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Abstract

We consider the problem of loss allocation in energy transmission networks.
We introduce the Shapley rule defined as the Shapley value of an associated
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cooperative game. We study the properties satisfied by the Shapley rule. We
compare this rule, in terms of the principles mentioned in the EU regula-
tions, with the rules studied in [1]. Finally we apply this rule to the Spanish
gas transmission network and carry out a simulation analysis to explore new
connections between the different allocation rules.

JEL classification. C7, L95, R48

Keywords. Gas transmission networks, loss allocation, cost al-
location, management

17.1 Introduction

The analysis and modeling of different aspects of energy transmission net-
works is a prevalent topic in papers across a wide variety of disciplines. In
particular, one important aspect is the study of energy losses in these net-
works. This issue was recently tackled in [1], where the authors say:

“A common problem is that, in virtually any network, there
are losses whose sources are normally difficult to identify.
Thus, one must anticipate them so that they do not lead to
deficit in the system. In many cases the transmission network
is owned by different agents and, typically, the authorities
that manage the network decide how much energy each agent
is allowed to lose. This decision should follow some general
principles, which would then appear in the relevant regula-
tions. For instance, one would like that the loss allocated to
each agent takes into account characteristics of the agents,
such as the size of its subnetwork or the amount of energy
managed.”

Although the analysis of this paper could be applied to any energy trans-
mission network, we develop it using a gas transmission network because our
leading example is the Spanish gas transmission network. It is worth noting
that the use of natural gas as a source of energy has been rapidly increas-
ing over the past few years. According to a review by British Petroleum in
2013 ([6]), the consumption of natural gas world wide was around the 23.9%
of global primary energy consumption. A more recent report published by
Enerdata in 2017 (see [8]) also reports a share over 20% of natural gas.
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Going back to the issue of energy losses and, more specifically, energy losses
in gas networks, [1] go on to say:

“Different networks have different estimates on the percent-
age of gas/electricity that is lost during transportation. In
Spain, for instance, this estimate is 0.2% for the gas trans-
ported in the high pressure gas network and similar figures
have been reported in other countries. In order to prevent
the ensuing monetary losses, a standard approach in energy
networks is to withhold at the entry points a pre-set per-
centage of the gas/electricity entering the network; by doing
this, the energy companies that use the network for trans-
portation are the ones effectively assuming the associated
cost in the first instance. In particular, in the Spanish high
pressure gas network the pre-set percentage withhold to an-
ticipate the estimated losses is precisely 0.2%. In monetary
terms, the annual cost of the gas entering the Spanish gas
network is around 12000 millions of Euro, which results in
approximately 25 millions of Euro in losses in the transmis-
sion network.
It is precisely at this point where the main question we try to
address in this paper arises. Since a gas network is typically
owned by different agents, called haulers, it must be decided
how to share the withhold gas among them. More precisely,
it must be decided, for each agent, the percentage of the
gas entering his subnetwork that he can lose. Note that it
is not possible to let each agent lose the same percentage
that has been withhold for the entire network. Since most
gas entering the network crosses several subnetworks, this
naive approach would result in allowing the agents to lose,
in aggregate, more gas than the withhold amount.”

The Spanish regulation presents an incentive mechanism to induce haulers
to reduce the losses (see [5, page 106656]). On a yearly basis the following
values are computed: Ah is the ‘allowed’ loss assigned to each hauler h; Lh is
the real loss of each hauler h (it is computed as the balance between entries
and exits of gas in his subnetwork); given a price p per unit of gas, the haulers
pay p (Lh −Ah) when Lh−Ah > 0 and receive p

2 (Ah − Lh) when Lh−Ah ≤ 0.
Therefore, the definition of the rule to assign the ‘allowed’ losses is a relevant
issue for the management of gas transmission networks.

Regulation (EC)(no. 55/2003, [13]), from the European Union mentions
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some principles that should be followed by the national and international
regulations regarding the natural gas market. The analysis in [1] starts with
the definition of four different allocation rules for energy losses, which are
then compared conducting a thorough axiomatic analysis that builds upon
the above principles. Besides, an application using data from the Spanish gas
transmission network is presented, comparing the allocation proposed by the
different rules. The main conclusion of that paper is that the rule that behaves
worst (in terms of the EU principles) is the so called aggregate edge’s rule. This
rule was replaced in Spain by the flow’s rule because of the strong opposition of
the small haulers (on the grounds that it favored big haulers). The proportional
tracing rule and the edge’s rule behave better than the flow’s rule (in terms
of the EU principles), with the former seeming slightly preferable.

In this paper we present a new rule, the Shapley rule, obtained as the
Shapley value of a cooperative game with transferable utility that can be as-
sociated to each gas loss problem. Then, we closely follow the analysis in [1].
We first study the axiomatic behavior of the Shapley rule with respect to
the same set of axioms, finding that this new rule is not as good as those
performing best in the original paper: the proportional tracing rule and the
edge’s rule. Second, we find that, in the application from the Spanish net-
work, the allocation proposed by the Shapley rule is very similar to that
proposed by the proportional tracing rule. Motivated by this similarity, we
build upon the real data from the Spanish network to conduct a simulation
analysis over 10000 randomly generated modifications of it. The analysis of
the resulting loss allocations shows that the average correlation between the
allocation proposed by the Shapley rule the one proposed by the proportional
tracing rule is over 0.99, while the minimum correlation between these two
rules found in those 10000 simulations is still over 0.9. This reinforces the idea
that there must be some common mechanism underlying both rules, which
should definitely be explored more deeply. This is specially so if we take into
account that the second highest average correlation, although still very high,
is at 0.97, whereas the second highest minimum correlation for any other pair
of tariffs across the 100000 simulations is just over 0.6.

The use of the Shapley value in this kind of settings is not new. It has
already been used in many allocation problems. The basic idea is always the
same. One starts associating to each problem a cooperative game with trans-
ferable utility. Then, the Shapley rule for the given problem is defined as the
Shapley value of the associated cooperative game. This approach has been
followed, for instance, in airport problems (see [11]), queuing problems (see
[12] and [7]), and minimum cost spanning tree problems (see [10] and [2]).
The current paper contributes to this strand of literature by defining, and
studying, the Shapley rule for energy transmission networks.

In the associated cooperative game with an energy transmission network
the agents are the haulers. The value of a coalition T of haulers should be
defined as the loss that haulers in T can have by “themselves”. Several def-
initions are possible. We give a definition inspired in the approach taken in
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[9] for flow games. In their model there is also a set of agents who own the
different edges of the network and the value of a group of agents T is defined
as the maximum amount of flow that can be transported (from the source
to the sink) using only edges belonging to agents in T . We apply the same
principle to our model. We define the value of coalition T as loss associated
with the maximum demand that can be satisfied using only edges of haulers
in T , i.e., the loss associated with the maximum amount of gas that can be
transported from suppliers to consumers without exceeding the capacities and
demands of suppliers and consumers, respectively.

The paper is structured as follows. In Section 17.2 we summarize the rel-
evant characteristics of the management and operation of a gas transmission
network and the formal mathematical model. In Section 17.3 we introduce
the Shapley rule. In Section 17.4 we present different properties, motivated
by some principles stated in EU regulations. In Section 17.5 we discuss the
behavior of the Shapley rule with respect to these properties and principles.
In Section 17.6 we present the application to the Spanish gas transmission
network.

17.2 The model

In this section we introduce the mathematical model associated with a
loss energy problem. In order to make this paper self-contained, we formally
introduce all the elements of the model, but we do so in a very concise way.
Also, to facilitate the comparison with the analysis in [1], we closely follow the
notations and formal definitions in that paper. We refer the reader to sections 2
and 3 of [1] for a more detailed explanation of all concepts introduced below.

Since our motivating example comes from the Spanish gas transmission
network, the exposition is carried out for gas networks. Yet, our analysis and
results may be applied to other energy transmission networks. As far as this
paper is concerned, a gas network may be seen as a graph, composed of nodes
and edges. There are three types of nodes: demand nodes, in which some gas
leaves the network; supply nodes, in which some gas enters the network; and
the rest of the nodes, in which the gas that enters and leaves coincide. Edges
represent pipes. Each pipe belongs to a hauler and a hauler may own several
pipes.

In order to develop our analysis we assume that, for each pipe, its volume
and the amount of gas flowing through it are known. The flow represents the
total amount of energy each pipe carries during a given period of time (which
we measure in GWh/d). The Technical System Manager decides how the gas
flows through the network. The first step is to obtain the demands at the
different nodes. Then, following some criteria, the Technical System Manager
decides the gas that should be introduced at each supply node and how the
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gas should be routed so that the total demand is fulfilled. The volume of a
pipe just depends on its length and its diameter. It is worth noting that the
total amount of gas that can flow through a pipe is not just a function of
its volume. Since natural gas is a compressible fluid, the capacity of a pipe
crucially depends on the construction materials and the maximum pressure
they can support.

A flow configuration, based on some realistic scenario of demands, is an
important part of the input to a loss allocation rule. In energy networks, it
is usual to work with reference scenarios with high/peak demand. This is the
case of the data of the Spanish gas network analyzed in Section 17.6. The way
to choose the reference scenario, although crucial to obtain cost-reflective loss
allocations, is not important for the theoretical analysis of this paper. Once a
methodology is chosen to allocate the losses, it can be applied to individual
scenarios and also to compute averages over sets of reference scenarios to get
more representative allocations.

Given a gas network configuration, we can estimate the total loss of the
system, say L, during a given year. This total loss L has to be assigned to
the haulers. Let Ah be the loss assigned to hauler h. Let Lh be the real
loss measured in the subnetwork of hauler h during this year. In the Spanish
network, given a price p per unit of gas, the haulers pay p(Lh − Ah) when
Lh −Ah > 0 and receive p

2 (Ah − Lh) when Lh −Ah ≤ 0.

17.2.1 The mathematical model

Let U = {1, 2, 3, . . .} be the (infinite) set of possible nodes. A graph is a
pair g = (N,E) where N ⊂ U is the (finite) set of nodes and E is a set of
edges, defined as ordered pairs in N , i.e., E ⊂ {(i, j) : (i, j) ∈ N × N and
i 6= j}. More generally, a multigraph is also a pair g = (N,E), but where the
set of edges is a multiset E ⊂ N ×N ×N. In particular, we say that two edges
(i, j, n) and (i′, j′, n′) are part of a multiedge if i = i′, j = j′, and n 6= n′.
We say that E does not have multiedges if the projection of E on N × N is
injective.

A path in g between i and j is a sequence of l > 1 nodes {k1, . . . , kl} such
that i = k1, j = kl, and (kq−1, kq) ∈ E for all q ∈ {2, . . . , l}. A simple path
in g between i and j is a path where all nodes are different. For the sake of
notation we often identify a path with the set of edges {(kq−1, kq)}q∈{2,...,l}. A
graph g is connected if for each pair of nodes i and j there is a path between
i and j in the undirected version of g. We omit the trivial extension of these
definitions for multigraphs.

A gas loss problem G is a 5-tuple (g, v, f,H, α) consisting in the following
elements:

1. The multigraph g = (N,E) represents the gas network.

We assume that g is a directed and connected graph without cycles,
where the directions of the edges are determined by the gas flows in the
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given scenario. If e = (i, j, l) ∈ E, then there may be gas flowing from i
to j.

2. v = (ve)e∈E where, for each e ∈ E, ve > 0 denotes the volume of e.

3. f = (fe)e∈E is the flow configuration where, for each e ∈ E, fe ≥ 0
denotes the flow of gas through e. We assume that

∑
e∈E fe > 0.

4. H = (H, {Eh}h∈H) is the hauler structure, where H denotes the set of
haulers and, for each h ∈ H, Eh denotes the (possibly empty) set of
edges of hauler h. In particular, E =

⊔
h∈H Eh.

5. α ∈ [0, 1] denotes the proportion of gas allowed to be lost by the set of
haulers.

For the sake of notation, graphs are used for most of the exposition, with
multigraphs being used only when they make a difference. Further, we assume
that the set H is infinite, although in each given problem only a finite number
of them will own edges. This is convenient in the study of some properties of
allocation rules. Yet, in the examples we just mention those haulers who own
some edge in the given problem.

The example below is borrowed from [1]:

Example 1 Let G be the gas problem where

1. g = (N,E), where the set of nodes is N = {s1, s2, 1, c1, c2} and the set
of edges is E = {(s1, 1), (1, c1), (s2, 1), (1, c2)}.

2. v(s1,1) = v(s2,1) = v(1,c1) = v(1,c2) = 100.

3. f(s1,1) = 20, f(s2,1) = 80, f(1,c1) = 60, and f(1,c2) = 40.

4. H = (H, {Eh}h∈H), where H = {h1, h2, h3} and Eh1 = {(s1, 1), (1, c1)},
Eh2 = {(s2, 1)}, and Eh3 = {(1, c2)}.

5. α = 0.1.

This gas problem is represented in Figure 17.1 and will be used as a running
example to illustrate some concepts and definitions. ♦

We now introduce some terminology. For each i ∈ N , we denote by Qi the
gas balance at node i, i.e., the amount of gas leaving node i minus the amount
of gas arriving at node i. Formally,

Qi =
∑

(i,j)∈E

f(i,j) −
∑

(j,i)∈E

f(j,i).

The set of suppliers S ⊂ N of the gas problem G is defined as the set
of nodes s ∈ N such that Qs > 0. On the other hand, the set of consumers
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s1

s2

1

c1

c2

f = 20

v = 100

f = 80

v = 100

f = 60

v = 100

f = 40

v = 100

h1

h2

h3

FIGURE 17.1: Representation of the gas problem in Example 1.

C ⊂ N is defined as the set of nodes c ∈ N such that Qc < 0. For the rest of
nodes i ∈ N \ (S ∪C), we have that Qi = 0. We make the natural assumption
that total supply and total demand are balanced, namely,∑

s∈S
Qs = −

∑
c∈C

Qc or, equivalently,
∑
i∈N

Qi = 0.

The total loss allowed to the haulers is L = α
∑

s∈S Qs. The flow carried by
each hauler h ∈ H, denoted by fh, is defined as the gas that reaches one of
the edges of hauler h from outside, that is, from some provider s ∈ S or from
an edge of another hauler. Formally, we first define, for each node i ∈ N and
each hauler h ∈ H, Qh

i = max{
∑

(i,j)∈Eh
f(i,j)−

∑
(j,i)∈Eh

f(j,i), 0}; if no edge

of hauler h contains node i we define Qh
i = 0. Then, for each h ∈ H,

fh =
∑
i∈N

Qh
i .

In particular, fh = 0 whenever Eh = ∅.1
Given a gas problem G and a pair (s, c) ∈ S × C, we define P (s, c) as the

set of simple paths in g from s to c. We denote by P (S,C) the set of all simple
paths from suppliers to consumers. Namely,

P (S,C) =
⋃

(s,c)∈S×C

P (s, c).

We now want to define an important notion for our analysis that we call
hauler’s influence network, which, given a hauler h, would contain all edges
whose gas might either reach some edge in Eh or come from some edge in Eh.
Formally, for each h ∈ H, we define N h = (gh, vh, fh), as the subnetwork of

1There are alternative ways to define the notion of “flow carried by a hauler”, but, as
far as our analysis is concerned, they would lead to similar results. Our formulation is the
one implicit in the Spanish Regulations ([3, 5]).
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(g, v, f) where gh = (Nh, Eh) and

Eh = {e ∈ E : there is p ∈ P (S,C) with e ∈ p and p ∩ Eh 6= ∅},
Nh = {i ∈ N : i ∈ e for some e ∈ Eh},
vh = (ve)e∈Eh ,

fh = (fe)e∈Eh .

Sometimes we slightly abuse language and refer to an edge’s influence network,
to mean the influence network that would have a hauler who owned only that
edge.

Example 1 (cont.) Going back to the gas problem in Figure 17.1, we have
that Qs1 = 20, Qs2 = 80, Q1 = 0, Qc1 = −60, and Qc2 = −40. Thus,
S = {s1, s2} and C = {c1, c2}. The table below contains the different Qh

i flow
balances and Figure 17.2 represents the influence networks corresponding to
this example.

Qh
i s1 s2 1 c1 c2 fh
h1 20 0 40 0 0 60
h2 0 80 0 0 0 80
h3 0 0 40 0 0 40 ♦

Nh1

s1

s2

1

c1

c2

f = 20

v = 100

f = 80

v = 100

f = 60

v = 100

f = 40

v = 100

Nh2

s1

s2

1

c1

c2

f = 80

v = 100

f = 60

v = 100

f = 40

v = 100

Nh3

s1

s2

1

c1

c2

f = 20

v = 100

f = 80

v = 100

f = 40

v = 100

FIGURE 17.2: Illustration of the hauler’s influence networks of Example 1.

17.3 The Shapley rule

In [1] the authors study four rules that provide, for each gas loss problem,
an allocation of the allowed loss among the different haulers. These rules,
whose definitions can be seen in [1], are the following: the flow’s rule, Rflow,
the aggregate edge’s rule, RAedge, the edge’s rule, Redge, and the proportional
tracing rule, RΓpt

.
In this section we introduce a new allocation rule: the Shapley rule. In

order to do it we first associate, to each gas loss problem a cooperative game
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with transferable utility, and then study the Shapley value of the associated
game.

We start with some preliminaries on cooperative games. A cooperative
game with transferable utility, briefly a TU game, is a pair (H, l) where H is
the set of agents and, for each T ⊂ H, l(T ) denotes the amount that agents
in T can obtain by themselves. We assume that l(∅) = 0.

The Shapley value introduced in [14] is, by far, the most studied allocation
rule in cooperative game theory. It associates, to each TU game (H, l) a vector
Sh(H, l) ∈ RH such that, for each h ∈ H,

Shh(H, l) =
∑

T⊂H\{h}

|T |! (|H| − |T | − 1)!

|H|!
(l(T ∪ {h})− l(T )) .

In our context H represents the set of haulers and, for each T ⊂ H, l(T ),
is the loss that haulers in T can have by “themselves”. Although there are
several ways in which the l(T ) values can be defined, we present a natural
one inspired in the approach taken in [9] for flow games. In their model there
is also a set of agents who own the different edges of the network and the
value of a group of agents T is defined as the maximum amount of flow that
can be transported (from the source to the sink) using only edges belonging
to agents in T . We apply the same principle to our model. Let fG(T ) denote
the maximum demand that can be satisfied using only edges of haulers in
T , i.e., the maximum amount of gas that can be transported from suppli-
ers to consumers without exceeding the capacities and demands of suppliers
and consumers, respectively. We also assume that the capacity of an edge
is bounded by fe, the total amount of gas flowing through that edge in the
gas problem under study. Then, we define lG(T ) = αfG(T ); in particular,
lG(H) = αfG(H) = α

∑
s∈S Qs = L. When no confusion arises we write l

instead of lG.
The Shapley rule, RSh. For each gas problem G we define the Shapley

rule as RSh(G) = Sh(H, lG).
Note that RSh(G) = αSh(H, fG).

Consider our running example. We first compute the associated cooper-
ative game l. Hauler 1 can transport by himself 20 units. Since α = 0.1,
lG (1) = 0.1 · 20 = 2. Haulers 1 and 2 can transport by themselves no more
than 60 units. They can do in several ways. For instance, 20 units through the
path {(s1, 1) , (1, c1)} and 40 units through the path {(s2, 1) , (1, c1)}. Since
α = 0.1, lG (1, 2) = 0.1 · 60 = 6. Analogously we can obtain that

T {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
lG (T ) 2 0 0 6 2 4 10

Thus the Shapley rule is RSh(G) = (4, 4, 2). In the table below we show, for
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this example, the Shapley rule and the four rules defined in [1]:

h fh Rflow RAedge Redge RΓpt

RSh

1 60 3.33 5 4 4 4
2 80 4.44 3.33 4 4 4
3 40 2.22 1.66 2 2 2

Although in this example several rules lead to the same allocation, in general
the five rules are all different from one another.

17.4 Properties

The main objective of this paper is to study the axiomatic behavior of the
Shapley rule, and compare this behavior with that of the other rules stud-
ied in [1]. In order to do so, we focus our analysis in precisely the properties
introduced in that paper, and refer the reader to the discussions therein for
additional insights. Since these properties are inspired in the principles men-
tioned in different regulations and directives of the European Union regulation,
the authors in [1] present the following discussion to provide some additional
motivation to the properties and their underlying principles:

In Directive 2003/55/EC of the European parliament and
the council of 26 June 2003 ([13]), concerning common rules
for the internal market in natural gas, establishes some gen-
eral principles that must be pursued. Some of them are the
following:

1. “tariffs are published prior to their entry into force”.

2. “the provision of adequate economic incentives, using, where
appropriate, all existing national and Community tools. These tools
may include liability mechanisms to guarantee the necessary invest-
ment”.

3. “national regulatory authorities should ensure that transmission and
distribution tariffs are non-discriminatory and cost-reflective”.

4. “Progressive opening of markets towards full competition should
as soon as possible remove differences between Member States.”

The Spanish regulation ensures that tariffs are published
prior to their entry into force. Moreover, since the amount
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received or paid by each hauler depends monotonically on
their loss (the larger is the loss, the larger is the amount
the hauler pays) we can argue that it provides the adequate
economic incentives.
Regarding the principles of being non-discriminatory, cost-
reflective, and foster competition. We introduce some prop-
erties related to these principles.”

17.4.1 Cost reflective properties

The first property requires that haulers that do not transport gas do not
have any assigned loss and the second one says that if two gas problems only
differ on edges without flow, then the losses assigned to each hauler should
coincide.

Null hauler (NH). Let G = (g, v, f,H, α) and h ∈ H be such that, for
each e ∈ Eh, fe = 0. Then, Rh(G) = 0.

Independence of unused edges (IUE). Let the gas problems G =
(g, v, f,H, α) and Ḡ = (ḡ, v̄, f̄ , H̄, α) be such that H = H̄ and, for each h ∈ H,
Ēh = Eh \ Ê, where Ê ⊂ E satisfies that, for each e ∈ E \ Ê, f̄e = fe and
v̄e = ve, and, for each e ∈ Ê, fe = 0. Then, R(G) = R(Ḡ).

A cost-reflective rule should not be sensitive to “equivalent” representa-
tions of the same network. The next two properties try to capture this idea.

Independence of edge sectioning (IES). Let the gas problems G =

(g, v, f,H, α) and Ḡ = (ḡ, v̄, f̄ , H̄, α) be such that H = H̄ and there are ĥ ∈ H
and (i, j) ∈ Eĥ satisfying

• ḡ = (N̄ , Ē), where N̄ = N ∪ {l} and l /∈ N , Ēĥ = (Eĥ\{(i, j)}) ∪
{(i, l), (l, j)} and, for each h ∈ H\{ĥ}, Ēh = Eh, and

• f̄(i,l) = f̄(l,j) = f(i,j), v̄(i,l) + v̄(l,j) = v(i,j), and, for each e ∈ E\{(i, j)},
f̄e = fe and v̄e = ve.

2

Then, for each h ∈ H, Rh(G) = Rh(Ḡ).
Independence of edge multiplication (IEM). Let G = (g, v, f,H, α)

and Ḡ = (ḡ, v̄, f̄ , H̄, α) be such that H = H̄ and there are ĥ ∈ H, e =
(i, j,m) ∈ E, ē1 = (i, j, l1) ∈ Ē, and ē2 = (i, j, l2) ∈ Ē satisfying

• ḡ = (N, Ē), where Ēĥ = (Eĥ \ {e}) ∪ {ē1, ē2} and, for each h ∈ H\{ĥ},
Ēh = Eh, and

2The condition v̄(i,l) + v̄(l,j) = v(i,j) just reflects that, when a pipe is transversely cut
(orthogonally to the direction of the flow), the volume of the resulting two pipes adds up
to the volume of the original pipe (and the same flow that was crossing the original pipe is
crossing the two pipes in which it has been divided f̄(i,l) = f̄(l,j) = f(i,j)).
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• fe = f̄e1 + f̄e2 , ve = v̄e1 = v̄e2 , and, for each e ∈ E\{e}, f̄e = fe and
v̄e = ve.

3

Then, for each h ∈ H, Rh(G) = Rh(Ḡ).
To prevent haulers from artificially distorting the final allocation of losses,

if two haulers engage in some trades affecting their own edges, then the rest
of the haulers should not be affected. This implies, in particular, that the loss
allocated to a hauler does not depend on who owns the edges different from
his own.

Independence by sales (IS). Let G = (g, v, f,H, α), Ḡ = (g, v, f, H̄, α),
h1 and h2 in H, and e ∈ E be such that Ēh1

= Eh1
\{e}, Ēh2

= Eh2
∪ {e},

and, for each h ∈ H\{h1, h2}, Ēh = Eh. Then, for each h ∈ H\{h1, h2},
Rh(G) = Rh(Ḡ).4

Independence of irrelevant changes (IIC). Consider the gas problems
G = (g, v, f,H, α) and Ḡ = (ḡ, v̄, f̄ , H̄, α) and let h ∈ H ∩ H̄ be such that
N h = N̄ h. Then, Rh(G) = Rh(Ḡ).

17.4.2 Non-discriminatory properties

The most standard non-discriminatory principle says that we should offer
an equal treatment to equal agents. Some of the following properties deal with
formalizations of this general notion.

Symmetry on edges (SE). Let G = (g, v, f,H, α) and h, h̄ ∈ H be such
that Eh = {e}, Eh̄ = {ē}, fe = fē, and ve = vē. Then, Rh(G) = Rh̄(G).

Symmetry on paths (SP). Let G = (g, v, f,H, α) and h, h̄ ∈ H be such
that Eh = {e}, Eh̄ = {ē}, ve = vē, and N h = N h̄. Then, Rh(G) = Rh̄(G).

The following properties build upon the idea that there should be some
kind of proportionality on flow and volume.

Flow proportionality on edges (FPE). Let G = (g, v, f,H, α) and
h, h̄ ∈ H be such that Eh = {e}, Eh̄ = {ē}, and ve = vē. Then, if fē > 0, we
have

Rh(G) =
fe
fē
Rh̄(G).

Volume proportionality on edges (VPE). Let G = (g, v, f,H, α) and
h, h̄ ∈ H be such that Eh = {e}, Eh̄ = {ē}, and fe = fē. Then,

Rh(G) =
ve
vē
Rh̄(G).

3In this case, the condition ve = v̄e1 = v̄e2 just reflects that the original pipe e is being
replaced by two pipes identical to it: same volume and same endpoints. The total flow in
the network remains unchanged, so these two new pipes, together, carry the same flow as e
(fe = f̄e1 + f̄e2 ).

4The rules satisfying IS have an interesting property, which in [1] is referred to as edge
decomposability. Namely, these rules can be computed in a two stage procedure. We first
decide the allowed loss on each edge and later compute the allowed loss to each hauler
adding the amount assigned to each of his edges.
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Volume proportionality on paths (VPP). Let G = (g, v, f,H, α) and
h, h̄ ∈ H be such that Eh = {e}, Eh̄ = {ē}, and N h = N h̄. Then,

Rh(G) =
ve
vē
Rh̄(G).

17.4.3 Properties to foster competition

The way in which losses are allocated among haulers should not harm
competition among agents. In particular, two haulers should not be better off
by merging together.

Merging proofness (MP). Let G = (g, v, f,H, α), Ḡ = (g, v, f, H̄, α),

h1, h2 ∈ H, and h ∈ H̄ be such that Ēh = Eh1
∪ Eh2

and, for each ĥ ∈
H \ {h1, h2}, Ēĥ = Eĥ . Then Rh(Ḡ) ≤ Rh1

(G) +Rh2
(G).

17.5 Axiomatic behavior of the Shapley rule

We present now the main result of this paper, which shows what properties
are satisfied by the the Shapley rule.

Proposition 1 1. The Shapley rule satisfies NH, IUE, IES, IEM, and SP.

2. The Shapley rule does not satisfy IS, SE, FPE, VPE, VPP, IIF, IIC,
and MP.

Proof 1 We start by proving statement 1.
• NH. Let G = (g, v, f,H, α) and h ∈ H be such that, for each e ∈ Eh fe =

0. Since the edges of hauler h do not carry flow, they never help to increase
the total flow that can be carried between a supplier and a consumer. Thus,
for each T ⊂ H\{h}, we have that lG(T ) = lG(T ∪ {h}) and the definition of
the Shapley value implies that RSh

h = 0.
• IUE. Let G = (g, v, f,H, α) and Ḡ = (ḡ, v̄, f̄ , H̄, α) be as in the definition

of IUE, that is, there is Ê ⊂ E such that, for each h ∈ H, Ēh = Eh \ Ê and,
for each e ∈ Ê, fe = 0.

Let T ⊂ H be a set of players. Again, the edges that do not carry flow
never help to increase the total flow that can be carried between a supplier
and a consumer. Thus, they can be removed for the computation of the TU
game associated with Ḡ and, therefore, for each T ⊂ H, lG(T ) = lḠ(T ). Thus,
RSh(G) = RSh(Ḡ).
• IES. Let G = (g, v, f,H, α) and Ḡ = (ḡ, v̄, f̄ , H̄, α) be two problems that

only differ because there are ĥ ∈ H and (i, j) ∈ Eĥ satisfying that (i, j) is
sectioned in two consecutive edges (i, l), (l, j) ∈ Ēĥ.
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Since f(i,j) = f̄(i,l) = f̄(l,j), edge sectioning does not change the maximum
flow that can be carried from consumers to suppliers. Then, for each T ⊂ H,
lG(T ) = lḠ(T ) and, therefore, for each h ∈ H, RSh

h (G) = RSh
h (Ḡ).

• IEM. Let G = (g, v, f,H, α) and Ḡ = (ḡ, v̄, f̄ ,H, α) be two problems that

only differ because there are ĥ ∈ H and e ∈ Eĥ satisfying that e is duplicated
in two multiedges e1, e2 ∈ Ēĥ, with ve = v̄e1 = v̄e2 .

Since fe = f̄e1 +f̄e2 , edge multiplication does not change the maximum flow
that can be carried from consumers to suppliers because we only have to split
among f̄e1 and f̄e2 the maximum flow that went through fe. Then, for each
T ⊂ H, lG(T ) = lḠ(T ) and, therefore, for each h ∈ H, RSh

h (G) = RSh
h (Ḡ).

• SP. Let G = (g, v, f,H, α) and h, h̄ ∈ H be such that Eh = {e}, Eh̄ =
{ē}, ve = vē and N h = N h̄.

Since N h = N h̄ we have that fe = fē and, for each p ∈ P (S,C), e ∈ p if
and only if ē ∈ p. Then, for each T ⊂ H\{h, h̄} we have lG(T ∪h) = lG(T ∪h̄).
Thus, the definition of the Shapley value implies that RSh

h (G) = RSh
h̄

(G).

Next, we present some counterexamples to prove statement 2.
• IS. Since IS is stronger than MP (Proposition 1 in [1]) and RSh does

not satisfy MP (see below), RSh does not satisfy IS.
• SE. Let G = (g, v, f,H, α) be as in the picture below.

G
2

1

1

2

h1

h2

h3

Problem G is as in the definition of SE, since h1 = {e1} and h3 = {e2} with
fe1 = fe2 = 2 and ve1 = ve2 . However, h3 can satisfy some demand on his
own, while h1 needs h2. In particular, we get RSh

h1
(G) = α 6= 2α = RSh

h3
(G).

• FPE and VPE. Since FPE and VPE are stronger than SE (Proposition 1
in [1]) and RSh does not satisfy SE, RSh satisfies neither FPE nor VPE.
• VPP. Let G = (g, v, f,H, α), h1 and h2 as in the picture below.

G
f = 1
v = 1

f = 1
v = 2

h1

h2

Clearly, RSh
h2

(G) = RSh
h1

(G) 6= 2RSh
h1

(G) =
vh2

vh1
RSh

h1
(G).

• IIF. Let G = (g, v, f,H, α) and Ḡ = (g, v, f̄ ,H, α) be as in the picture
below.
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G
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5 1
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Ḡ

1

3 7 11

5 11
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h1

h2

h3

Problems G and Ḡ are as in the definition of IIF. Note that there are two
edges where the flow increases and N h1 = N̄ h1 . In this case we get the games

– lG({h1}) = 0, lG({h2}) = α, lG({h3}) = α, lG({h1, h2}) = 2α,
lG({h1, h3}) = 2α, lG({h2, h3}) = 8α, lG({h1, h2, h3}) = 9α and

– lḠ({h1}) = 0, lḠ({h2}) = 3α, lḠ({h3}) = 7, lḠ({h1, h2}) = 3α,
lḠ({h1, h3}) = 8α, lḠ({h2, h3}) = 18α, lḠ({h1, h2, h3}) = 19α.

The corresponding Shapley values are so that

RSh
h1

(G) = α
4

6
6= α

3

6
= RSh

h1
(Ḡ).

The key is that the marginal contribution of hauler h1 to hauler h2 changes
from G to Ḡ.
• IIC. Since IIC is stronger than IIF (Proposition 1 in [1]) and RSh does

not satisfy IIF, RSh does not satisfy IIC.
• MP. Let G = (g, v, f,H, α) and Ḡ = (g, v, f, H̄, α) be as in the picture

below.

G

22
3

41

3

3

Ḡ

22
3

41

3

3

h1

h2, h

h3

Note that H = {h1, h2, h3} and H̄ = {h, h3} where h is the union of h1 and
h2. Problems G and Ḡ are as in the definition of MP. In this case we get the
games

– lG({h1}) = 0, lG({h2}) = 3α, lG({h3}) = 0, lG({h1, h2}) = 5α,
lG({h1, h3}) = 2α, lG({h2, h3}) = 7α, lG({h1, h2, h3}) = 9α and

– lḠ({h}) = 5α, lḠ({h3}) = 0, lḠ({h, h3}) = 9α.

The corresponding Shapley values are so that

RSh
h (Ḡ) = α

42

6
> α

40

6
= α

8

6
+ α

32

6
= RSh

h1
(G) +RSh

h2
(G). �
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EU Principles

XXXXXXXXXProperty
Rule

Flow Aedge Edge
Prop.

Tracing
Shapley

Null hauler X X X X X
Ind. Unused Edges X X X X

Cost- Ind. Edge Sectioning X X X X X
Reflective Ind. Edge Mult. X X X X

Ind. Sales X X
Ind. Irr. Changes X
Symmetry on Edges X X X
Symmetry on Paths X X X X X

Non- Flow Prop. Edges X X X
Discriminat. Volume Prop. Edges X X

Volume Prop. Paths X X X
Merging Proofness X X X

Competition Merging Proofness X X X

TABLE 17.1: Behavior of the rules with respect to the different properties.

In Table 17.1 we compare the properties satisfied by the Shapley rule
with the properties satisfied by the four rules considered in [1]. The authors
then continue discussing, for each of the four rules they study, the “degree of
fulfillment” of the three principles. Four degrees were considered: low, normal,
high, and very high. We borrow from them the table below, with the addition
of one last column for the Shapley rule:

Principle\Rule Flow Aedge Edge Prop. tracing Shapley

Cost reflective Normal Low High Very high Normal
Non-discriminatory High High Very high High Normal
Foster competition Very high Low Very high Very high Low

Since the discussion associated to the four rules different from the Shap-
ley value is already included in the analysis in [1], we briefly discuss now
the column associated to the Shapley rule. It satisfies the same cost reflec-
tive properties as the flow’s rule, thus we assign to the Shapley value the
same degree in that category. Usually non-discriminatory properties are re-
lated with the principle of equal treatment of equals. Then, when comparing
symmetry on edges with symmetry on paths, the later takes into account the
whole structure of the network, and not just each edge on isolation. Thus,
we think that focusing on paths is more reasonable and therefore we assign
a normal grade to Shapley rule even though it does not satisfy most of the
non-discriminatory properties. Finally, since foster competition has a unique
property, the assignment is obvious.

From the table and the above discussion it is clear that the Shapley rule
does not exhibit a very good behavior with respect to the different properties
and principles, being clearly outperformed by both the proportional tracing
rule and the edge’s rule.
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There are many problems where the Shapley value of an associated coop-
erative game has many interesting properties compared with other rules in
the same setting. We can mention, for instance, airport problems (see [11]),
queuing problems (see [12] and [7], and minimum cost spanning tree problems
(see [10] and [2]). Nevertheless in our case the Shapley value satisfies less prop-
erties than other rules. Of course it could be possible that, if we define the
associated cooperative game lG in a different way, we could obtain a Shapley
value with more properties.

In the next section we take a different approach to assess the performance
of the Shapley rule, which can be seen as complementary to the one developed
in this section. More precisely, we study the allocations the Shapley rule pro-
poses in different problems, a case study with real data and a set of variations
of it, and comparing these allocations with the ones proposed by the other
four rules.

17.6 Application to the Spanish gas transmission net-
work

17.6.1 Case study with real data

In this section we apply the Shapley rule to the Spanish gas transmission
network. We compare the allocation proposed by the Shapley rule with the
allocations proposed by the four rules considered in [1]. We build upon the
analysis there, and take as benchmark scenario one in which demands fol-
low from reported figures for a hypothetical day of very high demand in the
Spanish gas network.5

In Figure 17.3 we represent the Spanish gas transmission network. We have
boxed the pipes belonging to each hauler, except for hauler h1, who owns all
the remaining ones. Hauler h1 is Enagás, a former public body who initially
owned the whole network and still owns more that 90% of the network.

In Tables 17.2, 17.3 and 17.4 we can see the allocations proposed by the
Shapley rule and the other rules. We take α = 0.002 because is the parameter
used in Spain (see [4]).

The three tables contain similar information, but measured in different
ways. Moreover, the numbers they contain are the same as in [1], but where
an additional column for the Shapley value has been included. Table 17.2 rep-
resents the allocated losses measured in gas units, corresponding to the direct
application of the different rules to the data of the Spanish scenario under

5The computations are derived for the optimal network operation as obtained by the soft-
ware GANESOTM (developed by researchers at the University of Santiago de Compostela
and the Technological Institute for Industrial Mathematics for Reganosa Company). For
further details refer to the analysis in [1].
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FIGURE 17.3: Haulers of the Spanish gas transmission network.

Gas losses Network
Flow Aedge Edge

Prop.
Shapley

in GWh/d Owned (%) Tracing
Enagás (h1) 91.44 4.55 5.32 5.27 4.72 4.69
Reganosa (h2) 1.76 0.21 0.0024 0.031 0.21 0.22
Gas Extremadura (h3) 0.61 0.0071 0.000010 0.00020 0.000073 0.0038
Enagás Transporte del Norte (h4) 3.54 0.31 0.0086 0.027 0.24 0.27
Transportista Regional Gas (h5) 1.46 0.016 0.000051 0.0005 0.00052 0.0090
Endesa Gas Transportista (h6) 0.36 0.0045 0.0000019 0.000029 0.000035 0.0024
Gas Natural (h7) 0.82 0.24 0.00095 0.0062 0.17 0.14

TABLE 17.2: Gas loss allocated to the haulers (GWh/d) with α = 0.002.

Percentage Network
Flow Aedge Edge

Prop.
Shapley

of gas losses (%) Owned (%) Tracing
Enagás (h1) 91.44 85.19 99.77 98.77 88.37 87.88
Reganosa (h2) 1.76 3.97 0.046 0.59 3.95 4.03
Gas Extremadura (h3) 0.61 0.13 0.00019 0.0037 0.0014 0.072
Enagás Transporte del Norte (h4) 3.54 5.74 0.16 0.51 4.44 5.11
Transportista Regional Gas (h5) 1.46 0.31 0.00096 0.0094 0.0098 0.17
Endesa Gas Transportista (h6) 0.36 0.083 0.000035 0.00055 0.00066 0.046
Gas Natural (h7) 0.82 4.58 0.018 0.12 3.23 2.69

TABLE 17.3: Percentage of gas loss allocated to the haulers.
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Monetary equivalent Network
Flow Aedge Edge

Prop.
Shapleyin millions of e Owned (%) Tracing

Enagás (h1) 91.44 49.77 58.30 57.71 51.64 51.35
Reganosa (h2) 1.76 2.32 0.027 0.34 2.31 2.36
Gas Extremadura (h3) 0.61 0.077 0.00011 0.0022 0.00080 0.042
Enagás Transporte del Norte (h4) 3.54 3.35 0.095 0.30 2.60 2.99
Transportista Regional Gas (h5) 1.46 0.18 0.00056 0.0055 0.0057 0.098
Endesa Gas Transportista (h6) 0.36 0.049 0.000020 0.00032 0.00039 0.027
Gas Natural (h7) 0.82 2.68 0.010 0.068 1.89 1.57

TABLE 17.4: Annual monetary equivalent, assuming 1 GWh/d = 30000 e.

consideration. Table 17.3 represents the percentage allocated to each hauler.
Finally, Table 17.4 represents the estimation of the annual monetary equiva-
lent, provided that the same demands repeat each and every day. Since the
scenario under consideration comes from a peak day, whose demand is around
twice the demand of an average day, one would get more realistic estimations
after dividing by two the amounts in Table 17.4. In practice one might apply
the chosen rule on a daily basis and then add up the daily allocations to get
the annual loss allocation.

The aggregate edge’s rule assign 99.77% of the allocated losses to Enagás,
which we believe is unfair. As it was argued in [1] the aggregate edge’s rule
size discriminates, penalizing small haulers and favoring mergers, which hurts
competition. This probably explains why most Spanish haulers strongly op-
posed to the aggregate edges rule until it was finally replaced by the flow’s
rule.

In this case we can see that the allocation proposed by the Shapley rule
is quite similar to the one proposed by the proportional tracing rule. In the
next section we further explore this connection.

17.6.2 Simulation study building upon the real data

Given the results in the analysis above, it is natural to wonder whether or
not the similarity between the allocations proposed by the Shapley rule and
the proportional tracing rule is just a coincidence for the given data. In order to
get additional evidence, we have run a simulation study based on the original
scenario, but where relevant data of the problem are randomly modified. More
precisely, we have generated 10000 scenarios from the benchmark using the
following procedure:

• The only information that is modified from scenario to scenario is the
ownership relation between edges and haulers, with pipes being ran-
domly assigned to haulers.

• In order to get reasonably connected networks, the random assignment
is not performed on individual pipes, but on some predetermined groups
of pipes. More precisely, the pipes are divided in 16 groups, correspond-
ing to the 16 Spanish autonomous communities (setting aside Canary
Islands, which contain no pipes of the high-presure network).
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• Then, each of the 16 groups is randomly assigned to one of the 7 available
haulers. We keep the same number of haulers of the Spanish network
which should provide enough richness to the random generating pro-
cess (note that a hauler might end up with no assigned pipes in some
realizations).

• This random process is repeated 10000 times, with the goal of obtain-
ing very diverse realizations: homogeneous haulers, a single dominant
hauler, split between medium haulers and small ones,. . .

• For each realization we obtain the resulting loss allocation for the five
rules discussed in this paper. Finally, we compute the matrix of correla-
tions between the allocations proposed by these five rules and also with
the vector of the length of pipes owned by each hauler.6

In Tables 17.5, 17.6 and 17.7 we summarize the information contained in
those correlation matrices. Table 17.5 contains the average of the 10000 cor-
relation matrices obtained with the above procedure. As one might expect,
all correlations are relatively high, with average numbers over 0.8 between all
pairs of rules. The lowest number is found between the edge’s rule and Shap-
ley’s rule but, more importantly, the highest average correlation is between
Shapley’s rule and the proportional tracing rule, reinforcing the observation
in the analysis for the benchmark scenario. Indeed, this average correlation
is almost perfect, being as high as 0.9933. The next highest correlations are
found when comparing the flow rule with either the proportional tracing rule
or the Shapley’s rule, with values round 0.97. Although these correlations are
also very high, they are significantly smaller than the previous one (0.9933 is
just 0.007% away from perfect correlation, whereas 0.97 is more than 4 times
further away).

Correlations Flow Aedge Edge
Prop.

Tracing
Shapley

Pipe
Length

Flow 1.0000 0.9166 0.8717 0.9700 0.9707 0.6910
Aedge 0.9166 1.0000 0.8972 0.8988 0.8751 0.8154
Edge 0.8717 0.8972 1.0000 0.8776 0.8336 0.6200
Prop. Tracing 0.9700 0.8988 0.8776 1.0000 0.9933 0.6526
Shapley 0.9707 0.8751 0.8336 0.9933 1.0000 0.6446
Pipe Length 0.6910 0.8154 0.6200 0.6526 0.6446 1.0000

TABLE 17.5: Average of correlation matrices.

If we look now at Table 17.6, which contains, for each pair of rules, the
minimum correlation between them across the 10000 realizations, we again
see the strong connection between Shapley’s rule and the proportional tracing
rule. In the scenario where the correlation between them was smaller, it was

6We have also used other approaches to compare the different rules, all of them leading
to the same qualitative results.
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Correlations Flow Aedge Edge
Prop.

Tracing
Shapley

Pipe
Length

Flow 1.0000 −0.1037 −0.2191 0.6020 0.5756 −0.8766
Aedge −0.1037 1.0000 −0.3963 0.0743 −0.1729 −0.4711
Edge −0.2191 −0.3963 1.0000 0.2929 0.0777 −0.6746
Prop. Tracing 0.6020 0.0743 0.2929 1.0000 0.9181 −0.8856
Shapley 0.5756 −0.1729 0.0777 0.9181 1.0000 −0.9824
Pipe Length −0.8766 −0.4711 −0.6746 −0.8856 −0.9824 1.0000

TABLE 17.6: Minimum across correlation matrices.

Correlations Flow Aedge Edge
Prop.

Tracing
Shapley

Pipe
Length

Flow 1.0000 1.0000 0.9998 0.9999 0.9999 0.9987
Aedge 1.0000 1.0000 0.9999 0.9998 0.9994 0.9997
Edge 0.9998 0.9999 1.0000 0.9996 0.9992 0.9995
Prop. Tracing 0.9999 0.9998 0.9996 1.0000 1.0000 0.9994
Shapley 0.9999 0.9994 0.9992 1.0000 1.0000 0.9998
Pipe Length 0.9987 0.9997 0.9995 0.9994 0.9998 1.0000

TABLE 17.7: Maximum across correlation matrices.

still over 0.9. For any other pair of rules, this number is at most 0.6 and in many
cases it can even be negative. Finally, Table 17.7 contains the information
about the maximum correlation between any pair of rules. Not surprisingly,
this number is very close to one for every pair of rules.

Given the poor behavior observed by the Shapley value in the axiomatic
analysis developed in Section 17.4, it is interesting to see that it exhibits such
a high correlation with the proportional tracing rule which, arguably, may
be considered the one performing better from the axiomatic point of view.
We do not claim that the analysis we have just presented, based on numeric
simulations, represents any kind of proof, but it suggests that there must be
some mathematical connection between these two rules which might be the
subject of future research.

17.7 Conclusions

In this paper we have studied the Shapley value in the context of loss
allocation in energy networks and developed an axiomatic analysis to study
its behavior with respect to different axioms. The main result in the paper,
Proposition 1 shows that the behavior of the Shapley rule is far from being
as good as that of other rules studied in the literature, such as the edge’s rule
and the proportional tracing rule. This leaves as an open problem the issue
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of finding new desirable properties that the Shapley rule might satisfy and
which might ultimately lead to an axiomatic characterization.

Interestingly, we then develop a comparative analysis of the different allo-
cation rules on a set of problems originated from real data and observe that
the Shapley rule has a very high correlation (over 0.99) with the proportional
tracing rule. This may seem a bit contradictory with the fact that these two
rules exhibit a very different behavior with respect to the set of axioms dis-
cussed in Section 17.4. Then, an open question for future research would be
to understand the mechanism driving this unusually high correlation.
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