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Abstract

This paper characterizes the set of feasible payoffs of finitely repeated
games with complete information that can be approximated arbitrarily closely
by Nash equilibria.
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1 Introduction

Over the past thirty years, necessary and sufficient conditions have been pub-
lished for numerous “folk theorems”, asserting that the individually rational feasi-
ble payoffs of finitely or infinitely repeated games with complete information can
be achieved by Nash or subgame perfect equilibria.1 The original folk theorem
was concerned about the Nash Equilibria of infinitely repeated games. This folk
theorem stated that every individually rational feasible payoff of the original game
can be obtained as a Nash Equilibrium of the repeated game; no assumption was
needed for this result (a statement and proof of this result can be found in Fuden-
berg and Maskin (1986)). Then, the theorists turned to study subgame perfection
in infinite horizon models and they found a counterpart of the previous result for
undiscounted repeated games; again, no assumptions were needed (Aumann and
Shapley, 1976; Rubinstein, 1979). A few years later, discount parameters were in-
corporated again into the model; in this case, some conditions were needed to get
the perfect folk theorem (Fudenberg and Maskin, 1986). These conditions were
refined in the mid-nineties (Abreu et al., 1994; Wen, 1994).

Together with the previous results, also grew the literature on finitely repeated
games. The main results for finite horizon models obtained conditions for the Nash
folk Theorem (Benôıt and Krishna, 1987), and also for the perfect one (Benôıt and
Krishna, 1985). This perfect folk theorem relied on the fact that mixed strategies
were observable; the same result but without that assumption was obtained in
the mid-nineties (Gossner, 1995). Assuming again observable mixed strategies,
Smith (1995) obtained a necessary and sufficient condition for the arbitrarily close
approximation of strictly rational feasible payoffs by subgame perfect equilibria
with finite horizon: that the game have “recursively distinct Nash payoffs”, a
premise that relaxes the assumption in Benôıt and Krishna (1985) that each player
have multiple Nash payoffs in the stage game.

Smith claimed that this condition was also necessary for approximation of the
individually rational feasible payoffs of finitely repeated games by Nash equilibria.
In this paper we show that this is not so by establishing a similar but distinct suf-
ficient condition that is weaker than both Smith’s condition and the assumptions
made by Benôıt and Krishna (1987). Moreover, our condition is also necessary.

1The survey by Benôıt and Krishna (1999) includes many of these results.
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Essentially, the difference between the subgame perfect and Nash cases hinges on
the weakness of the Nash solution concept: in the Nash case it is not necessary for
threats of punitive action against players who deviate from the equilibrium not to
involve loss to the punishing players themselves, i.e., threats need not be credible.
The kind of equilibrium we define in this paper require for its corresponding path
ρ, to finish, for each player i, with a series Qi of rounds in which i cannot unilat-
erally improve his stage payoff by deviation from ρi, and for this terminal phase
to start with a series Q0

i of rounds in which the other players, regardless of the
cost to themselves, can punish him effectively for any prior deviation by imposing
a loss that wipes out any gains he may have made in deviating.

Many of the results mentioned above concern the approximability of the entire
set of individually rational feasible payoffs. The main theorem in this paper is
more general in that, for any game, it characterizes the set of feasible payoffs that
are approximable.

Although subgame perfect equilibrium is a desirable refinement of Nash equi-
librium, results for the latter are still needed for games in which the perfect folk
theorem does not apply. Game G in Figure 1 shows that, indeed, this is the case
for a generic class of games. The assumptions for the perfect folk theorem do not
hold for game G. Moreover, Theorem 2 in Smith (1995) implies that (3, 3) is the
unique payoff achievable via subgame perfect equilibrium in any repeated game
such that G is its stage game. However, every feasible and individually ratio-
nal payoff, (e.g., (4,4)) can be approximated in Nash equilibrium in many of those
repeated games (for small enough discount and big enough number of repetitions).

L M R
T 3,3 6,2 1,0
M 2,6 0,0 0,0
B 0,1 0,0 0,0

Figure 1: A game for which the Nash folk theorem is needed.

We have structured the paper as follows. We introduce notation and concepts
in Section 2. In Section 3 we state and prove the main result. Next, in Section 2.5
we are concerned about unobservable mixed strategies. Finally, we conclude in
Section 5.

2 Basic Notation, Definitions and an Example

2.1 The Stage Game

A game G in strategic form is a triplet (N,A,ϕ), where:

• N := {1, . . . , n} is the set of players,

• A :=
∏

i∈N Ai and Ai is the set of player i’s strategies,
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• ϕ := (ϕ1, . . . , ϕn) and ϕi : A→ R is the payoff function of player i.

Let GN be the set of games with set of players N .
We assume that, for each i ∈ N , the sets Ai are compact and the functions

ϕi are continuous. Let a−i be a strategy profile for players in N\{i} and A−i

the set of such profiles. For each i ∈ N and each a−i ∈ A−i, let µ(a−i) :=
maxai∈Ai

{ϕi(a−i, ai)}. Also, for each i ∈ N , let vi := mina−i∈A−i
{µ(a−i)}. The

vector v := {v1, . . . , vn} is the minimax payoff vector. Let F be the set of feasible
payoffs: F := co{ϕ(a) : a ∈ A}. Let F̄ be the set of all feasible and individually
rational payoffs:

F̄ := F ∩ {u ∈ Rn : u ≥ v}.

To avoid confusion with the strategies of the repeated game, in what follows
we refer to the strategies ai ∈ Ai and the strategy profiles a ∈ A of the stage game
as actions and action profiles, respectively.

2.2 The Repeated Game

Let G(δ, T ) be the game consisting in the T-fold repetition of G with payoff dis-
count parameter δ ∈ (0, 1]. In this game we assume perfect monitoring, i.e., each
player can choose his action in the current stage in the light of all actions taken
by all players in all previous stages. Let σ be a strategy profile of G(δ, T ), and
the action profile sequence ρ = {ρ1, . . . , ρT } its corresponding path. Let ϕt

i(ρ) be
the stage payoff of player i at stage t when all players play in accordance with ρ.
Then, player i’s payoff in G(δ, T ) when σ is played is his average discounted stage
payoff: ψi(σ) ≡ ψi(ρ) := ((1 − δ)/(1 − δT ))

∑T
t=1

δt−1ϕt
i(ρ).

2

2.3 Minimax-Bettering Ladders

Let M be an m-player subset of N . Let AM :=
∏

i∈M Ai and let G(aM ) be the
game induced for the n −m players in N\M when the actions of the players in
M are fixed at aM ∈ AM . By abuse of language, if i ∈ N\M , aM ∈ AM , and
σ ∈ AN\M we write ϕi(σ) for i’s payoff at σ in G(aM ). A minimax-bettering
ladder of a game G is a triplet {N ,A,Σ}, where N is a strictly increasing chain
{∅ = N0 ( N1 ( · · · ( Nh} of h + 1 subsets of N (h ≥ 1), A is a chain of action
profiles {aN1

∈ AN1
, . . . , aNh−1

∈ ANh−1
} and Σ is a chain {σ1, . . . , σh} of Nash

equilibria of G = G(aN0
), G(aN1

), . . . , G(aNh−1
), respectively, such that at σl the

players of G(aNl−1
) receiving payoffs strictly greater than their minimax payoff

are exactly those in Nl\Nl−1: for each i ∈ Nl\Nl−1, ϕi(σ
l) > vi, and for each

i ∈ N\Nl, ϕi(σ
l) ≤ vi.

Let the sets in N be the rungs of the ladder. In algorithmic terms, if the first
l − 1 rungs of the ladder have been constructed, then, for the l-th rung to exist,
there must be aNl−1

∈ ANl−1
such that the game G(aNl−1

) has an equilibrium
σl. Moreover, σl has to be such that there are players i ∈ N\Nl−1 for whom

2Or, ψi(σ) ≡ ψi(ρ) := (1/T )
∑T

t=1
ϕt

i(ρ) if there are no discounts (δ = 1).
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ϕi(σ
l) > vi. Let Nl\Nl−1 be this subset of players of G(aNl−1

). The game played
in the next step is defined by some action profile aNl

. The set Nh is the top
rung of the ladder. A ladder with top rung Nh is maximal if there is no ladder
with top rung Nh′ such that Nh ( Nh′ . A game G is decomposable as a complete
minimax-bettering ladder if it has a minimax-bettering ladder with N as its top
rung. We show below that being decomposable as a complete minimax-bettering
ladder is a necessary and sufficient condition for it to be possible to approximate
all payoff vectors in F̄ by Nash equilibria of G(δ, T ) for some δ and T . Clearly,
being decomposable as a complete minimax-bettering ladder is a weaker property
than the requirement in Smith (1995), that at each step l − 1 of a similar kind
of ladder there be action profiles aNl−1

, bNl−1
such that the games G(aNl−1

) and
G(bNl−1

) have Nash equilibria σl
a and σl

b with ϕi(σ
l
a) 6= ϕi(σ

l
b) for a nonempty set

of players (those in Nl\Nl−1).

2.4 An Example

Let G ∈ GN , let L be a maximal ladder of G, and Nmax its top rung. For each
i ∈ N , let li be the unique integer such that i ∈ Nli\Nli−1. In the equilibrium
strategy profile constructed in Theorem 1 below, the action profile sequence in
the terminal phase Qi referred to in the Introduction, consists of repetitions of
(aNli−1

, σli), (aNli−2
, σli−1), . . . , (aN2

, σ2) and σ; and the σj are Nash equilibria of
the corresponding games G(aNj−1

). Since player i is a player in all these games,
he can indeed gain nothing by unilateral deviation during this phase. In the
potentially punishing series of rounds Q0

i , the action profile sequence consists
of repetitions of (aNli−1

, σli), in which i obtains more than his minimax payoff,
with the accompanying threat of punishing a prior unilateral deviation by i by
minimaxing him instead.

l m r l m r
T 0, 0, 3 0,-1, 0 0,-1, 0 0, 3,-1 0,-1,-1 1,-1,-1
M -1, 0, 0 0,-1, 0 0,-1, 0 -1, 0,-1 -1,-1,-1 0,-1,-1
B -1, 0, 0 0,-1, 0 0,-1, 0 -1, 0,-1 -1,-1,-1 0,-1,-1

L R

Figure 2: A game that is decomposable as a complete minimax-bettering ladder

As an illustration of the above ideas, consider the three-player game G shown
in Figure 2. Its minimax payoff vector is (0, 0, 0), and its unique Nash equilibrium
is the action profile σ1 = (T, l, L), with associated payoff vector (0, 0, 3). Hence,
N1 = {3}; player 3 can be punished by 1 and 2 by playing one of his minimax
profiles instead of playing (T, l, ·). If player 3 now plays R (aN1

= R), the resulting
game G(aN1

) = G(R) has an equilibrium σ2 = (T, l) with payoff vector (0, 3).
Hence, N2 = {2, 3} and player 2 can be punished by 1 and 3 by playing one of
his minimax profiles instead of playing (T, ·, R). Finally if players 2 and 3 now
play r and R (aN2

= (r,R)), the resulting game G(aN2
) = G(r,R) has the trivial
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equilibrium σ3 = (T ) with payoff 1 for player 1. Hence, player 1 can be punished
by 2 and 3 if they play one of his minimax profiles instead of playing (·, r, R).

2.5 Further Preliminaries

As a consequence of the next Lemma we can unambiguously refer to the top rung
of a game G.

Lemma 1. Let G ∈ GN . Then, all its maximal ladders have the same top rung.

Proof. Suppose there are maximal ladders L = {N ,A,Σ}, L′ = {N ′,A′,Σ′} with
N = {N0 ( N1 ( · · · ( Nh} and N ′ = {N ′

0 ( N ′
1 ( · · · ( N ′

k} such that,
Nh 6= N ′

k. Assume, without loss of generality, that N ′
k\Nh 6= ∅. For each j ∈ N ′

k,
let lj be the unique integer such that j ∈ N ′

lj
\N ′

lj−1
. Let i ∈ argminj∈N ′

k
\Nh

lj .

Then, N ′
li−1

⊆ Nh. Let aNh
be the action profile defined as follows:

for each j ∈ N, (aNh
)j =

{

(a′
N ′

li−1

)j j ∈ N ′
li−1

(σ′li)j j ∈ Nh\N
′
li−1

,

where σ′li ∈ Σ′ is an equilibrium of the game G(a′
N ′

li−1

) induced by the action

profile a′
N ′

li−1

∈ A′.

Now, let σh+1 be the restriction of σ′li to N\Nh. Since σ′li is an equilibrium of
G(a′

N ′

li−1

), andN\Nh ⊆ N\N ′
li−1

, σh+1 is an equilibrium ofG(aNh
). Moreover, the

set of players j ∈ N\Nh for whom ϕj(σ
h+1) > vj is N ′

li
\Nh. Let Nh+1 := N ′

li
\Nh.

Since Nh+1 contains i, it is nonempty. Let L′′ = {N ′′,A′′,Σ′′} be the ladder
defined by

• N ′′ = {N0 ( N1 ( · · · ( Nh ( Nh+1},

• A′′ = {aN1
, . . . , aNh−1

, aNh
},

• Σ′′ = {σ1, . . . , σh, σh+1}.

The top rung of L′′ strictly contains that of L. Hence, L is not maximal, which
proves the Lemma.

Let G be a game with set of players N and let N ′ ⊆ N . We say that G ∈
TRN ′(GN ) if the top rung of any maximal ladder of G is N ′. Hence, a game
G is decomposable as a complete minimax-bettering ladder if and only if G ∈
TRN (GN ).

Let G ∈ TRNmax
(GN ) and â ∈ ANmax

. Let Λ(â) := {λ = (â, σ) ∈ A :
σ Nash equilibrium of G(â)} and Λ :=

⋃

â∈ANmax

Λ(â). Let ϕ(Λ) := {ϕ(λ) : λ ∈

Λ}. Let F̄Nmax
be the set of Nmax-attainable payoffs of G: F̄Nmax

:= F̄ ∩ coϕ(Λ).
Note that, by the definition of Nmax, for each u ∈ F̄Nmax

and each i ∈ N\Nmax,
ui = vi. Moreover, when Nmax = N we have Λ = A and F̄Nmax

= F̄ .
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Lemma 2. Let G ∈ TRNmax
(GN ). Then, the set F̄Nmax

is closed.

Proof. First, we show that Λ is closed. Let {(an, σn)} be a sequence of action
profiles in Λ with limit (a, σ). Since ANmax

is compact, a ∈ ANmax
. Since ϕ is

continuous, σ is a Nash equilibrium of G(a). Hence, (a, σ) ∈ Λ.
The set ϕ(Λ) is the image of a closed set under a continuous function. Since

ϕ has a compact domain, ϕ(Λ) is closed. Hence, F̄ ∩ coϕ(Λ) is closed.

The promised result concerning the approximability of all payoffs in F̄ by
Nash equilibrium payoffs is obtained below as an immediate corollary of a more
general theorem concerning the approximability of all payoffs in F̄Nmax

. In this
more general case, the collaboration of the players in Nmax is secured by a strategy
analogous to that sketched in the Example of Section 2.4, while the collaboration
of the players in N\Nmax is also ensured because none of them is able to obtain
any advantage by unilateral deviation from any action profile in Λ.

3 The Theorem

In the theorem that follows, the set of action profiles A may consist either of
pure or mixed action profiles; in the latter case, we assume that all players are
cognizant not only of the pure actions actually put into effect at each stage, but
also of the mixed actions of which they are realizations. We discuss unobservable
mixed actions in Section 2.5. Also, we assume public randomization: at each stage
of the repeated game, players can let their actions depend on the realization of an
exogenous continuous random variable. The assumption of public randomization
is without loss of generality. Given a correlated mixed action, its payoff can be
approximated by alternating pure actions with the appropriate frequencies. More
precisely, for each u ∈ F̄ and each ε > 0, there are pure actions a1, . . . , al such
that ||u− (a1 + . . .+al)/l|| < ε. Hence, if the discount parameter δ is close enough
to 1, the same inequality is still true if we consider discounted payoffs. Then,
since we state Theorem 1 in terms of approximated payoffs, public randomization
assumption can be dispensed with.3

Theorem 1. Let G ∈ TRNmax
(GN ). Let u ∈ F . Then, a necessary and sufficient

condition for there to be for each ε > 0, an integer T0 and a positive real number
δ0 < 1 such that for each T ≥ T0 and each δ ∈ [δ0, 1], G(δ, T ) has a Nash
equilibrium payoff w such that ‖w − u‖ < ε is that u be Nmax-attainable (i.e.,
u ∈ F̄Nmax

).

Proof.
suffic
⇐= Let a ∈ Λ be an action profile of G such that ϕ(a) = u, and let

L = {N ,A,Σ} be a maximal minimax-bettering ladder of G. By the definition of

3For further discussion on public randomization refer to Fudenberg and Maskin (1991) and
Olszewski (1997). Also, refer to Gossner (1995) for a paper in which public randomization is
not assumed and the approximation procedure we described above is explicitly made (though
discounts are not considered).
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Λ, players in N\Nmax have no incentive for unilateral deviation from a. Let ρ be
the following action profile sequence:

ρ := {a, . . . , a
︸ ︷︷ ︸

T−T0+q0

, λh, . . . , λh

︸ ︷︷ ︸

qh

, λh−1, . . . , λh−1

︸ ︷︷ ︸

qh−1

, . . . , λ1, . . . , λ1

︸ ︷︷ ︸

q1

},

where for each l ∈ {1, . . . h}, λl = (aNl−1
, σl) with aNl−1

∈ A and σl ∈ Σ. Let
ε > 0. Next, we obtain (in this order) values for qh, . . . , q1, the discount δ0, q0, and
T0 to ensure that for each T ≥ T0 and each δ ∈ (δ0, 1], there is a Nash equilibrium
of G(δ, T ) whose path is ρ and such that ||ϕ(ρ) − u|| < ε.

First, we calculate how many repetitions of G(aNli−1
) are necessary for the

players in N\{i} to be able to punish a player i ∈ Nmax for prior deviation.
For each action profile â ∈ A, let µ̄(â) := µ(â−i) − ϕi(â), i.e., the maximum
“illicit” profit that player i can obtain by unilateral deviation from â. Let µ̄i =
max{µ̄(a), µ̄((aNh−1

, σh)), . . . , µ̄(σ1)} and mi = min{ϕi(a) : a ∈ A}. Let li ∈ N

be such that i ∈ Nli\Nli−1. Let δ0 ∈ (0, 1) and let qh, . . . , q1 be the natural
numbers defined through the following iterative procedure:

Step 0:
For each i ∈ Nh\Nh−1, let ri ∈ N and δi ∈ (0, 1) be

ri := min{r ∈ N : r(ϕi(σ
li) − vi) > µ̄i},

4

δi := min{δi ∈ (0, 1) : µ̄i −
∑ri

t=1
δt
i(ϕi(σ

li) − vi) < 0}.
Let qh ∈ N be

qh := max{ri : i ∈ Nh\Nh−1}.
Step k (k < h):

Let Tk :=
∑k−1

l=0
qh−l.

For each i ∈ Nh−k\Nh−k−1, let ri ∈ N and δi ∈ (0, 1) be
ri := min{r ∈ N : r(ϕi(σ

li) − vi) > µ̄i + Tk(vi −mi)},
δi := min{δi ∈ (0, 1) : µ̄i+

∑Tk

t=1 δ
t
i(vi−mi)−

∑Tk+ri

t=Tk+1
δt
i(ϕi(σ

li)−vi) < 0}.
Let qh−k ∈ N be

qh−k := max{ri : i ∈ Nh−k\Nh−k−1}.
Step h:

δ0 := maxi∈N δi.

The natural numbers qh, . . . , q1 and the discount δ0 are such that for each
l ∈ {1, . . . , h}, ql repetitions of G(aNl−1

) suffice to allow any player in Nl\Nl−1 to
be punished. Next, we obtain the values for q0 and T0. Let q0 be the smallest
integer such that:

∥
∥
∥
∥

q0 ϕ(a) + qh ϕ(λh) + · · · + q1 ϕ(λ1)

q0 + qh + · · · + q1
− ϕ(a)

∥
∥
∥
∥
< ε (1)

Let T0 := q0+q1+· · ·+qh. Let T ≥ T0 and δ ∈ [δ0, 1]. We prescribe for G(δ, T ) the
strategy profile in which all players play according to ρ unless and until there is a

4The natural number ri is such that, at each step, punishing player i during ri stages suffices
to wipe out any stage gain he could get by deviating from ρ when the discount is δ = 1.
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unilateral deviation. In such a deviation occurs, the deviating player is minimaxed
by all the others in the remaining stages of the game. It is straightforward to check
that this profile is a Nash equilibrium of G(δ, T ). Moreover, by inequality (1), its
associated payoff vector w differs from u by less than T0

T
ε if δ = 1. Hence, the

same observation is certainly true if δ < 1, in which case payoff vectors of the
early stages, ϕ(a), receive greater weight than the payoff vectors of the endgame.

necess
=⇒ Let u /∈ F̄Nmax

. Suppose that Nmax = N . Then, F̄Nmax
= F̄ . Hence, u

is not individually rational. Hence, it can not be the payoff associated to any Nash
equilibrium. Then, we can assume Nmax ( N . Since F̄Nmax

is a closed set, there is
ε > 0 such that ‖w − u‖ < ε implies w /∈ F̄Nmax

. Hence, if for some T and δ there
is a strategy profile σ of G(δ, T ) such that ‖ϕ(σ) − u‖ < ε, then ϕ(σ) /∈ F̄Nmax

.
Hence, by the definition of F̄Nmax

, there is at least one stage of G(δ, T ) in which,
with positive probability, σ prescribes an action profile not belonging to Λ . Let q
be the last such stage and ā = (āNmax

, āN\Nmax
) the corresponding action profile.

By the definition of F̄Nmax
, āN\Nmax

cannot be a Nash equilibrium of G(āNmax
).

Hence, there is a player j ∈ N\Nmax who can increase his payoff in round q
by deviating unilaterally from ā. Since, by the definition of q, σ assigns j a
stage payoff of vj in all subsequent rounds, this deviation cannot subsequently be
punished. Hence, σ is not an equilibrium of G(δ, T ).

Corollary 1. Let G ∈ GN be decomposable as a complete minimax-bettering lad-
der, (i.e., G ∈ TRN (GN )). Then, for each u ∈ F̄ and each ε > 0, there is T0 ∈ N

and δ0 < 1 such that for each T ≥ T0 and each δ ∈ [δ0, 1], there is a Nash
equilibrium payoff w of G(δ, T ) with ‖w − u‖ < ε.

Proof. N = Nmax ⇒ F̄ = F̄Nmax
. Hence, this result is a consequence of Theorem 1.

Corollary 2. Let G ∈ GN be not decomposable as a complete minimax-bettering
ladder (i.e., G /∈ TRN (GN )). Then, for each T ∈ N, each δ ∈ (0, 1], each i ∈
N\Nmax, and each Nash equilibrium σ of G(δ, T ) we have ϕi(σ) = vi.

Proof. For each u ∈ F̄Nmax
and for each i ∈ N\Nmax, ui = vi. Hence, this result

follows by an argument paralleling the proof of necessity in Theorem 1.

4 Unobservable Mixed Actions

In what follows, we drop the assumption that mixed actions are observable.
Hence, if a mixed action is chosen by one player, the others can only observe
its realization. To avoid confusion, for each game G, let Gu be the corresponding
game with unobservable mixed actions. We need to introduce one additional piece
of notation to distinguish between pure and mixed actions. Let Ai and Si be the
sets of player i’s pure and mixed actions respectively (with generic elements ai and
si). Similarly, let A and S be the sets of pure and mixed action profiles. Hence,
a game is now a triplet (N,S, ϕ).
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The game G (or Gu) in Figure 3 illustrates some of the differences between
the two frameworks. Although it is not entirely straightforward, it is not difficult
to check that the minimax payoff of G is v = (0, 0, 0). Let s3 = (0, 0.5, 0.5) be
the mixed action of player 3 in which he plays L with probability 0, and M and
R with probability 0.5. Let σ2 ∈ A{1,2}. Let N = {∅, {3}, N}, S = {s3} and
Σ = {(T, l, L), σ2}. Then, L = {N ,S,Σ} is a complete minimax-bettering ladder
of G regardless of σ2 (note that in the game G(s3), for each σ2 ∈ A{1,2}, both
players 1 and 2 receive the constant payoff 0.5). Hence, G satisfies the assumptions
of Corollary 1, so every payoff in F̄ can be approximated in Nash equilibrium.

l r l r l r
T 0, 0, 2 0, 0, 0 0, 0,-1 2,-1,-1 1, 1,-8 -1, 2,-8
B 0, 0, 0 0, 0, 0 -1, 2,-1 1, 1,-1 2,-1,-8 0, 0,-8

L M R

Figure 3: A game where unobservable mixed actions make a difference

Consider now the game Gu. Let u ∈ F̄ , and let a be such that ϕ(a) = u (recall
that we assumed public randomization). If we follow the path ρ constructed in
the proof of Theorem 1, there are natural numbers q0, q1, and q2 such that ρ leads
to play i) a during the first q0 stages, ii) (σ2, s3) during the following q2 stages,
and iii) (T,l,L) during the last q1 stages. Let Q be the phase described in ii).
Since player 3 is not indifferent between the two actions in the support of s3, we
need a device to detect possible deviations from that support. But, once such a
device has been chosen, it is not clear whether we can ensure that there are not
realizations for the first q2 − 1 stages of Q that would allow player three to play L
in the last stage of Q without being detected.5

Next, we revisit the results of Section 3 to understand the extent to which their
counterparts hold. Unfortunately, we have not found a necessary and sufficient
condition for the Folk Theorem under unobservable mixed actions, i.e., we have
not found an exact counterpart for Theorem 1. More precisely, as the previous
example shows, unobservable mixed actions invalidate the proofs related to suffi-
ciency conditions. On the other hand, proofs related to necessary conditions still
carry over.

For the next result, we need to introduce a restriction on the ladders. The
objective is to rule out situations as the one illustrated with Figure 3. Let L =
{N ,S,Σ} be a ladder with S = {sN1

, . . . , sNh−1
}. L is a p-ladder if, for each

l ∈ {1, . . . , h− 1}, sNl
∈ ANl

. That is, at each rung of the ladder we only look at

5Game Gu partially illustrates why the arguments in Gossner (1995) cannot be easily adapted
to our case. First, mutatis mutandi, he applies an existence of equilibrium theorem to the subgame
in Q. If we want to do so, we need to ensure that players 1 and 2 get more than 0 in Q. Second,
Gossner also uses the assumption of full-dimensionality of F to punish all the players who deviate
during Q. We do not have that assumption and hence, it could be the case that we could not
punish more than one player at the end of the game.
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subgames obtained by fixing pure action profiles.6

Lemma 3. Let G ∈ GN . Then, all its maximal p-ladders have the same top rung.

Proof. Analogous to the proof of Lemma 1.

Let G (or Gu) be a game with set of players N and let N ′ ⊆ N . We say that
G ∈ TRP

N ′(GN ) if the top rung of any maximal p-ladder of G is N ′. Clearly, if G ∈
TRP

N ′(GN ), then G ∈ TRN ′′(GN ) with N ′ ⊆ N ′′. The game G in Figure 3 provides
an example in which the converse fails: G ∈ TRP

{3}(G
N ) and G ∈ TR{N}(G

N ). Let

G ∈ TRP
Nmax

(GN ) and a pure strategy â ∈ ANmax
. We can define F̄P

Nmax
paralleling

the definition of F̄Nmax
in Section 2.

Next, we state the results. Note that the sets TR and F̄Nmax
are used for the

necessity results and the sets TRP and F̄P
Nmax

for the sufficiency ones.

Proposition 1 (Sufficient condition). Let Gu ∈ TRP
Nmax

(GN ). Then, for each
u ∈ F̄P

Nmax

and each ε > 0, there are T0 ∈ N and δ0 < 1 such that for each
T ≥ T0 and each δ ∈ [δ0, 1], there is a Nash equilibrium payoff w of G(δ, T ), with
‖w − u‖ < ε.

Proof. Analogous to the proof of the sufficiency condition in Theorem 1. This is
because, as far as a p-ladder is used to define the path ρ, whenever a player plays
a mixed action, all the pure actions in its support are best replies to the actions
of the others.

Corollary 3. Let Gu ∈ TRP
N (GN ). Then, for each u ∈ F̄ and each ε > 0, there

are T0 ∈ N and δ0 < 1 such that for each T ≥ T0 and each δ ∈ [δ0, 1], there is a
Nash equilibrium payoff w of G(δ, T ), with ‖w − u‖ < ε.

Proof. N = Nmax ⇒ F̄ = F̄Nmax
= F̄P

Nmax
. Hence, this result is an immediate

consequence of Proposition 1.

Note that the folk theorem in Benôıt and Krishna (1987) is a particular case of
this corollary. Next two results show that the exact counterparts of the necessity
results in Section 3 carry over.

Proposition 2 (Necessary condition). Let Gu ∈ TRNmax
(GN ). If Nmax ( N then,

for each u /∈ F̄Nmax
there is ε > 0 such that for each T ∈ N and each δ ∈ (0, 1],

G(δ, T ) does not have a Nash equilibrium payoff w such that ‖w − u‖ < ε.

Proof. Analogous to the proof of the necessity condition in Theorem 1.

Corollary 4. Let Gu /∈ TRN (GN ). Then, for each T ∈ N, each δ ∈ (0, 1], each
i ∈ N\Nmax, and each Nash equilibrium σ of G(δ, T ) we have ϕi(σ) = vi.

Proof. Analogous to the proof of Corollary 2.

6Note that the games G and Gu have the same ladders and the same p-ladders.
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5 Final Remarks

• Remark 1. Theorem 1 requires no use of the concept of effective minimax
payoff, because non-equivalent utilities are irrelevant to the approximation
of Nmax-attainable payoffs by Nash equilibria, in which there is no need for
threats to be credible.7

• Remark 2. Corollaries 1 and 3 hold for a wider class of games than the
result obtained by Benôıt and Krishna (1987).

• Remark 3. Theorem 1 raises the question whether a similarly general
result on the approximability of payoffs by equilibria also holds for subgame
perfect equilibria. The main problem is to determine the subgame perfect
equilibrium payoffs of players with “recursively distinct Nash payoffs” (Smith
(1995)) when the game is not completely decomposable.

• Remark 4. Results in Section 2.5 raise the question whether a necessary
and sufficient condition exists for the Nash folk theorem under unobservable
mixed strategies.

• Remark 5. The results of this paper can be easily extended to the case in
which each player has a different discount δ.

Dept. of Statistics and OR. Faculty of Mathematics, Santiago de Compostela
University. 15782 Santiago de Compostela. Spain. e-mail: julkin@usc.es
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