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Abstract

Following a request of the European Commission in 2012, different bodies within
the gas energy sector have been working on a Network Code for transmission tariffs.
The final goal is to get a more harmonized structure within the European Union.
This paper complements those efforts by developing a formal treatment of some
methodological aspects arising in past and present drafts of the Network Code.

First, the analysis provides simple formulas for the computation of the tariffs
resulting from the application of two of the main methodologies that have been
discussed in the official documents: the capacity-weighted distance approach and
the least squares approach. Second, it is shown that the tariffs delivered by the two
approaches are perfectly correlated with each other. Maybe more importantly, if a
natural adjustment is performed to control tariff dispersion, then both approaches
lead to exactly the same tariffs.

Moreover, the analysis highlights an issue that may have been overlooked by
regulators and also by past publications: the difference between weighted and un-
weighted versions of the methodologies under study and the reasons why weighted
versions should be preferred. The paper concludes with a brief comparison with
other methodologies and discussing some policy implications.
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1. Introduction

Since the 3rd EU Energy Package entered into force in 2009, there has

been a growing interest in the design of the access tariffs to the different

transmission networks in the European Union. This interest has led to an

increase in the related literature, which ranges from reports and regulations

at the national and European levels to more academic papers published in

peer-reviewed journals. In these contributions the emphasis is normally put

on the so called entry-exit methodologies, which assign tariffs to all entry

and exit points of the network. Thus, the final tariff associated with a given

flow depends both on the chosen point of entry and on the destination of

the flow.

Regulation no. 715/2009 of the European Commission prescribes that

the methodologies used to calculate tariffs should be transparent, cost-

reflective, non-discriminatory and, moreover, should preserve system in-

tegrity and provide appropriate return on investment. Following a request of

the European Commission in June 2012, and building upon the guidelines in

the above regulation and related ones, the Agency for the Cooperation of En-

ergy Regulators elaborated the “Framework Guidelines on Rules Regarding

Harmonised Transmission Tariff Structures in European Gas Transmission

Networks” (ACER 2013), hereafter FG-2013. Four main methodologies were

proposed in this document. FG-2013 was then submitted to the European

Network of Transmission System Operators for Gas (ENTSOG), who pre-

pared several drafts of the Network Code since then. The last one of such

documents was released in July 2015 (ENTSOG 2015) and sent to the Eu-

ropean Commission, who published a new draft in February 16 (EC 2016),

hereafter NC-2016. The process is now in its final stages and a regulation

from the EU regulating tariff design in gas transmission networks should be

approved soon.

The first of the methodologies discussed in FG-2013 is the traditional

postage stamp methodology, but it is only considered acceptable under spe-

cial circumstances (its main drawback is that it is not cost-reflective). A sec-

ond methodology, named virtual point-based approach, is based on marginal
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costs and is very similar to the long run marginal cost methodology that has

been in place for several years in the UK (see, for instance, the report of

the National Grid (2011)). The other two methodologies, called capacity-

weighted distance approach and matrix approach, are built upon average

costs. Since the matrix approach has already been widely discussed in the

literature under the name of least squares approach, the present paper also

sticks to this name. For some papers on this methodology the reader may

refer, for instance, to Deliberata (2006), Alonso et al. (2010), National En-

ergy Comission of Spain (2012), Apolinário et al. (2012), and Bermúdez

et al. (2013).

The focus of this paper is on the two methodologies based on average

costs. One of the main contributions consists in formally developing the def-

initions in FG-2013, obtaining closed-form expressions to easily compute the

associated tariffs. Importantly, relying on these expressions it can be shown

that both the capacity-weighted distance and the least squares approaches

deliver very similar tariffs. The previous claim is formalized in Section 5.

In particular, it is shown that if a natural dispersion control is imposed on

the tariffs as a secondary adjustment, then the two methodologies deliver

exactly the same tariffs.

In the analysis, special attention is devoted to an aspect that is very

relevant for an adequate tariff design and that has been overlooked by most

of the literature so far.1 Setting aside the postage stamp methodology, all

other methodologies require to perform, in one way or another, computa-

tions that deal with averages associated to the entry and exit points in the

network. These averages may be either weighted or unweighted, with the

former taking into account that more important points should have more in-

fluence in the final average. This paper presents some arguments in favor of

the weighted versions of the different methodologies. It is worth noting that

the two methodologies of the original FG-2013 document in which this issue

was not handled in a consistent way, virtual point-based and least squares

approaches, are not present in NC-2016.

1An exception is Bermúdez et al. (2013).

3



Finally, Section 6 presents a brief comparison of the methodologies dis-

cussed in this paper with other tariff methodologies. Although this compar-

ison is made on a simple example, it helps to get a sense for the differences

between the approaches regarding potential policy implications.

To conclude this introduction it is worth mentioning that the main in-

sights from this paper were presented to ENTSOG in early 2014.2 Re-

markably, the main suggestions that can be extracted from these insights

have been incorporated into NC-2016, namely, i) removal of one of the two

methodologies that have been shown to be essentially equivalent and ii) dis-

regarding the unweighted versions of the discussed methodologies.

2. Related literature: contribution to the state of the art

Academic research on energy networks is rapidly growing. In particular,

the increasing consumption of natural gas within the European Union has led

to an even sharper growth of the literature on this specific source of energy.

Research focuses on a wide variety of topics such as broad regulatory aspects

(Percebois, 1999; Jamasb et al., 2008; Spanjer, 2008), security of supply

and socio-economic risks (Doukas et al., 2010, 2011), optimization models

accounting for operational costs of the transmission network (Martin et al.,

2006; Ŕıos-Mercado and Borraz-Sánchez, 2015, and references therein) and

network expansions (Dieckhöner et al., 2013; Chaudry et al., 2014; Üster

and Dilaveroğlu, 2014; Zhang et al., 2015).

This paper deals with tariff design, which is another important aspect

in transmission networks.3 More specifically, it studies the so-called entry-

exit tariffs in the specific context of gas networks. Related aspects have also

been discussed for electricity networks, but normally from a very descriptive

perspective, dealing with specific implementations and not so much with

2This presentation was made by one of the current authors in a meeting of ENTSOG’s
tariffs working group in Brussels.

3It is worth mentioning that tariff design has also been studied in distribution networks.
Yet, given the “proximity” to the final consumer, regulations and general objectives are
of a different nature. Thus, distribution networks are normally dealt with independently
(refer to Bernard et al. (2002) and Ramı́rez and Rosellón (2002)).
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normative approaches (Malik and Al-Zubeidi, 2006; Lusztig et al., 2006).

The recent European regulations, promoting the use of entry-exit tariffs,

have led to the appearance of more detailed models and methodological

discussions within the context of gas transmission networks.4

This paper contributes to the literature on tariff design by studying the

capacity-weighted distance and the least squares approaches. The latter has

already been studied before (Alonso et al., 2010; Apolinário et al., 2012;

Bermúdez et al., 2013), but we do not know of any formal analysis of the

former one.

2.1. Contribution to the state of the art

To the best of our knowledge this is the first paper in which a formal

comparison of the two above methodologies is developed and, more impor-

tantly, the first one noticing that the two methodologies yield very similar

tariffs. Thus, the approach in NC-2016, in which only one of them is in-

cluded, seems more natural than having both of them as in FG-2013.

From the computational point of view, there is also an important ad-

dition to the existing literature. In previous works and regulations, the

calculation of the tariffs associated with the least squares methodology re-

quired to solve an optimization problem. This task may be computationally

demanding and, moreover, the problem is known to have infinitely many

optimal solutions. The closed-form expressions obtained in this paper allow

to easily characterize the solution set. More importantly, with them one

can effortlessly compute the unique optimal solution associated with each

desired entry-exit split.5

On the other hand, this paper raises an issue that is quite relevant for

its policy implications: the use of weighted or unweighted methodologies.

A formal analysis is presented, along with arguments in favor of weighted

4Interestingly, some of these discussions do not deal with the properties of specific entry-
exit schemes, but with the overall limitations of the entry-exit model; see, for instance,
Hewicker and Kesting (2009) and Hallack and Vázquez (2013).

5The entry-exit split specifies how much of the total revenue has to be collected at
entry points and how much at exit points (see Section 3.2).
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methodologies. This contrasts with the common practice nowadays, since

most of the papers and regulations, including FG-2013, rely mainly on un-

weighted methodologies (Deliberata, 2006; Alonso et al., 2010; National En-

ergy Comission of Spain, 2012; Apolinário et al., 2012). Two exceptions are

Bermúdez et al. (2013) and NC-2016.

Finally, the analysis also includes a comparison between the entry-exit

methodologies discussed in this paper and other tariff methodologies that

have been discussed in the literature. Although the comparison is performed

on a simple network, it delivers some insights regarding the general behavior

of the different approaches. It is worth noting that these kind of compar-

isons are rarely seen in the literature. This is mainly because the different

methodologies have different requirements and computations sometimes are

far from being straightforward. Fortunately, the formal framework devel-

oped here facilitates the analysis.

Overall, the main contribution of this paper is to improve the under-

standing of the entry-exit methodologies that are nowadays being discussed

by the European regulators. This understanding is important, since the en-

suing regulations will be the basis for the tariffs implemented in the different

countries in the European Union and possibly also taken as references at a

global level.

3. Background

One of the main goals of this paper is to discuss the connections between

two different entry-exit methodologies: the capacity-weighted distance ap-

proach and the least squares approach (Deliberata, 2006; Alonso et al., 2010;

Apolinário et al., 2012; Bermúdez et al., 2013). Although both of them were

discussed in FG-2013, only the former appears in NC-2016.6

Figure 1 displays the technical framework in which the methodology

analysis in this paper is developed. We abstract away from some aspects of

6In FG-2013 the least squares methodology is discussed under the name of matrix
approach.
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Network description
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• Least squares
• Hunt
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• Least squares
• HuntFlat

tariffs
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Secondary Adjustments

Target
entry-exit split

Target
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• Multiplicative
• Additive

Final Ouput

Tariffs
at entry points

Tariffs
at exit points

Figure 1: Technical framework for the analysis of tariff methodologies.
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the entry-exit methodology that are not relevant for the analysis, such as the

computation of the costs associated with the different infrastructures of the

system or the revenue to be collected with the tariffs. Thus, it is assumed

that there is a gas network with n entry points and m exit points and a

reference scenario (average/high/peak demand) from which the following

elements have already been identified:

• A cost or distance matrix Cn×m such that each entry Cij is a measure

of the cost incurred when moving a unit of flow from entry point i to

exit point j in the given scenario.7

• A strictly positive vector of entry flows F ET ∈ Rn such that, for each

entry point i, F ET
i represents the flow entering the network at that

point in the given scenario.

• A strictly positive vector of exit flows FXT ∈ Rm such that, for each

exit point j, FXT
j represents the flow leaving the network at that point

in the given scenario.

The goal is to determine a vector of entry tariffs, ET ∈ Rn, and a vector

of exit tariffs, XT ∈ Rm. The joint application of these tariffs should collect

the desired revenue R.

Assuming that the entry and exit flows are balanced, one can define

w =
∑n

i=1 F
ET
i =

∑m
j=1 F

XT
j . Denote Ĉ =

∑n
i=1

∑m
j=1 F

ET
i FXT

j Cij . Under

the interpretation that each entry of matrix C represents the cost of sending

one unit of flow between a given pair of entry and exit points in the system,∑n
i=1 F

ET
i Cij would represent the cost of sending all flows to exit point j.

Then, since the capacity of j is just FXT
j , it is natural to think that the cost

associated to j is

(
n∑
i=1

F ET
i Cij)

FXT
j∑n

i=1 F
ET
i

, i.e.,

7For a deeper exposition on the computation of this matrix, the reader may refer to
any of the papers mentioned at the beginning of this section. For instance, the suggestion
in NC-16 is to use the shortest pipeline distance between i and j (although it also allows
to omit those pairs of points which are unlikely to send flow to one another).
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node j is only “responsible” for the proportion of the total flows that use

this exit point. Adding up the above expression for all j we get∑n
i=1

∑m
j=1 F

ET
i FXT

j Cij∑n
i=1 F

ET
i

=
Ĉ

w
.

Therefore, one can assume that the revenue to be collected in the system,

R, is given by precisely the above amount:

R =
Ĉ

w
.

This assumption can be made without loss of generality: given an alternative

target revenue R̂, the corresponding tariffs can be obtained multiplying by

R̂/R the ones collecting R. It is worth emphasizing that all the derivations

and results presented below are unaffected by this kind of rescaling. More

precisely, any rescaling that consists in multiplying all the entry and exit

tariffs by the same constant can be done at any stage of the computation.

3.1. Weighted and unweighted averages

Setting aside the postage stamp methodology, all other methodologies

require to perform computations that deal with averages associated to the

entry and exit points in the network. In these computations one can choose

between weighted or unweighted averages. Consider, for instance, the aver-

ages of the rows and columns of matrix C, which are specially important in

the ensuing analysis. The unweighted averages are defined as follows:

for each i ∈ {1, . . . , n}, ŪET
i =

∑m
j=1 Cij
m

and

for each j ∈ {1, . . . ,m}, ŪXT
j =

∑n
i=1 Cij
n

.
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To get the weighted averages one needs to define

for each i ∈ {1, . . . , n}, C̄ET
i =

∑m
j=1 F

XT
j Cij∑m

j=1 F
XT
j

and

for each j ∈ {1, . . . ,m}, C̄XT
j =

∑n
i=1 F

ET
i Cij∑n

i=1 F
ET
i

.

The motivation behind weighted averages is quite natural: points whose

associated flows are larger should have a larger influence on the final average.

To illustrate, think of the computation of the center of a gas network like

the one in Figure 2, with one entry point and nine exit points. One option

is to compute a simple average of the coordinates of all the points in the

network, resulting in a point very close to the exit points. On the other

hand, one can decide to weight the coordinates of each point by the amount

of flow that it usually demands/supplies. Now, the center would be around

the mid point of the big pipe in the figure (provided that the flows in the

system are balanced). This last point seems definitely more realistic, since it

corresponds with the center of mass of the gas flowing through the system.

E1

X1

X2

X3

X4

X5

X6

X7

X8

X9

Figure 2: A gas network with one entry point and several exit points.

Section 6 shows that the same kind of effects illustrated above for the

physical center of the network can arise when computing tariffs. In partic-

ular, unweighted methodologies lead to tariffs that are much more sensitive

to network representations. Interestingly, the two methodologies of the orig-

inal FG-2013 document in which this issue was not handled in a consistent

way, virtual point-based and least squares approaches, are not present in

NC-2016.
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3.2. Tariff adjustment to obtain a target entry-exit split

An important aspect of an entry-exit methodology is the so-called entry-

exit split, controlled by the split parameter s. Suppose that one has already

computed vectors ET and XT of entry and exit tariffs, respectively. Yet,

the final tariffs are required to collect s times more revenue at the entry

points than at the exit ones. For instance, s = 1 corresponds with 50-50

split and s = 3 with 75-25 split, with three times more revenue collected

via entry points than via exit points. There are two main options to adjust

the ET and XT tariffs to accomplish the desired split: multiplicatively and

additively.

3.2.1. Multiplicative adjustment

There are several equivalent ways of formulating this adjustment, maybe

the most straightforward one is as follows: the multiplicative adjustment

consists of finding d ∈ [0, 1] such that∑n
i=1 F

ET
i (ETi d)∑m

j=1 F
XT
j (XTj(1− d))

= s.

Suppose that the initial tariffs delivered a 50-50 split, i.e.,
∑n

i=1 F
ET
i ETi =∑m

j=1 F
XT
j XTj . Then, solving the above equation for d we get d = s

s+1 (and

1− d = 1
s+1). Thus, the resulting tariffs are, for each entry point i and each

exit point j,

ETmi =
2s

s+ 1
ETi and XTmj =

2

s+ 1
XTj . (1)

All tariffs have been multiplied by two to ensure that the collected revenue

remains unchanged.

3.2.2. Additive adjustment

The additive adjustment consists of finding d ∈ R such that∑n
i=1 F

ET
i (ETi + d)∑m

j=1 F
XT
j (XTj − d)

= s.
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Suppose that the initial tariffs delivered a 50-50 split. Then, solving this

equation for d we get d = s−1
s+1

Ĉ
2w2 . Thus, the resulting tariffs are, for each

entry point i and each exit point j,

ET ai = ETi +
s− 1

s+ 1

Ĉ

2w2
and XT aj = XTj −

s− 1

s+ 1

Ĉ

2w2
. (2)

4. Tariff Methodologies

This section is devoted to present the formal definitions of the weighted

versions of the capacity-weighted distance approach and the least squares

approach. The latter, however, is normally seen in an unweighted form, even

in the FG-2013 document (for an exception refer to Bermúdez et al. (2013)).

Next, the definitions of the unweighted versions are briefly discussed. For the

sake of completeness, the postage stamp methodology and a variation of the

above methodologies that endogenously determines the entry-exit split are

also defined. The postage stamp methodology is needed for the discussion

in Section 5.1.

4.1. Capacity-weighted distance approach

This methodology uses vectors C̄ET and C̄XT to define the entry and

exit tariffs. The idea is quite natural: entry tariffs are proportional to the

(capacity-weighted) average distance to the exit points. Similarly, exit tariffs

are proportional to the corresponding average distance to the entry points.

Only a minor modification is needed to ensure that the desired revenue is

collected:

ETC =
C̄ET

2
and XTC =

C̄XT

2
.

Thus, the total collected revenue would be

n∑
i=1

F ET
i ETC

i +

m∑
j=1

FXT
j XTC

j =
n∑
i=1

F ET
i

∑m
j=1 F

XT
j Cij

2
∑m

j=1 F
XT
j

+
m∑
j=1

FXT
j

∑n
i=1 F

ET
i Cij

2
∑n

i=1 F
ET
i

=
Ĉ

2w
+

Ĉ

2w
= R.
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From this equation it can be seen that the above entry and exit tariffs

naturally lead to a 50-50 split between entry and exit points. The multi-

plicative and additive adjustments for a given split parameter s are presented

below.

4.1.1. Capacity-weighted distance approach with multiplicative adjustment

From Eq. (1) in Section 3.2.1 we get, for each entry point i and each exit

point j,

ETCm
i =

2s

s+ 1
ETC

i =
s

s+ 1
C̄ET
i and XTCm

j =
2

s+ 1
XTCm

j =
1

s+ 1
C̄XT
j .

(3)

4.1.2. Capacity-weighted distance approach with additive adjustment

From Eq. (2) in Section 3.2.2 we get, for each entry point i and each exit

point j,

ETCa
i =

C̄ET
i

2
+
s− 1

s+ 1

Ĉ

2w2
and XTCa

j =
C̄XT
j

2
− s− 1

s+ 1

Ĉ

2w2
. (4)

4.2. Weighted least squares approach

Recall that one of the goals of tariff design is to have cost-reflective tar-

iffs. Thus, one would like to have tariffs such that, when sending a unit of

flow from point i to point j, the cost Cij is collected. Equivalently, one would

like to have that ETi + XTj = Cij for each pair (i, j) of entry-exit points.

However, in general this yields a system of equations with far more con-

straints than variables. The idea of the least squares approach is to choose

tariffs minimizing the squared sum of the deviations with respect to the

above equations. Following the proposal in Bermúdez et al. (2013), weights

are included, so that deviations involving pairs of entry and exit points with

large associated flows matter more. Thus, this approach consists of find-

ing tariffs ET and XT that solve the following least squares minimization

problem:

min
∑
i,j

F ET
i FXT

j (ETi +XTj − Cij)2. (5)
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In Bermúdez et al. (2013) the authors showed that this minimization prob-

lem has an infinite number of solutions. More importantly, they showed

that, for each possible entry-exit split, there is a unique solution delivering

precisely that split. This paper goes one step beyond, obtaining explicit

formulas for these solutions. In particular, in Appendix A it is shown that

the unique solution delivering a 50-50 split leads to tariffs given, for each

entry point i and each exit point j, by

ETL
i = C̄ET

i −
Ĉ

2w2
and XTL

j = C̄XT
j −

Ĉ

2w2
.

It is easy to see that, so defined, the collected revenue is Ĉ
w , as desired.

Interestingly, because of the explicit formulas presented in this section,

the least squares methodology is not more computationally demanding than

others: the solutions of the underlying optimization problem can be easily

computed.

4.2.1. Weighted least squares with multiplicative adjustment

From Eq. (1) in Section 3.2.1 we get, for each entry point i and each exit

point j,

ETLm
i =

2s

s+ 1
(C̄ET

i −
Ĉ

2w2
) and XTLm

j =
2

s+ 1
(C̄XT

i −
Ĉ

2w2
). (6)

The main problem of the multiplicative adjustment is that the resulting

tariffs do not correspond to any solution of the least squares minimization

problem in Eq (5). This issue disappears when the adjustment is additive.

4.2.2. Weighted least squares with additive adjustment

From Eq. (2) in Section 3.2.2 we get, for each entry point i and each exit

point j,

ETLa
i = C̄ET

i −
1

s+ 1

Ĉ

w2
and XTLa

j = C̄XT
j −

s

s+ 1

Ĉ

w2
. (7)

Importantly, this is the unique methodology with the following property.

For each split parameter s, the resulting tariffs are the unique ones that are

14



an optimal solution to the minimization problem in Eq. (5) and that deliver

split s.

4.3. Postage stamp methodology

Because of its role in the following section, the postage stamp methodol-

ogy is now defined. The idea of this approach is to treat all points equally,

regardless of their situation in the network. The resulting tariffs, despite

being perfectly non-discriminatory, are not cost-reflective at all. When the

goal is a 50-50 split, this tariffs are given, for each entry point i and each

exit point j, by

ETP
i =

Ĉ

2w2
and XTP

j =
Ĉ

2w2
.

Now, following the approach in sections 3.2.1 and 3.2.2, it is easy to check

that additive and multiplicative adjustments coincide for the postage stamp

methodology. The resulting tariffs are given, for each entry point i and each

exit point j, by

ETPm
i = ETPa

i =
s

s+ 1

Ĉ

w2
and XTPm

j = XTPa
j =

1

s+ 1

Ĉ

w2
. (8)

4.4. Unweighted methodologies

For the sake of completeness, the unweighted versions of the above

methodologies are briefly described below.

For the unweighted version of the capacity-weighted distance approach,

it suffices to work with the (unweighted) averages ŪET and ŪXT instead of

C̄ET and C̄XT. The same applies for the computations with different splits.

As far as the least squares approach is concerned, the unweighted version

is the one that has received more attention so far in the literature; see, for

instance, Deliberata (2006) Alonso et al. (2010), Apolinário et al. (2012) and

FG-2013 (under the name matrix approach in this last document).8 For this

methodology, the derivations are analogous to those of the weighted version,

8We find this name a bit ambiguous since, in general, the capacity-weighted distance
approach might use the same cost matrix as starting point.
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but working with the following minimization problem:

min
∑
i,j

(ETi +XTj − Cij)2. (9)

4.5. An alternative approach

Hunt (2008, Appendix A) introduced a methodology that is related to

the above ones. To some extent, it can be seen as an approach between the

capacity-weighted distance and the least squares ones.

One special feature of Hunt’s approach is that the entry-exit split is ob-

tained endogenously during the computations. To be more precise, suppose

that we have identified all possible multiplicative adjustments of the un-

weighted version of the capacity-weighted distance approach. Then, Hunt’s

methodology selects the one that minimizes the unweighted least squares

problem in Eq. (9). In Appendix C it is shown that this “optimal” entry-

exit split is given by su = αu

1−αu , where9

αu =

∑n
i=1

∑m
j=1(Cij − ŪXT

j )(ŪET
i − ŪXT

j )∑n
i=1

∑m
j=1(Ū

ET
i − ŪXT

j )2
.

Following the motivation discussed for the other methodologies, one could

argue that it would be preferable to define a weighted version of Hunt’s

approach. First, one would identify all the possible multiplicative adjust-

ments of the capacity-weighted distance approach. Then, one would take

the one that minimizes the weighted least squares problem. In Appendix C

it is shown that this new “optimal” entry-exit split is given by sw = αw

1−αw ,

where

αw =

∑n
i=1

∑m
j=1 F

ET
i FXT

j (Cij − C̄XT
j )(C̄ET

i − C̄XT
j )∑n

i=1

∑m
j=1 F

ET
i FXT

j (C̄ET
i − C̄XT

j )2
.

One of the merits of this approach lies in the fact that it determines the

entry-exit split following an objective criterion. Yet, it is worth emphasizing

that, both in the weighted version and in the unweighted one, the resulting

9Actually, Appendix C contains only the derivations for the weighted version of Hunt’s
approach, with the ones for the unweighted version being analogous.
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tariffs are not a solution of the corresponding least squares minimization

problem, namely (5) and (9). Indeed, as mentioned in Section 4.2, the

unique solution of such minimization problem delivering the identified split

is given by the corresponding (weighted/unweighted) least squares tariffs

with additive adjustment.

4.6. Summary of the strengths and weaknesses of the methodologies

It is interesting to assess the behavior of the methodologies presented

in this section with respect to the principles formulated by the European

Commission: transparency, cost-reflectivity, non-discrimination, providing

appropriate return on investment,. . .

Clearly, the postage stamp methodology is completely transparent, but

it lacks any kind of cost-reflectivity. The capacity-weighted methodology is

also transparent. Moreover, as long as the matrix C correctly reflects the

transmission costs between the different nodes in the network, this method-

ology should be cost-reflective. Similar considerations apply to the weighted

least squares methodology and to Hunt’s approach. Certainly, since these

last two approaches to solve an optimization problem to compute the tar-

iffs, one may argue that some transparency is lost. Yet, the explicit formulas

given in the present paper definitely address this issue. Hunt’s methodol-

ogy has the special feature of endogenously determining the entry-exit split.

However, it is not easy to assess whether this should be seen as a strength

or a weakness. First, as it is argued above, it is not clear that the result-

ing tariffs are solving the right optimization problem. Second, although the

endogenous choice of the split may prevent arbitrary decisions from the reg-

ulating bodies, there is some loss of transparency since there is no intuitive

justification for the resulting split. In this respect, the document NC-2016

specifies that any country applying an entry-exit split different from 50-50

has to appropriately justify the chosen one.

On the other hand, the use of unweighted methodologies may lead to

discriminatory tariffs. Since the final tariffs crucially depend on the network

representation, there is room for representations that favor certain nodes (see

the tariffs for nodes E1 and E3 in the example of Section 6).
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A primary concern in past literature has been the potential complexity

associated with the computation of least square tariffs, since it requires to

solve an optimization problem with infinitely many solutions. This should

not be seen as a weakness anymore, since this paper provides explicit for-

mulas to easily compute all methodologies (delivering unique tariffs for each

split parameter that may be selected).

5. Connections between the different methodologies

Consider the two versions of the capacity-weighted distance approach

and the two versions of the weighted least squares approach. It can be

easily seen from the expressions obtained in the previous section that all of

them are are affine transformations of vectors C̄ET and C̄XT. Therefore,

they are also affine transformations of one another. More precisely, given

two vectors of entry (or exit) tariffs X and Y associated with two of the

above methodologies, there are constants a > 0 and b such that

Y = aX + b.

In particular, this implies that the two tariff vectors X and Y have corre-

lation one. Thus, the main difference between the methodologies lies on the

dispersion of the tariffs, as measured by the multiplicative factor a.

Suppose that attention is restricted to the entry tariffs and take as ref-

erence those obtained with the capacity-weighted distance approach with

multiplicative adjustment, ETCm . Then, by relying on Eqs.(3)-(7), it is

easy to see that, for each entry point i,

ETCa
i = aCaETCm

i + bCa =
s+ 1

2s
ETCm

i +
s− 1

s+ 1

Ĉ

2w2
.

ETLm
i = aLmETCm

i + bLm = 2ETCm
i − s

s+ 1

Ĉ

w2
, and (10)

ETLa
i = aLaETCm

i + bLa =
s+ 1

s
ETCm

i − 1

s+ 1

Ĉ

w2
,

Similar expressions can be obtained in a straightforward manner for the
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exit tariffs. Section 5.1 below goes a bit further in exploring the above

connections and shows that, if a natural adjustment is made, then all four

methodologies coincide.

5.1. Dispersion Control

The FG-2013 document acknowledges that “The setting of tariffs involves

certain trade-offs. In order to address those trade-offs, National Regulatory

Authorities may decide to adjust methodologies and associated initial tar-

iffs at national level, via secondary adjustments. . . ”. These secondary ad-

justments, most of which are also considered in NC-2016, include rescaling

(multiplicative and additive), equalization and the so called benchmarking.

A related secondary adjustment, called dispersion control, is developed in

Bermúdez et al. (2013). The goal of this adjustment is to mitigate the ef-

fects that a high dispersion between tariffs might have in the market, since

it facilitates smoother transitions between tariff methodologies.

For the sake of exposition the analysis is developed for the entry tariffs,

since the analysis for the exit ones is completely analogous. Suppose that

some measure of the dispersion associated to a vector of tariffs has been

chosen and that one wants to control it. For instance, take as dispersion

measure the ratio between the highest and the lowest entry tariffs. Then, the

dispersion control introduced in Bermúdez et al. (2013) consists of taking a

combination of the postage stamp tariffs (zero dispersion) and the tariffs at

hand. By doing so, dispersion can be brought down to the desired level.

More formally, suppose that there are a vector X representing some

entry tariffs and a constant P representing the corresponding postage stamp

tariffs. Let x̂ = maxiXi and x̌ = miniXi. Suppose that we want the ratio

between the highest and the lowest entry tariff equals some number k > 0.

Then, the dispersion control adjustment consists of finding λ such that

λP + (1− λ)x̂ = k
(
λP + (1− λ)x̌

)
.

Solving for λ we get

λk =
x̂− kx̌

P (k − 1) + x̂− kx̌
. (11)
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Then, the adjusted tariffs after dispersion control would be obtained, for

each entry point i, as

XD,k
i = λkP + (1− λk)Xi.

From the above expression it is easy to see that, as long as the initial postage

stamp tariffs and the tariffs in vector X collect the same revenue, the result-

ing XD,k tariffs will also do (see Proposition 1 in Appendix B). Therefore,

the dispersion control can be applied after a given entry-exit split has already

been imposed, since it will deliver tariffs with the same split.

Next, it is shown that, if the same level of dispersion is imposed to the

methodologies discussed in Section 5, then all of them coincide. Further,

in Appendix B, where the analysis is developed more formally, it is also

shown that this coincidence result is essentially independent of the chosen

dispersion measure.

First, take two vectors of tariffs X and Y such that there are constants

a > 0 and b satisfying

Y = aX + b.

Suppose now that the dispersion control is applied to these tariffs with the

same level k. By Eq. (11) we get (provided that x̂ 6= x̌)

λxk =
x̂− kx̌

P (k − 1) + x̂− kx̌
and λyk =

ŷ − ky̌
P (k − 1) + ŷ − ky̌

.

Therefore, given two specific tariffs x and y = ax + b, the corresponding

adjusted tariffs would be

xD,k = λxkP + (1− λxk)x and yD,k = λykP + (1− λyk)y.

Subtracting these adjusted tariffs, after some algebra we get

xD,k − yD,k =

(
− 1 + k

)
P
(
b+ (a− 1)P

)(
x− kx− x̂+ kx̌

)(
(−1 + k)P + x̂− kx̌

)(
b− bk + (−1 + k)P + a(x̂− kx̌)

) .
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Clearly, if b = (1 − a)P , then the tariffs xD,k and yD,k are equal.10 Recall

that, by Eq. (8), ETPa
i = ETPm

i = s
s+1

Ĉ
w2 = P . Now, consider the tariffs

ETCa . By Eq. (10), it holds that ETCa
i = aCaETCm

i + bCa , with aCa = s+1
2s

and bCa = s−1
s+1

Ĉ
2w2 . Hence, for the connection between ETCa and ETCm

(1− aCa)P = (1− s+ 1

2s
)

s

s+ 1

Ĉ

w2
=
s− 1

s+ 1

Ĉ

2w2
= bCa ,

and the condition b = (1− a)P holds. Analogously, b = (1− a)P also holds

for the other two affine transformations in Eq. (10):

ETLm → (1− aLm)P = (1− 2)
s

s+ 1

Ĉ

w2
= − s

s+ 1

Ĉ

w2
= bLm , and

ETLa → (1− aLa)P = (1− s+ 1

s
)

s

s+ 1

Ĉ

w2
= − 1

s+ 1

Ĉ

w2
= bLa .

Therefore, the above equalities imply that, after the dispersion control ad-

justment, the tariffs obtained from ETCa , ETLm , and ETLa coincide with

those obtained from ETCm . Thus, if such a secondary adjustment is im-

posed, the four methodologies lead to exactly the same tariffs.

Wrapping up, it has been shown that, as long as the same dispersion

control is applied to all the entry tariffs (same k) and the same dispersion

control is applied to all the exit tariffs (same k̄, possibly different from k),

the two weighted versions of the capacity-weighted methodology and the

two weighted versions of the least squares methodology coincide. It is also

worth noting that a similar conclusion would be reached by developing the

same analysis for the unweighted methodologies.

6. Illustration and Discussion

This section is devoted to illustrate the methodologies discussed in this

paper by studying them on a simple example. Throughout this section

10Another sufficient condition is k = 1, in which case we would have λx
k = λy

k = 1 and
the final tariffs would coincide with the postage stamp tariffs, i.e., no dispersion at all.
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CW-m and CW-a are used to refer to the multiplicative and additive ver-

sions of the capacity-weighted distance approach. Similarly, WLS-m and

WLS-a are used for the weighted least squares approach. The tariffs ob-

tained via Hunt’s weighted methodology are called Hunt-w. The corre-

sponding unweighted versions are named CU-m, CU-a, ULS-m, ULS-a,

and Hunt-u. Finally, PT is used to refer to postal tariffs.

Consider the network and flow configuration depicted in Figure 3. There

are three entry points and five exit points. A very symmetric network has

been chosen because it helps to show more clearly the fundamental differ-

ences between weighted and unweighted methodologies. The same differ-

ences can also arise in networks without symmetries.

E1

[5GWh]

E2

[2GWh]

E3

[5GWh]

X1

[-4GWh]

X2

[-2GWh]

X3

[-2GWh]

X4

[-2GWh]

X5

[-2GWh]

4GWh

20km 1GWh

50km

2GWh

20km

2GWh

20km

2GWh

20km

2GWh

20km1GWh

50km

Figure 3: The network and flow configuration.

In order to apply the different tariff methodologies we start by obtaining

the cost or distance matrix C3×5. To do so, when computing the distance

between a pair of points, we take into account whether or not pipes are used

in the direction of prevalent flows or backhaul. Thus, the associated costs

or distances are adjusted (rescaled) using a backhaul parameter (see, for

instance, Alonso et al. (2010)). In this case, the entries of C are computed

with backhaul parameter 0.1. More precisely, Cij is computed as the length

of the shortest path between entry point i and exit point j, where the lengths

of pipes used in backhaul are multiplied by 0.1. Then, the following costs
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are obtained:
X1 X2 X3 X4 X5

E1 20 70 70 75 75

E2 25 20 20 25 25

E3 75 70 70 20 20

The vectors of entry and exit flows are, respectively, F ET = (5, 2, 5) and

FXT = (4, 2, 2, 2, 2). The entry-exit split is set to 75-25 (s = 3) and the

revenue to be collected to R = Ĉ
w ≈ 596.67.

Before moving on, note the following characteristics of the network in

Figure 3:

(i) Exit points X2 and X3 are completely symmetric, so one should expect

to get the same tariffs for them.

(ii) Similarly, by looking at matrix C one can see that nodes X1, X4 and

X5 are essentially symmetric as well.

(iii) Finally, entry points E1 and E3 are also essentially symmetric. To

see why, just note that the distance from X4 to any other node in the

network coincides with the corresponding distance from X5. Thus, if

nodes X4 and X5 are replaced with a single node X6 with demand 4

(the sum of the individual demands of X4 and X5), the resulting net-

work can be seen as equivalent to the original one (after all, depicting

X4 and X5 as independent nodes is just a matter of network repre-

sentation). Yet, in this new network E1 and E3 would be completely

symmetric. Therefore, one should expect that E1 and E3 also get the

same tariffs.

Table 1 presents the tariffs obtained after applying the formulas in Sec-

tion 4. From this table it is easy to check that the correlation between the

weighted entry tariffs is one and that it is also one between the unweighted

entry tariffs (with the same observation being true for the exit tariffs). As

mentioned earlier, this is because the four weighted versions are are affine

transformations of vectors C̄ET and C̄XT. Similarly, the unweighted versions

are affine transformations of vectors ŪET and ŪXT. As a side comment, it
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is worth noting that in this example one of the methodologies delivered

a negative tariff for point E2. Although this raises no problem from the

mathematical point of view, one might argue that tariffs should not be neg-

ative. Indeed, most methodologies include the specification of secondary

adjustments that can correct this kind of issues.

E1 E2 E3 X1 X2 X3 X4 X5

CW-a 39.93 24.1 39.93 9.44 18.40 18.40 9.44 9.44
CW-m 41.25 17.50 41.25 10.94 15.42 15.42 10.94 10.94
WLS-a 45.21 −2.29 45.21 9.44 18.40 18.40 9.44 9.44
WLS-m 42.57 10.90 42.57 6.46 24.38 24.38 6.46 6.46
Hunt-w 36.37 15.43 36.37 14.82 20.89 20.89 14.82 14.82

CU-a 45.53 16.55 37.35 11.24 14.81 14.81 11.24 11.24
CU-m 45.41 16.85 37.35 11.19 14.92 14.92 11.19 11.19
ULS-a 51.92 0.44 37.40 9.89 17.50 17.50 9.89 9.89
ULS-m 48.31 9.55 37.37 8.01 21.27 21.27 8.01 8.01
Hunt-u 52.27 19.39 43.00 6.12 8.15 8.15 6.12 6.12

PT 37.29 37.29 37.29 12.43 12.43 12.43 12.43 12.43

Table 1: Entry-exit tariffs with a 75-25 split (s = 3), except for Hunt’s methodology,
which endogenously obtains s ≈ 1.95 for the weighted version and s ≈ 6.32 for the

unweighted one.

More importantly, note that all the weighted methodologies respect the

symmetries described above. The unweighted versions, however, fail to rec-

ognize the symmetry between nodes E1 and E3. Therefore, the unweighted

methodologies are sensitive to different representations of the same underly-

ing network. Indeed, it can be seen that all of them deliver a larger tariff for

E1 than for E3. Somehow E1 is being “punished” for having to go twice to

distant exit points (X4 and X5) whereas E3 only has to go once to a distant

exit point (X1). Clearly, if flows are taken into account, both E1 and E3

have to carry the same number of units, four, to distant nodes.

Finally, suppose that we want to impose dispersion control in such a

way that the largest entry tariff is exactly twice as large as the smallest one

(kentry = 2) and the largest exit tariff is 50% larger than the smallest one
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(kexit = 1.5).11 Then, one would obtain the values for λ depicted in Table 2

and the tariffs in Table 3.

λ entry λ exit
(kentry = 2) (kexit = 1.5)

CW-a −0.28 0.41
CW-m 0.14 −0.19
WLS-a 0.57 0.41
WLS-m 0.36 0.7
Hunt-w 0.14 −0.19

CU-a 0.25 −0.49
CU-m 0.24 −0.43
ULS-a 0.58 0.3
ULS-m 0.44 0.6
Hunt-u 0.24 −0.43

Table 2: Dispersion control coefficients for the different methodologies.

E1 E2 E3 X1 X2 X3 X4 X5

CW-a 40.68 20.34 40.68 10.65 15.98 15.98 10.65 10.65
CW-m 40.68 20.34 40.68 10.65 15.98 15.98 10.65 10.65
WLS-a 40.68 20.34 40.68 10.65 15.98 15.98 10.65 10.65
WLS-m 40.68 20.34 40.68 10.65 15.98 15.98 10.65 10.65
Hunt-w 35.87 17.94 35.87 14.44 21.65 21.65 14.44 14.44

CU-a 43.47 21.73 37.34 10.65 15.98 15.98 10.65 10.65
CU-m 43.47 21.73 37.34 10.65 15.98 15.98 10.65 10.65
ULS-a 43.47 21.73 37.34 10.65 15.98 15.98 10.65 10.65
ULS-m 43.47 21.73 37.34 10.65 15.98 15.98 10.65 10.65
Hunt-u 50.04 25.02 42.98 5.82 8.74 8.74 5.82 5.82

Table 3: Entry-exit tariffs in Table 1 after applying dispersion control with k = 2 for the
entry tariffs and k = 1.5 for the exit tariffs.

As already expected from the results in the previous section, the method-

ologies CW-a, CW-m, WLS-a and WLS-m deliver exactly the same tariffs

(the same being true for the unweighted versions of these tariffs). Since the

11There is nothing special in these choices of kentry and kexit, they are just two arbitrary
values taken for the sake of illustration.
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split endogenously obtained with Hunt’s methodology does not coincide with

the split used for the other methodologies, Hunt’s approach delivers differ-

ent tariffs. Interestingly, note that the split obtained by this methodology

can drastically change depending on whether or not weights are considered.

In this example it delivers, approximately, 66-34 with weights and 86-14

without them. In particular, weighted exit tariffs are more than two times

larger than the unweighted ones.

Note that, concerning the way in which tariffs respect the symmetries in

the underlying network, nothing changes after applying dispersion control.

Finally, note that some of the coefficients in Table 2 are negative, which

implies that the original tariffs had a smaller dispersion than the target one.

Consequently, the dispersion of those tariffs has increased after applying the

dispersion control. Therefore, if the target dispersion is just meant to set an

upper bound on the admissible dispersion, one should only adjust the tariffs

when this upper bound was exceeded by the achieved tariffs. Yet, if it is

applied in this way, the resulting tariffs of the different methodologies might

not coincide: in such a case, for a given target dispersion, the dispersion

control might only affect some of the methodologies.

6.1. Comparison with other methodologies

In order to get more perspective on the previous analysis, it would be

interesting to compare the entry-exit tariffs discussed so far with other ap-

proaches such as point to point methodologies. To be able to make this

comparison, one first needs to compute the costs of sending one unit of

flow from each entry point to each exit point under the entry-exit tariffs.

A thorough comparison, which would require to consider a wide number

of alternative methodologies and to compare them over a wide number of

networks, is beyond the scope of this paper. As an initial step in this di-

rection, we provide below an illustration using the network in Figure 3 and

including the tariffs associated to two additional methodologies: the Long

Run Marginal Cost Methodology (LRMC) as discussed in the report of the

National Grid (2011) and the First Best Mechanism (FB), following the
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nodal pricing approach in David and Percebois (2002).12

E1-X1 E1-X2 E1-X4 E2-X1 E2-X2 E2-X4 E3-X1 E3-X2 E3-X4

CW-a 49.37 58.33 49.37 33.54 42.50 33.54 49.37 58.33 49.37
CW-m 52.19 56.67 52.19 28.44 32.92 28.44 52.19 56.67 52.19
WLS-a 54.65 63.61 54.65 7.15 16.11 7.15 54.65 63.61 54.65
WLS-m 49.03 66.95 49.03 17.36 35.28 17.36 49.03 66.95 49.03
PT 49.72 49.72 49.72 49.72 49.72 49.72 49.72 49.72 49.72
LRMC 44.75 82.04 44.75 0.00 37.29 0.00 44.75 82.04 44.75
FB 94.52 38.40 23.63 79.75 23.63 8.86 94.52 38.40 23.63

Table 4: Comparison of the resulting point to point tariffs.

The resulting point to point tariffs are depicted in Table 4.13 For the

sake of comparison, all tariffs are rescaled so that they collect the same

revenue (the tariffs associated to X3 and X5 have been omitted since they

coincide with those associated to X2 and X4, respectively, because of the

network symmetries).

There are important differences between the methodologies. First, the

tariffs based on average costs discussed in the previous sections are quite sim-

ilar to each other. On the other hand, one of the main ideas of the marginal

costs’ approach of LRMC is to provide signals for network expansions. This

is done by taking into account how additional flows between entry and exit

nodes might increase or reduce potential congestion issues. Thus, sending

additional gas to X1 and X4 is cheaper than doing it to X2, because sending

gas from E2 to X1 and X4 would reduce potential congestion issues in the

pipes E1-E2 and E3-E2.

Finally, it is worth noting that, according to FB tariffs, sending gas to X1

12Ideally, we would have liked to include in the analysis the classic Atlantic Seaboard
Formula (see, for instance, Wellisz (1963)), but its computation requires the specification
of a good number of additional elements (which play no role for the other methodologies)
and the comparison would crucially depend on the specific choices made for them.

13For the computation of the LRMC tariffs, we took as virtual point the node E2, the
natural choice given that it is the center of the network. Since the first best mechanism
described in David and Percebois (2002) depends on the pressure loss associated with the
flow transmission between nodes, the diameter of the pipes should be specified to compute
it. In our analysis we just assume that all pipes have the same diameter, so that this choice
does not affect the resulting tariffs.
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would be notably more expensive than sending gas to any other node. The

reason for this is that the first best methodology as described in David and

Percebois (2002) has as its main cost driver the pressure loss associated with

the different gas paths in the network. Since pressure loss is proportional to

the length of the pipe and the squared flow (we are assuming that all pipes

have the same diameter), the fact that pipe E1-X1 carries twice as much

flow as any other pipe heavily penalizes node X1 in this example.

The numbers in Table 4 as well as the above discussion suggest that

regulators and policy makers, when choosing a tariff methodology, should

carefully consider what are the underlying cost drivers and the ensuing net-

work signals.

7. Conclusions

The focus of this paper has been on two of the main tariff methodologies

discussed in the documents published since 2013 by ACER, ENTSOG and

the European Commission. These methodologies are intended to be the ba-

sis for more integrated and harmonized transmission tariff structures within

the European gas networks. As it was already mentioned in the introduc-

tion, the main insights obtained from the formal analysis in this paper were

presented to ENTSOG in early 2014. Then, to some extent, the changes

observed in NC-2016 regarding the elimination of the least squares method-

ology and the unweighted methodologies can be seen as a natural reaction

to our recommendations.

A first contribution of the analysis is the development of explicit formulas

for the computation of these methodologies. Specially relevant are the simple

formulas obtained for the least squares approach (matrix approach in FG-

2013). This is because the FG-2013 document (Section 3.2.1.1.) says “The

choice for or against the matrix methodology, or the virtual point methodol-

ogy, relative to the capacity-weighted distance methodologies, shall consider

both the drawback of necessary network representation simplifications and

the benefit in cost-reflectivity, as compared to the capacity-weighted dis-

tance approach.” Based on the obtained formulas, the capacity-weighted
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distance approach and the matrix approach require equally simple compu-

tations, so we see no reason for network simplifications regardless of which of

the two is to be applied. Further, since the resulting tariffs are very similar,

there is neither benefit nor lost of cost-reflectivity depending on the chosen

methodology.

Also important for its potential policy implications is the main result

of this paper, which establishes that capacity-weighted and least squares

methodologies lead to very similar tariffs. This suggests that having both

of them as available methodologies is a redundancy that may just make

harmonization more difficult and harm transparency. Since the tariffs ob-

tained by these two methodologies have correlation one, the only difference

comes from their dispersion. In particular, if the entry and exit points are

ranked according to their tariffs, then both methodologies lead to the same

rankings. More formally, it is shown that if a natural dispersion control is

applied to obtain the final tariffs, then the two methodologies yield exactly

the same tariffs.14

Importantly, dispersion control has other benefits that are of potential

interest for regulators. First, since this secondary adjustment allows to

control the ratio between the largest and the smallest tariff, it provides a

natural tool to “implement mitigating measures” that ensure “price stabil-

ity”, as suggested by FG-2013. Second, since this control is obtained by a

combination of the methodology-specific tariffs with the flat (nonnegative)

postage stamp tariffs, it provides a tool to ensure nonnegativity of the final

prices.

This paper raises a relevant issue that, so far, has received virtually no

attention in most of the documents regarding tariffs. When formally defining

a tariff methodology, there are normally several steps where one has to take

averages involving entry or exit points. One can choose plain or weighted av-

erages, with the latter ones taking into account the capacities of the different

14Interestingly, recall that one can perform a secondary adjustment on the tariffs to ob-
tained a target entry-exit split. The above result holds both for additive or multiplicative
adjustments. Moreover, it does not rely on the specific choice of the dispersion measure.
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points. Several examples in the paper illustrate that this may have a high

impact in the resulting tariffs. Therefore, this aspect of tariff computation

should not be overlooked when designing a methodology. Importantly, the

arguments presented in the text suggest that weighted methodologies are

more suitable to capture relevant features of the underlying transmission

network.

There are quite a few directions for future research that might be worth

exploring. First, it would be interesting to expand the analysis in Section 6.1

and make a thorough comparison of different methodologies and their be-

havior on different networks. Second, the normative analysis developed in

this paper might be applied to other energy networks both inside and outside

the European Union. For instance, it could foster new cooperations between

the European Union and the Gulf Cooperation Council, in the spirit of the

projects discussed in Doukas et al. (2012, 2013). Finally, it is worth noting

that the analysis in this paper just provides what one might call a definite

“static” picture of these methodologies. In this sense, it should be seen as

the basis for the literature that studies the implications of the chosen tariffs

on “dynamic” aspects such as the strategic behavior of the actors of the en-

ergy markets. In this literature, game theoretical models are developed and

questions such as optimal pricing, social welfare, and incentive compatibil-

ity are analyzed (see, for instance, Cremer et al. (2003), Gasmi and Oviedo

(2010), Brandão et al. (2014), and references therein).
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Martin, A., Möller, M., Moritz, S., 2006. Mixed integer models for the stationary case of

gas network optimization. Mathematical Programming Series B 105, 563–582.

National Energy Comission of Spain, 2012. Metodoloǵıa de asignación de costes a los
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Appendix A. Obtaining an explicit expression for the weighted

least squares tariffs

For the analysis in this section we use vector notation. In particular,

vectors are represented by capital bold face letters and matrices by capi-

tal calligraphic ones. We present below the notation used throughout this

appendix.

Consider a gas transport network with n entry points and m exit points.

We denote by X = (X1, . . . , Xn)t ∈ Rn and Y = (Y1, . . . , Ym)t ∈ Rm the

vector of entry and exit tariffs, respectively. The cost matrix is C ∈ Mn×m.

Also, we define the vectors N = (1, . . . , 1)t ∈ Rn and M = (1, . . . , 1)t ∈ Rm.

Finally, denote by E ∈ Mn×n the diagonal matrix such that Eii = Ei, the

strictly positive flow through entry point i. Similarly, F ∈ Mm×m denotes

the diagonal matrix such that Fjj = Fj , the strictly positive flow through

exit point j. We assume that the flows in the system are balanced, namely,

w :=

n∑
i=1

Ei =

m∑
j=1

Fj , or, equivalently, w := N tEN = M tFM .
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Also, recall that we assume that the total revenue to collect is given by

R =
Ĉ

w
, where Ĉ :=

n∑
i=1

m∑
j=1

EiFjCij = N tECFM = M tFCtEN .

Then, the capacity-weighted average of the rows and columns of matrix C
are given by

C̄ET =
CFM
M tFM

and C̄XT =
CtEN
N tEN

.

We now focus on the tariffs under the weighted least squares approach.

Rewriting the minimization problem in Eq. (5) using the vector notation,

we look for X and Y that minimize the following objective function:

ϕ (X,Y ) =
∥∥∥E 1

2
(
XM t +NY t − C

)
F

1
2

∥∥∥2
2
,

where the nonnegativity of the flows ensures that the E
1
2 and F

1
2 matrices

are well-defined. Then, the conditions for X,Y to define a critical point of

ϕ are

DXϕ (X,Y ) (δX) = 0, for all δX ∈Mn×1, and

DY ϕ (X,Y ) (δY ) = 0, for all δY ∈Mm×1,

where DXϕ (X,Y ) and DY ϕ (X,Y ) are the partial derivatives of ϕ with

respect to X and Y , respectively. After some algebra, the above equations

reduce to(
E

1
2
(
XM t +NY t − C

)
F

1
2

)
·
(
E

1
2 δXM tF

1
2

)
= 0, and(

E
1
2
(
XM t +NY t − C

)
F

1
2

)
·
(
E

1
2NδY tF

1
2

)
= 0,

where the dot denotes the scalar product for matrices, that is, given U ,V ∈
Mp×q, then U · V =

∑p
i=1

∑q
j=1 UijVij .

From the last two equations, using the equalities A · (BC) = (AC)t · B =
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(
BtA

)
· C, we obtain two new equations:

XM tFM +NY tFM = CFM , and (A.1)

N tEXM t +N tENY t = N tEC. (A.2)

Next, from Eq. (A.2) we get

Y t =
N tEC −N tEXM t

N tEN
(A.3)

and, finally, replacing in Eq. (A.1) we get

M tFM
(
I − NN

tE
N tEN

)
X =

(
I − NN

tE
N tEN

)
CFM .

Therefore, a particular solution is

X =
CFM
M tFM

.

Furthermore, it is easy to show that

Ker

(
I − NN

tE
N tEN

)
= 〈N〉 ,

where 〈N〉 denotes the linear space spanned by vector N . This is shown by

first proving that it has dimension one and then noting that(
I − NN

tE
N tEN

)
(αN) = αN − αNN

tEN
N tEN

= 0.

Therefore, the general solution is given by the following affine space in Rn:

X =
CFM
M tFM

+ αN , α ∈ R.

Replacing this expression in Eq. (A.3) we get

Y =
CtEN
N tEN

− M tFCtEN
N tENM tFM

M − αM ,
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that is,

Yj =

∑n
i=1 CijEi∑n
i=1Ei

−
∑n

i=1

∑m
k=1 CikEiFk∑n

i=1Ei
∑m

k=1 Fk
− α.

Therefore, the general solution of the weighted least squares problem

(WLS) is the one-dimensional affine space in Rn+m defined by

X = C̄ET + ξN

Y = C̄XT − zM − ξM

}
ξ ∈ R, (A.4)

where

z =
M tFCtEN

M tFMN tEN
=

∑n
i=1

∑m
j=1 CijEiFj

(
∑n

i=1Ei)
(∑m

j=1 Fj

) =
Ĉ

w2
.

Appendix B. Dispersion control and coincidence of tariffs

First recall that the vectors of postage stamp tariffs with an entry-exit

split s are

XP =
s

s+ 1

Ĉ

w2
N and Y P =

1

s+ 1

Ĉ

w2
M .

Recall as well that, for this methodology, additive and multiplicative adjust-

ments lead to the same tariffs.

Now, the goal is to control the dispersion of the entry and/or exit tariffs.

For this purpose two parameters, λE for the entry tariffs and λX for the exit

ones, are chosen in order to get a linear combination between the postage

stamp tariffs and any of the other tariffs obtained with control of the split:

XλE = λEX
P + (1− λE)X

Y λX = λXY
P + (1− λX)Y .

(B.1)

The values for λE and λX are chosen in order to satisfy a certain condition

related to the dispersion of the corresponding tariffs. We present now a

series of straightforward results related to the XλE and Y λX tariffs.

Proposition 1. If the revenue collected by the original tariffs is R, the

tariffs XλE and Y λX also collect R.
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Proof. Suppose that we have entry and exit tariffs X and Y , respectively,

with an entry-exit split s. By definition of the split we have

N tEX =
s

s+ 1
R and M tFY =

1

s+ 1
R.

Now, the revenue collected with the XλE and Y λX tariffs can be calculated

as N tEXλE +M tFY λX , which reduces to

N tE
(
λEX

P
)

+N tE ((1− λE)X) +M tF
(
λXY

P
)

+M tF ((1− λX)Y )

= λE
s

s+ 1
R+ (1− λE)

s

s+ 1
R+ λX

1

s+ 1
R+ (1− λX)

1

s+ 1
R

=
s

s+ 1
R+

1

s+ 1
R = R.

Proposition 2. The tariffs XλE and Y λX preserve the entry-exit split.

Proof. Suppose that the original tariffs have a given split s, then

N tEXλE

M tFY λX
=

N tE
(
λEX

P
)

+N tE ((1− λE)X)

M tF
(
λXY

P
)

+M tF ((1− λX)Y )

=
λE

s
s+1R+ (1− λE) s

s+1R

λX
1
s+1R+ (1− λX) 1

s+1R

=
s
s+1R
1
s+1R

= s.

Proposition 3. Suppose that the vector of entry tariffs X comes from one

of the two versions of the capacity-weighted distance approach or one of the

two versions of the weighted least squares approach. Then, regardless, of

which one of the four is chosen, the set of entry tariffs {XλE , λE ∈ R}
coincides with the one-dimensional affine space given by

s

s+ 1

Ĉ

w2
N + 〈 Ĉ

w2
N − C̄ET〉.

An analogous result holds for exit tariffs.

Proof. To prove the result we just characterize the set {XλE , λE ∈ R} for

the four different methodologies to see that they coincide:
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• Capacity-weighted distance tariffs with additive adjustment:

λE
s

s+ 1

Ĉ

w2
N + (1− λE)

(
C̄ET

2
+
s− 1

s+ 1

Ĉ

2w2
N

)
=

=
s

s+ 1

Ĉ

w2
N +

λE − 1

2

(
Ĉ

w2
N − C̄ET

)
.

• Weighted least squares tariffs with additive adjustment:

λE
s

s+ 1

Ĉ

w2
N + (1− λE)

(
C̄ET +

1

s+ 1

Ĉ

w2
N

)
=

=
s

s+ 1

Ĉ

w2
N + (λE − 1)

(
Ĉ

w2
N − C̄ET

)
.

• Capacity-weighted distance tariffs with multiplicative adjustment:

λE
s

s+ 1

Ĉ

w2
N + (1− λE)

s

s+ 1
C̄ET =

=
s

s+ 1

Ĉ

w2
N + (λE − 1)

s

s+ 1

(
Ĉ

w2
N − C̄ET

)
.

• Weighted least squares tariffs with multiplicative adjustment:

λE
s

s+ 1

Ĉ

w2
N + (1− λE)

2s

s+ 1

(
C̄ET − Ĉ

2w2
N

)
=

=
s

s+ 1

Ĉ

w2
N + (λE − 1)

2s

s+ 1

(
Ĉ

2w2
N − C̄ET

)
.

Corollary 1. Given a dispersion control that uniquely determines the pa-

rameter λE, the resulting tariffs for the four methodologies discussed in

Proposition 3 coincide. An analogous result holds for exit tariffs.
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Appendix C. Obtaining the entry-exit split via the weighted ver-

sion of Hunt’s approach

The tariffs obtained by the weighted version of Hunt’s approach (Hunt

2008, Appendix A) are given by

X = αC̄ET and Y = (1− α) C̄XT ,

where α is chosen to minimize the function

Ψ (α) = ϕ
(
αC̄ET, (1− α) C̄XT

)
=
∥∥∥E 1

2

(
αC̄ETM t + (1− α)NC̄XTt − C

)
F

1
2

∥∥∥2
2
.

The first order condition of the minimization problem for α is

DαΨ (α) (δα) = 0, for all δα ∈ R.

After some algebra we get

Ψ′ (α) δα = E
1
2

(
αC̄ETM t + (1− α)NC̄XTt − C

)
F

1
2

· E
1
2

(
δαC̄ETM t − δαNC̄XTt

)
F

1
2 ,

and, therefore,

Ψ′ (α) = E
(
αC̄ETM t + (1− α)NC̄XTt − C

)
·
(
C̄ETM t −NC̄XTt

)
.

Solving for Ψ′ (α) = 0 we get

E
(
C̄ETM t −NC̄XTt

)
·
(
C̄ETM t −NC̄XTt

)
F α = E

(
C −NC̄XTt

)
·
(
C̄ETM t −NC̄XTt

)
F .
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Thus,

α =
E
(
C −NC̄XTt

)
·
(
C̄ETM t −NC̄XTt

)
F

E
(
C̄ETM t −NC̄XTt

)
·
(
C̄ETM t −NC̄XTt

)
F

=

n∑
i=1

m∑
j=1

EiFj
(
Cij − C̄ET

j

) (
C̄ET
i − C̄ET

j

)
n∑
i=1

m∑
j=1

EiFj
(
C̄ET
i − C̄ET

j

)2 .

To conclude, just note that the entry-exit split s via the weighted version

of Hunt’s approach under this α value is

s =
N tEX
M tFY

=
α

1− α

N tECFM
M tFM
M tFCEN
N tEN

=
α

1− α
.
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