Remove Fair Additivity: Both Shapley value and nucleolus satisfy efficiency, extended weak

symmetry, and continuity.

Remove Efficiency: Take k 6= 0. The allocation rule ϕ(v) = µ(v) + (k, . . . , k) where µ(v)

denotes the core-center of the game v satisfies fair additivity, extended weak symmetry, and

continuity.

Remove extended weak symmetry: The allocation rule ϕ(v) = (v(N), 0, . . . , 0) satisfies fair

additivity, efficiency and continuity.

Remove continuity: This is the most complex situation, we need to distinguish different cases

in the definition of our allocation rule ϕ:

The core is a single point: ϕ selects the point (the core-center).

The core is degenerate but not a single point: In this case the allocation ϕ selects

the point (v(N), 0, . . . , 0).

The core is not degenerate: ϕ selects the core-center.

This allocation rule satisfies fair additivity, efficiency and extended weak symmetry. It

satisfies fair additivity because of the following: if a cut divides a core in two new cores, and

one of them is not full dimensional while the original was, then, the weight of this degenerate

core is 0. Efficiency is straightforward. It also satisfies extended weak symmetry: in the

non-degenerate case it coincides with the core-center so extended weak symmetry is met;

in the degenerate case, as a consequence of Lemma 6.9 there are no quasi-symmetric games

with degenerate core with more than one point and hence, extended weak symmetry can

never be violated.
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6.5 Concluding Remarks

In this Chapter we have presented a characterization of the core-center. The main result we

stated uses three standard properties along with a new one, the fair additivity property. Recall

that, according to the definitions of T -solution and fair additivity, given a game we can “cut”

it using any nonempty coalition different from the grand coalition. Nonetheless, the proofs we

presented here involve cuts that only use 1-player coalitions and hence, we could state and proof

a new characterization result, similar to Theorem 6.1, but with a weakened version of the fair

additivity.

Although we have provided a first characterization of the core-center, more research is needed

in order to find more convincing characterizations. One possibility is to deepen into the concepts

of T -solution and RT -solution, and try to characterize the core-center without the additional re-

striction imposed by the fair additivity property. Similarly, the problem of finding an independent

characterization that does not need the concept of T -solution is still to be solved.

6.A Appendix

6.A.1 The Geometry of the Core-Center in Depth

-Definition of Simplex.

Let {a0, a1, . . . , an} ( Rn be a geometrically independent set.7 The simplex ∆n spanned by

a0, a1, . . . , an is the set of all x ∈ Rn such that x =
∑n

i=0 tia
i, where

∑n
i=0 ti = 1 and, for each

i ∈ {1, . . . , n}, ti ≥ 0. Each ai is a vertex of the n-simplex. The superscript n of ∆n corresponds

with the dimension of the simplex. An n-simplex is regular if the distance between any two

vertices is constant.

The barycenter of a simplex ∆n spanned by the points a0, a1, . . . , an is Θ(∆n) :=
∑n

i=0
ai

n+1 .

Let m ≤ n, let ∆m be an m-simplex contained in Rn, and let a0, . . . , am be its vertices. The

m-dimensional volume of ∆m, Volm(∆m), can be computed in the following way: Let B = (βij)

denote the (m+ 1) × (m+ 1) matrix given by βij = ‖ai − aj‖2. Then,

2m(m!)2 Volm(∆m)2 = |det(B̂)|,

where B̂ is the (m+2)×(m+2) matrix obtained from B by bordering it with a top row (0, 1, . . . , 1)

and left column (0, 1, . . . , 1)T . This is known as the Cayley-Menger determinant formula.8

7A set {a0, a1, . . . , an} ( Rn is geometrically independent if for each vector (t0, t1, . . . , tn) ∈ Rn+1, the
equations

Pn
i=0 ti = 0 and

Pn
i=0 tia

i = (0, . . . , 0), hold only if t0 = t1 = · · · = tn = 0. Note that {a0, a1, . . . , an}
is geometrically independent if and only if the vectors a1 − a0, . . . , an − a0 are linearly independent.

8For references on this and other formulas for computing simplicial volumes look at Gritzman and Klee (1994).
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-Definition of Parallelepiped.

Let {u1, u2, . . . , um} be m linearly independent vectors in Rn, with m ≤ n. The m-parallelepiped

Pm spanned by u1, u2, . . . , um is the set of all x ∈ Rn such that x =
∑m

i=1 tiu
i, where, for each

i ∈ {1, . . . ,m}, 0 ≤ ti ≤ 1. Let A be the matrix whose rows are the vectors u1, u2, . . . , um. The

m-dimensional volume of Pm is |detATA|1/2.

Proof of the statements relative to Proposition 6.3 (footnote 6).

We divide this proof in three parts. First, we show that the procedure defined in the proof

of Proposition 6.3 provides a dissection of I(v); this dissection is mainly formed by (n − 1)-

parallelepipeds. Second, we show that for each ε > 0, there is δ > 0 such that the sum of the

the volumes of the parallelepipeds in the induced dissection of C is ε-close to Vol(C). Finally, we

show a procedure to “put” an elemental core inside a parallelepiped. In order to make this proof

more readable we assume, without loss of generality, that for each i ∈ N , mi = 0.

The procedure described in the proof of Proposition 6.3 is a “quasi-dissection

in parallelepipeds” of I(v):

Let x ∈ I(v). There is r = (r1, . . . , rn−1) ∈ Rn−1 such that, (i) for each i ∈ N , ri ∈ {0, . . . , q}
and (ii) for each i ∈ N , i 6= n we have riδ ≤ xi ≤ (ri + 1)δ; note that the second inequality is

equivalent to
∑

j 6=i xj ≥ v(N) − (ri + 1)δ. Next, we find the parallelepiped corresponding with

this vector r (note that the same point x can lie more than one parallelepiped at the same time).

Let P be the parallelepiped spanned by the vectors {u1, . . . , un−1}, where ui = eiδ − enδ (ei

denotes the ith vector of the canonical base in Rn). Now, since the vectors {u1, . . . , un−1} are

independent, they generate a parallelepiped. Now, for each x ∈ I(v), and an associated vector

r ∈ Rn−1, x lies in the parallelepiped P r := P +(r1δ, r2δ, . . . , rn−1δ, v(N)−∑i6=n riδ). Note that

we have also shown that all the parallelepipeds are equal (changing the translation we just move

P onto a different position). But now, as it can be seen in Figure 6.2, a small amount of these

parallelepipeds is not completely included in I(v); those for whom the restriction xn ≥ 0 is not

redundant. We show in the next step that this is not a problem.

The induced “quasi-dissection in parallelepipeds” in C can be arbitrarily tight:

Next, we show that, for each 0 < ε < 1, we can find δ > 0 such that the sum of the volumes

of the cores of the games in Gδ which are not parallelepiped is, at most, εVol(C).

The situation we have is similar to that in Figure 6.2, most of the cores of games in Gδ are

strictly contained in C. Let v′ ∈ Gδ be such that C ′ is nonempty. There is a parallelepiped P ′ such

that C ′ = P ′ ∩C. We want to show that, in most of the cases, we have C ′ = P ′ ∩C = P ′ and C ′

is a parallelepiped (dark shaded zone in the third picture of Figure 6.2). Let dδ be the maximum

euclidean distance between any two points in P (since all the parallelepipeds are translations of

each other, dδ is common to all of them). By definition of P , limδ→0 dδ = 0.9

9The maximum dδ is achieved when x = (0, . . . , 0) and y =
Pn−1

i=1 ui = (δ, . . . , δ,−(n − 1)δ). The distance

between these two points is (n(n− 1))1/2δ. Hence, it goes to 0 as δ does.
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Each face of C is determined by a restriction RS
v , where ∅ ( S ( N . Hence, the maximum

number of faces of the core of a game with n players is fn = 2n − 2. Let F(C) denote the set of

all faces of C.

Let y ∈ C be such that the distance from y to each face in F (C) is more than dδ. Then, y

is inside a core C ′ such that C ′ = P ′ ∩ C = P ′ for some parallelepiped P ′, i.e., C ′ is itself a

parallelepiped. Hence, we can find an upper bound for the volume of the points y ∈ C which

are not in a parallelepiped. Let F ∈ F (C). Let B(F, δ) := {x ∈ Rn : d(x, F ) < dδ}. Now,

limδ→0B(F, δ) = F and, since F lies in an (n − 2)-dimensional space, Voln−1(F ) = 0. Now,

since for each F ∈ F (C), B(F, δ) is bounded, we have that Vol(B(F, δ)) goes to 0 as δ does.

Hence, for each 0 < ε < 1, we can find δ > 0 such that for each F ∈ F (C), Vol(B(F, δ)) < ε
fn

.

Once one such δ has been chosen, if y ∈ C but it is not in a parallelepiped, then it must lie in

B(F, δ) for some face F of C. Hence, the total volume of these points is bounded from above by
∑

F∈F(C) Vol(B(F, δ) <
∑

F∈F(C)
ε

fn
= fn

ε
fn

= ε.

Cutting a parallelepiped to obtain an elemental core: Let vr be the game such

that its core is the parallelepiped P r defined by P + (r1δ, r2δ, . . . , rn−1δ, v(N) −∑i6=n riδ). Let

χn,k(vr) be the cut where k = v(N) − (1 +
∑

i6=n ri)δ. The game vr has an elemental core ∆

whose vertices are the following n extreme points:

for each i ∈ N, pi = (r1δ, r2δ, . . . , rn−1δ, v(N) −
∑

i6=n

riδ) + eiδ − enδ.

The constant α used in the proof can be calculated as the quotient of the (n− 1)-dimensional

volumes of the simplex ∆ and the parallelepiped P containing it. Making some computations

with the formulas we introduced when we defined simplices and parallelepipeds we have

Vol(∆) =

√
n

(n− 1)!
δn−1 and Vol(P ) =

√
nδn−1.

Hence, α = Vol(S)
Vol(P ) = 1

(n−1)! . Once n is fixed, α keeps constant. �
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7.1 Introduction

In González-Díaz and Sánchez-Rodríguez (2003), a new allocation rule in the core of a TU game,

the core-center, is defined for the class of balanced games. The core-center establishes a connec-

tion between a set-valued solution (the core) and a single-valued solution (the core-center) that

summarizes the information contained in the former. If we think of the core as a homogeneous

body, then the core-center is its center of mass. In other words, it is the expectation of the

uniform distribution defined over the core. Hence, the core-center summarizes the information of

the core, inherits its properties, and, since it is a central point, it has also appealing motivations

from the point of view of fairness. We refer to González-Díaz and Sánchez-Rodríguez (2003) for

a detailed analysis and an axiomatic characterization of the core-center.

In the present Chapter we focus on the analysis of the core-center for convex games. A convex

game has special properties: it is balanced; its core has a specially regular structure; the core

coincides with the convex hull of the vectors of marginal contributions; the core is the unique

stable set; the Weber set, the bargaining set, and the core coincide; the kernel coincides with

the nucleolus... Moreover, the special geometric structure of the core of a convex game leads to

the main finding of this Chapter: a direct relation between two different “centers” of the core,

the Shapley value (Shapley, 1953) and the core-center. Recall that the Shapley value for convex

games is the center of mass of the vectors of marginal contributions (the extreme points of the

core).

One possible criticism for the core-center is that, since two different games may have the same

core, it does not necessarily use all the information of the characteristic function. But, for the

class of convex games, two different games cannot have the same core. Hence, for convex games,

since the core-center uses the information provided by all the allocations in the core, it also uses

all the information of the characteristic function.

In this Chapter we analyze in detail the core of a game by means of a dynamic process among

coalitions. Initially, we start with the imputation set; assuming that the players agree on the total

amount to be shared and on their individual values. Then, each coalition S announces the value

v(S), that represents the utility that the coalition S can obtain independently of N\S. Once the

players accept that value, the set of stable allocations is reduced. The core is the end result of

this process, once all the values of the characteristic function are considered. Once the process

ends, the imputation set can be dissected in several pieces, all of them being cores of games.

The core of the original game is a piece of the dissection and the other pieces are cores of some

particular games, which we call utopia games. Each utopia game measures the loss experienced

by a coalition once some other coalition announces its value. We prove in this Chapter that, for

special classes of convex games, the core-center can be expressed as the Shapley value of a specific

game, defined through the utopia games. We call this specific game the “fair game”.

Another important objective we have in this Chapter is to deepen the study of the geometry

of the core of a TU game and we hope that this contribution can lead to a better understanding

of the relation between the core and the Shapley value.
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The outline of this Chapter is the following. In Section 7.2 we present the notation and

background concepts. In the first part of Section 7.3, we introduce some geometrical concepts,

and then we introduce the core-center. In Section 7.4 we define the utopia games and state the

main results; we have moved some of the proofs of the results in this Section to the Appendix.

Finally, we conclude in Section 7.5.

7.2 Preliminaries

A cooperative n-player game with transferable utility, shortly, a TU game, is a pair (N, v), where

N is a finite set of players and v : 2N → R is a function assigning to each coalition S ∈ 2N a

real number v(S); by convention v(∅) = 0. For each coalition S, v(S) indicates what the players

in S can get by cooperation among themselves. A player i ∈ N is a dummy player if for each

S ⊆ N\{i}, v(S ∪ {i}) − v(S) = v({i}). Let Gn be the set of all n-player games. Given S ⊆ N ,

let |S| be the number of players in S, and let (S, vS) ∈ G|S| be the subgame such that, for each

T ⊆ S, vS(T ) := v(T ).

A game (N, v) is convex if for each i ∈ N and each S and T such that S ⊆ T ⊆ N\ {i},
v(S ∪ {i}) − v(S) ≤ v(T ∪ {i}) − v(T ). The amount v(S ∪ {i}) − v(S) is called i’s marginal

contribution to coalition S. Convexity says that, for each i ∈ N, i’s marginal contribution to the

different coalitions does not decrease as the coalitions grow.

Let (N, v) ∈ Gn. The efficiency condition,
∑

i∈N xi = v(N), is used to define the preimputa-

tion set : I∗(N, v) := {x ∈ Rn :
∑

i∈N xi = v(N)}.
A solution, defined on some subdomain of Gn, is a correspondence ψ that associates, to each

game (N, v) in the subdomain, a subset ϕ(N, v) of its preimputation set I∗(N, v).

The imputation set, I(N, v), contains the individually rational preimputations, i.e., I(N, v) :=

{x ∈ Rn :
∑

i∈N xi = v(N) and, for each i ∈ N, xi ≥ v({i})}. The imputation set is nonempty if

and only if v(N) ≥∑i∈N v({i}). If v(N) =
∑

i∈N v({i}), then I(N, v) = (v({1}), . . . , v({n})). If,

on the contrary, v(N) >
∑

i∈N v({i}), then I(N, v) is an (n−1)-dimensional simplex with extreme

points e1, . . . , en, where ei
i(N, v) = v(N) −∑j 6=i v({j}) and, for each j 6= i, ei

j(N, v) = v({j}).
Let (N, v) ∈ Gn. The core (Gillies, 1953), is defined by C(N, v) := {x ∈ I(N, v) : for each S ⊆

N,
∑

i∈S xi ≥ v(S)}. The allocations in the core satisfy the minimum requirements that any

coalition might demand in the game. If for each S ⊆ N , v(S) =
∑

i∈S v({i}), then (N, v)

is additive and C(N, v) = {(v({1}), . . . , v({n})}; if a game is additive, then every player is

dummy. Moreover, if a game (N, v) is such that (i) for each S ( N , v(S) =
∑

j∈S v({j}) and (ii)

v(N) >
∑

i∈N v({i}), then C(N, v) = I(N, v). A game is balanced if it has a nonempty core. Let

BGn be the set of all n-player balanced games . A game has a full dimensional core if the latter

has dimension n − 1.1 Each convex game is balanced, but not every balanced game is convex.

Let CGn be the set of all n-player convex games.

1A polytope P has dimension m if P is contained in an m-dimensional euclidean space but, for each m′ < m,
no m′-dimensional space contains it.
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Let S ⊆ N , and let Π(S) be the set of all possible orderings of the elements in S, i.e.,

bijective functions from {1, . . . , |S|} to {1, . . . , |S|}. For each i ∈ N and each σ ∈ Π(N), let

Pσ({i}) := {j ∈ N : σ(j) < σ(i)} be the set of predecessors of i with respect to σ.

Let (N, v) ∈ Gn and σ ∈ Π(N), the marginal vector associated with (N, v) and σ, mσ(N, v),

is the vector such that, for each i ∈ N , mσ
i (N, v) := v(Pσ({i}) ∪ {i}) − v(Pσ({i})).

An allocation rule, defined on some subdomain of Gn, is a function ϕ that associates, to each

game (N, v) in the subdomain, a preimputation ϕ(N, v). An allocation rule ϕ satisfies additivity

on the characteristic function if for each pair of games, (N, v) and (N,w), then ϕ(N, v + w) =

ϕ(N, v) + ϕ(N,w), where, for each S ⊆ N , (v + w)(S) = v(S) + w(S).

Let (N, v) ∈ Gn. The Shapley value, Sh, is the average of the marginal vectors, i.e.,

Sh(N, v) :=
1

n!

∑

σ∈Π(N)

mσ(N, v).

The Shapley value satisfies, among many other properties, additivity on the characteristic func-

tion.

If (N, v) is a convex game, then the marginal vectors are the extreme points of its core, i.e.,

C(N, v) = co{mσ(N, v) : σ ∈ Π(N)}.2 Then, for the class of convex games, the Shapley value is

the barycenter of the extreme points of the core where the weight of each extreme point is the

number of permutations that originate it. Usually, when working with convex games, the Shapley

value is called, with an abuse of language, the barycenter of the core.

7.3 The Core-Center

Before defining the core-center, we introduce some notation regarding the geometrical concepts

we deal with in this Chapter. A convex polytope P is the convex hull of a finite set of points in

Rn. Henceforth, we omit the word convex because we only deal with such polytopes. A polytope

P is an m-polytope if its dimension is m, i.e., the smallest integer such that P is contained in an

m-dimensional space. The core of a game in BGn is a polytope and its dimension is, at most,

n − 1. Let P be an m-polytope and let m′ ≥ m, then, Volm′(P ) denotes the m′-dimensional

volume of P .

Let {a0, a1, . . . , an} ( Rn be a geometrically independent set.3 The simplex ∆n spanned by

a0, a1, . . . , an is the set of all x ∈ Rn such that x =
∑n

i=0 tia
i, where

∑n
i=0 ti = 1 and, for each

i ∈ {1, . . . , n}, ti ≥ 0. Each ai is a vertex of the n-simplex. The superscript n in ∆n corresponds

with the dimension of the simplex. An n-simplex is regular if the distance between any two

vertices is constant.

2Given a set A ⊆ Rn, we denote its convex hull by co(A).
3A set {a0, a1, . . . , an} ( Rn is geometrically independent if for each vector (t0, t1, . . . , tn) ∈ Rn+1, the

equations
Pn

i=0 ti = 0 and
Pn

i=0 tia
i = (0, . . . , 0), hold only if t0 = t1 = · · · = tn = 0. Note that {a0, a1, . . . , an}

is geometrically independent if and only if the vectors a1 − a0, . . . , an − a0 are linearly independent.
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The barycenter of a simplex ∆n spanned by the points a0, a1, . . . , an is Θ(∆n) :=
∑n

i=0
ai

n+1 .

Let m ≤ n, let ∆m be an m-simplex contained in Rn, and let a0, . . . , am be its vertices. The

m-dimensional volume of ∆m, Volm(∆m), can be computed in the following way: Let B = (βij)

denote the (m+ 1) × (m+ 1) matrix given by βij = ‖ai − aj‖2. Then,

2m(m!)2 Volm(∆m)2 = |det(B̂)|,

where B̂ is the (m+2)×(m+2) matrix obtained from B by bordering it with a top row (0, 1, . . . , 1)

and left column (0, 1, . . . , 1)T . This is known as the Cayley-Menger determinant formula.4

Let P be an m-polytope in Rn. Then, the set of polytopes {P1, . . . , Pk} defines a dissection

of P if (i) P =
⋃k

l=1 Pl and (ii) for each pair l, l′ ∈ {1, . . . , k}, with l 6= l′, Volm(Pl ∩ Pl′) = 0.

Let U(A) be the uniform distribution defined over the set A and E(P) the expectation of the

probability distribution P. Let (N, v) ∈ BGn. The core-center of (N, v), µ(N, v), is defined as

follows:

µ(N, v) := E [U(C(N, v))] .

Next, we define an additivity property satisfied by the core-center that plays an essential role

in this Chapter. Let (N, v) ∈ BGn such that C(N, v) is an m-polytope, with m ≤ n − 1. Let

{v1, . . . , vk} be such that {C(N, v1), . . . , C(N, vk)} is a dissection of C(N, v). Then, an allocation

rule ϕ satisfies w-additivity (where “w” stands for weighted) if

Volm(C(N, v))ϕ(N, v) =

k∑

l=1

Volm(C(N, vl)ϕ(N, vl).

The w-additivity of the core-center is an immediate consequence of the classical properties of the

barycenter of a set.

Next, we prove a series of simple results that establish a first connection between the core-

center and the Shapley value.

Lemma 7.1. Let (N, v) ∈ Gn, with n ≥ 2, be such that v(N) >
∑

j∈N v({j}). Then:

(i) For each i ∈ N , Θi(I(N, v)) = v({i}) +
v(N)−Pk∈N v({k})

n .

(ii) If for each S ( N , v(S) =
∑

i∈S v({i}), then,

µ(N, v) = Sh(N, v) = Θ(I(N, v)).

(iii) Voln−1(I(N, v)) =
√

n
(n−1)!

(
v(N) −∑j∈N v({j})

)n−1
.

Proof. (i) Follows from the formula for the barycenter of a simplex.

(ii) Follows from the following observations: v is convex and C(N, v) = I(N, v).

(iii) It is a consequence of the formula for the volume of a simplex.

4For references on this and other formulas for computing simplicial volumes look at Gritzman and Klee (1994).
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Corollary 7.1. Let (N, v) ∈ G2 be such that v(N) > v({1}) + v({2}). Then,

Sh(N, v) = Θ(I(N, v)) = µ(N, v).

Moreover, they coincide with the barycenter (midpoint) of the segment joining the two points
(
v({1}), v(N) − v({1})

)
and

(
v(N) − v({2}), v({2})

)
.

Proof. Immediate from Lemma 7.1.

Let Dv be the set of dummy players of (N, v) and dv its cardinality. Recall that, if dv = n,

then the game is additive.

Lemma 7.2. Let (N, v) ∈ Gn. Then, the following statements are true:

(i) dv 6= n− 1.

(ii) Let (N, v) ∈ BGn and dv < n. Then, xN ∈ C(N, v) if and only if (i) for each i ∈ Dv, xi =

v({i}) and (ii) xN\Dv
∈ C(N\Dv, vN\Dv

).

(iii) Let (N, v) ∈ CGn and dv < n. Then, (N\Dv, vN\Dv
) ∈ CGn−dv , i.e., it is a convex game

with full dimensional core.

Proof. a) Suppose that dv ≥ n−1. Then, there is i ∈ N such thatN\{i} ⊆ Dv. Suppose now that

i /∈ Dv. Let S be a minimal coalition among those such that i /∈ S and v(S∪{i})−v(S) 6= v({i}).
Clearly, S 6= ∅. Let j ∈ S, then,

v((S ∪ {i})\{j}) = v((S ∪ {i})\{j}) − v(S\{j}) + v(S\{j})
S\{j}(S

= v({i}) +
∑

l∈S\{j}
v({l}).

Now, v({j}) = v(S ∪ {i}) − v((S ∪ {i})\{j}) = v(S ∪ {i}) − v({i}) −∑l∈S\{j} v({l}). Hence,

since
∑

l∈S v({l}) = v(S), we have v(S ∪ {i}) − v(S) = v({i}), contradicting the definition of S.

Hence, i ∈ Dv and dv = n.

b) Follows from the equality v(N) = v(N\Dv) +
∑

j∈Dv
v({j}).

c) Each subgame of a convex game is a convex game. Hence, (N\Dv, vN\Dv
) is a convex

game with no dummy players. Let (N,w) be a convex game. Since (i) for each i ∈ N , there is a

marginal vector such that mσ
i = v({i}) and (ii) C(N,w) is the convex hull of the marginal vectors,

C(N,w) has at least one point in each face of I(N,w). Now, if (N,w) has no dummy players,

then, for each i ∈ N , there is a marginal vector such that mσ′
i > v({i}). The full dimensionality

of the core of each convex game with no dummy players follows from the combination of the two

previous observations.

Corollary 7.2. Let (N, v) be a convex game with n−2 dummy players. Then, Sh(N, v) = µ(N, v).

Proof. It follows from Lemma 7.2 and Corollary 7.1.
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Remark. Lemma 7.2 shows that coalitions involving dummy players are not needed in order

to compute the core-center. Then,

µi(N, v) =

{

v({i}) i ∈ Dv

µi(N\Dv, vN\Dv
) i /∈ Dv.

Note that the Shapley value also satisfies that for each i ∈ Dv, Shi(N, v) = v({i}).
Because of the previous Remark, we do not consider games with dummy players anymore. The

main results in the next Section hold for convex games without dummy players or, equivalently,

convex games with full dimensional core.

7.4 The Dynamic Process between Coalitions. The Utopia

Games

The class of exact games (Schmeidler, 1972) is a subclass of BGn. The main property this class

of games is that, given two exact games, if they have the same core, then they are the same game,

i.e., no two distinct exact games have the same core. Hence, when working with exact games,

both the core and the characteristic function contain all the information of the underlying game.

Since the class of convex games is contained in the class of exact games, the last observation is

also relevant to our framework: no two distinct convex games have the same core. This property

reinforces the motivations for the core-center within the class of convex games. Since the core

uses all the information of the game, why not select the allocation rule that summarizes all the

information of the core?

The results in this Section are for games with full dimensional core. Hence, when no confusion

arises, Vol(P ) denotes the (n− 1)-dimensional volume of polytope P .

Let N be a set of players and suppose that the game (N, v) is gradually defined. First, the

players agree on the amount v(N) that is to be divided. Then, they agree on the individual

values. Hence, only v(N) and, for each i ∈ N , the value v({i}) are determined. To formalize this

step we define the game (N, v∅), where the players do not gain anything by forming coalitions

different from N ,

v∅(S) =

{ ∑

l∈S v({l}) S 6= N

v(N) S = N.

At this point, a fair allocation rule should provide some payoff in the imputation set, and without

any more information, why not choose the center of the imputation set?

Suppose now that coalitions enter in the game and, for instance, players 1 and 2 announce

that, together, they can get v({1, 2}). At this point, the set of “stable” points is C1,2 = {x ∈
I(N, v) : x1 + x2 ≥ v({1, 2})}. Clearly, C1,2 is a subset of the imputation set and, the larger the

difference v({1, 2}) − (v({1}) + v({2})) is, the smaller C1,2 is. Next, we measure the size of this

set of “stable” points, which is contained in I(N, v). One natural way is through the difference
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of the volumes, i.e., Vol(I(N, v)) − Vol(C1,2) (note that allocations in I(N, v)\C1,2 are the good

ones for coalition N\{1, 2}). Now, we can repeat the argument with some other coalition different

from {1, 2}; we can compare the different coalitions and “measure” their differences.

Next, we introduce a new class of games: the utopia games. Roughly speaking, these games

are such that the core of the utopia game for coalition S is precisely the set of allocations that

are not “stable” after coalition N\S announces v(N\S). Formally, let (N, v) be a convex game,

and let T ∈ 2N\∅. Let H ∈ 2T \∅. Then, we define the game (N, vH
T ) ∈ Gn as follows:5

vH
T (S) =







v((T ∩ S) ∪ (N\T )) − v(N\T ) + v(S\(T ∩ S)) H ⊆ S

v((T ∩ S) ∪ (N\T )) − v(N\T ) +
∑

l∈S\(T∩S)

v({l}) otherwise.

Despite of the apparent complexity of this definition, the specific utopia games we look at in this

Chapter allow for more transparent expressions.

It is easy to check that

vH
T (∅) = 0,

vH
T (N) = v(N),

if T ∩ S = ∅, vH
T (S) =

∑

l∈S v({l}).

Next, we interpret the game (N, vH
T ). For each coalition S 6= T , the value vH

T (S) is the sum of

two quantities. First, the marginal contribution of the players in S who are in T to N\T . Second,

the contribution of players in S that are not in T . Hence, what a coalition S ⊆ T obtains in the

game vH
T is its marginal contribution to N\T , i.e., vH

T (S) = v(S ∪ (N\T )) − v(N\T ); note that,

if S = T , vH
T (T ) = v(N) − v(N\T ).

Take now S ⊆ N such that ∅ ( T ∩ S ( S. The contribution of the players in S that are not

in T depends on the coalition H. Fixed H, if H ⊆ S, the contribution of players in S\(T ∩ S)

is the utility that they can guarantee themselves by joining together, i.e., v(S\(T ∩ S)). On the

other hand, if H * S, that contribution is computed by
∑

l∈S\(T∩S) v({l}). Roughly speaking,

players in H can be thought as the ones who have the key to allow for cooperation.

The main idea underlying the games vH
T is that the players in T are the ones who have the

power in the game, but always respecting the minimum rights of players in N\T . In addition,

the game also establishes, via coalition H, a hierarchical structure among players in T . As next

proposition reads, these games are convex.

Proposition 7.1. Let (N, v) ∈ CGn, T ∈ 2N\∅, and H ∈ 2T \∅. Then, (N, vH
T ) ∈ CGn.

Proof. See the Appendix.

5We do not use the subgames (S, vS) anymore. Hence, no confusion can arise because of the notation for
utopia games.
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Next, we study utopia games defined by coalitions with, at most, two players. For these

special utopia games, the intuition highlighted in the discussion above should become clearer.

Let i ∈ N and T = {i}; in this case H = T . Henceforth, we denote, for each i ∈ N , the game

(N, v
{i}
{i}) by (N, vi). The game (N, vi) is the utopia game for player i, shortly, i-utopia game:

For each S ⊆ N, vi(S) =

{

v(N) − v(N\ {i}) + v(S\{i}) i ∈ S
∑

l∈S v({l}) i /∈ S.

In this game player i has the key for cooperation. The other players by themselves can only

get the sum of their individual values.

We describe now the games vH
T where T is a 2-player coalition, T = {i, j} ⊆ N with i 6= j.

To this extent, we define two games:

(N, v
{i}
{i,j}) and (N, v

{j}
{i,j}),

6

that we denote by (N, v(i,j)) and (N, v(j,i)), respectively. The former, that we call (i, j)-utopia

game is good for both players 1 and 2, but excellent for player 1:

v(i,j)(S) =

{

v((T ∩ S) ∪ (N\T )) − v(N\T ) + v(S\(T ∩ S)) i ∈ S

v((T ∩ S) ∪ (N\T )) − v(N\T ) +
∑

l∈S\(T∩S) v({l}) i /∈ S

=







v(N) − v(N\{i, j}) + v(S\{i, j}) i ∈ S, j ∈ S

v(N\{j}) − v(N\{i, j}) + v(S\{i}) i ∈ S, j /∈ S

v(N\{i}) − v(N\{i, j}) +
∑

l∈S\{j} v({l}) i /∈ S, j ∈ S
∑

l∈S v{l}) i /∈ S, j /∈ S.

Analogously, by interchanging the role of i and j, we can define the (j, i)-utopia game.

The next concept leads to a classification of the games in CGn. This classification looks at the

size of the smaller coalition, say S, such that v(S) >
∑

i∈S v({i}), i.e., joining together to form S

is profitable for the players in S. Formally, let (N, v) ∈ CGn, n > 2. Let t ∈ {1, . . . , n−1}. Then,

(N, v) ∈ CGn
t if (i) for each S ⊆ N with |S| ≤ t, v(S) =

∑

i∈S v({i}) and (ii) there is a coalition

S, |S| = t + 1, such that v(S) >
∑

i∈S v({i}). On the other hand, if v(N) =
∑

i∈N v({i}), then

(N, v) ∈ CGn
n. Let (N, v) ∈ CGn, then there is t ∈ {1, . . . , n} such that (N, v) ∈ CGn

t . Note

that I(N, v) = C(N, v) if and only if (N, v) ∈ CGn
t , with t ≥ n − 1, and then, by Lemma 7.1

both Shapley value and core-center coincide with the barycenter of the imputation set. Let

(N, v) ∈ CGn
t , with t < n, then, (i) the core restrictions originated in the m-player coalitions,

1 < m ≤ t, are redundant and (ii) there is at least one coalition with more than t players imposing

a non-redundant restriction on C(N, v).

6We could also define the game (N, v
{i,j}
{i,j}

), where H = T . But, since we do not use it in our results, we skip

its definition.
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1

2

4

3

Figure 7.1: Core of a game in CG4
2

1

2

4

3

1-utopia core

2-utopia core

Figure 7.2: Cores of two utopia games

Lemma 7.3. Let (N, v) ∈ CGn
n−2, n > 2. Then:

(i) For each i ∈ N, C(N, vi) = I(N, vi) and

Vol(C(N, vi))

Vol(I(N, v))
=

(

v(N\{i}) −∑l∈N\{i} v({l})
v(N) −∑l∈N v({l})

)n−1

.

(ii) Let i, j ∈ N, i 6= j. Then, C(N, (vi)j) = mσ(N, v), where σ ∈ Π(N) is such that σ(i) = n

and σ(j) = n− 1.

(iii) I(N, v) =
(⋃

i∈N C(N, vi)
)
∪ C(N, v).

(iv) Vol(I(N, v)) =
∑

i∈N Vol(C(N, vi)) + Vol(C(N, v)).

Proof. See the Appendix.

Let (N, v) ∈ CGn
n−2. Let p := Vol(C(N, v)), p0 = Vol(C(N, v∅)), and, for each i ∈ N ,

pi = Vol(C(N, vi). Let the fair game associated with (N, v), (N, v∗), be defined as follows:

v∗(S) =
1

p

(
p0v∅(S) −

∑

i∈N

pivi(S)
)
.

Theorem 7.1. Let (N, v) ∈ CGn
n−2, n > 2. Then, µ(N, v) = Sh(N, v∗).

Proof. The core-center satisfies w-additivity and, by Lemma 7.3, the imputation set can be

dissected into n + 1 polytopes, the core of (N, v) and the cores of the utopia games. Hence,

µ(N, v∅) = p
p0
µ(N, v) +

∑

i∈N
pi

p0
µ(N, vi). By Lemma 7.1, µ(N, v∅) = Sh(N, v∅), and, for each
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i ∈ N , µ(N, vi) = Sh(N, vi). Hence,

µ(N, v) =
p0

p

(
µ(N, v∅) −

∑

i∈N

pi

p0
µ(N, vi)

)
=
p0

p
Sh(N, v∅) −

∑

i∈N

pi

p
Sh(N, vi)

=
1

p

(
p0 Sh(N, v∅) −

∑

i∈N

pi Sh(N, vi)
)

= Sh(N, v∗),

where the last equality holds by the additivity of the Shapley value.

Remark. This proof has the following feature: we start with the core-center of a game and,

in two steps, using both the w-additivity of the core-center and the additivity of the Shapley

value, we end up with the Shapley value of the fair game.

Corollary 7.3. Let (N, v) ∈ CG3. Then, µ(N, v) = Sh(N, v∗).

Proof. Immediate from Theorem 7.1.

Remark. If (N, v) ∈ CG3, the game (N, v∗) summarizes all the information of the core.

The core of the fair game coincides with its imputation set and contains C(N, v). Following the

definition of (N, v∗) we have, for each i ∈ N , v∗({i}) = v({i}) − pi

p

(
v(N) − v(N\{i}) + v({i})

)
.

Hence,

µ(N, v) = v∗({i}) +
1

n

(
v(N) −

∑

k∈N

v∗({k})
)
.

Example 7.1. Let (N, v) ∈ G3 be such that, for each i ∈ N , v({i}) = 0; v({1, 2}) = 2, v({1, 3}) =

v({2, 3}) = 5, and v(N) = 10. Then,

S v∅ v1 v2 v3 v{1,2} v{1,3} v{2,3} v∗

{1} 0 5 0 0 5 2 0 −2.7174

{2} 0 0 5 0 5 0 2 −2.7174

{3} 0 0 0 8 0 5 5 −0.6957

{1, 2} 0 5 5 0 10 2 2 −5.4348

{1, 3} 0 5 0 8 5 10 5 −3.4130

{2, 3} 0 0 5 8 5 5 10 −3.4130

N 10 10 10 10 10 10 10 10

and,

Sh(N, v) = (2.8333, 2.8333, 4.3333)

µ(N, v) = (2.6594, 2.6594, 4.6812).

Let r := p/p0 and, for each i ∈ N , ri := pi/p0. In this example we have r1 = r2 = 1/4, r3 = 1/25

and r = 1− (r1 + r2 + r3) = 23/50. Hence, players 1 and 2 are less powerful than player 3. Note
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that C(N, v(1,2)) = C(N, v(2,1)) = (5, 5, 0). Moreover, x ∈ C(N, v{1,2}) if and only if

v({1, 3}) − v(3) ≤ x1 ≤ v(N) − v({2, 3}),
v({2, 3}) − v(3) ≤ x2 ≤ v(N) − v({1, 3}), and

x3 = v({3}).

1

2

3

C(N, v)

I(N, v)

Figure 7.3: Core of a game in CG3

1

2

3

I(N, v)

C(N, v)

C(N, v∗) = I(N, v∗)

Figure 7.4: The core of the fair game

Since
∑
ri = 1 and, for each i ∈ N , 0 ≤ ri ≤ 1, the ratios ri have the following interpretation.

They determine a probability distribution over the cores of the utopia games and hence, over

the imputation set; r is the probability that an allocation in I(N, v) belongs to C(N, v) and, for

each i ∈ N , ri is the probability that an allocation in I(N, v) belongs to C(N, vi). Hence, the

greater the core of the i-utopia game is, the worse is i’s situation in the game. Roughly speaking,

Figures 7.3 and 7.4 show that for (N, v), the “big” utopia cores are those of the utopia games of

players 1 and 2. Hence, in the core of the fair game, the “bad” section that has been added for

player 3 (with respect to the core of the original game) is smaller than those for players 1 and 2.

We turn now to study games in CGn
n−3. We denote the game (v(i,j))j by v(i,j)j

.

Lemma 7.4. Let (N, v) ∈ CGn
n−3, n > 3, and let i ∈ N . Then,

(i) (N, vi) ∈ CGn
n−t, t < 3.

(ii) For each i, j ∈ N , i 6= j, C(N, (vi)j) = I(N, (vi)j).

(iii) µ(N, vi) = Sh(N, (vi)
∗).

Proof. (i) It suffices to show that, for each S ⊆ N such that |S| ≤ n − 2, we have vi(S) =
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1-utopia core
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1-utopia core

2-utopia core

(1, 2)-utopia core
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1-utopia core

2-utopia core
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1-utopia core

2-utopia core

(1, 2)-utopia core
(1, 2)2-utopia core
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Figure 7.5: Example of a game in CG4
3 with some of its utopia games
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∑

k∈S vi({k}). Now, for each S ⊆ N ,

vi(S) =







v(N) − v(N\ {i}) + v(S\{i}) i ∈ S, |S| ≥ n− 2

v(N) − v(N\ {i}) +
∑

l∈S\{i} v({l}) i ∈ S, |S| < n− 2
∑

l∈S v({l}) i /∈ S.

Hence, if |S| < n − 2, the result is immediate; if |S| = n − 2, since |S\{i}| = n − 3 we have

v(S\{i}) =
∑

l∈S\{i} v({l}). Hence, for each S ⊆ N such that |S| ≤ n−2, vi(S) =
∑

k∈S vi({k}).
(ii) and (iii) follow from Lemma 7.3 and Theorem 7.1.

Lemma 7.5. Let (N, v) ∈ CGn
n−3, n > 3. Let i, j ∈ N , i 6= j and let (N, v(i,j)) be the (i, j)-utopia

game. Then, if C(N, v(i,j)) is full dimensional we have

(i) Sh(N, v(i,j)) = µ(N, v(i,j)).

(ii) Vol(C(N, v(i,j))) =

=

√
n

(n− 2)!

(

v(N\{i, j}) −
∑

l∈N\{i,j}
v({l})

)n−2(

v(N) − v(N\{i}) + v(N\{i, j}) − v(N\{j})
)

Proof. See the Appendix.

Lemma 7.6. Let (N, v) ∈ CGn
n−3, n > 3. Let i, j ∈ N , i 6= j and let (N, v(i,j)) be the (i, j)-utopia

game. Then,

(i) For each S ⊆ N , v(i,j)j
(S) = (vj)i(S) and C(N, v(i,j)j

) = C(N, (vj)i).

(ii) µ(N, v(i,j)j
) = Sh(N, v(i,j)j

).

(iii) We have the following dissection of the set of imputations:

I(N, v) = C(N, v∅) =
( ⋃

i∈N

C(N, vi)
)

∪
(⋃

i<j

(
C(N, v(i,j)) ∪ C(N, v(i,j)j

)
))

∪ C(N, v).

Proof. See the Appendix.

Let (N, v) ∈ CGn
n−3. As before, let p := Vol(C(N, v)), p0 = Vol(C(N, v∅)), and, for each

i ∈ N , pi = Vol(C(N, vi). Moreover, for each pair i, j ∈ N , let p(i,j) = Vol(C(N, v(i,j))) and

p(i,j)j
= Vol(C(N, v(i,j)j

)). Let the fair game associated with (N, v), (N, v∗), be defined as

follows:

v∗(S) =
1

p

(

p0v∅(S) −
∑

i∈N

pivi(S) −
∑

i6=j

1

2

(
p(i,j)v(i,j)(S) + p(i,j)j

v(i,j)j
(S)
))

.

Since for each (N, v) ∈ CGn
n−2, the coefficients p(i,j) and p(i,j)j

are 0, this definition of fair game

is consistent with the old one.
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Let r(i,j) = p(i,j)/p0 and r(i,j)j
= p(i,j)j

/p0. Then,

r(i,j) =

√
n

(n−2)!

(

v(N\{i,j})−Pl∈N\{i,j} v({l})
)n−2(

v(N)−v(N\{i})+v(N\{i,j})−v(N\{j})
)

√
n

(n−1)!

(
v(N)−Pl∈N v({l})

)n−1

= (n− 1)
(

v(N\{i,j})−Pl∈N\{i,j} v({l})
v(N)−Pl∈N v({l})

)n−1
v(N)−v(N\{i})+v(N\{i,j})−v(N\{j})

v(N)−Pl∈N v({l}) ,

and,

r(i,j)j
=

(

v(N\{i, j}) −∑l∈N\{i,j} v({l})
v(N) −∑l∈N v({l})

)n−1

.

Again, the numbers r(i,j) and r(i,j)j
can be interpreted as the probabilities that an allocation in

C(N, v(i,j)) or C(N, v(i,j)j
), respectively, is chosen. According to our interpretation of the utopia

games, if an allocation in C(N, v(i,j)) is chosen, the coalition {i, j} would receive an “utopic”

payoff, i.e., allocations in C(N, v(i,j)) are the best for coalition {i, j} within I(N, v). Note that

r(i,j) = r(j,i) and r(i,j)j
= r(j,i)i

. This observation is crucial to understand the following result.

Lemma 7.7. Let (N, v) ∈ CGn
n−3, n > 3. Let i, j ∈ N , i 6= j and let (N, v(i,j)) be the (i, j)-utopia

game. Then,

r(i,j)µ(N, v(i,j)) + r(i,j)j
µ(N, (v(i,j)){j}) = r(j,i)µ(N, v(j,i)) + r(j,i)i

µ(N, (v(j,i)){i}).

Proof. This result is a consequence of the following equality:

C(N, v(i,j)) ∪ C(N, v(i,j)j
) = C(N, v(j,i)) ∪ C(N, v(j,i)i

).

Lemma 7.7 shows that, given any two players, there is an important symmetry between the

two corresponding 2-player utopia games. Next, we state our main Theorem. It provides a direct

relation between the core-center and the Shapley value of the fair game.

Theorem 7.2. Let (N, v) ∈ CGn
n−3, n > 3. Then, µ(N, v) = Sh(N, v∗).

Proof. Since

C(N, v∅) =
( ⋃

i∈N

C(N, vi)
)

∪
(⋃

i<j

(
C(N, v(i,j)) ∪ C(N, v(i,j)j

)
))

∪ C(N, v),

we have

µ(N, v∅) =
∑

i∈N

pi

p0
µ(N, vi) +

∑

i<j

(
p(i,j)

p0
µ(N, v(i,j)) +

p(i,j)j

p0
µ(N, v(i,j)j

)
)

+ p
p0
µ(N, v)

=
∑

i∈N

pi

p0
µ(N, vi) +

∑

i6=j

(
p(i,j)

2p0
µ(N, v(i,j)) +

p(i,j)j

2p0
µ(N, v(i,j)j

)
)

+ p
p0
µ(N, v),
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where the last equality holds by Lemma 7.7. Now, by Lemmas 7.1 and 7.5,7 and by the additivity

of the Shapley value, we have,

µ(N, v) = p0

p µ(N, v∅) −
∑

i∈N

pi

p µ(N, vi) −
∑

i6=j

(
p(i,j)

2p µ(N, v(i,j)) +
p(i,j)j

2p µ(N, v(i,j)j
)
)

= p0

p Sh(N, v∅) −
∑

i∈N

pi

p Sh(N, vi) −
∑

i6=j

(
p(i,j)

2p Sh(N, v(i,j)) +
p(i,j)j

2p Sh(N, v(i,j)j
)
)

= Sh(N, v∗).

Corollary 7.4. Let (N, v) ∈ CG4. Then, µ(N, v) = Sh(N, v∗).

Proof. Immediate from Theorem 7.2.

Remark. The fair game uses all the information of the original game. Suppose that we

only have the value of the grand coalition and the values for the 1-player coalitions; with this

information on the table, only the allocations within the set of imputations (the core of (N, v∅))

seem to be reasonable. Hence, the center of the imputation set would be a fair outcome, i.e.,

every player gets what he would expect if an imputation were to be randomly picked. But, if

we had all the characteristic function on the table, would it still be fair? Now, stability could

turn to be a concern. Hence, players must take into account that each coalition S such that

v(S) >
∑

i∈S v({i}) is imposing a relevant constraint in the imputation set. The fair game

uses all that information and, indirectly, measures its relevance. There is also a probabilistic

interpretation for the 2-player coalitions: when two players, say i and j, form a coalition, there

are two ways of ordering them within the coalition; we assign equal probability to each of them,

i.e., the orderings {i, j} and {j, i} are equally likely.

7.5 Concluding Remarks

The main question that arises from this Chapter is to know whether Theorem 7.2 can be extended

to the entire class of convex games.

This Chapter shows that the utopia games use a lot of information of the underlying game.

Since we have only defined them for convex games, a natural question is whether they can be

defined for any balanced game. Then, the following step would be to wonder if the core-center

of any balanced game can be expressed by means of these games. Even when we have provided

many insights on the properties of these games, much more research on this topic is needed.

This Chapter also deepens the motivations for the core-center: an allocation rule obtained

in a natural way from a set-valued solution. Hence, as the final conclusion, just insist in the

fact that the core-center provides a new focus on the search for connections between set-valued

solutions and allocation rules. Of course, many things still remain to be explored.

7Lemma 7.5 is important for the games v(i,j) with a full dimensional core; otherwise, their volume would be
0, and hence, the corresponding addends would also be 0.
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7.A Appendix

7.A.1 Proof of Proposition 7.1

Proof. We want to show that for each R ⊆ S ⊆ N\{i},

vH
T (R ∪ {i}) − vH

T (R) ≤ vH
T (S ∪ {i}) − vH

T (S). (7.1)

Case 1: i /∈ T . We distinguish three possibilities:

a) H ⊆ R ⊆ S. Since

(i) vH
T (S ∪ {i}) − vH

T (S) = v((S ∪ {i})\T ) − v(S\T ),

(ii) vH
T (R ∪ {i}) − vH

T (R) = v((R ∪ {i})\T ) − v(R\T ), and

(iii) (N, v) is convex,

inequality (7.1) holds.

b) H 6⊆ R and H ⊆ S. Since

(i) vH
T (S ∪ {i}) − vH

T (S) = v((S ∪ {i})\T ) − v(S\T ),

(ii) vH
T (R ∪ {i}) − vH

T (R) = v({i}), and

(iii) (N, v) is convex,

inequality (7.1) holds.

c) H 6⊆ S. Since i /∈ T , vH
T (R ∪ {i}) − vH

T (R) = vH
T (S ∪ {i}) − vH

T (S) = v({i}) and (7.1) holds

again.

Case 2: i ∈ T . Again, we distinguish three possibilities:

a) H ⊆ R ∪ {i} ⊆ S ∪ {i}. We distinguish two subcases: i /∈ H and i ∈ H.

a.1) i /∈ H. Since

(i) vH
T (S ∪ {i}) − vH

T (S) = v((T ∩ S) ∪ (N\T ) ∪ {i}) − v((T ∩ S) ∪ (N\T )),

(ii) vH
T (R ∪ {i}) − vH

T (R) = v((T ∩R) ∪ (N\T ) ∪ {i}) − v((T ∩R) ∪ (N\T )), and

(iii) (N, v) is convex,

inequality (7.1) holds.

a.2) i ∈ H. Now,

(i) vH
T (S ∪ {i}) − vH

T (S) = v((T ∩ S) ∪ (N\T ) ∪ {i}) − v((T ∩ S) ∪ (N\T ))

+ v(S\(T ∩ S)) − ∑

l∈S\(T∩S)

v({l}) and

(ii) vH
T (R ∪ {i}) − vH

T (R) = v((T ∩R) ∪ (N\T ) ∪ {i}) − v((T ∩R) ∪ (N\T ))

+ v(R\(T ∩R) − ∑

l∈R\(T∩R)

v({l}).
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Moreover, by the convexity of (N, v) we have

(iii) v((T ∩S)∪(N\T )∪{i})−v((T ∩S)∪(N\T )) ≥ v((T ∩R)∪(N\T )∪{i})−v((T ∩R)∪(N\T )).

Finally, since

v(S\(T ∩ S)) − v(R\(T ∩R)) = v(S\(T ∩ S)) − v(R\(T ∩ S ∩R))

and

∑

l∈S\(T∩S)

v({l}) − ∑

l∈R\(T∩R)

v({l}) =
∑

l∈S\(T∩S)

v({l}) − ∑

l∈R\(T∩S∩R)

v({l})

=
∑

l∈S\(R∪(T∩S∩(N\R))

v({l}),

we have

iv) v(S\(T ∩ S)) − ∑

l∈S\(T∩S)

v({l}) ≥ v(R\(T ∩R)) − ∑

l∈R\(T∩R)

v({l}).

Now, the combination of equations i) to iv) yields (1).

b) H 6⊆ R ∪ {i} and H ⊆ S ∪ {i}. Again, we distinguish two subcases: i /∈ H and i ∈ H.

b.1) i /∈ H. Since

(i) vH
T (S ∪ {i}) − vH

T (S) = v((T ∩ S) ∪ (N\T ) ∪ {i}) − v((T ∩ S) ∪ (N\T )),

(ii) vH
T (R ∪ {i}) − vH

T (R) = v((T ∩R) ∪ (N\T ) ∪ {i}) − v((T ∩R) ∪ (N\T )), and

(iii) (N, v) is convex,

inequality (7.1) holds.

b.2) i ∈ H. Now,

(i) vH
T (S ∪ {i}) − vH

T (S) = v((T ∩ S) ∪ (N\T ) ∪ {i}) − v((T ∩ S) ∪ (N\T ))

+ v(S\(T ∩ S)) − ∑

l∈S\(T∩S)

v({l}) and

(ii) vH
T (R ∪ {i}) − vH

T (R) = v((T ∩R) ∪ (N\T ) ∪ {i}) − v((T ∩R) ∪ (N\T )).

Since v(S\(T ∩ S)) −∑l∈S\(T∩S) v({l}) ≥ 0, the arguments in case a.2) can be adapted.

c) H 6⊆ S ∪ {i}. Since

(i) vH
T (S ∪ {i}) − vH

T (S) = v((T ∩ S) ∪ (N\T ) ∪ {i}) − v((T ∩ S) ∪ (N\T )),

(ii) vH
T (R ∪ {i}) − vH

T (R) = v((T ∩R) ∪ (N\T ) ∪ {i}) − v((T ∩R) ∪ (N\T )), and

(iii) (N, v) is convex,

inequality (7.1) holds.
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We have discussed all possible cases. Hence, (N, vH
T ) ∈ CGn.

7.A.2 Proof of Lemma 7.3

Proof. (i) Let i ∈ N. If (N, v) ∈ CGn
n−t, with 0 ≤ t ≤ 2. Then vi can be defined as follows:

vi(S) =







v(N) − v(N\{i}) + v(S\{i}) i ∈ S, |S| ≥ n− 1

v(N) − v(N\{i}) +
∑

l∈S\{i} v({l}) i ∈ S, |S| < n− 1
∑

l∈S v({l}) i /∈ S.

(7.2)

Let σ ∈ Π(N) be such that σ(i) = n. Then, mσ
i (N, vi) = v(N) −∑l∈N\{i} v({l}) and, for each

k 6= i, mσ
k(N, vi) = v({k}). Let j ∈ N, j 6= i; then, for each σ ∈ Π(N) such that σ(j) = n, we

have mσ
i (N, vi) = v(N)−v(N\{i}), mσ

j (N, vi) = v(N\{i})−∑l 6=i,j v({l}), and, for each k 6= i, j,

mσ
k(N, vi) = v({k}). Hence, since (N, vi) is convex, C(N, vi) coincides with the convex hull of

the marginal vectors. Hence, for each i ∈ N , C(N, vi) = I(N, vi). Finally, the ratio between the

volumes follows from Lemma 7.1.

(ii) Let i, j ∈ N, j 6= i. Let (N, vi) ∈ CGn
n−t, with 0 ≤ t ≤ 2. For each S ⊆ N such that

|S| ≤ n− 2, we have vi(S) =
∑

l∈S

vi({l}). Hence, following (7.2),

(vi)j(S) =







vi(N) − vi(N\{j}) + vi(S\{j}) j ∈ S, |S| ≥ n− 1

vi(N) − vi(N\{j}) +
∑

l∈S\{j} vi({l}) j ∈ S, |S| < n− 1
∑

l∈S vi({l}) j /∈ S.

(7.3)

Now, since |S\{i, j}| = n− 2,

vi(S\{j}) =

{

v(N) − v(N\{i}) +
∑

l∈S\{i,j} v({l}) i ∈ S
∑

l∈S\{j} v({l}) i /∈ S.
(7.4)

Moreover,

vi({l}) =

{

v(N) − v(N\{i}) l = i

v({l}) l 6= i.
(7.5)

Hence, using (7.4) and (7.5) in (7.3) we have

(vi)j(S) =







v(N) −∑l∈N\S v({l}) i ∈ S, j ∈ S

v(N) − v(N\{i}) +
∑

l∈S\{i} v({l}) i ∈ S, j /∈ S

v(N\{i}) −∑l∈N\(S∪{i}) v({l}) i /∈ S, j ∈ S
∑

l∈S v({l}) i /∈ S, j /∈ S.

Hence, (N, (vi)j) is additive and C
(
N, (vi){j}

)
= mσ(N, v), where σ ∈ Π(N) is such that σ(i) = n

and σ(j) = n− 1.

(iii) We study the two inclusions separately:
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“⊇” It suffices to show that for each i ∈ N , C(N, vi) ⊆ I(N, v). Let i ∈ N and x ∈ C(N, vi).

Then, xi ≥ vi({i}) = v(N)− v(N\{i}) ≥ v({i}) and, for each k ∈ N\{i}, xk ≥ vi({k}) = v({k}).
Hence x ∈ I(N, v).

“⊆” Let x ∈ I(N, v)\C(N, v). We claim that there is i ∈ N such that x ∈ C(N, vi). Since x /∈
C(N, v) and (N, v) ∈ CGn

n−2, there is S ( N , |S| = n−1, such that
∑

l∈S xl < v(S). Then, there

is i ∈ N such that
∑

l∈N\{i} xl < v(N\{i}) and, by the efficiency condition, xi ≥ v(N)−v(N\{i}).
Moreover, since for each j 6= i, xj ≥ v({j}), it is easy to check that x ∈ C(N, vi).

(iv) We prove that for each pair i, j ∈ N , C(N, vi) ∩ C(N, vj) and C(N, v) ∩ C(N, vi) have

volume 0. Then, the result follows from c). Let i, j ∈ N :

Claim 1: For each i ∈ N , Vol(C(N, v) ∩ C(N, vi)) = 0. Let x ∈ C(N, v) ∩ C(N, vi), then

x ∈ C(N, vi) ⇒ xi ≥ vi({i}) = v(N) − v(N\{i}) and

x ∈ C(N, v) ⇒ v({i}) ≤ xi ≤ v(N) − v(N\{i}).

Hence, for each x ∈ C(N, v)∩C(N, vi), xi = v(N)− v(N\{i}). Hence, C(N, v)∩C(N, vi) lies in

an (n− 2)-dimensional space.

Claim 2: For each pair i, j ∈ N , Vol(C(N, vi) ∩ C(N, vj)) = 0. It suffices to show that

C(N, vi)∩C(N, vj) ⊆ C(N, v)∩C(N, vi). Let x ∈ C(N, vi)∩C(N, vj). Suppose that x /∈ C(N, v).

Since x is efficient and xi ≥ v(N)− v(N\{i}), xj ≥ v(N)− v(N\{j}), and for each k ∈ N\{i, j},
xk ≥ v({k}), then, there is S ( N , |S| = n − 1, such that

∑

l∈S xl < v(S). Hence, either i ∈ S

or j ∈ S. Assume, without loss of generality that S = N\{j}. Then

v(N\{j}) >
∑

l∈N\{j}
xl ≥ v(N) − v(N\{i}) +

∑

l∈N\{i,j}
v({l}).

Since (N, v) ∈ Gn
n−2, v(N\{i, j}) =

∑

l∈N\{i,j} v({l}). Hence, v(N\{j}) −∑l∈N\{i,j} v({l}) =

v(N\{j}) − v(N\{i, j}) and we have v(N\{j}) − v(N\{i, j}) > v(N) − v(N\{i}), contradicting

the convexity of (N, v).

7.A.3 Proof of Lemma 7.5

Proof. (i) First, we obtain expressions for the marginal vectors associated with (N, v(i,j)):

v(i,j)(S) =







v(N) − v(N\{i, j}) + v(S\{i, j}) i ∈ S, j ∈ S

v(N\{j}) − v(N\{i, j}) + v(S\{i}) i ∈ S, j /∈ S

v(N\{i}) − v(N\{i, j}) +
∑

l∈S\{j} v({l}) i /∈ S, j ∈ S
∑

l∈S v{l}) i /∈ S, j /∈ S.
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Let Π1(N) = {σ ∈ Π(N) : σ(i) = n}. Then, for each σ ∈ Π1(N),

mσ
k(N, v(i,j)) =







v(N) − v(N\{i}) + v(N\{i, j}) −∑l∈N\{i,j} v({l}) k = i

v(N\{i}) − v(N\{i, j}) k = j

v({k}) k 6= i, j.

Note that |Π1(N)| = (n− 1)! and all these marginal vectors coincide.

Let Π2(N) = {σ ∈ Π(N) : σ(j) < σ(i) 6= n}. Let σ ∈ Π2(N). Assume, without loss of

generality that σ(n) = n. Then,

mσ
k(N, v(i,j)) =







v(N) − v(N\{i}) + v(Pσ(i)\{j}) −∑l∈Pσ(i)\{j} v({l}) k = i

v(N\{i}) − v(N\{i, j}) k = j

v((Pσ(k) ∪ {k})\{i, j}) − v((Pσ(k))\{i, j}) k 6= j, σ(k) > σ(i)

v({k}) k 6= j, σ(k) < σ(i).

Since (N, v) ∈ CGn
n−3, then, for each coalition S such that |S| ≤ n− 3, v(S) =

∑

l∈S v({l}).
Hence,

mσ
k(N, v(i,j)) =







v(N) − v(N\{i}) k = i

v(N\{i}) − v(N\{i, j}) k = j

v(N\{i, j}) −∑l∈N\{i,j,n} v({l}) k = n

v({k}) k 6= i, j, n.

Let σ ∈ Π(N) and k ∈ N be such that σ(j) < σ(i) < σ(k) = n. Then, σ ∈ Π2(N) and there are
(n−1)!

2 such permutations, all of them originating the same marginal vector. Moreover, varying k

within N\{i, j}, we obtain that |Π2(N)| = (n−1)!
2 (n− 2). Hence, the marginal vectors associated

to permutations in Π2(N) define, at most, n− 2 different points.

Let Π3(N) = {σ ∈ Π(N) : σ(j) = n and σ(i) = n− 1}. Let σ ∈ Π3(N). Then,

mσ
k(N, v(i,j)) =







v(N\{j}) −∑l∈N\{i,j} v({l}) k = i

v(N) − v(N\{j}) k = j

v({k}) k 6= i, j.

Now, |Π3(N)| = (n− 2)! and all these marginal vectors coincide.

Let Π4a
(N) = {σ ∈ Π(N) : σ(i) < σ(j) < n}. Let σ ∈ Π4a

(N). Then,

mσ
k(N, v(i,j)) =







v(N\{j}) − v(N\{i, j}) k = i

v(N) − v(N\{j}) k = j

v((Pσ(k) ∪ {k})\{i}) −∑l∈Pσ(k)\{i} v({l}) σ(i) < σ(k) < σ(j)

v((Pσ(k)) ∪ {k})\{i, j}) − v((Pσ(k))\{i, j}) σ(k) > σ(j)

v({k}) σ(k) < σ(i).
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Again, since (N, v) ∈ CGn
n−3, the latter expression can be reduced to

mσ
k(N, v(i,j)) =







v(N\{j}) − v(N\{i, j}) k = i

v(N) − v(N\{j}) k = j

v(N\{i, j}) −∑l∈N\{i,j,k} v({l}) σ(k) = n

v({k}) σ(k) < n.

Now, |Π4a
(N)| = (n−1)!

2 (n− 2) with, at most, n− 2 different marginal vectors.

Let Π4b
(N) = {σ ∈ Π(N) : σ(j) = n and σ(i) < n − 1}. Let σ ∈ Π4b

(N). Again, the

following expressions for the marginal vectors can be derived:

mσ
k(N, v(i,j)) =







v(N\{j}) − v(N\{i, j}) k = i

v(N) − v(N\{j}) k = j

v(N\{i, j}) −∑l∈N\{i,j,k} v({l}) σ(k) = n− 1

v({k}) σ(k) < n− 1.

Now, |Π4b
(N)| = (n− 2)!(n− 2) with, at most, n− 2 different marginal vectors.

Let Π4(N) = Π4a
(N) ∪ Π4b

(N). Then, |Π4(N)| = |Π4a
(N)| + |Π4b

(N)| = n2−n−2
2 (n − 2)!.

Moreover, it is easy to check that the permutations in Π4(N) define, at most, n − 2 different

marginal points.

Finally, we have that the permutations in Π(N) define, at most, 2n− 2 different points. For

ease of exposition we assume that these points are different to each other.8

Computation of the Shapley value:

Shi(N, v(i,j)) =
1

n!

∑

σ∈Π(N)

mσ
i (N, v(i,j)) =

1

n!

4∑

l=1

∑

σ∈Πl(N)

mσ
i (N, v(i,j)).

Player i

Shi(N, v(i,j)) =
(n− 1)!

n!

(

v(N) − v(N\{i}) + v(N\{i, j}) −
∑

l∈N\{i,j}
v({l})

)

+
(n− 1)!

2n!
(n− 2)

(

v(N) − v(N\{i})
)

+
(n− 2)!

n!

(

v(N\{j}) −
∑

l 6=i,j
v({l})

)

+
n2 − n− 2

2n!
(n− 2)!

(

v(N\{j}) − v(N\{i, j})
)

.

8This assumption does not affect the algebra used in this proof, but it helps to get a better understanding of
the geometric situation underlying the result.
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Simplifying we have,

Shi(N, v(i,j)) =
v(N) + v(N\{j}) − v(N\{i})

2
− 1

n− 1

( (n− 3)

2
v(N\{i, j}) +

∑

l∈N\{i,j}
v({l})

)
.

Player j:

Shj(N, v(i,j)) =
v(N\{i}) − v(N\{i, j}) + v(N) − v(N\{j})

2
.

Player k 6= i, j:

Shk(N, v(i,j)) =
(n− 1)!

n!
v({k}

+
(n− 1)!

2n!
(n− 3)v({k}) +

(n− 1)!

2n!

(

v(N\{i, j}) −
∑

l∈N\{i,j,k}
v({l}

)

+
(n− 2)!

n!
v({k})

+
n2 − n− 2

2n!
(n− 3)!

(

(n− 3)v({k}) + v(N\{i, j}) −
∑

l∈N\{i,j,k}
v({l}

)

.

Simplifying we have,

Shk(N, v(i,j)) = v({k} +
1

n− 1

(

v(N\{i, j}) −
∑

l∈N\{i,j}
v({l})

)

.

Computation of the core-center:

First, we describe the geometry of C(N, v(i,j)) (Figure 7.6 illustrates the geometry of the core

in an example with four players). Note that, for player j,

1

2

4

3

Figure 7.6: The core of the game (N, v(i,j))
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mσ
j (N, v(i,j)) =

{

v(N\{i}) − v(N\{i, j}) σ ∈ Π1(N) ∪ Π2(N)

v(N) − v(N\{j}) σ ∈ Π3(N) ∪ Π4(N).

Hence, the marginal vectors lie either in the hyperplane xj = v(N) − v(N\{j}) or in the

hyperplane xj = v(N\{i})− v(N\{i, j}) and there are, at most, n− 1 different marginal vectors

in each one of the two hyperplanes. Now, if there is a pair of coincident points in one of the two

hyperplanes, then there is also a pair of coincident points in the other one; inducing a degeneracy

in the core. Hence, since C(N, v(i,j)) is full dimensional, these n − 1 points in each hyperplane

have to be different.

Let k ∈ N\{i, j} and σ ∈ Π(N). We have already shown that either mσ
k(N, v(i,j)) = v({k})

or mσ
k(N, v(i,j)) = v(N\{i, j}) − ∑l∈N\{i,j,k} v({l}). Now, let σ ∈ Π3(N) ∪ Π4(N). Then,

mσ(N, v(i,j)) lies in the hyperplane v(N)−v(N\{j}). Moreover, there are σ1, σ2 ∈ Π3(N)∪Π4(N)

such that (i) mσ1

k (N, v(i,j)) = v({k}) and (ii) mσ2

k (N, v(i,j)) = v(N\{i, j}) −∑l∈N\{i,j,k} v({l}).
An analogous observation is true for the hyperplane xj = v(N\{i}) − v(N\{i, j}) and a pair of

permutations σ′
1, σ

′
2 ∈ Π1(N) ∪ Π2(N).

Next, we take the n − 1 marginal vectors in the hyperplane xj = v(N) − v(N\{j}) and

we show that they span an (n − 2)-simplex. The same can be done for the n − 1 points in

xj = v(N\{i}) − v(N\{i, j}).
Let k ∈ N\{i, j}) and let uk be the marginal vector lying on the hyperplane xj = v(N) −

v(N\{j}) in which player k is better off. The coordinates of each uk are the following:

(uk)l =







v(N\{j}) − v(N\{i, j}) l = i

v(N) − v(N\{j}) l = j

v(N\{i, j}) −∑l∈N\{i,j,k} v({l}) l = k.

v({l}) l 6= i, j, k.

Besides, let u0 be the remaining marginal vector in xj = v(N) − v(N\{j}):

(u0)l =







v(N\{j}) −∑l∈N\{i,j} v({l}) l = i

v(N) − v(N\{j}) l = j

v({l}) l 6= i, j.

Now, since the vectors uk − u0 are linearly independent, the n − 1 marginal vectors in xj =

v(N) − v(N\{j}) define a geometrically independent set in Rn. Hence, they span an (n − 2)-

simplex.

Now, for the hyperplane xj = v(N\{i}) − v(N\{i, j}) we define the same n − 1 points but

with the following differences: (i) the j-th coordinate is v(N\{i}) − v(N\{i, j}) and (ii) the i-

th coordinate is changed to recover efficiency (iii) the remaining coordinates remain unchanged.

Now, since (N, v(i,j)) is convex, C(N, v(i,j)) = co{mσ(N, v) : σ ∈ Π(N)}. Hence, there is an

(n − 2)-simplex ∆n−2 such that, for each t ∈ R, either the intersection of C(N, v(i,j)) with the
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hyperplane xj = t is empty or it is a translation of ∆n−2. Hence,

µj(N, v(i,j)) =
v(N\{i}) − v(N\{i, j}) + v(N) − v(N\{j})

2
,

and it coincides with the corresponding coordinate of the Shapley value.

Now, because of the symmetries in C(N, v(i,j)), to compute the core-center it suffices to

compute the barycenter of the simplex generated by the n − 1 points on the hyperplane xj =

µj(N, v(i,j)). Hence, for each k ∈ N\{i, j},

µk(N, v(i,j)) = v({k}) +
1

n− 1

(

v(N\{i, j}) −
∑

l∈N\{i,j}
v({l})

)

= Shk(N, v(i,j)).

Finally, because of the efficiency property of both the Shapley value and the core-center, we

have Shi(N, v(i,j)) = µi(N, v(i,j)).

(ii) Immediate from the description of C(N, v(i,j)) we have made above.

7.A.4 Proof of Lemma 7.6

Proof. (i) Since

vj(S) =

{

v(N) − v(N\{j}) + v(S\{j}) if j ∈ S
∑

l∈S v({l}) if j /∈ S

and

v(i,j)(S) =







v(N) − v(N\{i, j}) + v(S\{i, j}) i ∈ S, j ∈ S

v(N\{j}) − v(N\{i, j}) + v(S\{i}) i ∈ S, j /∈ S

v(N\{i}) − v(N\{i, j}) +
∑

l∈S\{j} v({l}) i /∈ S, j ∈ S
∑

l∈S v({l}) i /∈ S, j /∈ S.

Then,

(v(i,j))j(S) =

{

v{i,j}(N) − v{i,j}(N\{j}) + v{i,j}(S\{j}) j ∈ S
∑

l∈S v{i,j}({l}) j /∈ S

=







v(N) − v(N\{i, j}) + v(S\{i, j}) i ∈ S, j ∈ S

v(N) − v(N\{j}) +
∑

l∈S\{j} v({l}) i /∈ S, j ∈ S

v(N\{j}) − v(N\{i, j}) +
∑

l∈S\{j,i} v({l}) i ∈ S, j /∈ S
∑

l∈S v({l}) i /∈ S, j /∈ S.
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Finally,

(vj)i)(S) =

{

vj(N) − vj(N\{i}) + vj(S\{i}) i ∈ S
∑

l∈S vj({l}) i /∈ S.

=







v(N) − v(N\{i, j}) + v(S\{i, j}) i ∈ S, j ∈ S

v(N\{j}) − v(N\{i, j}) +
∑

l∈S\{i} v({l}) i ∈ S, j 6∈ S

v(N) − v(N\{j}) +
∑

l∈S\{j} v({l}) i /∈ S, j ∈ S
∑

l∈S v({l}) i /∈ S, j 6∈ S.

(ii) It follows from the combination of (i) and Lemma 7.4.

The proofs of (iii) follow similar lines to the proofs of their counterparts in Lemma 7.3.
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8.1 Introduction

Most game-theoretic solution concepts that have been proposed in the literature are defined on

the basis of or characterized by properties. These properties are usually formulated in terms of

individual payoffs and reflect notions like monotonicity and rationality. For some values, there

exist additional characterizations in terms of geometry. The best-known example is the Shapley

value (Shapley, 1953), which is the barycenter of the vectors of marginal contributions.

For some classes of games, there exist nice geometric expressions for the compromise or τ

value (Tijs, 1981). In particular, the compromise value is the barycenter of the extreme points of

the core cover in big boss games (Muto et al., 1988) and 1-convex games (Driessen, 1988).

In this Chapter, we extend the APROP rule for bankruptcy problems (Curiel et al., 1987) to

the whole class of compromise admissible (or quasi-balanced) games (Tijs, 1981). This extended

rule, which we call τ∗, turns out to be the barycenter of the edges of the core cover, which is our

main result. Moreover, τ∗ and the compromise value coincide for most of quasi-balanced games.

This Chapter is organized as follows. In Section 8.2, we extend the APROP rule and define

the barycenter ζ of the edges of the core cover. In Section 8.3, we state our main result and give

an overview of the proof, which consists of six steps. Finally, in Section 8.4, we prove our main

result.

8.2 The τ
∗ Value

A transferable utility or TU game is a pair (N, v), where N = {1, . . . , n} is a set of players and

v : 2N → R is a function assigning to every coalition S ⊆ N a payoff v(S). By convention,

v(∅) = 0.

Following Tijs and Lipperts (1982), the utopia vector of a game (N, v), M(v) ∈ RN , is defined,

for each i ∈ N ,by

Mi(v) := v(N) − v(N\{i}).

The minimum right vector mi(v) ∈ RN is defined, for each i ∈ N , by

mi(v) := max
S⊆N,i∈S

{v(S) −
∑

j∈S\{i}
Mj(v)}.

The core cover of a game (N, v) consists of those allocations of v(N) according to which every

player receives at most his utopia payoff and at least his minimal right:

CC(v) := {x ∈ RN :
∑

i∈N

xi = v(N), m(v) ≤ x ≤M(v)}.

A game is compromise admissible if it has a nonempty core cover. We denote the class of

compromise admissible games with player set N by CAN . An allocation rule on a subclass
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A ⊆ CAN is a function ϕ : A → RN assigning to each v ∈ A a payoff vector ϕ(v) ∈ RN .

Moreover, we say that ϕ is efficient if
∑

i∈N ϕi(v) = v(N).

The compromise value or τ value (Tijs, 1981) is the rule on CAN defined as the point on the

line segment between m(v) and M(v) that is efficient:

τ(v) := λm(v) + (1 − λ)M(v),

where λ ∈ [0, 1] is such that
∑

i∈N τi = v(N).

A bankruptcy problem is a triple (N,E, c), where E ≥ 0 is the estate to be divided and

c ∈ RN
+ with

∑

i∈N ci ≥ E is the vector of claims. The corresponding cooperative bankruptcy

game (N, vE,c) is defined, for each S ⊆ N , by vE,c(S) = max{E −∑i∈N\S ci, 0}. We denote the

class of bankruptcy problems with player set N by BRN . The class of corresponding games is

a proper subclass of CAN . A bankruptcy rule is a function f : BRN → RN assigning to every

bankruptcy problem (N,E, c) ∈ BRN a payoff vector f(E, c) ∈ RN
+ such that

∑

i∈N fi(E, c) = E.

In the literature, many bankruptcy rules have been proposed. One interesting question is how

these can be extended in a natural way to the whole class of compromise admissible games. In

this Chapter, we consider the proportional rule and the adjusted proportional rule (Curiel et al.,

1987). The proportional rule PROP simply divides the estate proportional to the claims, i.e.,

for each (N,E, c) ∈ BRN and each i ∈ N ,

PROPi(E, c) =
ci

∑

j∈N cj
E.

The adjusted proportional rule APROP first gives each player i ∈ N his minimal right mi(E, c) =

max{E −∑j∈N\{i} cj , 0} and the remainder is divided using the proportional rule, where each

player’s claim is truncated to the estate left:

APROP (E, c) = m(E, c) + PROP (E′, c′),

where E′ = E −∑i∈N mi(E, c) and for each i ∈ N , c′i = min{ci −mi(E, c), E
′}.

The compromise value can be seen as an extension of the PROP rule:

τ(v) = m(v) + PROP (v(N) −
∑

i∈N

mi(v),M(v) −m(v)).

Note that it follows from the definition of compromise admissibility that the argument of PROP

is indeed a bankruptcy problem.

Similarly, we can extend the APROP rule:

τ∗(v) = m(v) +APROP (v(N) −
∑

i∈N

mi(v),M(v) −m(v)).

To simplify the expression for τ∗, we show that the minimum rights in the associated bankruptcy



142 Chapter 8. A Geometric Characterization of the Compromise Value

problem equal 0. Let v ∈ CAN , E = v(N) −∑i∈N mi(v), c = M(v) −m(v), and i ∈ N . Then,

E −
∑

j∈N\{i}
cj = v(N) −

∑

i∈N

mi(v) −
∑

j∈N\{i}
(Mj(v) −mj(v))

= v(N) −
∑

j∈N\{i}
Mj(v) −mi(v)

≤ 0,

since mi(v) ≥ v(N) −∑j∈N\{i}Mj(v). Hence, mi(E, c) = max{E −∑j∈N\{i} cj , 0} = 0. As a

result, we have

τ∗(v) = m(v) + PROP (E′, c′), (8.1)

where E′ = v(N) −∑i∈N mi(v) and for each i ∈ N , c′i = min{Mi(v) −mi(v), E
′}.

It follows that for a game v ∈ CAN such that for each i ∈ N , Mi(v) − mi(v) ≤ v(N) −
∑

j∈N mj(v), τ
∗ coincides with the compromise value τ . The requirement involved in the former

inequality is quite natural: it says that if we give all the players their minimum rights, then

the adjusted utopia value of a player i, Mi(v) −mi(v), cannot exceed the state left, i.e., v(N) −
∑

j∈N mj(v). Moreover, this natural requirement is usually met when dealing with quasi-balanced

games, and hence, the τ and τ∗ values coincide for a relevant subclass of the class quasi-balanced

games.

The extended rule τ∗ turns out to be a kind of barycenter of the core cover, which is the main

result of this Chapter. To define this barycenter rule ζ, we need to introduce some more concepts.

A permutation on N is a bijection σ : {1, . . . , n} → N , where σ(p) denotes the player at position

p, and consequently, σ−1(i) denotes the position of player i. The set of all permutations on N is

denoted by Π(N). σi,j denotes the permutation obtained from σ by switching players i and j.

Two permutations σ and σσ(p),σ(p+1) are called permutation neighbors. The set of permutation

neighbors of σ is denoted by Πσ(N).

The core cover is a polytope whose extreme points are called larginal vectors or larginals. The

larginal ℓσ ∈ RN associated with the ordering σ ∈ Π(N) (Quant et al., 2003) is defined, for each

p ∈ {1, . . . , n}, by

ℓσσ(p)(v) :=







Mσ(p)(v) if
∑p

k=1Mσ(k)(v) +
∑n

k=p+1mσ(k)(v) ≤ v(N),

mσ(p)(v) if
∑p−1

k=1Mσ(k)(v) +
∑n

k=pmσ(k)(v) > v(N),

v(N) −∑p−1
k=1Mσ(k)(v) −

∑n
k=1mσ(k)(v) otherwise.

Note that two permutations that are neighbors yield larginals which are adjacent extreme

points of the core cover (possibly coinciding), which we also call permutation neighbors.
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We define the ζ rule as the following weighted average of the larginal vectors:1

ζ(v) =

∑

σ∈Π(N) w
σ(v)ℓσ(v)

∑

σ∈Π(N) w
σ(v)

, (8.2)

where

wσ(v) =
1√
2

∑

τ∈Πσ(N)

d(ℓσ(v), ℓτ (v))

equals the sum of the euclidean distances between ℓσ(v) and all its permutation neighbors, divided

by the common factor
√

2. Now, we claim that the ζ value can be viewed as the barycenter of

the edges of the core cover, taking the multiplicities into account. Next, we briefly discuss former

statement. The constant 1√
2

is a common factor in both the numerator and the denominator of

Equation 8.2, hence, for the forthcoming arguments we can forget about it. Now, note that the

weight associated with each larginal, namely lσ, corresponds with the sum of the distances from

lσ to each of its neighbors (many of this distances can be 0). In particular, if lτ is a neighbor of lσ,

we are computing the product d(lσ, lτ )lσ and, similarly, we are also computing d(lσ, lτ )lτ . Hence,

we are counting twice the length of each edge. Now, recall that we can compute the barycenter

of the edges of the core cover (taking multiplicities into account) just by the weighted average

the midpoints of the edges, where the weight of each midpoint corresponds with the length of the

original edge. Suppose now that we divide the numerator and the denominator of Equation 8.2

by 2. Now, for the edge joining lσ and lτ we have d(lσ, lτ ) lσ+lτ

2 , i.e., we have reduced the edge

to its midpoint and the weight is the length of the edge. Since we can repeat the same argument

for each pair of neighboring larginals, we have already provided a justification for the claim we

made above for the ζ value.

To simplify the proofs later on, we first show that both τ∗ and ζ satisfy the properties (SEQ)

and (RTRUNC). Two games v and v̂ are strategically equivalent if there exists a real number

k > 0 and a vector α ∈ RN such that for each S ⊆ N ,

v̂(S) = kv(S) +
∑

i∈S

αi. (8.3)

A function ϕ : CAN → RN is relatively invariant with respect to strategic equivalence (SEQ) if

for each pair of games v, v̂ ∈ CAN such that (8.3) holds for some k > 0 and α ∈ RN , we have

ϕ(v̂) = kϕ(v) + α.

It is well-known that both the utopia vector M and the minimum right vector m satisfy (SEQ).

Proposition 8.1. The τ∗ rule and the ζ rule satisfy (SEQ).

Proof. The proof for τ∗ is straightforward and therefore omitted.

1In the degenerate case where M = m, the core cover consists of a single point, which we define to be ζ.
Otherwise, there are at least two different larginals and the denominator is positive.
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It readily follows from (SEQ) of m and M that for each σ ∈ Π(N), ℓσ also satisfies (SEQ).

Let v, v̂ ∈ CAN , k > 0 and α ∈ RN such that (8.3) holds. Let σ ∈ Π(N). Then,

wσ(v̂) =
1√
2

∑

τ∈Πσ(N)

d(ℓσ(v̂), ℓτ (v̂))

=
1√
2

∑

τ∈Πσ(N)

d(kℓσ(v) + α, kℓτ (v) + α)

= k
1√
2

∑

τ∈Πσ(N)

d(ℓσ(v), ℓτ (v))

= kwσ(v).

Now,

ζ(v̂) =

∑

σ∈Π(N) w
σ(v̂)ℓσ(v̂)

∑

σ∈Π(N) w
σ(v̂)

=
k
∑

σ∈Π(N) w
σ(v)(kℓσ(v) + α)

k
∑

σ∈Π(N) w
σ(v)

= kζ(v) + α.

Hence, ζ satisfies (SEQ).

A rule ϕ : CAN → RN satisfies the restricted truncation property (RTRUNC) if, for each

v ∈ CAN such that m(v) = 0, it holds that, for each v̂ ∈ CAN such that (i) v̂(N) = v(N),

(ii) m(v̂) = 0, and (iii) Mi(v̂) = min{Mi(v), v(N)}, we have ϕ(v̂) = ϕ(v). The idea behind

(RTRUNC) is that if a player’s utopia value (or, in bankruptcy terms, his claim) is higher than

the value of the grand coalition (the estate), his payoff according to ϕ should not by influenced

by truncating this claim.

Proposition 8.2. The τ∗ rule and the ζ rule satisfy (RTRUNC).

Proof. Let v ∈ CAN with m(v) = 0. Then (8.1) reduces to

τ∗(v) = PROP (v(N), (min{Mi(v), v(N)})i∈N ).

From this it immediately follows that τ∗ satisfies (RTRUNC).

For the ζ rule, it suffices to note that truncating the utopia vector has no influence on the

larginal vectors.

8.3 Main Result

In this Section, we present our main result: the equality between τ∗ and ζ on CAN . After dealing

with some simple cases, we present a six step outline of the proof, which we give in Section 8.4.



8.3. Main Result 145

Theorem 8.1. Let v ∈ CAN . Then

τ∗(v) = ζ(v).

As a result of Proposition 8.1, it suffices to show the equality for each game v ∈ CAN such

that m(v) = 0. Next, we can use Proposition 8.2 and conclude that we have to show that for

each v ∈ CAN such that (i) for each i ∈ N , Mi(v) ≤ v(N) and (ii) m(v) = 0 we have 2,3

PROP (v(N),M(v)) =

∑

σ∈Π(N) w
σ(v)ℓσ(v)

∑

σ∈Π(N) w
σ(v)

.

In case there are only two players, the equality between τ∗ and ζ follows from M1(v) = M2(v) =

v(N).

If Mi(v) = 0 for a player i ∈ N , then we have τ∗i (v) = ζi(v) = 0. Now, let σN\{i} ∈ Π(N\{i})
be defined, for each h, j ∈ N\{i}, by σ−1

N\{i}(h) < σ−1
N\{i}(j) ⇔ σ−1(h) < σ−1(j). Then, for

each σ ∈ Π(N), the payoff to the players in N\{i} according to ℓσ(v) equals their payoff in the

situation without player i (i.e., the situation with player set N\{i}, utopia vector MN\{i}(v)

and the same amount v(N) to be distributed) according to the larginal corresponding to the

restricted permutation σN\{i}. It is readily verified that also the total weight of each larginal

(taking multiplicities into account) is the same in the game with and without player i. Hence,

we can omit player i from the game and establish equality between τ∗ and ζ for the remaining

players.4

We establish the equality between τ∗ and ζ by combining the permutations in the numerator

and denominator in (8.2) into so-called chains. In the denominator, these chains allow us to

combine terms in such a way that the total weight can be expressed as a simple function of M(v).

In the numerator, we construct an iterative procedure to find an expression for the weighted

larginals, in which the chains allow us to keep track of changes that occur from one iteration to

the next.

The proof of Theorem 8.1 consists of six steps:

Step 1 We first find an expression for the weight of each permutation. We do this by introducing

the concept of pivot and classifying each permutation in terms of its pivot and its neighbors’

pivots.

Step 2 Using the concept of pivot, we introduce chains, which constitute a partition of the set of

all permutations. Then, we use the results of the previous step to compute the total weight

of each chain.

2Note that the condition Mi(v) ≤ v(N) is necessary and sufficient to have Mi(v) = maxσ∈Π(N) ℓ
σ
i (v). Only

in this case, the utopia vector can be reconstructed from the core cover.
3The denominator is zero if and only if M(v) = 0 (= m(v)). In this degenerate case equality between τ∗ and

ζ is trivial and we therefore assume M(v) > 0.
4Geometrically, the core cover, which lies in the hyperplane Mi(v) = 0, is projected into a space which is one

dimension lower.
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Step 3 We define a family of auxiliary functions f ij and gij . We use them to show that each player

“belongs” to the same number of chains. As a result, we use our expression of the previous

step to compute the total of all the weights, i.e., the denominator in (8.2).

Step 4 In the numerator, we partition the set of chains on the basis of the first player in each

permutation. Within each part, we compute the total weighted payoff to all the players.

For the first player, this total weighted payoff can easily be computed.

Step 5 We prove the expression for the payoffs to the other players using an iterative argument,

varying the utopia vector while keeping v(N) constant. We start with a utopia vector for

which our expression is trivial and lower this vector step by step until we reach M(v). In

each step of the iteration, (generically) only two chains change and using this, we show that

the total weighted payoff to each player who is not first does not change as function of the

utopia vector.

Step 6 Combining the previous three steps, we derive an expression for ζ and show that this equals

τ∗.

8.4 Proof of the Main Result

Throughout this Section, let v ∈ CAN be such that |N | ≥ 3; m(v) = 0; M(v) > 0; and, for each

i ∈ N , v(N) ≥Mi(v). To prove Theorem 8.1 is suffices to show that for this game v we have

PROP (v(N),M(v)) =

∑

σ∈Π(N) w
σ(v)ℓσ(v)

∑

σ∈Π(N) w
σ(v)

.

Since v is fixed for the rest of the Section, we suppress it as argument and write M rather than

M(v), etc. Moreover, we denote the weight wσ(v) by w(σ).

Step 1: pivots

Let σ ∈ Π(N). Player σ(p) with p ≥ 2 is called the pivot in ℓσ if ℓσσ(p−1) = Mσ(p−1), ℓ
σ
σ(p) > 0 and

ℓσσ(p+1) = 0. The pivot of a larginal is the player who gets a lower amount according this larginal

if the amount v(N) is decreased slightly. In the boundary case where Mσ(1) = v(N), v(N) cannot

be decreased without violating the condition Mσ(1) ≤ v(N); in this case, player σ(2) is defined to

be the pivot, being the player who gets a higher amount if v(N) is increased slightly. Note that

m = 0 implies that
∑

j∈N\{i}Mj ≥ v(N) and hence, player σ(n) can never be the pivot.

In the following example, we introduce a game which we use throughout this Chapter to

illustrate the various concepts.

Example 8.1. Consider the game (N, v) with N = {1, . . . , 5}, v(N) = 10, and M = (5, 7, 1, 3, 4).
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For this game, we have τ∗ = ζ = 1
2M . Take σ1 to be the identity permutation. Then,

ℓσ1 = (5, 5, 0, 0, 0)

and player 2 is the pivot.

For a permutation σ ∈ Π(N), we define pσ to be the position at which the pivot is located.5

We define σL = σσ(pσ−1),σ(pσ) to be the left neighbor of σ and σR = σσ(pσ),σ(pσ+1) to be the right

neighbor of σ. It follows from the definition of pivot that the left and right neighbors of ℓσ are

the only two permutation neighbors that can give rise to a larginal different from ℓσ.

Recall that the weight of ℓσ, w(σ), equals the sum of the (euclidean) distances between ℓσ

and all its permutation neighbors. In line with the previous paragraph, we only have to take the

left and right neighbors into account. Hence,

w(σ) =
1√
2

[

d(ℓσ, ℓσ
L

) + d(ℓσ, ℓσ
R

)
]

.

We classify the larginals into four categories, depending on the pivot in the left and right neighbors.

Let σ = (. . . , h, i, j, . . . ) be a permutation with pivot i. Then the four types are given in the

following table:

Type Pivot in σL Pivot in σ Pivot in σR

PPP i i i

−PP h i i

PP− i i j

−P− h i j

We can now determine the weight of each larginal, depending on its type. Take σ ∈ Π(N) to be

the identity permutation and assume that ℓσ is of type PP− and has pivot i. Then,

ℓσ = (M1, . . . ,Mi−2,Mi−1, v(N) −
i−1∑

j=1

Mj , 0, . . . , 0),

ℓσ
L

= (M1, . . . ,Mi−2, 0, v(N) −
i−2∑

j=1

Mj , 0, . . . , 0), and

ℓσ
R

= (M1, . . . ,Mi−2,Mi−1, 0, v(N) −
i−1∑

j=1

Mj , 0, . . . , 0).

5As with neighbors, we use the term pivot as a property of a permutation as well as a property of the
corresponding larginal.
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Hence,

d(ℓσ, ℓσ
L

) =
√

2M2
i−1 =

√
2Mi−1,

d(ℓσ, ℓσ
R

) =

√
√
√
√2(v(N) −

i−1∑

j=1

Mj)2 =
√

2(v(N) −
i−1∑

j=1

Mj), and

w(σ) = (v(N) −
i−2∑

j=1

Mj).

Doing these calculations for each type and arbitrary σ ∈ Π(N), we obtain the following weights:

Type w(σ)

PPP Mσ(pσ−1) +Mσ(pσ+1)

−PP ∑pσ+1
k=1 Mσ(k) − v(N)

PP− v(N) −∑pσ−2
k=1 Mσ(k)

−P− Mσ(pσ)

Example 8.2. Let σ1 be the identity permutation. Then, we have (the player with ˆ is the pivot):

σ1 = (1, 2̂, 3, 4, 5) ℓσ1 = (5, 5, 0, 0, 0)

σL
1 = (2, 1̂, 3, 4, 5) ℓσ

L
1 = (3, 7, 0, 0, 0)

σR
1 = (1, 3, 2̂, 4, 5) ℓσ

R
1 = (5, 4, 1, 0, 0).

Hence, ℓσ1 is of type −PP . The weight of σ1 equals

w(σ1) =
1√
2

(
d(σ1, σ

L
1 ) + d(σ1, σ

R
1 )
)

= 2 + 1

= 3.

Indeed, we have that w(σ1) =
∑pσ1

+1

k=1 Mσ1(k)−v(N) = M1+M2+M3−v(N) = 5+7+1−10 = 3,

as the table shows.

Step 2: chains

A chain of length q and with pivot i is a set of q permutations Γ = {σ1, . . . , σq} such that

(i) for each m ∈ {1, . . . , q − 1}, (σm)R = σm+1;

(ii) for each m ∈ {1, . . . , q}, i is pivot in σm; and

(iii) i is not pivot in σL
1 and σR

q .
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If q = 1, then it follows from the definitions of the four types that σ1 is of type −P−. If q > 1,

then σ1 is of type −PP , σm is of type PPP for each m ∈ {2, . . . , q− 1}, and σq is of type PP−.

Observe that the set of all chains, which we denote by C, constitutes a partition of the set of

permutations Π(N).

Let σ∗ denote the permutation on the n − 1 players obtained from σ by removing the pivot.

Now, we characterize the chains in the following Lemma.

Lemma 8.1. σ1 ∈ Π(N) and σ2 ∈ Π(N) are in the same chain if and only if σ∗
1 = σ∗

2 .

Given the weights of the larginal vectors, depending on the type, we can easily compute the

weight of a chain Γ, which is simply defined as the total weight of its elements, i.e., w(Γ) =
∑

σ∈Γ w(σ).

Lemma 8.2. Let Γ = {σ1, . . . , σq} ∈ C. Then,

w(Γ) =

pσ1
+q−1
∑

k=pσ1

Mσ1(k).

Proof. Let p = pσ1
. We have (for q ≥ 5; for smaller chains the proof is similar):

w(σ1) =
∑p−1

k=1Mσ1(k) − v(N) + Mσ1(p) + Mσ1(p+1)

w(σ2) = + Mσ1(p+1) + Mσ1(p+2)

w(σ3) = + Mσ1(p+2) + Mσ1(p+3)

... =
...

...

w(σq−1) = + Mσ1(p+q−2) + Mσ1(p+q−1)

w(σq) = −∑p−1
k=1Mσ1(k) + v(N) − ∑p+q−2

k=p+1Mσ1(k) +

w(Γ) =
∑p+q−1

k=p Mσ1(k)

We say that player i ∈ N belongs to chain Γ = {σ1, . . . , σq} if i ∈ {σ1(pσ1
), . . . , σ1(pσ1

+q−1)},
i.e., if his position is not constant throughout the chain. Note that if a player does belong to a

chain, his utopia payoff contributes to its weight. We define C(i) to be the set of chains to which

i belongs. By P (i) ⊆ C(i) we denote the set of chains in which i is pivot and by P̄ (i) = C(i)\P (i)

its complement. For each Λ ∈ P̄ (i), we denote the permutation in Λ in which i is immediately

before the pivot by λbi and the permutation in which i is immediately after the pivot by λai.

Example 8.3. Since player 2 is not the pivot in σL
1 , σ1 is the first permutation of a chain. This

chain Γ consists of σ1, σ2 = σR
1 and σ3 = σR

2 , all having player 2 as pivot. In line of Lemma 8.1,

we have σ∗
1 = σ∗

2 = σ∗
3 = (1, 3, 4, 5). Players 2, 3 and 4 belong to Γ and w(Γ) = M2 +M3 +M4 =

11.
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Step 3: denominator

In this step, we derive an expression for the denominator in ζ. We do this by showing that each

player belongs to the same number of chains, i.e., for each i, j ∈ N ,

|C(i)| = |C(j)|. (8.4)

If Mi = Mj , then this is trivial, so throughout this step, let i, j ∈ N be such that Mi > Mj . We

prove only one part of (8.4):

|P (j)| + |P̄ (j)| ≤ |P (i)| + |P̄ (i)|. (8.5)

The proof of the reverse inequality goes along similar lines, as we indicate later on.

An immediate consequence of Lemma 8.4 is that it follows from Mi > Mj that |P (i)| ≥ |P (j)|
and |P̄ (j)| ≥ |P̄ (i)|. We establish (8.5) in Proposition 8.3 by partnering all the chains in P (j) to

some of the chains in P (i) and partnering all the chains P̄ (i) to some of the chains in P̄ (j). We

then show that for every chain in P̄ (j) which has no partner in P̄ (i), we can find a chain in P (i)

which has no partner in P (j).

To partner the various chains, we define two functions. First, we define f ij :

P (j)
fij

→ P (i)

∆ 7→ f(∆) = Λ,

where ∆ = {δ1, . . . , δq} and Λ is the chain to which δi,j
1 belongs. Note that the function f ij is

well-defined: since Mi > Mj , player i is indeed the pivot in δi,j
1 and hence, in Λ.

Similarly, we define the function gij :

P̄ (i)
gij

→ P̄ (j)

Λ 7→ g(Λ) = ∆,

where for each Λ ∈ P̄ (i), ∆ is the chain containing λi,j
bi .6

In the following Lemma, we show that gij is well-defined, i.e., that the chain ∆ thus con-

structed is indeed an element of the range of gij , P̄ (j).

Lemma 8.3. The function gij is well-defined.

Proof. Denote the pivot player in λbi (and hence, λai) by h. Observe that as a result of Mi > Mj ,

player h cannot coincide with j. Distinguish between the following two cases:

6By λi,j
bi we mean (λbi)

i,j , i.e., the permutation which is obtained by switching i and j in the permutation in
Λ where i is immediately before the pivot.
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i is before j in λbi:

λai = (. . . , ĥ, i, . . . , j, . . . ) λi,j
ai = (. . . , ĥ, j, . . . , i, . . . )

λbi = (. . . , i, ĥ, . . . , j, . . . ) λi,j
bi = (. . . , j, ĥ, . . . , i, . . . ).

Since h is pivot in λai, it immediately follows that h is also pivot in λi,j
ai . Player j cannot

be the pivot in λi,j
bi , because i is before the pivot in λbi and Mi > Mj . Combining this with

the fact that h is pivot in λi,j
ai , h is also pivot in λi,j

bi . But then λi,j
ai belongs to the same

chain ∆ as λi,j
bi . From this, ∆ ∈ C(j), and because j is not the pivot in ∆, ∆ ∈ P̄ (j).

j is before i in λbi:

λai = (. . . , j, . . . , ĥ, i, . . . ) λi,j
ai = (. . . , i, . . . , ĥ, j, . . . )

λbi = (. . . , j, . . . , i, ĥ, . . . ) λi,j
bi = (. . . , i, . . . , j, ĥ, . . . ).

Since h is pivot in λbi, we immediately have that h is pivot in λi,j
bi . Because of this, the

pivot in λi,j
ai cannot be before h. It can also not be after h, because h is pivot in λai and

Mi > Mj . By the same argument as in the first case, ∆ ∈ P̄ (j).

From these two cases, we conclude that gij is well-defined.

For our partnering argument to hold, we need that the functions f ij and gij are injective.

This is shown in the following Lemma.

Lemma 8.4. The functions f ij and gij are injective.

Proof. To see that f ij is injective, let ∆, ∆̃ ∈ P (j) be such that f ij(∆) = f ij(∆̃). By construction,

i is pivot in both f ij(∆) and f ij(∆̃), so i is pivot in both δi,j
1 and δ̃i,j

1 . Since by assumption these

permutations are in the same chain, by Lemma 8.1 we have (δi,j
1 )∗ = (δ̃i,j

1 )∗. But since j is pivot

in both δ1 and δ̃1, it follows that δ∗1 = δ̃∗1 . So, δ1 and δ̃1 are in the same chain and ∆ = ∆̃.

For injectivity of gij , let Λ, Λ̃ ∈ P̄ (i) be such that gij(Λ) = gij(Λ̃). Then λi,j
bi and λ̃i,j

bi are

in the same chain. By the same arguments as used before, j is just before the pivot in both

permutations and hence, λi,j
bi = λ̃i,j

bi . From this, we conclude λbi = λ̃bi and Λ = Λ̃.

From Lemma 8.4, we conclude

|P (j)| ≤ |P (i)|

and

|P̄ (i)| ≤ |P̄ (j)|.

With these inequalities, we can now apply our partnering argument to prove that each player

belongs to the same number of chains.

Proposition 8.3. Let i, j ∈ N . Then |C(i)| = |C(j)|.
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Proof. If Mi = Mj , then the statement is trivial. Hence, assume without loss of generality that

Mi > Mj .

We only show (8.5). Let ∆ ∈ P̄ (j) be such that there exists no Λ ∈ P̄ (i) with gij(Λ) = ∆.

Denote the pivot in ∆ by h and distinguish between the following three cases:

h 6= i and i is after j in δbj :

δaj = (. . . , ĥ, j, . . . , i, . . . ) δi,j
aj = (. . . , ĥ, i, . . . , j, . . . )

δbj = (. . . , j, ĥ, . . . , i, . . . ) δi,j
bj = (. . . , î, h, . . . , j, . . . ).

Of course, h is also the pivot in δi,j
aj . If h were the pivot in δi,j

bj , then δi,j
aj and δi,j

bj would belong

to the same chain Λ ∈ P̄ (i). But then gij(Λ) = ∆, which is impossible by assumption. Since

Mi > Mj , player i must be the pivot in δi,j
bj . The chain to which δi,j

bj belongs cannot be an

image under f ij , since it is obtained by switching i and j in a permutation in which j is not

the pivot. Furthermore, two different starting chains ∆, ∆̃ ∈ P̄ (j) cannot give rise to one

single chain containing δi,j
bj and δ̃i,j

bj , because both permutations are of type PP− or −P−
and there can be only one such permutation in a chain.

h 6= i and i is before j in δbj :

δaj = (. . . , i, . . . , ĥ, j, . . . ) δi,j
aj = (. . . , j, . . . , h, î, . . . )

δbj = (. . . , i, . . . , j, ĥ, . . . ) δi,j
bj = (. . . , j, . . . , i, ĥ, . . . ).

Again, it easily follows that h is pivot in δi,j
bj and by the same argument as in the first case,

i must be pivot in δi,j
aj . Also, the chain to which δi,j

aj belongs cannot be an image under f ij

and two different starting chains ∆, ∆̃ ∈ P̄ (j) cannot give rise to one single chain containing

δi,j
aj and δ̃i,j

aj , because both permutations are of type −PP or −P−. Moreover, the chains

constructed in this second case, containing δi,j
aj , must differ from the chains constructed in

the first case, containing δi,j
bj , as a result of the relative positions of h and j.

h = i:
δaj = (. . . , î, j, . . . ) δi,j

aj = (. . . , j, î, . . . )

δbj = (. . . , j, î, . . . ) δi,j
bj = (. . . , î, j, . . . ).

Obviously, i is pivot in both δi,j
aj and δi,j

bj . So, these two permutations belong to the same

chain Λ ∈ P (i). Again Λ cannot be an image under f ij , and since Λ = ∆, different starting

chains give rise to different Λ’s. Finally, since j belongs to the “new” chains constructed in

this case, they must differ from the chains in the first two cases.

Combining the three cases, for every element of P̄ (j) that is not an image under gij of any chain

in P̄ (i), we have found a different element of P (i) that is not an image under f ij of any chain in

P (j). Together with Lemma 8.4, |P (j)| + |P̄ (j)| ≤ |P (i)| + |P̄ (i)|.
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Similarly, by taking Λ ∈ P (i) such that there exists no ∆ ∈ P (j) with Λ = f ij(∆), one

can prove the reverse inequality of (8.5). Combining the two inequalities, we obtain |C(i)| =

|C(j)|.

Using the previous proposition, we can compute the total weight of all larginals.

Proposition 8.4.
∑

σ∈Π(N) w(σ) = (n− 1)!
∑

i∈N Mi.

Proof. Since each of the n players belongs to the same number of chains and there are n! permu-

tations making up the chains, each player belongs to n!
n = (n−1)! chains. But then the statement

immediately follows from Lemma 8.2.

Step 4: numerator, first player

Now we turn our attention to the numerator of ζ. For this, we partition the set of chains into

subsets with the same starting player:

Ck = {{σ1, . . . , σq} ∈ C : σ1(1) = k}.

Note that since player k is by definition never the pivot in σ1, he is also the first player in

σ2, . . . , σq. It is easily verified that {Ck}k∈N is indeed a partition of C.

For a chain Γ = {σ1, . . . , σq} ∈ C, we define LΓ to be the weighted sum of its corresponding

larginals:

LΓ =

q
∑

k=1

w(σk)ℓσk .

We compute the numerator in (8.2) by combining the permutations that belong to the same Ck,

k ∈ N . We derive, for each player i ∈ N , an expression for
∑

Γ∈Ck
LΓ

i . In this step, we consider

the special case where i = k, while in the next step we compute the payoff to the other players.

Lemma 8.5. For each i ∈ N ,
∑

Γ∈Ci
LΓ

i = (n− 2)!Mi

∑

j∈N\{i}Mj.

Proof. In a similar way as in Proposition 8.3, we can show that for each j, k ∈ N\{i}, |Ci ∩
C(j)| = |Ci ∩ C(k)|. Analogous to Proposition 8.4, we then have

∑

σ∈Π(N):σ(1)=i w(σ) = (n −
2)!
∑

j∈N\{i}Mj . Since player i always gets Mi at the first position, the statement follows.

Step 5: numerator, other players

In this step, we finish the expression for the numerator in ζ by computing, for each i ∈ N , i 6= k,
∑

Γ∈Ck
LΓ

i . First, in a similar way as in Lemma 8.2, one can compute the total weighted larginal

for each chain, as is done in the next Lemma.
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Lemma 8.6. Let Γ = {σ1, . . . , σq} ∈ P (i). Then for j = σ(s) we have

LΓ
j =







w(Γ)Mj if s < pσ1
,

(v(N) −∑pσ1
−1

k=1 Mσ1(k))Mj if j = i,

(v(N) −∑s−1
k=1,k 6=pσ1

Mσ1(k) +
∑pσ1

+q−1

k=s+1 Mσ1(k))Mj if Γ ∈ P̄ (j),

0 if s > pσ1
+ q − 1.

Example 8.4. Of course, LΓ
1 = w(Γ)M1 = 11 · 5 = 55 and LΓ

5 = 0. For player 2, the pivot, we

have

LΓ
2 = w(σ1)(v(N) −M1) + w(σ2)(v(N) −M1 −M3)

+w(σ3)(v(N) −M1 −M3 −M4)

= 3 · (10 − 5) + 4 · (10 − 5 − 1) + 4 · (10 − 5 − 1 − 3)

= 35.

Indeed, this equals (v(N) −∑pσ1
−1

k=1 Mσ1(k))M2 = (10 − 5) · 2, as stated in Lemma 8.6.

For player 3, which belongs to Γ but is not the pivot, we have

LΓ
3 = w(σ1) · 0 + w(σ2)M3 + w(σ3)M3

= 0 + 4 · 1 + 4 · 1
= 8,

which equals the expression in Lemma 8.6. For player 4, the computation is similar.

Lemma 8.7. For each i, k ∈ N, i 6= k, we have
∑

Γ∈Ck
LΓ

i = (n− 2)!(v(N) −Mk)Mi.

Proof. We prove the assertion using an iterative procedure, varying the utopia payoffs while

keeping v(N) constant. We denote the utopia vector in iteration t by M t and throughout the

procedure, this vector satisfies all our assumptions. We first show that the statement holds for

M1 = (v(N), . . . , v(N)) ≥ M . Then we iteratively reduce the components of the utopia vector

one by one until we, after finitely many steps, end up in M . For every M t, we show that for the

corresponding (induced) set of chains, the total weighted payoff to i is as stated, as function of

the utopia vector.

Step 1

Take M1 = (v(N), . . . , v(N)). Then all chains consist of one permutation, in which the

second player is the pivot. Player i gets 0 if he is after the pivot and v(N) −M1
k if he is the

pivot. There are (n − 2)! chains in which the latter occurs, each having weight M1
i . Hence,

∑

Γ∈Ck
LΓ

i = (n− 2)!(v(N) −M1
k )M1

i .

Step t

Suppose that the statement holds for utopia vector M t−1. If M t−1 = M , then we are finished.

Otherwise, there exists a j ∈ N such that M t−1
j > Mj . We now reduce j’s utopia payoff until
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one of the chains changes, or until Mj is reached.

A chain changes if in one of its permutations, the pivot changes. Obviously, this can only

happen if player j is before the pivot. Because in the first permutation of each chain the gap

between what the pivot gets and his utopia payoff is smallest, this permutation is the first to

change. Denoting this gap corresponding to σ ∈ Π(N) by γ(σ), i.e.,

γ(σ) = M t−1
σ(pσ) − (v(N) −

pσ−1
∑

k=1

M t−1
σ(k)),

the first chain changes when j’s utopia payoff is decreased by

γ = min{γ(σ1) : {σ1, . . . , σq} ∈ Ck, σ
−1
1 (j) ≤ pσ1

}. (8.6)

Assume, for the moment, that the corresponding argmin is unique and denote its first permutation

by σ̂.

If γ ≥M t−1
j −Mj , then decreasing j’s utopia payoff from M t−1

j to Mj does not result in any

change in the chains. In this case, the statement holds for M t
j defined, for each h ∈ N\{j}, by

M t
j = Mj ,M

t
h = M t−1

h . Proceed to step t+ 1.

Otherwise, define the second-highest gap γ̃ by

γ̃ = min{γ(σ1) : {σ1, . . . , σq} ∈ Ck, σ
−1
1 (j) ≤ pσ1

, γ(σ1) > γ(σ̂)}

and take M t
j = M t−1

j − (γ + ε), where ε ∈ (0, γ̃ − γ) and for each h ∈ N\{j}, M t
h = M t−1

h . We

show that the statement holds for this new utopia vector.

As mentioned before, σ̂ is the first in a chain, say Γ ∈ Ck. So, σ̂ must be either of type −P−
or −PP . Define s = σ̂−1(i) and distinguish between the two cases:

σ̂ is of type −P−:

σ̂R belongs to another chain, say ∆ ∈ Ck with length q. Note that the players σ̂(pσ̂ − q +

1), . . . , σ̂(pσ̂ −1) and σ̂(pσ̂ +1) belong to ∆. When the pivot changes in σ̂, this permutation

joins ∆, as type PP−, forming chain ∆∪{σ̂}. Hence, chain Γ disappears and the length of

∆ is increased by one, while the other chains are not affected. So, it suffices to show that

LΓ,t−1
i +L∆,t−1

i as function of M t−1 equals L
∆∪{σ̂},t
i as function of M t. Using Lemma 8.6,

we have:
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– 1 < s < pσ̂ − q + 1:

LΓ,t−1
i = M t−1

σ̂(pσ̂)M
t−1
i (i is before Γ),

L∆,t−1
i = (M t−1

σ̂(pσ̂+1) +

pσ̂−1
∑

k=pσ̂−q+1

M t−1
σ̂(k))M

t−1
i (i is before ∆),

L
∆∪{σ̂},t
i = (

pσ̂+1
∑

k=pσ̂−q+1

M t
σ̂(k))M

t
i (i is before ∆ ∪ {σ̂}).

– s = pσ̂:

LΓ,t−1
i = (v(N) −

pσ̂−1
∑

k=1

M t−1
σ̂(k))M

t−1
i (Γ ∈ P (i)),

L∆,t−1
i = 0 (i is after ∆),

L
∆∪{σ̂},t
i = (v(N) −

pσ̂−1
∑

k=1

M t
σ̂(k))M

t
i (i is last in ∆ ∪ {σ̂}).

– pσ̂ − q + 1 ≤ s < pσ̂:

LΓ,t−1
i = M t−1

σ̂(pσ̂)M
t−1
i (i is before Γ),

L∆,t−1
i = (v(N) −

s−1∑

k=1

M t−1
σ̂(k) +

pσ̂−1
∑

k=s+1

M t−1
σ̂(k))M

t−1
i (∆ ∈ P̄ (i)),

L
∆∪{σ̂},t
i = (v(N) −

s−1∑

k=1

M t
σ̂(k) +

pσ̂∑

k=s+1

M t
σ̂(k))M

t
i (∆ ∪ {σ̂} ∈ P̄ (i)).

– s = pσ̂ + 1:

LΓ,t−1
i = 0 (i is after Γ),

L∆,t−1
i = (v(N) −

pσ̂−q
∑

k=1

M t−1
σ̂(k))M

t−1
i , (∆ ∈ P (i)),

L
∆∪{σ̂},t
i = (v(N) −

pσ̂−q
∑

k=1

M t
σ̂(k))M

t
i (∆ ∪ {σ̂} ∈ P (i)).

– s > pσ̂ + 1:

LΓ,t−1
i = L∆,t−1

i = L
∆∪{σ̂},t
i = 0 (i is after all three chains).

It is readily checked that in all cases, LΓ,t−1
i + L∆,t−1

i as function of M t−1 equals L
∆∪{σ̂},t
i

as function of M t.
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σ̂ is −PP :

σ̂R belongs to the same chain as σ̂. When the pivot changes in σ̂, this permutation forms

a new chain of length one. In the same manner as in the previous case, we can show that

the total weighted payoff to i as function of the utopia vector in these two chains remains

the same.

So, from these two cases, we conclude that the statement holds for the new set of chains induced

by the (lower) utopia vector M t. Proceed to step t+ 1.

We assumed that the minimal gap in (8.6) is obtained for a unique permutation, σ̂. Suppose

now that there exists another permutation, σ̃, with this minimal gap. Since both σ̂ and σ̃ are of

type −P− or −PP , they must belong to different chains Γ and Γ̃. Also the two corresponding

“neighboring” chains ∆ and ∆̃ are different, and different from Γ and Γ̃. Hence, we can consider

the analysis in step t for σ̂ and σ̃ separately to prove the statement.

Finally, our procedure stops after finitely many steps, because in all the changes, the pivot

concerned moves towards the back of a permutation.

Step 6: final

In this final step, we combine our previous results to prove the main theorem.

Proof of Theorem 8.1: Let i ∈ N . Then applying Lemmas 8.5 and 8.7 yields

∑

σ∈Π(N)

w(σ)ℓσi =
∑

Γ∈C
LΓ

i

=
∑

j∈N\{i}

∑

Γ∈Ck

LΓ
i +

∑

Γ∈Ci

LΓ
i

=
∑

k∈N\{i}
(n− 2)!(v(N) −Mk)Mi + (n− 2)!Mi

∑

k∈N\{i}
Mk

= (n− 1)!v(N)Mi.

Then, using Proposition 8.4, we have

ζi =

∑

σ∈Π(N) w(σ)ℓσi
∑

σ∈Π(N) w(σ)

=
(n− 1)!v(N)Mi

(n− 1)!
∑

j∈N Mj

=
v(N)

∑

j∈N Mj
Mi.

Hence, τ∗ = ζ. 2
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8.5 Concluding Remarks

As we already stated in Section 8.2, for the class of compromise admissible games in which for

each i ∈ N , Mi(v) −mi(v) ≤ v(N) −∑j∈N mj(v), τ
∗ coincides with the compromise value τ .

As a result, Theorem 8.1 gives a geometric characterization of the latter on this class of games.

Moreover, in Section 8.2 we also provided a motivation for the previous requirement, showing

that it is quite natural.

This geometric property of the compromise value with respect to the core-cover can be added

to the already existing ones in TU games. Hence, we have the following results: the Shapley value

is the center of gravity of the vectors of marginal contributions, besides, for convex games it is

the center of gravity of the extreme points of the core (now multiplicities have to be taken into

account); the nucleolus is the lexicographic center of the core; the core-center is, by definition,

the center of gravity of the core; and now, for the class of games we have mentioned above, the

compromise value is the center of gravity of the edges of the core-cover (again, multiplicities have

to be taken into account).
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Resumen en Castellano

La teoría de juegos se ha dedicado, desde sus orígenes en los años 20 del siglo pasado, a dotar de

estructura matemática a aquellas situaciones de la vida real en las que varios agentes (jugadores),

entre los cuales existe un conflicto de intereses, compiten (juegan) estratégicamente. Situaciones

como las que acabamos de comentar se repiten continuamente en la vida real; esto explica el

impacto de la teoría de juegos en campos tan diversos como las ciencias políticas, la psicología, la

biología, la inteligencia militar,. . . y, sobre todo, la economía. Los primeros trabajos en teoría de

juegos se deben al matemático francés Emile Borel, quien, en 1921, publicó una serie de trabajos

acerca de este tema. Sin embargo, serían John von Neumann y Oskar Morgenstern quienes en

su libro Theory of Games and Economic Behavior revolucionaron la forma de estudiar teoría

económica. Años después, en 1950, John Nash introdujo un nuevo concepto de equilibrio en

teoría de juegos. Este nuevo concepto permitió, junto con otras herramientas desarrolladas en

teoría de juegos, dotar a la teoría económica de un rigor del que había carecido hasta entonces.

Los teoremas de punto fijo usados en los resultados de Nash fueron aplicados para obtener nuevos

resultados relativos al equilibrio general, piedra angular de los estudios microeconómicos.

El propio John Nash fue el primero en establecer formalmente las diferencias entre juegos no

cooperativos y juegos cooperativos; siendo la principal diferencia entre ambos que, en los modelos

cooperativos, los jugadores pueden realizar acuerdos vinculantes y firmar contratos que después

han de ser respetados. Esta misma separación la hemos adoptado en esta tesis, dedicando la

primera parte de la misma a estudiar modelos no cooperativos y la segunda a los cooperativos.

Juegos No Cooperativos

En esta primera parte de la tesis, que comprende los Capítulos del 1 al 4, describimos y estudiamos

varios modelos no cooperativos.

En el Capítulo 1 estudiamos una famila especial de juegos no cooperativos. Los conocidos como

“timing games” (Karlin, 1959) modelan situaciones en las que no sólo las estrategias elegidas son

importantes, sino también el momento en el que se juegan ha de ser tenido en cuenta. Muchos

modelos conocidos en teoría de juegos pertenecen a esta familia. De entre ellos destacan los

modelos de “war of attrition” o guerras de desgaste (Smith, 1974). El ejemplo más conocido, y al

que deben el nombre, es el de dos depredadores peleando por la misma presa: en cuanto uno se

retire de la pelea, la presa será para el otro, de modo que la estrategia consiste en elegir el momento

en el que abandonar la lucha. La mayoría de los modelos de esta clase estudian situaciones en las

que, una vez que uno de los agentes “actúa” (en el ejemplo anterior abandona la lucha), el otro

es inmediatamente informado. Nosotros discutimos un modelo en el que suponemos que éste no

es el caso. Consideremos una situación en la que dos empresas rivales están investigando para

hacer el mismo descubrimiento patentable (véase, por ejemplo, Fudenberg et al. (1983)): sólo una

de las dos conseguirá la patente, y toda la inversión realizada por la otra habrá sido en balde.

En este caso, la estrategia en cada instante del tiempo consiste en seguir invirtiendo o abortar la
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investigación. En este modelo parece natural que una vez que una de las empresas abandona la

investigación la otra no sea informada. Esto es importante en situaciones en las que las empresas

en cuestión compiten en varios frentes al mismo tiempo. En este caso, si una de las empresas deja

de invertir en uno de los frentes, entonces no va a querer que la otra firma pueda redistribuir su

presupuesto para ser más competitiva en los frentes aún abiertos.

En este Capítulo, basado en el trabajo González-Díaz et al. (2004), presentamos una nueva

clase de timing games y, siguiendo la motivación anterior, los llamamos “silent timing games”.

Esta primera aproximación a esta nueva clase de juegos la realizamos a través de los “cake sharing

games”, en los cuales la división de un pastel entre varios jugadores es modelada como un timing

game. La idea es la siguiente. Supongamos que tenemos dos jugadores, cada uno de los cuales

con derecho a un cuarto del pastel. El juego consiste en decir en qué instante del tiempo se desea

recibir el pastel; el jugador más paciente recibirá su parte de pastel y, a mayores, la parte sobrante

después de haberle dado al otro la parte a la que tenía derecho en el momento en el que la pidió.

Esto es hecho de un modo silencioso, es decir, un jugador no tiene nunca información de lo que ha

hecho el otro. Una vez que se introducen descuentos en el modelo, el dilema de los jugadores será

cuánto arriesgar de su derecho inicial para conseguir la parte sobrante del pastel. Los principales

resultados de este Capítulo extienden los obtenidos para juegos bipersonales en Hamers (1993)

al caso general en el que hay n-jugadores. Más concretamente, probamos la existencia y unicidad

del equilibrio de Nash para estos juegos.

En el Capítulo 2 realizamos un giro dentro de los juegos no cooperativos. Este Capítulo se

enmarca dentro del campo de los juegos repetidos con información completa. Durante los últimos

treinta años, se han publicado multitud de condiciones necesarias y suficientes para los llamados

“folk theorems”. Estos resultados aseguran que, bajo ciertas condiciones, todos los pagos factibles

e individualmente racionales del juego de partida pueden ser obtenidos en equilibrio, de Nash o

perfecto en subjuegos, en el juego repetido (ya sea una cantidad finita o infinita de veces). En el

primero de estos “folk theorems” se probó que para juegos infinitamente repetidos no se necesita

ninguna hipótesis para poder sustentar cualquier pago factible e individualmente racional en

equilibrio de Nash (este resultado puede encontrarse en Fudenberg y Maskin (1986)). Impulsados

por este resultado inicial, se siguieron buscando nuevos “folk theorems”, ya fuese cambiando el

horizonte infinito por el finito o bien reemplazando el concepto de equilibrio de Nash por el de

equilibrio perfecto en subjuegos. Una buena recopilación de todos estos trabajos puede encontrarse

en Benoît y Krishna (1996).

En este Capítulo, nosotros nos centramos en juegos finitamente repetidos con información

completa y en el equilibrio de Nash. El resultado clásico en este contexto fue obtenido en Benoît

y Krishna (1987), donde prueban una condición suficiente para el “Nash folk theorem”: que el juego

de partida tenga, para cada jugador, al menos dos pagos de Nash distintos. En este Capítulo,

basado en el trabajo González-Díaz (2003), presentamos una nueva condición: que el juego se

pueda descomponer como una “complete minimax-bettering ladder”. Esta condición es más débil

que la introducida en Benoît y Krishna (1987). Probamos, además, que no sólo es suficiente



Resumen en Castellano 165

para el “folk theorem” en equilibrio de Nash, sino que también es necesaria. Además, también

caracterizamos el conjunto de pagos que se pueden obtener en equilibrio de Nash en el caso de

que la condición antes mencionada no se cumpla. Este último enfoque es nuevo en esta literatura

ya que, tradicionalmente, los resultados se han centrado en buscar condiciones bajo las cuales

todos los pagos factibles e individualmente racionales pueden obtenerse en equilibrio en el juego

repetido. Nosotros, además de hacer eso, estudiamos cuáles serán los pagos que se pueden obtener

en equilibrio cuando esas condiciones no se cumplen.

En el Capítulo 3, aunque seguimos dentro del marco de los juegos repetidos, nos alejamos

ligeramente del enfoque clásico. Introducimos, dentro de este marco, el concepto de compromiso.

El impacto de diferentes tipos de compromisos en modelos no cooperativos ha sido ampliamente

estudiado y, de entre estos estudios, destacan los juegos de delegación. En estos modelos se estu-

dian aquellas situaciones en las que los jugadores pueden “contratar” agentes para que participen

en el juego en su lugar. Estos juegos fueron discutidos inicialmente en Schelling (1960), donde se

pueden encontrar diversas motivaciones para los mismos. El tipo de compromisos que nosotros

introducimos es formalmente distinto de los modelos de delegación, pero la idea subyacente es

la misma. El interés de estos modelos con compromisos radica en estudiar hasta qué punto se

pueden conseguir en equilibrio pagos que, sin la ayuda de estos compromisos, serían inestables.

Nosotros discutimos el concepto de compromisos unilaterales, concepto introducido inicialmente

en García-Jurado et al. (2000) y cuya idea es la siguiente: en una primera etapa del juego los

jugadores pueden deshacerse, simultánea e independientemente, de algunas de sus estrategias en

el juego repetido. Después, estos compromisos se hacen públicos y el juego repetido comienza. En

otras palabras, antes de empezar a jugar, los jugadores realizan una serie de compromisos que

después han de respetar durante el desarrollo del juego.

En este Capítulo, basado en el trabajo García-Jurado y González-Díaz (2005), inicialmente

discutimos la relación entre los compromisos unilaterales y los modelos de delegación. Después,

obtenemos una serie de “folk theorems” para juegos repetidos con compromisos unilaterales. Fi-

nalmente, realizamos un análisis comparativo de nuestros resultados con los resultados clásicos

en juegos repetidos para evaluar el impacto de los compromisos a la hora de obtener equilibrios

del juego repetido que sustenten pagos “cooperativos” del juego original. Del mismo modo, tam-

bién discutimos brevemente nuestros resultados en comparación con los obtenidos para juegos de

delegación y damos una posible aplicación de los compromisos unilaterales dentro de la literatura

de los modelos de delegación.

En el Capítulo 4 realizamos un nuevo giro y estudiamos problemas de bancarrota (O’Neill,

1982) con un enfoque no cooperativo. Los problemas de bancarrota surgieron para modelar situa-

ciones en las que una empresa se declara en quiebra y hay que repartirse el dinero que queda entre

los acreedores. Por supuesto, la propia naturaleza del problema implica que el dinero restante no

es suficiente para satisfacer las demandas de los acreedores. A pesar de la sencillez del problema

y de su aparente simplicidad matemática, la literatura en problemas de bancarrota ha crecido

tremendamente en los últimos 20 años. También el enfoque de estos problemas desde el punto
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de vista no cooperativo ha sido ampliamente abordado en esta literatura (veánse, por ejemplo,

Thomson (2003); Dagan et al. (1997); Sonn (1992)).

En este Capítulo, basado en García-Jurado et al. (2004), definimos una familia de juegos no

cooperativos de tal manera que a cada problema de bancarrota podemos asignarle juegos dentro

de esta familia. En una primera parte demostramos que todos los equilibrios de Nash de cada

uno de estos juegos tienen el mismo pago y que, además, dicho equilibrio de Nash es también

un equilibrio fuerte. Después, demostramos que, dados un problema y una regla de bancarrota,

podemos encontrar un juego dentro de nuestra familia cuyo pago en equilibrio se corresponde con

la propuesta de la regla para el citado problema.

Juegos Cooperativos

La segunda parte de la Tesis está dedicada a estudiar situaciones en las que los distintos jugadores

pueden firmar entre ellos contratos y realizar acuerdos vinculantes. Esto hace que, a diferencia

de lo que pasaba en los juegos no cooperativos, el concepto de equilibrio no sea relevante, la

estabilidad de las soluciones vendrá garantizada por el carácter vinculante de los acuerdos y la

obligatoriedad de cumplir los contratos. La subclase más estudiada dentro de los modelos de

juegos cooperativos se corresponde con los juegos con utilidad transferible (TU). Los juegos TU

modelan situaciones en las que los contratos y acuerdos contemplan la posibilidad de transferir

dinero (u otra variable que actúe como numeraria) entre los distintos agentes.

Nuestro estudio en esta parte de la Tesis se centra, principalmente, en estudiar la geometría

que subyace bajo algunos de los conceptos de solución más relevantes en la literatura de juegos

TU. Los tres primeros Capítulos de esta segunda parte se basan en los trabajos González-Díaz

y Sánchez-Rodríguez (2003a,b). Dichos trabajos se centran en el estudio del core de un juego

TU (Gillies, 1953); del core-center, un nuevo concepto de solución introducido en esta tesis; y,

finalmente, de su relación con el valor de Shapley (Shapley, 1953). En el Capítulo 5 se introdu-

ce formalmente el core-center, un nuevo concepto de solución para juegos equilibrados, definido

como el centro de gravedad del core de un juego TU. El core es, con el permiso del valor de

Shapley, el concepto de solución más importante en juegos cooperativos. La idea detrás de este

concepto de solución está centrada en la estabilidad y la eficiencia: hay que proponer un reparto

que, siendo eficiente, proponga una asignación que ninguna de las coaliciones pueda bloquear, es

decir, que ninguna coalición pueda irse por su cuenta y salir ganando con respecto a la asigna-

ción propuesta. Una vez aceptado que el core es un concepto de solución muy natural, nosotros

planteamos el siguiente razonamiento: si estamos de acuerdo en que hay que elegir una asignación

dentro del core (es decir, estable y eficiente), y dado que el core de un juego TU es un con-

junto convexo, ¿por qué no quedarnos con su centro de gravedad?. En este capítulo discutimos

diversas motivaciones para esta solución y llevamos a cabo un estudio de las propiedades que

verifica. De entre estas propiedades destacan las propiedades de monotonía, cuyo estudio está

fuertemente marcado por los resultados negativos de los trabajos de Young (1985) y de Housman

y Clark (1998); trabajos en los que se prueba una fuerte incompatibilidad entre las propiedades
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de monotonía y las reglas de asignación que siempre escogen elementos del core. Por otro lado,

también juega un papel importante la continuidad, ya que una buena parte del Capítulo 5 está

dedicada a probar que, efectivamente, el core-center es una regla de asignación continua. El Ca-

pítulo 6 está íntegramente dedicado a la caracterización axiomática del core-center. Para ello se

introduce una nueva propiedad, llamada “fair additivity”; esta es una aditividad ponderada, en

la que aparecen unos coeficientes que miden la importancia de los juegos teniendo en cuenta la

estructura de sus cores. Posteriormente, combinando esta propiedad de aditividad con algunas de

las propiedades discutidas en el capítulo anterior, obtenemos una caracterización axiomática del

core-center. Estas propiedades son: fair additivity, simetría, continuidad, y eficiencia. Además,

la demostración de este resultado guarda un cierto paralelismo con la caracterización del valor

de Shapley utilizando la propiedad de aditividad. En una primera parte de la demostración se

prueba el resultado para juegos cuyo core en un simplex; estos juegos tienen un papel similar al

de los juegos de unanimidad en la caracterización del valor de Shapley, y son usados posterior-

mente para probar el resultado para juegos cuyos cores son polítopos arbitrarios. Finalmente, en

el Capítulo 7 se estudia, ya dentro de la clase de juegos convexos, la relación entre el valor de

Shapley y el core-center. En este Capítulo juegan un papel muy importante los llamados juegos

de utopía. Primero describimos el proceso de formación del core de un juego TU como un proceso

dinámico entre las distintas coaliciones de jugadores. Después, basados en esta interpretación,

definimos una serie de juegos, los juegos de utopía, que surgen de un modo natural de la motiva-

ción anterior. Posteriormente, probamos que, para ciertas subclases de juegos, el core-center y el

valor de Shapley de los juegos de utopía coinciden. Este primer resultado nos permite probar un

resultado más general que establece una conexión bastante directa entre el valor de Shapley y el

core-center.

Finalmente, en el Capítulo 8 nos alejamos un poco de lo estudiado en el resto de capítulos de

esta parte. Aunque seguimos estudiando la geometría de los juegos TU, el concepto de solución con

el que trabajamos es el τ valor (Tijs, 1981). Esta regla de asignación pretende ser un compromiso

entre lo mínimo que se debe conceder a cada jugador de acuerdo a la situación dada y lo máximo

a lo que éste puede aspirar. Una vez que estos valores se definen para cada jugador tenemos dos

vectores, el de mínimos derechos y el de máximas aspiraciones. El τ valor se define como la única

asignación eficiente en la recta que une estos dos puntos. También a partir del vector de mínimos

derechos y el de máximas aspiraciones se define el core-cover: un conjunto que juega para el τ

valor un papel similar al que juega el conjunto de Weber con respecto del valor de Shapley. En este

Capítulo demostramos que hay una fuerte relación entre el τ valor y la geometría del core-cover.

Más específicamente, probamos que, para la mayoría de los juegos para los que está definido, el τ

valor es el centro de gravedad de las aristas del core-cover, teniendo en cuenta las multiplicidades

de las mismas. Este resultado recuerda al que relaciona a los vectores de contribuciones marginales

con el valor de Shapley, ya que este último es el centro de gravedad de los mismos (teniendo en

cuenta las multiplicidades). Llamemos ahora τ∗ valor a la solución que consiste en seleccionar el

centro de gravedad de las aristas del core-cover. Entonces, como ya hemos dicho, esta solución
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coincidirá casi siempre con el τ valor. Pero además, si estudiamos el juego de bancarrota asociado

con cada juego TU, nos encontramos con que el τ valor del juego original se corresponde con la

asignación propuesta por la regla proporcional y, por otro lado, el τ∗ valor se corresponde con la

regla proporcional ajustada (Curiel et al., 1987).

Conclusiones

En la primera parte de esta tesis hemos discutido distintos modelos no cooperativos. Para ellos

hemos encontrado resultados relativos, principalmente, a la existencia y unicidad de equilibrios

de Nash en las distintas situaciones. En el Capítulo 1 hemos obtenido un teorema de existencia

y unicidad de equilibrio de Nash en una clase de “timing games” que generaliza la discutida en

Hamers (1993). En el Capítulo 2 hemos obtenido una condición necesaria y suficiente para el

“Nash folk theorem” para juegos finitamente repetidos con información completa. Este resultado

refina el obtenido en Benoît y Krishna (1987). Además, nuestro resultado es más general que los

habituales en esta literatura. Esto es porque no sólo busca condiciones necesarias y suficientes

para que todos los pagos factibles e individualmente racionales puedan ser obtenidos en equilibrio,

sino que también caracterizamos el conjunto de pagos que se pueden obtener en equilibrio de Nash

en el caso de que tales condiciones no se cumplan. El Capítulo 3 también ha girado en torno a

los juegos repetidos. En él hemos estudiado los distintos “folk theorems” cuando al juego repetido

se le añade una etapa inicial en la que los jugadores pueden adoptar compromisos unilaterales.

En el Capítulo 4, último de la primera parte de la tesis, hemos presentado una aproximación no

cooperativa a los modelos de bancarrota. En ella hemos presentado una familia de juegos que se

pueden asociar a cada problema de bancarrota y que nos permiten obtener en equilibrio el reparto

propuesto por cualquier regla de asignación.

La segunda parte de la tesis ha tratado sobre juegos cooperativos. La mayor parte de esta

segunda parte la hemos centrado en el estudio de una nueva regla de asignación para juegos TU,

el core-center. En el Capítulo 5 hemos realizado un estudio en profundidad de las propiedades

que verifica el core-center; en el Capítulo 6 hemos presentado una caracterización axiomática;

finalmente, en el Capítulo 7 hemos llevado a cabo un análisis que nos ha permitido establecer una

conexión entre el core-center y el valor de Shapley para juegos convexos. Además, en el Capítulo 8

hemos obtenido una caracterización geométrica del τ valor. Finalemte, destacar también que

hemos profundizado en la geometría de los juegos TU. Lo hemos hecho estableciendo conexiones

entre varias reglas de asignación y varios conceptos de solución multivaluadas. Es muy conocido

que, por un lado, el valor de Shapley ocupa una posición central dentro del conjunto de Weber

y, por otro, que el nucleolo se conoce también como el centro lexicográfico del core. A estas

relaciones nosotros hemos añadido la relación entre el core y el core-center, definido como el

centro de gravedad del primero y, por otro lado, hemos demostrado que el τ valor ocupa, en

general, una posición central en el core-cover de un juego quasi-equilibrado.
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Líneas abiertas

Finalmente, destacamos las siguientes líneas de investigación que serían una continuación natural

de los distintos capítulos presentados en esta tesis:

Profundizar en la literatura de los “timing games” para estudiar las posibles implicaciones

y aplicaciones de los resultados presentados en el Capítulo 1.

Estudiar si es posible aplicar las ideas del Capítulo 2 para afinar/extender otros “folk theo-

rems” en juegos repetidos.

Seguir estudiando el impacto de los compromisos unilaterales en las hipótesis necesarias

para los “folk theorems”.

Ampliar el horizonte de estudio dentro de los juegos repetidos a aquellos con información

incompleta.

Siguiendo con las ideas presentadas en el Capítulo 4, buscar algún modelo de implementación

descentralizado.

Seguir estudiando la geometría del core de un juego TU y profundizar en las propiedades

del core-center.

Buscar otras caracterizaciones del core-center.

Analizar las conexiones entre soluciones tipo conjunto y soluciones puntuales mediante el

uso de centroides.

Seguir analizando las relaciones existentes entre core-center y las demás soluciones clásicas

para juegos TU.

Estudiar el problema de la computación del core-center.
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