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Abstract

The aim of this paper is to identify and characterize the parts of an extensive form
game that are “relevant” to determining whether the outcome of a certain strategy profile
is an equilibrium outcome. We formally define what we mean by “relevant” and refer to
the associated collection of information sets as essential. We apply this idea to a number
of classic equilibrium concepts and discuss some implications of our approach.

Introduction

Solving for the equilibria of extensive form games is typically a challenging problem, often
because of the complexity of the games at hand or the sophistication of the equilibrium concept
under study. In this paper we develop a framework that aims to make this analysis easier by
identifying parts of a game that are irrelevant when checking whether a certain outcome is an
equilibrium outcome or not. In order to do so, we introduce the notion of essentializing an
equilibrium concept which, informally, amounts to finding, for each strategy profile, the regions
of the game tree that are relevant to determining whether the profile satisfies the requirements
of the equilibrium concept

For instance, think of an equilibrium concept for extensive games, namely, subgame perfect
equilibrium, hereafter SPE. Consider the simple game G and strategy profile b in Figure[ll The
payoff (2,2) is irrelevant to determining if b is a SPE of G or not (it can never be reached after
unilateral deviations). More generally, for more complicated games, not only some payoffs, but
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Figure 1: Game G and strategy b (in gray).

also different parts of the game tree can be “irrelevant”. Thus, identifying these “irrelevant”
parts of the tree might be useful. With this motivation in mind, we devote this paper to study
the following problem:

“Given an equilibrium concept, an (extensive) game tree ', and a (behavior) strat-
egy profile b, identify W, a minimal collection of information sets of I, with the
following property:

If a game G has game tree I' and b is an equilibrium of G, then, regardless of any
changes made in the payoffs and strategies outside W, the outcome of b will be an
equilibrium outcome in the resulting game.”

We show that, given an equilibrium concept, say EC, a game tree, and a strategy profile,
there is a unique minimal collection of information sets satisfying the above property. We refer
to it as the essential collection for EC, I', and b. Then, we characterize the essential collections
that arise for Nash equilibrium, subgame perfect equilibrium, perfect equilibrium, sequential
equilibrium, and a family of equilibrium concepts that range from sequential rationality to sev-
eral versions of perfect Bayesian equilibrium. To illustrate, think again of subgame perfection
and suppose that, in the game G in Figure[Il the game does not terminate after both players
play (Uy,Us), with the payoff (2,2) replaced by a possibly very complicated subgame. In this
case, the behavior in this subgame would be important for SPE. Yet, we could ask the following
question: is the outcome that arises after (Dq, D2) an equilibrium outcome? To answer this
question, the elements of the subgame that has replaced payoff (2,2) are completely irrelevant
and, under our approach, the information sets in that subgame would not belong to W.

Note that, once an essential collection is characterized, we get that the payoffs outside
it are irrelevant in the sense described above. Indeed, an alternative (and to a large extent
equivalent) approach would have been to characterize directly the set of “irrelevant” payoffs
instead of characterizing the set of irrelevant information sets. The reason for our choice is
that it makes more explicit the fact that the collection W can be characterized given the
equilibrium concept, the game tree, and the strategy profile, i.e., the essential collection is
completely independent of the payoffs we finally attach to the game tree. We consider that
the main contribution of this paper is to provide a definition and characterization of essential
collections for a number of standard equilibrium concepts. Further, as part of our analysis we
define what we call the reduced game, which is thoroughly discussed in Section [ and, as we



argue below, turns out to be a useful tool.

First, the reduced game can simplify the characterization of equilibrium outcomes. Given
an equilibrium concept, a game, and strategy profile b, we define a reduced game such that if
the reduced version of b is an equilibrium of the reduced game, then the outcome of b is an
equilibrium outcome in the original game. Since the reduced game might be notably smaller
than the original game, the analysis might become much easier. Indeed, a similar approach has
already been used for SPE in|Osborne (1993) in a model of political competition. In Section
we use Osborne’s model to illustrate the different implications of our results.

Second, the reduced game can be used to study equilibria when the games at hand are only
partially specified. We show that, even in such situations, we can sometimes know whether
a given outcome is an equilibrium outcome of any game fulfilling the partial specifications we
have. Put differently, the reduced game allows for a better understanding of the robustness
properties of the different equilibrium concepts. We can compare how robust each equilibrium
concept is to modifications in the game such as changes in the sets of strategies, in the players
of the game, in the information available to the players, and also in the payoffs

Finally, the reduced game can be used to define variants of equilibrium concepts in set-
tings where the standard ones are not be guaranteed to exist. For each equilibrium concept
we define its virtual version by dropping the restrictions on the behavior in the “irrelevant”
parts of the game tree. Then, given an equilibrium concept, as long as the original game has
some equilibrium, the sets of equilibrium outcomes and virtual equilibrium outcomes coincide.
However, virtual equilibria can be a useful equilibrium concept, since there are games where
the set of equilibria is empty but a virtual equilibrium exists, which retains the essence of the
original equilibrium concept.

In|Garcia-Jurado and Gonzdlez-Diaz (2006), the authors use the virtual version of subgame
perfect equilibrium to get a folk theorem for a class of repeated games in which the existence
of subgame perfect equilibria is not guaranteed. Also, the equilibrium notion used in |Osborne
(1993) is very close to the virtual version of subgame perfect equilibriumﬁ A similar approach
to that of virtual equilibria has been independently taken in|Groenertl (2009), where the author
introduces the idea of trimmed equilibrium and applies it to subgame perfect equilibrium and
weak perfect Bayesian equilibrium.

The paper is structured as follows. In Section [Tl we introduce the basic notation and also
define the main concepts to be analyzed. In Section [2] we present an overview of the main
results of the paper and build upon the model in [Osborne (1993) to illustrate the importance
of the reduced game. In Sections [3] and [ we characterize the essential collections for a wide
variety of solution concepts. Section [ provides a more detailed discussion on the usefulness of
the reduced game.

2This kind of robustness checks have already been made in [Kalai (2007, 2006) for Nash equilibrium in the
so called large games.
3 Another recent paper in which virtual equilibrium concepts are used is [Kleppe et all (2010).



1 Formal definitions

1.1 Basic notation

We develop our analysis for finite extensive games with perfect recall. We follow the represen-
tation of an extensive game given in [Fudenberg and Tirole (19913)@ We denote an (extensive)
game tree by I' and it is characterized by i) a finite tree with root r(T"), ii) a finite set of players
N ={1,...,n}, iil) the sets of nodes, terminal nodes, and information sets of T, denoted by
X([), Z(T'), and U(T), respectively, and iv) the probabilities of nature choices, if any; we as-
sume that all of nature’s choices are realized with positive probability. In this representation,
nature only moves at r(I') (once and for all). As in [Fudenberg and Tirold (1991a), we think
of U(T) as a partition of X (T'), i.e., each terminal node is also an information set. We refer
to the subsets of U(T") as collections (of information sets). Also, we use U;(T') to denote the
information sets belonging to a player ¢ € N.

A game (in extensive form) is a pair G = (', h) where I is a game tree and h: Z(I') — R™ is
the payoff function, i.e., h(z) = (h1(z), ..., hn(z)), where h;(z) denotes the payoff received by
i if z is realized. We denote by G(T") the set of games with game tree I'. Given a game G (or a
game tree I'), B(I') =[]\, Bi(I') denotes the set of behavior strategy profiles. Given b € B(T),
we slightly abuse notation and use h;(b) to denote the (expected) payoff to player i when b
is played. We say that a behavior strategy b € B is completely mized if at each information
set all the choices are taken with positive probability. Let B® denote the set of all completely
mixed behavior strategy profiles. Given G € G(T'), let Mg := max;en .ezm)lhi(2)| + 1. B

Let T be a game tree. Let ¢ € N and take two strategies b and b. We say that b and b
are realization equivalent if all the nodes of I' are reached with the same probabilities under b
and b. Given b € B(T'), m(b), denotes the collection of information sets that are reached with
positive probability when b is played, i.e., w(b) can be seen as the union of all paths of play
that might be realized when b is played. Hence, we slightly abuse language and refer to 7 (b)
itself as the path of b.

The node x is a predecessor of node y, denoted by x < y, if © # y and x is in the path
from the root to y; * =< y means that either x < y or z = y. If x < y, then the path of nodes
from x to y is the sequence formed by z, y, and the nodes in between x and y. Similarly,
u € U(T) is a predecessor of v € U(T'), denoted by u < v, if u # v and there are z € u and
y € v such that < y; v =< v means that either u < v or u = vl If 2 =< vy, then the path of
information sets from x to y is the sequence formed by the information sets containing x and
y, and those containing nodes in the path from x to y. Whenever we represent a path of nodes
or information sets as a sequence {x',..., 2%} it is implicitly assumed that z! < 22 < ... < z*.
Also, given a node x and an information set u, * < v and u < z are defined in the obvious
manner.

Given a collection W, we say that W is closed (under <) if, for each v € W and each
information set u, u < v implies that v € W. The smallest closed collection containing a
collection W is denoted by (W}E Given a collection W, we say that W is terminal if, for each

4This representation is equivalent to the classic one given by [Kuhn (1953) and further developed in [Selten
(1975) and [Kreps and Wilson (1982).

5Note that it is possible to have both v < v and v < u.

6More formally, let p: U(T") — 2U(I) be the operation defined by p(v) := {u € U(T) : u < v}. A set
W C U(T) is closed under p if, for each v € W, p(v) C W. Now, (W) denotes the closure of W under the



u € W and each x € u, there is a terminal node z € W such that < z. Arbitrary unions and
intersections of closed collections lead to closed collections; also, arbitrary unions of terminal
collections lead to terminal collections.

Lemma 1. Let I" be a game tree. Let W and W be two collections in U(T') closed under <. If
W is terminal and W\W #£ 0, then W\W)N Z(T) # 0.

Proof. Let u € W\W. Since W is terminal, there is a terminal node z € W such that u < z.
Now, since W is closed under <, u ¢ W, and u < z, we have that z ¢ W. O

Given a strategy b and a collection of information sets W, by denotes the restriction of b to
W, similarly, b_y denotes the restriction of b to the information sets outside W. Take a pair of
games G = (I',h) and G = (I',h) and W C U(T'). The W -combination of G with G is defined
by Gow G = (T, hew h), where h @y h coincides with A in the terminal nodes of W and with
h in the rest. Thus, ®y is not commutative. Similarly, given b and b, b @y b := (b, b_w),
i.e., the profile that consists of playing according to b in W and to b anywhere else. For the
sake of notation, when no confusion arises, we use the abbreviated notations G®, h®, and b®
to refer to G @w G, h @w h, and b @y b, respectively.

The equilibrium concepts we explicitly discuss in this paper are sequential rationality (SR),
Nash equilibrium (NE), subgame perfect equilibrium (SPE), weak perfect Bayesian equilib-
rium (WPBE), sequential equilibrium (SE), and perfect equilibrium (PE). Also, in Section [4]
we present an analysis that carries out for a family of equilibrium concepts that range from
sequential rationality to several versions of perfect Bayesian equilibrium. Since every finite
extensive game has a perfect equilibrium in behavior strategies, existence is ensured for all
the equilibrium concepts we discuss. Interestingly, in Section [6] we discuss how our approach
can help analyze situations in which existence is not guaranteed (restriction to pure strategies,
infinite sets of strategies,...).

For all practical purposes, in this paper we use the term EC to refer to any of the equilibrium
concepts mentioned above. Yet, the framework and definitions introduced in Section .2 below
can be used for other equilibrium notions.

1.2 Essential collections

We start this section by introducing the notion of sufficient collection. Following the informal
discussion in the introduction, a sufficient collection of information sets obtains when some “ir-
relevant” information sets are removed (recall the formulation of the main question in page [2)).
Sufficient collections are the key ingredient of our framework since, roughly speaking, essential
collections are just sufficient collections in which no irrelevant information sets are left, i.e.,
minimal sufficient collections.

Definition 1. Fix an equilibrium concept EC. Let T" be a game tree and b € B(T"). A collection
W c U(T) is sufficient for EC, T, and b if it has the following properties:

i) m(b) C W, i.e., W contains the path of b.

ii) Let G, G € G(I') be such that b € EC(G) and EC(G) # (). Then, there is b € EC(Gow G)
such that b and b coincide in W.

operation p, i.e., the smallest closed subset of U(T") containing W. Then, W is closed under < if (W) =W.




The property of being a sufficient collection only depends on the equilibrium concept at
hand and the given game tree and strategy profile. That is, it does not depend on the possible
payoffs we might associate with the game tree. An important implication of the above definition
is that the combination of i) and ii) implies that b and b are realization equivalent. In words,
the idea of a sufficient collection is the following: take a collection W that is sufficient (for EC,
T, and b) and take a game G with game tree I" for which b is an equilibrium. Then, no matter
how we modify the payoffs outside W, provided that the modified game has some equilibrium,
then there will be one that is realization equivalent to b, i.e., the essence of the equilibrium
behavior in b is “robust” to changes outside W. The role of the requirement EC(G) # 0 is to
ensure that, in the W-combination of G with G, there exist some equilibrium behavior outside
W that can be combined with the restriction of b to W to get an equilibrium of G ®w G [ m
Section [B.3] we discuss how our approach can be used to analyze games in which equilibrium
existence is not guaranteed.

To illustrate, consider the game tree and strategy profile b in Figure 2] with SPE as the
equilibrium concept. Let W be the collection of information sets that remains after removing
those of the subtree that starts after U; and U, have been played. Let G be the game whose
payoffs are depicted in Figure WG| Clearly, b is a SPE of the game G and, moreover, regardless

(2,2)
('173)
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Figure 2: Games G and strategy b (in gray).

of the payoffs we put instead of those of the prisoner’s dilemma subgame to define a game G,
there will always be a SPE of the game that is realization equivalent to b. This is because W
is a sufficient collection: behavior outside W is irrelevant to answer the question “does any
equilibrium of G coincide with b in W?” If the answer is positive then, regardless of how we
change the payoffs outside W, the answer will remain positive for the new game; in particular,
the outcome of b will always be an equilibrium outcome.

The gist of being a sufficient collection is contained in property ii). Hence, one might argue
about the necessity of i). Some minimality requirement needs to be imposed on a sufficient

7Actually, in Definition [l it would have sufficed to require EC(G ®w G) # () instead of EC(G) # 0. The
reason to impose the requirement on EC(G) is to make more transparent the connection between the definitions
of sufficient and strongly sufficient collection (see Definition [Blin Section [3]).

8This game is just the extension of the game in Figure [Il where the payoff (2,2) has been replaced by a

prisoner’s dilemma game.



collection, since an empty collection always satisfies ii). Thus, the path of b is a natural
candidate since we then ensure that (byy, B_W) is realization equivalent to b, which was an
important element in the motivation section. We now present a couple of straightforward
properties of sufficient collections that are needed to place the definition of essential collection
on a firm basis.

Lemma 2. If W is sufficient for EC, I' and b, then it is also sufficient for any other b such
that by = by .

Proof. Straightforward. O

Note that a collection of information sets W that contains a sufficient collection W may not
be sufficient itself. The reason is that the condition that b and b coincide in W (Definition [I)
can be much more demanding than the corresponding condition for W. The result below
shows, on the other hand, that sufficiency is closed under intersections.

Lemma 3. The intersection of sufficient collections is a sufficient collection.

Proof. Fix an equilibrium concept EC. Let I' be a game tree and b € B(T'). Let W and W be
two sufficient collections (for EC, T', and b). Trivially, W N W contains the path of b. Then,
let G and G be two games with game tree I' such that b € EC(G) and EC(G) # 0. We want
to find b an equilibrium of the W-combination of G with G such that b and b coincide in
W NW. Since W is a sufficient collection, there is an equilibrium b of the above combination
that coincides with b in W. Let G = G ®w G. Since W is a sufficient collection, there is an
equilibrium b of the W-combination G Qw G that coincides with b in W. Now, by definition,
b coincides with b in W N W and G @y G = G @y G- O

Corollary 1. Fiz an equilibrium concept EC. Let T be a game tree and b € B(I'). Then, there
is a unique minimal collection that is sufficient for EC, I', and b. Moreover, there is a unique
minimal collection that is closed and sufficient for EC, I', and b.

Proof. Take the intersection of all the sufficient collections for EC, T', and b. Since U(I')
is always a sufficient collection and all the sufficient collections contain 7(b), non-emptiness
is guaranteed. The above intersection is contained in all the sufficient collections and its
sufficiency follows from Lemma[Bl The proof of the second statement is analogous, since U(T")
is a closed collection and the intersection of closed collections is a closed collection. O

After the above uniqueness result we are ready to present the formal definition of essential
collection.

Definition 2. Fix an equilibrium concept EC. Let I" be a game tree and b € B(I'). The
essential collection for EC, T', and b, denoted by Wgc(T,b), is defined as the unique minimal
collection that is closed under < and sufficient for EC, I", and b.

To essentialize an equilibrium concept EC is to find the map Wgc that assigns, to each
pair (T',b), the essential collection Wge (T, b).

The essential collection for an equilibrium concept, a game tree, and a behavior strategy
is the unique (closed) sufficient collection that is contained in any other (closed) sufficient
collection. Thus, the essential collection is the smallest collection such that, given any game



with that game tree, contains all the information that is relevant to know if the outcome of
the behavior strategy is an equilibrium outcome.

Some explanation is needed for the requirement that an essential collection has to be closed.
First, it is quite natural. Think, for instance, of a belief-based equilibrium concept. In this
case, the closedness under =< says that, if an information set u of player i is in the essential
collection, i.e., player ¢’s behavior at u is relevant for EC, I, and b, then what b prescribes
for information sets that precede u should also be relevant, as it might affect the beliefs and
behavior of 7 at u. Again, it might be argued that this should be a consequence of the defi-
nition and not part of the definition itself. Nonetheless, if this requirement is removed, then
some unnatural essential collections might appear. Second, the closedness requirement allows
for a more streamlined analysis and more natural constructions for the essential collections
associated with the different equilibrium concepts. Refer to Appendix [Al for further arguments
for and against this requirement.

2 Discussion of the contribution

In the previous section we formally defined what we mean by essentialize an equilibrium con-
cept. As we will see in the forthcoming sections, our definition is general enough to be applied
to all the classic equilibrium concepts. Unfortunately, the price of this generality is that the
analysis becomes quite cumbersome already for Nash equilibrium. An important part of the
paper is to formally characterize the essential collections associated with the different equilib-
rium concepts. Since this comprehensive exercise is quite arid, we present in this section an
informal overview of the main results of the paper and discuss the relevance of our contribution.
For the sake of exposition we abstract from the fact that essential collections have to be closed.
For the precise characterizations, refer to Sections 3] and @l

We divide the equilibrium concepts to characterize in two big groups: non-belief-based
equilibrium concepts (NE, SPE, and PE) and belief-based equilibrium concepts (SR, WPBE,
SE, and a whole family of intermediate equilibrium concepts).

The characterizations for the non-beliefs-based equilibrium concepts are quite intuitive and
barely bring any new insights relative to the nature of the different equilibria. Informally, this
characterizations say the following. Let I be a game tree and let b be a strategy profile, then,

Nash equilibrium: The essential collection consists of all the information sets that can be
reached after a unilateral deviation from b.

Subgame perfect equilibrium: A subgame is relevant if it can be reached through a series
of unilateral deviations from b at other subgames. An information set belongs to the
essential collection if it can be reached after a unilateral deviation from b at a relevant
subgame. That is, the essential collection for SPE can be easily constructed iteratively:
at a given step, we add those subgames that can be reached after deviations from b at
subgames reached in the previous steps.

Perfect equilibrium: Every information set belongs to the essential collection.

In particular, in a game with perfect information, since a subgame begins at every node,
the essential collection for SPE contains all the nodes of the game, i.e., it coincides with that
of PE. Yet, this is not the case for NE.



Note that, for the above characterizations, the more demanding an equilibrium concept
is, the larger its corresponding essential collections are. This result is very natural and one
could expect the same relations to hold for belief-based equilibrium concepts. Remarkably, not
only these relations do not hold, but the opposite ones do, i.e., the more demanding a belief-
based equilibrium concept is, the smaller the corresponding essential collections are. More
speciﬁcallyE

Sequential rationality: Every information set belongs to the essential collection.

Weak perfect Bayesian equilibrium: An information set u belongs to the essential collec-
tion if there is an assessment (b, ) such that i) p is calculated using Bayes rule in the
path of b and ii) according to u, a node in w is reached with positive probability with a
series of unilateral deviations from b.

Sequential equilibrium: An information set u belongs to the essential collection if there is
an assessment (b, u) such that i) p is consistent with b and ii) according to p, a node in
u is reached with positive probability with a series of unilateral deviations from b.

Moreover, our approach characterizes the essential collections associated with a family of
belief-based equilibrium concepts in an analogous manner. The reader can already note the
similarities between the characterization of the essential collection for WPBE and that of SE
above; when applied to SR this approach would say that an information set u belongs to the
essential collection if there is an assessment (b, 1) such that, i) u is any system of beliefs and ii)
according to u, a node in u is reached with positive probability with a sequence of unilateral
deviations from b; and, clearly, with no restrictions on the beliefs, every node can always be
reached after a series of unilateral deviations.

As written, the above characterizations for belief-based equilibrium concepts may also seem
quite natural, but they imply that the more restrictive equilibrium concepts have smaller
essential collections. For instance, for every game tree and every strategy profile, the essential
information sets for SE are a subset of those for WPBE or, equivalently, if an information set is
irrelevant for WPBE, then it is irrelevant for SE as well; we show in the example below that the
converse is not true in general. As a rough intuition for the latter implications, note that, when
dealing with the belief-based equilibrium concepts above, the only difference in their definitions
lies in the set of beliefs that can be considered; the less restrictive equilibrium concepts allow
for more beliefs and hence, more parts of the game tree can be reached after (sequences of)
unilateral deviations, which ultimately implies that the essential collections become larger for
the less restrictive equilibrium concepts.

We present now an example to illustrate some useful implications of our analysis.

2.1 A candidate positioning game (Osborne, 1993)

In this example we discuss our contribution within the temporal model of political competition
of lOsborne (1993, Section 4); also, throughout the exposition we will relate the arguments used
there with our approach. The relevant equilibrium concept will be SPE. The reader interested
in a similar discussion on the implications our results for belief-based equilibrium concepts

9Refer to Section M for the definition of assessment and of the different belief-based equilibrium concepts.



is referred to Appendix [C] where we present another example with a deeper discussion that
focuses on WPBE and SE.

For the sake of exposition, we present a slightly modified version of the original model, also
omitting some elements that are not needed to illustrate our approach. The game has three
players, which represent the three potential candidates in an election. There is a continuum of
voters, each of whom has a most preferred or ideal policy. Voter’s ideal policies are given by the
continuous distribution function F', whose support is the [0, 1] interval. Voters vote sincerely,
i.e., each voter endorses the candidate whose position is closest to his ideal; if indifferent, he
decides randomly. Candidates just want to win the election by plurality rule (get more votes
than any other candidate). At each period ¢ € {1,...,T} (T > 2), candidates simultaneously
decide whether to enter the competition or to wait. Candidate 7 enters the competition by
announcing a policy p; in the interval [0,1]. Policies are decided once and for all. Hence, at
each period, a player who has already announced a policy cannot take any further action and,
otherwise, he can either announce a policy, i.e., a number in [0, 1], or decide to wait, which is
denoted by w. Candidates can only use pure strategies A player who plays w in every period
is just a player who decides to stay out of the election. Once period T is over, the election is
held and the candidate with more votes wins. Let I'(3) denote this 3-player game.

As Osborne argues, “in I'(3), as in other sequential games in which some choices are made
simultaneously, the spirit of subgame perfect equilibrium is captured by a notion that requires
only a partial specification of the player’s strategies” and the idea behind this observation is
very close to our notion of essential collection. Suppose that we want to study a strategy
profile in which players 1 and 2 enter in period 1 with policies p; and ps, respectively, whereas
player 3 chooses w in every period. Let b be a strategy profile in which the on-path behavior
is the one we have just described.

Again, following |Osbornd (1993): to fully describe b, for player 1 we must “specify an action
in period 2 for every first-period profile of actions (w, $2,s3), where s2 and s3 are members
of [0,1] U {w}. However, there is just one relevant subgame in which Player 1 has to take an
action: the one that follows the first-period action profile (w, pa, w)”.

Essential collections for SPE. Now, let Wgpg be the essential collection for SPE, T,
and b. Then, following the informal characterization above, it is easy to see that the only
information set of the form (w, s2, s3) that would belong to Wgpg would indeed be (w, p2, w),
since all the others involve a multilateral deviation at period 1. That is, an important advantage
of our approach is that it helps to study if different outcomes of the game are equilibrium
outcomes or not, since there is no need to check the incentives in many of the subgames of the
game.

The reduced game. In Section Bl given a game G, we associate a reduced game Gy
with each (closed) collection of information sets W; the basic idea is to remove from G all the
information sets that are not in W in such a way that what is left still forms a game. For
instance, when studying the strategy profile b, none of the subgames starting at information
sets of the form (w, s2, s3) would be the root of a subgame in the reduced game (except for
(w, p2,w)). Now, (by Proposition [@]) if the restriction of b to the reduced game is a SPE of the
reduced game, then b is a SPE of I'(3) (provided that I'(3) indeed has at least one SPE).

Structural robustness. One direction in which the reduced game may be useful is in

100sborne argues that, in this setting, “the problem of finding equilibria in mixed strategies seems intractable”
and, moreover, “voters may have an aversion to candidates who choose their positions randomly...”.
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the study of the structural robustness of the different equilibrium concepts. Suppose that we
already knew that b € SPE(I'(3)) but, how robust would this equilibrium be to structural
changes in the game? Suppose that, in order to encourage early positioning of candidates, the
following rule is imposed. If no candidate has entered the competition after period 2, then the
election is suspended. Would b still be an equilibrium of the new game? Since no subgame at
which the election is suspended belongs to the reduced game associated with b (they cannot
be reached after unilateral deviations from b, where two candidates enter already in period 1),
the above change in the rules of the game would have no impact for the profile b. That is,
whether b is an equilibrium outcome or not is independent (robust) from those changes in the
rules of I'(3) that only affect information sets outside the reduced game associated with b.

Partial-specifications of the game. This issue is closely related to the one above. The
idea is that essential collections may help to give some information about the equilibrium
outcomes of games that are not completely specified. Suppose that, in I'(3), we have no idea
about how the game unfolds if no player has entered the competition after period T. Even
in this case we know (by Corollary [ that, no matter how the game is defined from that
point onwards, the outcome of b is going to be a SPE outcome. Hence, essential collections
help identify what misspecifications in the game are irrelevant for different strategies and
equilibrium concepts.

Virtual equilibrium concepts. Suppose that there are some subgames of game I'(3) for
which we do not even know whether a Nash equilibrium exists or not. Then, it might be that
the game T'(3) has no SPE. This motivates the definition of virtual equilibrium concepts. We
say that a strategy profile b is a virtual SPE if it is a SPE of the reduced game associated with
its essential collection (for SPE and the game tree at hand); and the virtual version of any
other equilibrium concept is defined analogously. Hence, for the strategy b to be a virtual SPE
we need that all the subgames of the corresponding reduced game have a Nash equilibrium,
but we do not care about this for subgames outside the essential collection associated with b.
Given a virtual equilibrium, we can always replace the non-equilibrium behavior outside the
essential collection by equilibrium behavior (if it exists) to get an equilibrium in the classic
sense. Then, (by Proposition [ if the set of SPE of the original game is nonempty, the set of
SPE outcomes and virtual SPE outcomes coincide (which justifies the name virtual).

Actually, the equilibrium notion introduced in |Osborne (1993) is extremely close to the
virtual version of SPE. Indeed, Osborne wrote “the advantage of working with this notion of
equilibrium in the game T'(3) is that it is not necessary ... to worry about the existence of an
equilibrium, in ‘irrelevant subgames’ ” and “the relation between an equilibrium in this sense
and a subgame perfect equilibrium is close: a subgame perfect equilibrium is an equilibrium
and if every subgame has a subgame perfect equilibrium then an equilibrium is associated with
at least one subgame perfect equilibrium”, which is analogous to what we said above for virtual
equilibrium concepts: every EC is a VEC and, if an EC exists, for each VEC we can find an
EC with the same outcome.

3 Essentializing non-belief-based equilibrium concepts
We devote this section to the essentialization of the classic equilibrium concepts: Nash equi-

librium, subgame perfect equilibrium, and perfect equilibrium. As we have already said, these
characterizations barely bring new insights concerning these equilibrium concepts. Yet, there
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are some important reasons for also undergoing these characterizations. First, to some extent,
the fact that we get intuitive results for these equilibrium concepts reassures the adequacy of
our definitions. Second, to get the reader familiar with our approach and with the techniques
of the proofs; all the characterizations in the paper share common ideas, but the proofs become
more involved as we move on. Last but not least, we do it for the sake of completeness.

We now introduce a stronger version of sufficiency that will be quite convenient to prove
the characterization results below.

Definition 3. Fix an equilibrium concept EC. Let I be a game tree and b € B(I"). A collection
W c U(T) is strongly sufficient for EC, T', and b if it has the following properties:

i) w(b) C W, i.e., W contains the path of b.

ii) Let b € B(T') and G, G € G(T') be such that b € EC(G) and b € EC(G). Then, b@w b €
EC(G ow G).

Thus, for a sufficient collection to be strongly sufficient, not only there has to be an equi-
librium of the W-combination of game G with G that coincides with b on W, but also the
W-combination of b with any equilibrium of G has to be an equilibrium of the W-combination
of the two games.

3.1 Nash equilibrium

Let T be a game tree and b € B(T'). Then, let Wi be defined as the closure under < of the
collection of information sets that can be reached after at most one unilateral deviation from
b, i.e., Whp := ({u € U(T') : there are i € N and b} € B;(T") such that u € 7(b_;,b})}). Note
that 7(b) C Wiy (just take b} = b;) and W is a terminal collection. Figure [3]illustrates the
previous definition. Not surprisingly, the collection WSy, suffices to essentialize NE.

I,b=(D,d) WxE(b)
,
s L
° :
g N
®
[ J

Figure 3: The collection WSy.

Proposition 1. W is the essential collection for NE, T', and b.

Proof. First, we show that WYy is strongly sufficient for NE, T, and b. By definition, W5y
contains the path of b. Let b € B(T') and G = (I',h) and G = (I, h) be such that b € NE(G)
and b € NE(G). Suppose that the W-combination of b with b is not an equilibrium of the
W-combination of G with G, i.e., b¥ ¢ NE(G®). Then, there is a player i who has a profitable
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deviation from b®, namely b;. Since W contains the path of b, h? (b®) = h;(b). By definition,
also the path of (b® b.) is contained in Wl. Hence, h¥ (b2, b’) = hi(b%,,b}). Moreover, since

—17 7% —30 71 —30 71

(b,z,b;) and (b%,,b}) coincide in Wiy, they also have the same path. Hence, h;(b_;,b;) =

—19 71
hi(b%,,b}) > h;(b®) = h;(b). Contradicting the fact that b € NE(G).

Second, we show that WS is a minimal closed and sufficient collection and thus, essential.
By definition, W), is closed. Let W be a sufficient and closed collection for NE, T, and b that
does not contain Wgg. By Lemma [} since W) is terminal, there is z € (WEg\W) N Z(T).
Let i € N and b, € B(T') be such that z is in the path of (b_;,b;). Consider the path of
information sets from the root to z, {ul,...,u*}, i.e., u' = r(T) and u* = z. Since Wiy is
closed, {ul,. Juk} € Wig. Since W is also closed, u! € W and u¥ ¢ W, there is a unique
k such that u”* . € W and u* ¢ W. Let G = (T',h) be such that, for each i € N and each
terminal node z, h;(z) = 0. Let G = (T, h) be such that, for each i € N and each terminal
node z, if u* < 2, h;(2) := 1 and h;(z) := 0 otherwise. Note that, since W is closed, h;(z) = 1
implies that z ¢ W. Note that b € NE(G) and G ®w G = G. Since W contains the path of b,
in game G, all the payoffs in the path of b are 0. Take now be B(T") such that it coincides with
bin W. Then, for each ¢ € N, hz(lA)) = (0. By construction, there is a terminal node z such that
uF < z and z is in the path of (b_;, b;). Hence, hi(b_;, b;) > 0 = h;(b), and so b ¢ NE(Gow G),
contradicting the sufficiency of W. O

3.2 Subgame perfect equilibrium

Given u € U(T), let W, :={v € U(T") : u X v}. A node z € X(I') is elemental if either it
is a terminal node or, for each game (I', h), a subgame begins at 1. Consider the following
definition of (nested) subsets of U(T") (indeed, of elemental nodes).

Step 0: X°(b) coincides with the root of T'.

Step t: An elemental node = belongs to X*(b) if there are i € N, b; € B;(T), and y € X*~1(b)
such that x is reached by playing according to (b_;,b;) at y.

Then, let Xspr(b) = lim;_o X*(b). Roughly speaking, Xspr(b) consists of the elemental
nodes that can be reached with a series of unilateral deviations from b. Since the game tree is
finite, Xspg(b) is well defined. Let Wpg = (Xspr @), the smallest closed collection containing
Xspr(b). Note that Wé’PE is a terminal collection

Proposition 2. WSbPE is the essential collection for SPE, ', and b.

Proof. First, we show that WSbPE is strongly sufficient for SPE, I', and b. Clearly, WSPE
contains the path of b. Let b € B(T') and G = (T, h) and G = (T, h) be such that b € SPE(G)
and b € SPE(G). We now show that the W—combmatlon of b Wlth b is an equilibrium of the
W-combination of G with G. Let z € X(T') be an elemental node. If x ¢ Wpp then, since
Wb is closed, it does not contain information sets that come after the information set that
contains z; hence, since b € SPE(G), b% induces a Nash equilibrium in the subgame of G®
that begins at . If € Wpg, by definition of W, no elemental node outside Wy can

"' The notion of subgame we use is the standard one introduced in [Selten (1975).
12Note that (X!(b)) = Wi
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be reached with unilateral deviations from b at nodes in Wp. Hence, since b € SPE(G), b®
induces a Nash equilibrium in the subgame of G® that begins at x. Hence, b® € SPE(G®).
Second, we show that Wé’PE is a minimal closed and sufficient collection and thus, essential.
By definition, Wlp, is closed. Let W be a closed and sufficient collection for SPE, I' and b that
does not contain Wp. By Lemma [l since Wy, is terminal, there is z € (Wpp\W) N Z(T).
Consider the elemental nodes in the path from the root to z, namely {z!,...,2¥}, where
! = r(T) and 2% = z. Since Wiy is closed, {z!,...,2F} C Wp. Since W is also closed,
there is a unique k > 1 such that z*~' € W and 2* ¢ W. Since W is sufficient, it contains the
path of b, z* does not belong to the path. Then, there are i € N, b, € B;(I') and y € Xspg(b)
such that z* is not reached by b but is reached when playing according to (b_;,b}) at y. Let
G = (', h) be such that, for each i € N and each terminal node z, h;(2) = 0. Let G = (T, h)
be such that, for each i € N and each terminal node z, if #¥ < z, h;(2) := 1 and h;(z) := 0
otherwise. Note that, since W is closed, h;(z) = 1 implies that z ¢ W. Note that b € SPE(G)
and G @w G = G. Take now b € B(T') such that it coincides with b in W. Then, for each
i € N, hl(l;) = 0. By construction, there is a terminal node z such that 2* < z that is
reached when playing according to (IA)_i,b;) at y. Hence, in the subgame of G that begins
at y, payoff 1 is obtained with positive probability instead of getting O for sure. Therefore,
b ¢ SPE(G) = SPE(G @w G), contradicting the sufficiency of W. O

3.3 Perfect equilibrium

Given a game tree I' and a strategy profile b € B(I'), the unique sufficient collection for PE,
T, and b is U(T"). Therefore, U(T") is the essential collection for PE, regardless of the strategy
profile b.

Proposition 3. U(T") is the essential collection for PE, T, and b.

Proof. By definition, U(T") is always closed and sufficient. Hence, it suffices to show that U(T")
is a minimal closed and sufficient collection and thus, essential. Let W be a closed and sufficient
collection for PE, I' and b strictly contained in U(T'). By Lemma [Il since U(I") is terminal,
there is z € (U(T')\W) N Z(T") and, in particular, Z is not in the path of b. Let G = (I", h) be
such that, for each i € N and each terminal node z, h;(z) = 0. Let G = (', h) be such that,
for each i € N, h;(2) := 1 and h;(z) := 0 otherwise. Note that b € PE(G) and G @w G = G.
In a perfect equilibrium of G, Z has to be reached with positive probability. Hence, if be B(T)
coincides with b in W, since z does not belong to the path of b, then b ¢ PE(G) = PE(GowQ),
contradicting the sufficiency of W. O

For the discussed equilibrium concepts, the essential collections exhibit a feature that, a
priori, seems quite natural. Namely, for each game tree I' and each b € B(T"), Wxg([',b) C
Wepr(T,b) C Wpg(T',b). Therefore, we might think that, in general, if two equilibrium con-
cepts EC' and EC? are such that, for each game G, EC*(G) C EC?(G), then, for each game
tree I" and each b € B(T'), Wgc2(T',b) C Wget (T, b). The results in the next section show that
the latter claim is not true.
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4 Essentializing belief-based equilibrium concepts

4.1 Belief-based equilibrium concepts. A first Approach

In this section we turn to some of the main concepts that have been studied for extensive games
with imperfect information. Remarkably, our main result, Theorem [I] applies to a wide family
of belief-based equilibrium concepts.

Following Kreps and Wilson (1982), given a game tree I', a system of beliefs over X (I')\Z(T")
is a function p : X(I')\Z(T') — [0,1] such that, for each u € U(T'), > ., pu(x) = 1. An
assessment is a pair (b, u), where b is a behavior strategy profile and u is a system of beliefs.
Let M(T") denote the set of all beliefs that can be defined for I'. Given W C U(T') and
w, i € M(T), let p @w i := (uw, i—w); when no confusion arises, we use u®. We use ht, (b)
to denote i’s expected utility conditional on information set v having been reached, that the
probability of being at each node x € u is given by p and that b is to be played thereafter.

Let " be a game tree, (b, ) an assessment and b, € B;. Let u € U;. We say that b} is a
best reply of player i against (b, 1) at u if hj, (b—;, b;) = maxyrep, by, (b—i,b]). An assessment
(b, i) is sequentially rational if, for each i € N and each u € U;, b; is a best reply of player i
against (b, u) at u. We adopt a standard abuse of language and, given an equilibrium concept
EC defined for assessments, we write b € EC(G) to mean that there is p € M(T") such that
(b,11) € EC(G).

Let G = (T, h) be an extensive game and (b, ;1) an assessment. Below we present a definition
of (nested) subsets of U(T') that parallels the definition of Wl but using the beliefs z; that
is, it considers the information sets that are reached, with positive probability, given the beliefs
1, after sequences of unilateral deviations from b.

Step 0: U := (x(b)), i.e., U° is the smallest closed collection containing the path of b

Step ¢t > 1: An information set v € U(T") belongs to V* if there are i € N, b; € B;(T'), and an
information set u € U~ N U;(T) such that v is reached with positive probability when

playing according to (b_;, ;) at u and the probabilities of the nodes in u are given by u.
Let Ut := (V).

Let W* := limy_, o U?. Since the game tree is finite, Wb is well defined. Note that Wo*
is a terminal collection. Figure d provides an example of the previous definition.

4.1.1 Weak perfect Bayesian equilibrium

Let G = (I', h) be an extensive game. An assessment (b, ut) is weakly consistent with Bayes rule
if p is derived using Bayesian updating in the path of b. A weak perfect Bayesian equilibrium
is an assessment that is sequentially rational and weakly consistent with Bayes rule.

Let T’ be a game tree and let (b, ) be an assessment that is weakly consistent with Bayes
rule. We show below that, although W% is a natural candidate to be a sufficient collection
for WPBE, I, and b, something else is needed. Consider the game G in Figuredl Consider the
assessments (b, u) and (b, i) where p and @ are such that p(x) = 1, p(y) = 0, (z) = 0, and
fi(y) = 1. Since the information set of player 2 is off-path, all the beliefs in this game are weakly
consistent with Bayes rule. Note that (b, u) ¢ WPBE(G) whereas (b, i) € WPBE(G). Yet, to

13For the sake of exposition, we do not make explicit the fact that the sets U? and V* depend on b and pu.
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Figure 4: The collection W%* is not sufficient.

know that b € WPBE(G), it does not suffice to look at the payoffs in W#. More formally, we
now show that W is not sufficient for WPBE, T, and b. In this example, W>* = U(I")\{23}.
Recall that b € WPBE(G). Let G be identical to G except for the fact that h(z3) = (0,2).
Then, b = ((U,d),U) € WPBE(G). Now, b Qs b = b ¢ WPBE(G Q. G), since, in
G @ G, the choice D for player 2 is strictly dominated and hence, no beliefs make that
choice sequentially rational. Similarly, by adequately rearranging the payoffs in the game G,
it can be shown that W%# is not sufficient for WPBE, T, and b.

Despite of the discussion above, the collections W%* are the key to essentialize WPBE.
Let M¥°(b) := {u € M(T) : (b,u) is weakly consistent with Bayes rule}. Now, define the
collection Wppg == U € Mwe (b) W, Since the union of closed and terminal collections is a

closed and terminal collection, W% ppp is closed and terminal.
Proposition 4. Wippg is the essential for WPBE, T', and b.

Proof. This result is a particular case of the general result in Section (Theorem [I)). |

4.2 Belief-based equilibrium concepts. A general result

We now develop a general approach that allows to tackle several belief-based equilibrium con-
cepts at once. Unfortunately, sequential equilibrium needs a separate treatment.

Let F be the set of all correspondences that select, for each game tree I and each b € B(T),
a subset of M(T') (the set of all beliefs that can be defined for I') [

Let T be a game tree, b € B(T'), and G € G(T'). Let f € F. We say that b is sequentially
rational under f in game G, denoted by b € SRf(G), if there is p € f(I',b) such that the
assessment (b, i) is sequentially rational. The above definition can be used to account for most
belief-based solution concepts:

e Sequential rationality: fS®(T",b) := M(T).
e WPBE: fWPBE(T b) := {u € M(T) : p is derived by Bayes rule in mw(b)} = M¥<(b).
e SE: fSE(I',b) := {u € M(T') : p is consistent with b}.

MMore formally, let A denote the set of all pairs (T',b), where I' is a game tree and b € B(I'). Then,
F := {functions from A to 2M@)},
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e Moreover, also the different versions of perfect Bayesian equilibrium that have been dis-
cussed in the literature can be defined as sequentially rational under some f € F.

Given f € F, a game tree I'; and b € B(T'), define the collection W}Z = Uuef(p,b)Wb*‘. Note
that, in particular, W;ZWPBE = W\};’VPBE. Since the union of closed and terminal collections is a
closed and terminal collection, all the W}’ collections are closed and terminal.

Lemma 4. Let f, f’ € F be such that, for each T' and each b € B(T"), f(T',b) C f'(T',b). Then,
for each game G, SR (G) SRf/(G).

Proof. Straightforward. O
The next auxiliary lemma plays an important role in the proofs of the results in this section.

Lemma 5. Let f € F. Let T be a game tree and b € B(T"). Let W C U(T) be a closed
collection containing m(b) such that W}Z\W # 0. Then, there are i € N, u € W NU;(T),

RS W}’\W, i€ f(T,b), zq € 4, x5 € U, and b; € B;(T") such that

i) v < x5 and x5 (and hence, V) is reached with positive probability under [i when playing

according to (b_;,b;) at 4.

i) Let {z' = z4,...,2' = 23} be the path from xg to xz. For each | < I, the information
set containing x' belongs to W.

Proof. By Lemma [I] there is z € (WJZZ\W) N Z(). Let i € f(T',b) be such that z € WH#,
Recall the (iterative) definition of W%#. Since U is the closure of the path of b, which
is contained in the closed collection W, then U° C W. Hence, there is ¢ > 1 such that
z € UNUL. Let u' := 2. We now proceed backwards to identify the information sets
used to reach u!. Since u' € UN\U'"1, there is v* € VH\U'"! such that u* < v* (indeed,
since u’ coincides with the terminal node z, in this first step v* = u!). Since v' € VI\U!™,
there are it € N, b, € By(T), and u!~! € (U= \U~2)NU;: (T')/H such that o' is reached with
positive probability by playing according to (b_;¢, bl.) at ut~1. Hence, we can define a sequence
{u0 vt ul, . vt ut), where u¥ € U, Hence, u® € W and, since u! ¢ W, W is closed, and
u' < v, we have that v* ¢ W; similarly, for each ¢’ € {0,...,t}, if ut' ¢ W, then ytl ¢ w.
Let ¢ := minyeqo, . {t : w1 € W and v* ¢ W}. Define i := if, G := u'~!, and b; := b
Let # € v be such that Z is reached with positive probability under ji when playing according
to (b_,b;) at @. Let xg be the node in @ such that zgz < Z. Let {a = w® w!,... ,wF = v}
be the path of information sets from 2z to . All the information sets in {w®, w?, ..., wk}
are reached with positive probability under i when playing according to (b_;, l~)1) at . Since
w® € W, wk ¢ W, and W is closed, there is a unique k such that w*~! € W and w* ¢ W.
Now, define ¥ := w* and let z3 be the node in the path from z; to Z that belongs to ©. So
defined, it is clear that @ € WNU;, & € W># and hence, 9 € WJZZ\W; i) and ii) follow from the

construction. O

For our general result we need to restrict to a subset of 7. Let f € F. We say [ is regular
if, given b,b € B(T"), the following properties hold

BIft =1, then U2 =U"1! := 0.

17



i) for each p € f(I',b) and each i € f(T',b), p Bwe o< f(T,b Bwe b) and, conversely,
ii) for each @ € f(I',b R b), there is u € f(T,b) such that fi and g coincide in w3y

In words, the beliefs inside W}’ do not impose any restriction on the beliefs outside W}’

and vice versa. According to the above definition, fSP fails to be regular (see Example [ in
Section ) and hence, sequential equilibrium needs to be studied on its own[ld Nonethe-
less, sequential rationality, WPBE, and many natural refinements of the latter can be defined
through regular functions[]

Lemma 6. Let f € F be regular. If b and b coincide in W}’, then W}’ = Wjé.

Proof. Note that the W}’—combination of b with b coincides with the latter. We prove first that
W}’ - W}’. Suppose, on the contrary, that there is u € W}’\W}’. Take i € N, u € W}’ NnU;,
Ve W}’\Wb, fi € f(T,b), and b; € B;(T') as in Lemmal Since f is regular, there is i € f(I',b)
that coincides with f in W}’. Since b and b coincide in W}’, the restrictions bW}) and bW})
also coincide. Further, since W}Z is closed, for each w € U(T) such that w < @, b, = b,, and
hence, v is reached with positive probability under i when playing according to (b_i, l~>1) at u.
Therefore, v € WJZZ and we have a contradiction. Hence, WJZZ C WJZZ .

We now prove that W}’ C WJZZ . Suppose, on the contrary, that there is u € W}’ \W}’ . Take
nowi € N, 4 € W}’ NnU;, v € W}Z\W}Z, fi € f(T,b), and b; € B;(T) as in L_emma Since f is
regular, there is p € f(T',b) that coincides with f in W}’. If we had bW? = bW;: we could follow
as above. Yet, we just know that bW}Z = EW;. From ii) in Lemma [l all the information sets
in the path from z3 to x5 belong to W}’. Hence, by i) in Lemma [ if b and b coincide in W}’,
¥ is reached with positive probability under p when playing according to (b_;, 51) at u and we
can derive the same contradiction as before. o

Theorem 1. Let f € F be reqular. Then, W}’ is the essential collection for SRY, T', and b.

Proof. First, we show that W}’ is a strongly sufficient collection for SR/, I, and b. By definition,
WJZZ contains the path of b. Let b € B(I') and G = (', h) and G be such that b € SR’ (@) and
b SR/ (G). We claim that the W}’—combination of the assessments is an equilibrium of the W}’—
combination of the games, i.e., (b%, u®) € SRY(G®). Since f is regular, (b®, u®) € f(T,b%).
We now show that it is sequentially rational. Let u € U(T'). First, suppose that u ¢ W}’ . Since
W7} is closed, for each terminal node z such that u < z, z ¢ W} and hence, h®(z) = h(z).
Therefore, since b € SRf(G), b® is sequentially rational at u in G®. So suppose u € W}’. By
definition of W}’ , as far as beliefs in f(W,b) are considered, no terminal node outside WJZZ is
reached with positive probability after unilateral deviations from b at information sets in W}’;

16 Moreover, also the version of perfect Bayesian equilibrium defined in [Fudenberg and Tirold (1991H) for
multistage games with observed actions fails to be regular.

7For instance, [Kreps and Wilsorl (1982) defined an equilibrium concept called extended subgame perfect
equilibrium, a refinement of WPBE that imposes the use of Bayes rule off the equilibrium path (and hence,
refines SPE as well). This equilibrium concept can be defined using regular functions.
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besides, by LemmalG] W}’ = W}’® and hence, those terminal nodes are not reached either when
the beliefs in the information sets in W}Z are taken from f(W,b®). Hence, since b € SR/ (@),

b® is sequentially rational at u in G®. Hence, b® € SR (G®).

Second, we show that W}’ is a minimal closed and sufficient collection and thus, essential.
By definition, W}’ is closed. Let W be a closed and sufficient collection for SR , ', and b
that does not contain WJZZ. By Lemma [Tl since WJZZ is terminal, there is z € (W}’\W) N Z(T).
Let u € f(T',b) be such that z € Wb#, Takei € N, u € WNU;, 9 € WJZZ\W, o€ f(T,b),
b; € B; (I, 5, and x5 as in Lemma [l Since z3 is reached with positive probability under
when playing according to (b_;, 131) at 4, fi(zq) > 0/ Let ¢ denote the choice at z7 that is in
the path to z;. We distinguish two cases:

Case 1: b;(¢) = 0, i.e., according to b, choice ¢ is never made. Then, ¥ is not reached
with positive probability under & when playing according to b at @. Let G = (T, h) be such
that i) (b, i) € SRY(G) and ii) given a choice ¢ # ¢ at 4, conditional on @ being reached, c is
strictly dominated by ¢ in all nodes of @ but x5. Since fi(xg) > 0, i) and ii) are compatible. Let
G = (I, h) be such that, for each j € N and each terminal node z, if 73 < 2, h;(2) := Mg and
hi(z) = hj(2) 0therw1se. Since © ¢ W and W is closed, for each termlnal node z such that
17 < z,2¢ W. Now, b € SR/(G) and SR/(G) # 0 (just take any strategy profile with payoff

M¢g). We claim that if b € B(T') coincides with b in W, then b ¢ SR (G ®" G). Note that the
W-combination of G' and G coincides with G. By construction, in game G, conditional on @
being reached, ¢ is strlctly dominant at @ (playing bi (@) at zz leads to a payoff of M¢). Since
@ e W, bi(¢) =0 and by = by, b is not sequentially rational at @.

Case 2: b;(¢) > 0. Now ¥ is reached with positive probability under fi when playing
according to b at @. Let G = (I, h) be such that i) (b, ) € SRY(G) and ii) there is a choice
¢ # ¢ at u such that, conditional on @ being reached, c that strictly dominates ¢ in all nodes
of @ but z5. Let G = (F h) be such that, for each j € N and each terminal node z, if z5 < z,
h;(z) := —(Mg) and h;(z) := h;(z) otherwise. The rest is very similar to Case 1. O

Corollary 2. U(T) is the essential collection for SR, T, and b.
Proof. Tmmediate from Theorem [ and the fact that fS%(T,b) = M(T). O

Corollary 3. Let f,f' € F be reqular. Let T' and b € B(T') be such that f(I',b) C f'(T,b).
Then, WSRf (F, b) C WSRf' (F, b)

Recall the claim we made at the end of Section “If two equilibrium concepts EC' and
EC? are such that, for each game G, EC'(G) C EC?(G), then, for each game tree I and each
be B(I'), Wgcz(T',b) C Wit (I',b)”. The above corollary implies that the claim is false (just
think of SR and WPBE). Furthermore, when combined with Lemma [, it also implies that, for
belief-based equilibrium concepts, the opposite inclusion holds with a wide generality.

18The arguments that begin now go through regardless of whether % and ¥ a singletons and regardless of
whether ¥ is a terminal node or not.
YRecall that Mg := max;e N, e z(T)lhi(2)] + 1.
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4.3 Decomposition of a game with respect to a collection

We now introduce a construction that is important to characterize the essential collections for
sequential equilibrium in Section [£4] and also for the analysis in Section

Let T’ be a game tree and let G = (I',h). Let W C U(T") be a closed collection. We
decompose G in a reduced game, Gy, and its complement; one containing the information sets
in W and the other with those in U(I')\W. Figure [l illustrates the construction. Let X (W)
denote the nodes of W and let X (—W) := X(I')\X(W). Let A(W) be the set containing the
nodes in X (—W) with no predecessors in X (—W).

We define the reduced game Gw = (T'w, hw ), illustrated in Figure We refer to I'yy as
the reduced tree associated with I' and W. Basically, the game tree 'y is the restriction of T’
to X (W). Nonetheless some artificial terminal nodes need to be added to ensure that we have
a well defined game tree2] Formally, X (Ty) := X(W)UA(W), U(Tw) := (UT)NW)UA(W)
and Z(Tw) := (Z(T) N W) U A(W). All the other elements of I'yy are defined by restricting
I' to X(T'w) in the natural way. Let M € R be some constant; M is fixed throughout the
paper. Typically, we think of M = Mg, but the choice of the payoff for terminal nodes outside
W is irrelevant for our analysis2]. Now, for each terminal node z of T'w), hw(z) = h(z) if
ze€ W and hw(z) = (M,..., M) if = ¢ W. We discuss the importance of the reduced game in
Section

Take a completely mixed strategy b € B°(T"). For each x € A(W), let p(z,b) denote the
probability that x is reached given b and conditional on X (—W) being reached. Now, we use
b and the nodes in X (—W) to define game G(—W,b) = (I'_wp, h—wp); see Figure The
game tree I'_yyp is defined as follows. The root of I'_yyp is a node r—_w ¢ X(I'). X(T_wp) :=
X(=W)Ur_w. For each x € A(W), there is an arc from r_y to x and the corresponding
choice has probability p(x,b). The rest of the elements are defined by restricting I" to X (T'_w)
in the natural way; in particular, Z(T'_w;) = X(—=W) N Z(T') and, for each z € Z(T_w),
h_wu(z) = h(z). Note that, given two completely mixed strategies b, b € BO(I"), G(—W,b) and
G(—W,b) only differ in the probabilities of nature move at the root. The games G(W,b) are
crucial to prove Proposition [G] below.

4.4 Sequential equilibrium

Let T be an extensive game. An assessment (b, u) is consistent if there is some sequence
of completely mixed strategies {b, }nen C B, such that (b, ) = lim,,_ o0 (bp, u°*), where pb»
denotes the unique beliefs that are consistent with Bayes rule given b,,. A sequential equilibrium
is an assessment that is sequentially rational and consistent.

Let M5(b) := {u € M(T) : (b,p) is consistent}. Now, define the game tree Wy =
W;)SE - UMGMC‘"”(Z’) W,

The fact that the W combination of consistent assessments needs not be a consistent
assessment implies that the function fSP is not regular and hence, Theorem [l can not be

20Consider the game in Figure[5l Suppose that we try to define a game tree by restricting T' to the nodes in
X (W) without adding any extra node. Then, in the information set of player 2 that contains three nodes, the
number of choices available to player 2 would not be the same for the different nodes.

21Indeed, it is not even needed that the payoffs are equal across players or across terminal nodes (outside
W), but it facilitates the exposition.
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(a) The game G. (b) A closed collection W C U(T).
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(¢) The reduced game Gy . (d) The (quasi) game G(—W,-).

Figure 5: Decomposition of a game with respect to a closed collection
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applied to SE. In Example [ below we illustrate why that fS® is not regular and furthermore,
that WSZ’E needs not be a strongly sufficient collection for sequential equilibrium.

Proposition 5. WSZ’E is the essential collection for SE, I', and b.

Proof. First, we show that WSZ’E is a sufficient collection for SE, I', and b. By definition, WSZ’E
contains the path of b. Let G = (I',h) and G = (I, h) be to games be such that b € SE(G). We
want to show that there is b € SE(G®) that coincides with b in W& Since b € SE(G), there
is p € M such that (b, u) is sequentially rational. Hence, there is a sequence {b, }nen of
completely mixed strategies converging to b such that the associated consistent beliefs, namely
{ptn }nen, converge to p.

We now use the games defined in Section Consider the games {G(—W&g, bn)}nen.
Let n € N and let u be an information set of G(—W&g,b,,) formed by nodes in A(W&;). By
definition, the beliefs induced by nature move at T_we, in u coincide with p,. For each n € N,
let (by, fin) be a sequential equilibrium of G(—W&s,b,). The sequence {(by, fin)}nen has a
convergent subsequence; assume, without loss of generality, that the sequence itself converges
and let (b, i) be its limit. We claim that the W&;-combination of b with b is a sequential
equilibrium of the W&;-combination of G with G. We show that (b Swe, b, i ®Owy, 1) 1s a
sequentially rational and consistent assessment.

Consistency: Let I'), be the game tree of G(fWé’E, by,). By definition, for each n,n € N,
BO(T',) = B°(Ts). Let B® := B%(T,). Each b, is a sequential equilibrium of G(—WZg,b,).
Hence, for each n € N, there is {l_)n,k}keN C BY converging to b, and such that associated
beliefs (satisfying Bayes rule) converge to fi,,. Hence, for each n € N, there is g(n) € N such
that [[bn — by gll < L. Then, [ — by giuyll < 16— ball + [B — B | < b= bufl + L.
Hence, since b, — b, {bp g(n)}nen — b. The convergence result for the corresponding beliefs,
namely {fi, g(n)}nen, to fi is analogous. Our construction ensures that, for each n € N and
eachz € AWEL), pin(z) = fin(x) and p(x) = fi(x), i.e., the beliefs “match” in A(W&;). Hence,
for each n € N, the beliefs associated with b, Owp, T)mg(n) are fin Qb fin,g(n)- Therefore, the
consistency of (b®@yys b, u@yye_fi) is obtained by considering the sequence {bn @yyp_bp g(n) bnen-

Sequential rationality: The sequential rationality in the information sets in Wé’E imme-
diately follows from the sequential rationality of (b, ) in G and the fact that, according to p,
no node outside WSbE can be reached with unilateral deviations from information sets WSbE and
hence, the payoffs at all the terminal nodes that can be reached by unilateral deviations from
information sets in Wé’E are given by h. Similarly, only terminal nodes outside WSZ’E can be
reached with unilateral deviations from information sets outside Wé’E and hence, the payoffs
are given by h. Thus, since all the {(b,, Jin) }nen are sequentially rational also the limit, (b, ),
is sequentially rational.

Second, since WSbE = W;ZSE, the proof the minimality is is analogous to the one for W}’ in

Theorem [I] (the regularity of f was not needed to show that W}’ is minimally sufficient). O

It can be easily verified that Wspg C Wsg. Hence, combining the results in Sections [3]
and [ we have:
Wxe C Wspe C Wsg C Wwee C Wsr = Wpe = U.
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4.4.1 Strong sufficiency and sequential equilibrium

The example below shows that f5F is not regular and that W& needs not be a strongly
sufficient collection for sequential equilibrium.

Example 1. Consider the game G € G(T') in Fig@ell Given &= (D, D, (@%D)), (b, i) is a
Games G, G, and G® (1,0,0) (1,0,3) (1,0,3)
b= (D,D,(D,D))

(0,0,0) (0,0,2) (0,0,0)

¢ (0,0,0) (0,0,0) (0,0,0)
(2,2,4) (2,2,4) (2,24)
Figure 6: W& is not strongly sufficient for sequential equilibrium. The games G G, and G®.

consistent assessment if and only if p(a) = p(b) =0, p(c) =1, p(z) = p(z), and p(y) = ().
Now, WSZ’E is the collection that consists of removing the upper information set of player 3 and
the four terminal nodes that come after it. More formally, Wiy = U(I')\W, where W just
contains the information set containing z and y and the four subsequent terminal nodes. Let
p € M 1(b) be such that u(z) = u(z) = 1. So defined, (b, 1) € SE(G). Now, take the game G.
Take b = b. Let i € M(h) = M"$(b) be such that ji(x) = i(Z) = 0. So defined, (b, i) €
SE(G). Consider the assessment (b%, u®). Since b® = b, M15(b®) = Mc°S(p). Therefore,
since u®(z) = 0# 1 = p®(x), u® is not consistent with b®. Hence, (b®, u®) ¢ SE(G?®). Since
€ Mens(b) = fSE(T,b), i € fSE(T,b), and pu® ¢ f5E(T,b%), we have shown that f5F is not
regular. We now show that Wé’E is not strongly sufficient for SE, ', and b by showing that
b® ¢ SE(G®). Suppose, on the contrary, that (b%, /i) € SE(G®). Since player 3 is playing D
at the information set containing x and (b®, fi) is sequentially rational there, ji(y) > % Since
(b®, /1) has to be sequentially rational at the information set containing z, fi(z) > % and hence,
() < 2. But this is not possible since, fi € M(b?) implies that i(y) = (7). O

5 The Reduced Game

In this section we present three (related) directions in which the notion of reduced game defined
in Section 3] turns out to be useful. For the sake of exposition, we omit the formal results,
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which can be found in Appendix [Bl

5.1 Simplification of equilibrium analysis

This first property is based on Proposition[fl Given a strategy profile b and closed and sufficient
collection W (for b), if by is an equilibrium of the reduced game Gy, then the outcome of b
is an equilibrium outcome in the original game. Further, if by is not an equilibrium outcome
of the reduced game, then no equilibrium of the original game will coincide with b in W. In
particular, the reduced game associated with the essential collection would be the simplest of
the games associated with b. Quite generally, the reduced game associated with an essential
collection is notably simpler than the original game.

5.2 Structural robustness and partially-specified games

Let Gy be the reduced game associated with a game G and a closed collection W. We say
that a game G is an extension of Gyy if its game tree contains W and the nodes in W that are
terminal for G are also terminal for G and the corresponding payoffs coincide. In particular,
the game G is always an extension of Gy. Suppose now that W is the essential collection for
EC and b in game G and let G be an extension of Gyy. Take now a strategy b in the extended
game that coincides with b in W. Then, Corollary Blin Appendix [Blsays that, in order to check
if b is an equilibrium of G, it suffices to check if b is an equilibrium of the reduced game. This
section discusses two useful implications of this result.

5.2.1 Structural robustness

We borrow the name of structural robustness from [Kalai (2005, 2006), where similar changes
in the underlying games are considered and used to study the robustness of Nash equilibria in
large games.

Our approach allows us to study how robust the different equilibrium concepts are with
respect to structural changes in the game. We already provided an illustration of this when
discussing the candidate positioning game in Section 2] (Appendix [T contains another example).
Suppose that b is an equilibrium for a given game G. Suppose now that the game G is modified,
by some changes in its game tree or by some changes on the payoffs, and suppose that none
of these changes affects the path of b. Let G be the modified game. Then, it is natural to
ask whether the outcome of b is an equilibrium outcome in G or not. Suppose that we have
characterized the essential collections for this equilibrium concept. Then, if the changes in G
affected neither the essential collection associated with b, say W, nor the payoffs in its terminal
nodes, then b is indeed an equilibrium outcome in the game G, which is an extension of Gyy .

Remark 1. Structural robustness allows to establish a connection between our approach and
that of essential equilibrium (Wen-Tsun and Jia-He, [1962). Essential equilibrium deals with
robustness with respect to small perturbations in all the payoffs of the game whereas here
we discuss robustness with respect to arbitrary perturbations in some payoffs (those that are
irrelevant for the given strategy profile and the equilibrium concept under study).

Note that the structural changes in the game can be of very different nature since they can:
affect payoffs; change the sets of strategies; change the information available to the players;
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account for addition, elimination, or merging of players; enlarge or reduce the game; etc. As
far as these changes do not affect the essential collection associated to a given equilibrium
profile b, its outcome will be an equilibrium outcome also in the modified game; on the other
hand, if the changes affected the essential collection, whether the outcome of b is remains an
equilibrium outcome or not will depend on the specific payoffs of the games at hand.

Therefore, if the essential collections associated with an equilibrium concept EC! are always
smaller than the ones associated with EC?, we have that EC! is more robust to structural
changes than it is EC?. The latter statement, combined with the inclusion relations obtained
for the essential collections characterized in sections Bl and M implies that SR and PE are the
less robust equilibrium concepts followed, in this order, by WPBE, SE, SPE, and SR (the
example in Appendix [Clillustrates this fact for SE and WPBE)

5.2.2 Partially-specified games

As also discussed in [Kalai (2009, 2006), the idea of structural robustness is very related to the
possibility of dealing with partially-specified games. Let G = (T', h) be a partially-specified
game, i.e., it lacks of a full description of I' or some payoffs are unknown. Can we still
say something about the equilibria of this game? Maybe. Suppose that there is a (possibly
partially-specified) strategy b whose associated essential collection for EC, say W, can be
characterized and the corresponding reduced game is completely specified. Then, if by is
an equilibrium of the reduced game, for whatever specification of the unknown elements of
GP, there is be EC(GP) that is realization equivalent to b, i.e., the outcome of b will be an
equilibrium outcome of any game satisfying the partial specifications of GP.

A situation as the one described above may arise even in very simple settings. We have
already mentioned one such situation when discussing the candidate positioning game in Sec-
tion 2] (another example may be found in Appendix [C). We present now an even simpler
example.

Example 2. Consider the partially-specified game G = (T, h) in Figure [ below. We do not
know how the game continues after x. It might be that x is a terminal node; it might be that
the subgame beginning there is too complicated for its sequential equilibria to be found; and
it might also be that we do not know anything at all about how the game follows once once x
is reached. In any case, W = {u, v, 21, 22, 23} is the essential collection for SE, any such I' and
any strategy in which players 1 and 2 play D; and Dy at their initial information sets. Hence,
since b = (Dq, D3) is a sequential equilibrium of Gy, there is a sequential equilibrium of G in
which D; and D are played, leading to the payoff vector (1,1). o

221t is worth to provide one further clarification for what we mean when we say, for instance, that SE is
structurally more robust than WPBE. Fix a game G and a strategy profile b. Suppose that b is a SE. The
discussion above says that after any change in the game that does not affect the essential collection for SE, T,
and b, the outcome of b remains a SE outcome in the modified game; no further calculation is needed, regardless
of the actual payoffs of the modified game. On the other hand, suppose that b is just a WPBE but not a SE,
then, since the latter changes might have affected the corresponding essential collection for WPBE (which is
not smaller than the one for SE), b might not be a WPBE outcome anymore. Yet, our statement is mute about
changes inside the essential collections. Indeed, since SE is more demanding than WPBE; it is natural to think
that SE will be less robust to changes inside the essential collection.
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DQ 3(151)

Figure 7: A partially-specified game

5.3 Virtual equilibrium concepts

All the analysis in the previous sections has been carried out in a framework in which the
existence of the discussed equilibrium concepts was guaranteed. In this section we also allow
for games with non-compact sets of strategies, discontinuous payoff functions, and also games
in which only pure strategies are possible. Thus, there can be games without equilibria. Es-
sentially, all the analysis and results in the previous sections carry over to these new settings
although some care is needed 23

If a given equilibrium concept EC has been essentialized, then the wvirtual version of EC,
VEC, can be defined as follows. Given G = (T, h),

VEC(G) := {b € B(I) : bwe(rs) € EC(Gwie(r.p)}

Clearly, for each game G, EC(G) C VEC(G) and, by Proposition [B] if EC(G) # 0, then, for
each b € VEC(G), there is b € EC(G) realization equivalent to b.

Remark 2. The latter observation is the reason for the word “virtual”. As far as the original
game has some equilibrium, then the sets of equilibrium outcomes and virtual equilibrium
outcomes coincide. Yet, there can be games in which the set of virtual equilibria is nonempty
whereas there is no non-virtual equilibrium.

The following result says that the virtual versions of NE, SR, and PE coincide with the
non-virtual versions. It is an immediate consequence of the corresponding characterizations of
their essential collections.

Corollary 4. For each game tree I' and each game G € G(T'), NE(G) = VNE(G), SR(G) =
VSR(G), and PE(G) = VPE(G).

23For instance, in the proof of Proposition[d] it has to be ensured that SE(G) # @ implies that also the games
G(—W&g, bn) have some sequential equilibrium.

24Virtual equilibria are similar to the trimmed equilibria introduced in [Groenert (2009), where the author
presents the trimmed versions of subgame perfect equilibrium and weak perfect equilibrium. There are some
differences in the two approaches. Roughly speaking, for each strategy profile b, we identify those information
sets that are irrelevant to check if (for whatever beliefs) b € WPBE, i.e., those information sets outside
Upenrwe) Wb E: on the other hand, in [Groenerf (2009), for each assessment (b, u) with g € M¥e(b), the

author identifies those information sets that are irrelevant to check if (b, u) € WPBE, i.e., those outside Wb #.
Hence, the final equilibrium concepts, although stemming from the same ideas are slightly different. We think
that none of the two approaches outweighs the other; rather, they may be seen as complementary.
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Nonetheless, for other equilibrium concepts, the virtual version can make a difference.
Therefore, the virtual equilibrium concepts can lead to reasonable equilibrium behavior in
settings where the classic equilibrium concepts fail to exist. We refer the reader to Appendix [B]
for an illustrative example and to |Garcia-Jurado and Gonzalez-Diaz (2006) for an application
of the virtual subgame perfect equilibrium to derive a folk theorem in a repeated games setting
in which the set of subgame perfect equilibria may be empty.
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A The closedness under <
As we see in the proofs in Sections B and @ although the intuitions behind the main results are

quite simple, the proofs are somewhat cumbersome. In this respect, working with collections
of informations sets that are closed under the precedence relation has proved to facilitate the
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analysis. Nonetheless, as we argue below, even if we set aside the tractability issues, there are
other reasons to require closedness in the definitions of essential collections.

In Example[3] we show that there can be reasonable sufficient collections that are not closed
and that are strictly contained in the corresponding essential collections. Hence, the closedness
assumption is not innocuous. In Example [ we present a different situation in which unrea-
sonable sufficient collections appear when the closedness requirement is removed; unreasonable
in the sense that a (non-closed) sufficient collection might not contain informations sets that
seem relevant for the equilibrium concept, game tree, and strategy profile at hand.

Example 3. Consider a game tree I' that starts as depicted in Figure [8 and consider any
strategy profile b in which player 1 plays D at r(I') and player 2 plays w in his first (and
possibly unique) information set. Then, by Proposition [ Wxg(T',b) consists of the closure
of the information sets that can be reached after a unilateral deviation from b. It is easy to
check that, although z cannot be reached by unilateral deviations, x belongs to Wxg(L,b).
Nonetheless, it seems that, given any game in G(I'), = is not relevant to know if there is a NE
that is realization equivalent to b. Therefore, it is arguable whether the essential collection for
NE, I, and b should contain x or not. Note that this example cannot be trivially adapted, for
instance, to SE, since the beliefs of player 4 might depend on the behavior at  and hence,
adding x to an essential collection might be natural there. &

Figure 8: The closedness requirement is Figure 9: The closedness requirement
not inocuous. can rule out unnatural collections.

Example 4. Consider now the game game tree I' in Figure[@and the strategy profile b = (D, d).
Clearly, Wspg(b,I") = T', which is quite natural. On the other hand, it is easy to check that
W = {r(T), 21, 22, 23} is a sufficient collection for SPE, T, and b. That is, node y is not needed,
which is awkward. Differently from the situation in Example[3], the same analysis goes through
for all the equilibrium concepts discussed in this paper. It is worth noting that the collection
W is not strongly sufficient. Hence, we might strengthen sufficiency to strong sufficiency to
rule out the above kind of collections. Yet, even if no other pathological examples appear when
studying strong sufficiency without requiring closedness under <, we know by Example [I] that
strong sufficiency is very demanding for equilibrium concepts such as SE. &

B The Reduced Game: Related Results

Proposition 6. Fiz an equilibrium concept EC. Let T be a game tree and let b € B(T'). Let
G = (I, h) € G(T') be such that EC(G) # 0. Let W be a closed sufficient collection (for EC, T,
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and b). Then, there is b € EC(G) such that by = by if and only if by € EC(Gw ). Moreover,
since w(b) C W, b and b are realization equivalent.

Proof. Suppose there is b € EC(G) such that by = byy. Let G € G(I') be a game with constant
payoft (M,..., M). Since by = by and W is sufficient for EC, I, and b, then, by Lemma [,
W is sufficient for EC, T, and b. Hence, there is b* € EC(G ®@w G) such that bf, = byy. Since,
in game G @w G, all the payoffs outside W coincide with (M, ..., M), it is straightforward to
check that by € EC(Gw ).

Suppose that by € EC(Gw) and let G* = (I', h*) be defined, for each z € Z(I') N W, by
h*(2) := h(z) and, for each z € Z(I')\W and each i € N, by hf(z) := M. Since all the players
are indifferent among the choices outside W and by € EC(Gw ), b € EC(G*). By definition,
G* @w G = G. Since W is sufficient (for EC, I, and b) and EC(G) # 0, there is b € EC(G)
that coincides with b in W and moreover, since 7(b) C W, b is realization equivalent to b. [

Let G = (', h) be a game tree and let W € U(T") be a closed collection. Then, let Q(W)
denote the set of game trees such that if A € Q(W), then W C U(A), W is closed in A and
the nodes in W that are terminal in I' are also terminal in A. Now, let G(W) denote the set
of games G = (A, h) such that A € Q(W) and, for each z € W N Z(I'), h(z) = h(z). Take, for
example, the game Gy in Figure Clearly, Gw € G(W) and moreover, any other game
that is defined from Gw by adding new branches at the nodes in A(W) (those with payoff
(M, M, M)) also belongs to G(W). These new branches can intersect each other, but cannot
intersect W (since, otherwise, W would not be a closed collection in the resulting game tree).
In particular, the game G itself also belongs to G(W). We refer to the elements of G(W) as
extensions of Gyy .

Remark 3. Fix an equilibrium concept EC. Let I' be a game tree and let W be a closed
collection. Let A € Q(W). Now, it is clear from the definitions of Q(W) and TI'y that
T'w = Aw, i.e., the corresponding reduced forms associated with W coincide.

Proposition 7. Fiz an equilibrium concept EC. Let I' be a game tree and let b € B(I).
Let A € Q(Wgc(T,b)). Let b € B(A) be such that b and b coincide in Wgc(T',b). Then,

Wge(T,b) = Wgre(A,b), i.e., the essential collections coincide.

Proof. Tt can be shown that Wgc(T,b) is sufficient for EC, A, and b just by paralleling the
arguments in the sufficiency part of the proof that Wgc(T,b) is sufficient for EC, T'; and b
but with A and b instead of T'" and b. Hence, Wgc(I',b) C Wgc(A,b). Similarly, it can be
shown that that Wgc (A, b) is sufficient for EC, T, and b and hence, Wgc(A,b) € Wec (T, b).
Therefore, Wgc (L', b) = Wrc(A, b). O

Let W be the essential collection for EC, T', and b. Let G be an extension of Gy and let
b be a strategy in G that coincides with b in . Then, the next result shows that, to check
if there is an equilibrium b of G that is realization equivalent to b, then it suffices to check if

Corollary 5. Fiz an equilibrium concept EC. Let G(W) be the set of the extensions of a reduced
game Gw = (I'w, hw ). Letb € B(T'w) be such that Wgc(I'w,b) = W. Let G = (A, h) € G(W)
and b € B(A) be such that b = by,. Then,

29



i) Weo(A,b) =W.
i) If b € EC(Gw), then there is b € EC(G) such that by = by = b.
iii) If b ¢ EC(Gw), then there is no b € EC(G) such that by = by = b.
Proof. Statement i) is immediate from Proposition[Z ii) and iii) follow from Proposition[dl [

Example 5 (Virtual equilibrium concepts). Consider the extensive game depicted in Fig-
ure Suppose we restrict attention to pure strategies. Fix k,I € {1,2} and let b :=
((D1,a}),(D2,db)). Note that in the subgame that begins after playing (Ui, Us), there is
no information set that belongs to Wgpg/(T', b); the reduced game Gwepg (1,p) 18 depicted in Fig-
ure (with M = Mg). Clearly, bygpp(rp) € SPE(Gwgpy(r,p)) and hence, b € VSPE(G).
However, if we restrict to pure strategies, SPE(G) = ). We consider that, in the spirit of
SPE, b is a sensible equilibrium of game G in the following sense. The players cannot use
backwards induction to “solve” game G because the proper subgame does not have any NE.
Still, suppose that the players are keen on backwards induction and insist on assigning payoffs
at that subgame and then go backwards in the tree. Then, no matter what payoffs they assign
to that subgame, they would find that b is a “solution” of the game. &

a;__e(1-1)

('171)
Uz_a(22)

(0,1) (0,1)

(1,0) (1,0)

D, (1,1) (1,1)

(a) The game G. (b) The game Gyygpy (r,b)-

D;

Figure 10: A game without SPE, but with VSPE.

In the example above, the game G did not have any SPE because we restricted attention to
pure strategies. As we illustrate in Appendix [C] there may be other sources for the emptiness
of the set of equilibria such as the discontinuity of the payoff functions or unboundedness of the
payoffs. Moreover, in Appendix [C] we also show that a game for which SE is not even defined
may have VSE.

C The licensing game

The example we present below does not pretend to be a real application of our analysis. It is
an ad-hoc strategic situation that we use to illustrate the results in this paper and how they
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might be useful for game theoretical analysis. We have tried to keep it as simple as possible
but, at the same time, rich enough to illustrate as many things as possible.

A government official (GO) has decided to grant a new telecommunications license and is
considering to design an auction to allocate it; moreover, the control of GO over the overall
process is limited by the present legislation and its options reduce to the ones we present
below 9 A local firm (LF) is interested in the auction and has valuation v > 0 for the license.
A foreign firm (FF) is undecided among three choices: i) not entering the market, ii) enter with
a high bid, and iii) enter with a low bid. At the same time, the government official is unsure
about whether the presence of a foreign firm can be good for the interests of the country and
has to decide whether to ban the entrance of the foreign firm or not. If FF does not enter the
market, whatever the reason, the license goes to the local firm at price v; otherwise, there is
an auction in which each participant has to pay an entry fee ¢, with 0 < ¢ < v. Moreover,
only bides above r > 0 are allowed (r < v). The game runs as follows:

Stage 1: FF decides whether to enter or not in the market and whether to do it with a high
bid @ = v or with a low bid r < a@ < v — ¢ (provided that its entrance is not banned by
GO). FF’s valuation of the license is slightly above v + ¢, say v + 2¢.

Stage 1: Simultaneously and independently, GO decides whether to ban the entry of FF or
not and, moreover, decides whether the auction will be simultaneous or sequential. In
the latter case, LF would be informed about the bid of FF before making its own bid.

Stage 2: If after stage 1 FF is not in the market, then the license goes to LF at a price v. If
FF is in the market, LF is informed about the action of GO and submits a bid. LF pays
the entry cost only if his bid is positive (i.e., a 0 bid is interpreted as not entering the
auction).

End of the game: The license is allocated and the players pay their corresponding costs to
GO. If both firms submit the same bid, the license is granted to each firm with equal
probability. If the license goes to LF, then GO gets some extra utility given by e > 2c.

Moreover, we assume that the bids belong to a discrete set: there is a small number € > 0 such
that the only bids accepted are those of the form ke, with k& € {0,1,...} (r is assumed to be a
valid bid). We denote this game by LGY = (P4, h?), where d stands for “discrete bids”. The
associated game tree is depicted in Figure (FF moves at r(T"), GO moves at uz, and LF
moves at y1, uz, and y4).

We base our analysis in four profiles: the strategy profile b' in which FF plays “ent&high”
with probability 0.5 and “no-entry” with probability 0.5; GO plays “ban” with probability 1;
and LF bids 0 at y; and a+¢ at uz and y4. In this profile FF is best replying and, since e > 2c,
GO is also best replying. LF is best replying at y; and y4; and, if his beliefs at us put high
enough probability on ys3, then he is also best replying at us. Hence, since uz ¢ 7(b'), the latter
beliefs are compatible with the use Bayes rule in the path and therefore, b! € WPBE(LGd).
Yet, the unique beliefs of LF at wus that are consistent (in the sense required by SE) put
probability 1 on y. Hence, b! ¢ SE(LG?). The second strategy profile is b2, which only differs
from b' in the choice of LF at us3, which is now bid 0. Clearly, if the beliefs of LF at usz put

25This game is just an example to illustrate the main results in this paper, i.e., we do not pretend to provide
a realistic model for the auctioning of telecommunication licenses.
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(a) T'%, the game tree of LGY. (b) I'"™, the game tree of LG™

Figure 11: The two licensing games.

high enough probability on ys, then he is best replying at us when playing according to b
Hence, b? € SE(LGY) and also > € WPBE(LG?). Finally, b* and b? are defined from b' and
b2, respectively, by changing the bid of LF at 34 to 0. Since bid 0 at y4 is never sequentially
rational, these new profiles are neither SE nor WPBE (but they still are NE).

Essential collections for WPBE and SE. Following the informal characterization above,
the essential collection for WPBE, T'¢, and b', namely Wywppg, contains all the information
sets of I'? with the exception of y4 and the terminal nodes after y4. To see why, just note that,
since uo is in the path of b, any beliefs computed with Bayes rule in the path have to assign
probability 0 at z9; hence, according to any such beliefs, no deviation or series of deviations
from b! reach y; or the terminal nodes after y4 with positive probability (a simultaneous
deviation by FF and GO would be needed). All the other information sets can be reached with
(series) of unilateral deviations; for instance, to reach the terminal nodes that come after a bid
B at ug, consider beliefs that put probability 0.5 on y2 and 0.5 on y3 and consider the series of
two deviations in which GO deviates to “sim” and, after observing this, LF deviates himself to
bid 5. On the other hand, the essential collection for SE, I'*, and b', namely Wsg, coincides
with Wywppg except for the fact it does not contain any of the terminal nodes that come after
y3. To see this, just recall that any beliefs consistent with b! will put probability 0 on 3
and hence, the terminal nodes that come after y3 are never reached with positive probability
(according to any consistent beliefs) after any series of deviations from b!. In particular, note
that Wsg C Wiwpsg. It can be easily seen that the essential collections for b2, l_)l, and b? are
the same ones, Wywpgg for WPBE and Wgg for SE. Now we elaborate on what we can learn

32



from essential collections.

The reduced game. In Section [l given a game G, we associate a reduced game Gy
with each (closed) collection of information sets W; the basic idea is to remove from G all the
information sets that are not in W in such a way that what is left still forms a game. The
reduced game LG%VSE would be defined as follows. Let M > v. We need to take care of y4
and its successors and also of the successors of y3. First, remove all the terminal nodes that
come after y, and assign payoff (M, M, M) to ys. We would like to do the same with ys3, but
it belongs to us and hence, to have a well defined reduced game, the same choices must be
available to LF at y» and ys. In this case, just replace all the payoffs of the terminal nodes
that come after ys3 with the payoff (M, M, M). Then, in game LG%VSE we do not need to worry
about the choices of LF at y4 (which is now a terminal node) and, moreover, conditional on y3
being reached, LF is indifferent between all his choices there. Given a strategy profile b, recall
that by denotes the restriction of b to W, which is a strategy in the reduced game.

Given an equilibrium concept, a game, and a strategy profile, we can define a reduced
game that helps to check if the outcome of the strategy profile is an equilibrium outcome.
More specifically, suppose that we are given the strategy profile b> and we want to know if
its outcome is a SE outcome of LG?. Now, since Wgg is a sufficient collection (for SE, T4,
and b?) and b%/VSE is a SE of the reduced game, (by Proposition [f) we have that, although

b? ¢ SE(LGY), its outcome is a SE outcome of LG

Structural robustness. One direction in which the reduced game may be useful is in the
study of the structural robustness of the different equilibrium concepts. We already know that
b' € WPBE(LG?) and b? € SE(LG?) but, how robust are these equilibria to structural changes
in the game? Suppose that, to reduce the advantage of LF and encourage the participation of
FF, GO is considering the following changes in the way the license is granted, i.e., changes in
the game LG®: C1) if “ent&low” and “seq” are played and FF looses the auction, then FF is
given another chance to bid; C2) whenever “ent&low” has been played, FF is given another
chance to bid if he looses the auction; C3) whenever FF looses the auction, FF is given another
chance to bid. In this setting (by Corollary[]) each equilibrium is robust to changes outside its
essential collection; so the equilibrium concepts with the smaller essential collections will be,
to some extent, more robust. More precisely, even if C1) takes place, since this change occurs
after y4 (which does not belong to any of the essential collections), the outcome b' would be
a WPBE outcome of the modified game and the outcome of b a SE outcome, regardless of
the specific details of C1). Now, since the changes implied by C2) would come after y3 and
Y4, b*> would also be robust to C2), but one should check again whether the outcome of b is
a WPBE outcome of the reduced game, i.e., SE is more robust to change C2) than WPBE.
The latter feature holds in general, i.e., since the essential collections associated with SE are
smaller than the ones associated with WPBE; there are more changes after which there is
nothing to reassess for SE than for WPBE (there are more changes that do not affect the
essential collection of SE than the one for WPBE). Finally, change C3) affects both b' and b2
and whether their outcomes remain equilibrium outcomes or not in the modified game would
depend on the specific changes and our results are mute here. Indeed, in this last case, when
the changes take place inside the essential collection, it is natural to expect that WPBE will
be more robust than SE (since it is less demanding); actually, the outcome b* might not be a
SE outcome in the modified game and still be a WPBE outcome. Here we have just discussed
three very simple modifications of the game, but the results hold for whatever changes are
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made outside the essential collections: appearance of new players, changes on the information
partitions, changes in the payoffs, addition of subgames (no matter how big),. ..

Partial-specifications of the game. This issue is very related to the one above. The
idea is that essential collections may help to give some information about the equilibrium
outcomes of games that are not completely specified. Suppose that, in the licensing game, we
have no idea about how the game continues once y, is reached. Even in this case we know (by
Corollary [B)) that, no matter how the game is defined from y; onwards, the outcome of b? is
going to be a SE outcome. Hence, essential collections help to identify what misspecifications
in the game are irrelevant for different strategies and equilibrium concepts.

Virtual equilibrium concepts. Consider the following modification of the game LG
GO still has the same three actions but now, if he chooses “seq” after FF has played “ent&low”,
then LF can submit any real number above r as a bid (or 0); in the other cases the auctions
are still over a discrete set. We denote this licensing game by LG™, where m stands for mixed;
see Figure Suppose that we want to study the WPBE of LG™. Then, since there is no
best reply for LF at node y4 (because of the discontinuity in the payoffs), WPBE(LG™) = 0.
However, we consider that b' is still as sensible in the game LG™ as it was in game LG%; no
matter the payoff that LF may get after y,, that will not affect the sequential rationality of
b at any other information set (provided that the beliefs are computed using Bayes rule in
the path of b'). This motivates the definition of virtual equilibrium concepts. We say that
a strategy profile b is a virtual WPBE if it is a WPBE of the reduced game associated with
its essential collection (for WPBE and the game tree at hand); and the virtual version of any
other equilibrium concept is defined analogously. Now, b! is a virtual WPBE of game LG™.
Note that also b! would be a virtual WPBE, despite of the irrational behavior at gy4. This is
because virtual equilibrium concepts only impose restrictions in the behavior inside the essential
collection. Given a virtual equilibrium, we can always replace the non-equilibrium behavior
outside the essential collection by equilibrium behavior (if it exists) to get an equilibrium in the
classic sense. Then, (by Proposition [@)) if the set of WPBE of the original game is nonempty,
the set of WPBE outcomes and virtual WPBE outcomes coincide (which justifies the name
virtual). Furthermore, we can even have virtual equilibria in games in which the non-virtual
counterpart is not defined. For instance, SE cannot be defined for games with uncountably
many actions and hence, SE is not defined for game LG™ and yet, since the sets of actions in
the reduced game LG“i,VSE are again countable, we get that b2 is a virtual SE (i.e., the nodes
with uncountably many actions are in parts of the game that are irrelevant for b%).
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