
A twist on SLP algorithms for NLP and MINLP problems:

An application to gas transmission networks
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Abstract

This paper presents a modification of classic SLP algorithms for the resolution of NLP
and MINLP problems, and does it with a clear application in mind: optimization of gas
transmission networks.

The SLP-NTR and 2-step SLP algorithms we present have been developed within the
collaboration with a company of the gas industry and thoroughly tested with real problems
in this field. Here we present a comparison of their performance with that of classic SLP
algorithms and state of the art solvers.

Importantly, to provide some foundations for the potential applicability of these new
algorithms to general NLP and MINLP problems, we present a theoretical analysis of their
properties.
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ming, NLP problems, MINLP problems
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1 Introduction

Energy networks are becoming more and more prevalent worldwide and, therefore, an efficient
management of these infrastructures is crucial to get the most out of the different sources of
energy: gas, oil, electricity,. . . In particular, gas transmission networks have already been studied
for a long time and two recent references on the optimization problems that arise in this field
are Ŕıos-Mercado and Borraz-Sánchez (2015) and Koch et al. (2015).

This paper stems from the collaboration between ITMATI (Technological Institute for Indus-
trial Mathematics) and a Spanish company operating in the gas industry: Reganosa, a Transport
System Operator who owns part of the Spanish gas transmission network. One of the main prob-
lems tackled during this collaboration is precisely the optimization of gas transmission networks
in steady state, and the algorithms we present in Section 3 are routinely used by the company.
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In particular, these algorithms are at the core of GANESOTM software, which stands for GAs
NEtwork Simulation and Optimization, developed for and owned by Reganosa Company.1

The contribution of this paper to the literature is twofold: a first one dealing with some new
ideas in the modeling of gas networks and a second one is more methodological, dealing with
the resolution technique of the mixed integer nonlinear optimization problems associated to the
gas network models.

In Section 2 we start by introducing a relatively standard baseline model for the optimization
of gas transmission networks. Then, our contribution consists of some novel approaches in
the optimization-driven modeling of gas transmission networks, such as the explicit modeling
of boil-off costs at regasification plants and some novel graph-representations for compressor
stations. These and other elements have been successfully incorporated and tested as part of
the functionalities of GANESOTM.

The second part of the contribution is methodological, consisting of a twist to classic se-
quential linear programming (SLP) techniques that has delivered very competitive results when
compared to state of the art solvers, as reported in Section 5. The optimization problems as-
sociated to gas transmission networks are highly nonlinear and nonconvex, mainly because of
the nature of the pressure loss constraints that account for the effect of the friction of the gas
with the walls of the pipes. Classic SLP algorithms solve, at each iteration, a linearization of
the underlying NLP problem, obtaining a solution that is then taken as the basis for the lin-
earization in the next iteration. If such an algorithm converges, the limit is a KKT point of the
original NLP problem (see, for instance, Kim et al. (1985)). In order to improve the convergence
properties of these algorithms, a trust region is included in the linear subproblems. What we
propose in this paper is a 2-step SLP algorithm in which the trust region is removed in the first
step, in which what we call SLP-NTR algorithm is run, and brought back in the second one,
where a more classic SLP algorithm is used.

Our practical experience has shown that, for the optimization NLP problems defined on gas
transmission networks, the 2-step SLP algorithm has very good behavior, delivering solutions
that outperform not only the one-step SLP algorithms, but also state of the art solvers such as
Knitro, Ipopt, and BARON.

Importantly, some of the resulting problems associated to gas network optimization problems
may contain binary and integer variables (to model elements such as control valves, compressors,
boil-off costs, operational ranges,. . . ). Then, to solve the resulting MINLP problems, classic SLP
algorithms do not work. An important advantage of the SLP-NTR algorithm is that it can be
readily adapted as a heuristic for MINLP problems, and so does the 2-step SLP algorithm. For
the latter, the binary and integer variables are fixed in the second step to the values obtained
by the SLP-NTR algorithm. This two-step heuristic for MINLP has also been satisfactorily
tested on different problems associated to gas transmission networks and, given our experience
with it, we conjecture that it can be especially useful for problems in which the integer variables
represent a relatively small proportion of the total number of variables.

As part of the above methodological contribution we develop, in Section 4, a theoretical
analysis of the properties of the SLP-NTR algorithm run in the first step of the 2-step SLP
algorithm. We prove that limit points of the sequence generated by the algorithm are KKT
points of NLP and, further, even if the sequence does not converge, if two points in the sequence
are sufficiently close, one of them is almost a KKT point in a sense that is properly formalized
in Section 4.

We have chosen to start our analysis in Section 2 with the discussion regarding the modeling of
gas transmission networks and then move to the methodological contribution on SLP algorithms
in Section 3 and Section 4. Yet, the latter two sections are self-contained, so those readers

1See http://www.reganosa.com/en/ganeso.
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mainly interested on the mathematical programming aspects behind these algorithms may jump
directly to Section 3. Section 5 presents a computational analysis of the performance of these new
SLP algorithms on gas transmission networks, bringing together the contents of the preceding
sections. The paper concludes with some conclusions and future work.

2 Optimization of gas transmission networks

As we have mentioned in the Introduction, there is already a large body of literature on the
physical modeling of gas networks, both in the stationary case and in the transient one, and
there are also relatively standard simplifications to obtain realistic optimization models that can
be handled with state of the art techniques. In this context, given that the main contribution of
this paper lies on the resolution approach, we won’t delve deeply on the formal derivation of the
mathematical constraints but the interested reader may refer, for instance, to González-Rueda
(2017), González-Diéguez (2017), and Möller (2004) for three PhD thesis that thoroughly discuss
the physics behind each constraint.2

There are three important goals that we want to accomplish in this section: i) to introduce
the (standard) elements of the baseline optimization model for the stationary case, ii) to present
some novel elements in the modeling of gas transmission networks, arising as a result of the
interaction with the Spanish company Reganosa and that have delivered satisfactory results
within that collaboration, and iii) to discuss the resulting optimization model and motivate the
chosen algorithmic approach, which is then formally developed in Section 3.

2.1 Baseline model

The baseline model we present in this section can be summarized as follows. Given a gas network
in which consumers have some demands and suppliers some capacities, provide the feasible flow
configuration that satisfies the demand, delivering the gas within some pre-specified pressure
bounds, and that has a minimal cost, measured by the energy consumption at compressors.

Preliminary concepts and notations

We model a gas transmission network as a directed graph G = (N,E), where N is the set of
nodes and E ⊂ N × N is the set of edges. The set E is partitioned into three subsets, Ep,
Ec, and Ev, denoting the sets of pipes, compressors, and valves, respectively. The elements of
N represent supply nodes, demand nodes, and structural nodes (intersections between pipes at
which no gas is exchanged with the outside of the network).

Given a node i ∈ N , we denote by E ini
i ⊂ E and Efin

i ⊂ E the sets of edges having i as initial
and final node, respectively.

Variables

The main variables of the problem are the following:

• For each edge k = (i, j) ∈ E, qk ∈ R denotes the (mass) flow rate [kg/s] through edge k.
A positive flow represents gas flowing from (i, j), whereas a negative flow represents gas
going in the opposite direction.3

2Like this paper, the first two references have been developed within the collaboration between Reganosa
company and ITMATI.

3In some networks one can know in advance the flow direction in all the edges of the network, which greatly
simplifies the analysis (in particular, the need of binary variables is notably reduced). In the case of the Spanish
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• For each node i ∈ N , ui ≥ 0 denotes the square of the gas pressure [Pa2] at node i.
Alternatively, one could use the pressure itself, pi ≥ 0, but for our modeling it turns out
that the squared pressure is more convenient (particularly for the pressure loss constraints,
see Equation (pl).

Auxiliary variables introduced to facilitate the presentation of the optimization model:

• For each pipe k ∈ Ep, pk >= 0 denotes the average pressure [Pa] at pipe k.

• For each compressor k ∈ Ec, gk denotes the self-consumption [kg/s] of gas at compressor k.
This self-consumption will be the cost to minimize in our model (see Equation (Obj)).

Binary variables needed for the controllable elements of the network:

• For each valve k ∈ Ev, we have a binary variable yv

k.

• It will be discussed later that, depending on the modeling approach, we may also have a
binary variable yc

k associated to each compressor k ∈ Ec.

Main constraints

We start with the box constraints, which provide bounds for the variables:

ulb
i ≤ ui ≤ uub

i , ∀i ∈ N,
qlb

k ≤ qk ≤ qub

k , ∀k ∈ E. (bc)

The average pressure in a pipe k, pk, can be computed in different ways. The main one that
we use in our modeling is4

pk =
2

3

(√
uiuj −

√
uiuj√

ui +
√
uj

)
, k ∈ Ep. (apcom)

Alternatively, one can rely on the less precise but simpler formula given by

pk =
√

(ui + uj)/2, k ∈ Ep. (apsim)

At the core of a gas transmission problem we have the standard flow conservation constraints:

clbi ≤
∑
k∈Eini

qk −
∑
k∈Efin

qk ≤ cubi , ∀i ∈ N. (fc)

A typical demand node will have clbi = cubi < 0, a typical supply node will have clbi = 0 and
cubi > 0, whereas structural nodes have clbi = cubi = 0.

One of the main difficulties in the optimization problems associated to gas transmission
networks arises from the nonlinearities associated to the pressure loss constraints:

ui − uj =
16Lk
π2D5

k

λkZ(pk, θ)Rθ|qk|qk +
2g

Rθ

p2
k

Z(pk, θ)
(hj − hi), ∀k = (i, j) ∈ Ep. (pl)

The following parameters are involved in the above constraint: Lk and Dk are the length [m]
and the diameter [m] of the section of the pipe, R is the ideal gas constant [J/kg K], hi and hj

gas network, which is the one for which the methodologies in this paper were developed, the direction of the flow
in most edges is not known in advance.

4This equation reflects the fact that the pressure does not decrease linearly along the pipe, since the pressure
drop depends on the flow in a nonlinear way.
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are the heights [m] at the endpoints of the pipe, g is the acceleration of the gravity [m/s2], and θ
is the average of the gas temperature in the pipe [K].5 There are two elements in Equation (pl)
that require additional discussion:

• Compressibility factor. We follow AGA8 model for the computation of Z(pk, θ) (see Starling
and Savidge (1992)):

Z(p, θ) = 1 + 0.257
p

pc
− 0.533

p

pc

θc
θ
, (zf)

where pc [Pa] and θc [K] are the critical pressure and the critical temperature, respectively,
of the gas.6

• Friction factor. We follow Weymouth equation (see Weymouth (1912)) for the computation
of λk:

λk = 0.009427/(ekD
1/3
k ), (ff)

where ek [dimensionless] is a parameter representing the efficiency coefficient of pipe k
and Dk denotes its diameter [m]. There are more precise formulas to compute the friction
factor, such as those based on the so called Colebrook equation. Yet, since in these
formulations λk depends on qk and does it in a complex nonlinear way (indeed, it is typically
computed through Newton-type algorithms), we restrict to Weymouth formulation for the
analysis in this paper.7

Constraints associated to controllable elements

We move now to the main controllable elements typically associated to a gas transmission
network: control valves and compressors. The role of the latter is to counterbalance the pressure
loss at the pipes while the former are important to add flexibility to the gas network operation,
increasing the gas routing possibilities. As we discuss below, the modeling of these elements
usually requires the use of binary variables.

Control valves allow to reduce the pressure of the gas in the network. The constraint asso-
ciated to a valve k = (i, j) ∈ Ev would be ui − uj ≥ 0 when qk > 0 and ui − uj ≤ 0 otherwise.
This “conditional” constraint is modeled in Equation (cv) using a binary variable yv

k ∈ {0, 1}
and adding four constraints:

qk ≤ qub

k y
v

k

qk ≥ qlb

k (1− yv

k),
ui − uj ≤ M1y

v

k,
ui − uj ≥ M2(yv

k − 1).

∀k = (i, j) ∈ Ev. (cv)

The first two constraints ensure that yv

k = 1 if qk > 0 and yv

k = 0 if qk < 0. Constraints three and
four ensure that control valves only decrease the pressure in the direction of the flow. Therefore,
if qk > 0 (yv

k = 1), gas flow goes from i to j and the fourth constraint imposes ui ≥ uj .
Analogously, if qk < 0 (yv

k = 1), gas flow goes from j to i and the third constraint imposes
ui ≤ uj . Suitable values for the “big M” parameters are M1 = uub

i − ulb
j and M2 = uub

j − ulb
i .

5We assume throughout that the temperature is constant. This is a standard assumption, given that gas
networks are typically underground and soil has very good insulating properties.

6We are implicitly assuming that the gas flowing through the network is homogeneous and, therefore, pc and θc
are known parameters. Also, it is worth mentioning that GANESOTM software can compute the compressibility
factor via the more sophisticated SGERG88 model, as described in ISO-12213-3 (2006).

7GANESOTM software has also been tested with the formulation based on Colebrook formulation.
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Compressors allow to increase the pressure of the gas in the direction of the flow. This is
implied by the following constraint, which assumes that compressors are unidirectional :

ui ≤ uj , ∀k = (i, j) ∈ Ec. (uc)

Thus, compressor k = (i, j) can compress gas only when it goes from i to j. Note that, when
qk < 0 the above constraint would also allow a compressor to “decompress” from j to i, i.e., the
compressor would be acting as a valve. This is not an issue, since compressors are normally part
of more complex structures containing control valves which could also do that job. Alternatively,
one could use binary variables to control that compressors can only compress (with a modeling
similar to the one presented for valves), but this would increase the complexity of the resulting
optimization model (see González-Rueda (2017)). In Section 2.2 we discuss why the constraints
given by Equation (uc) are suitable given the modeling approach chosen for compressor stations.

Gas consumption associated to a compressor station is given by the following constraint:

gk =
Z(
√
ui, θ)

LCV

Rθ

ηk

γ

γ − 1

(
(
uj
ui

)
γ−1
2γ − 1

)
|qk|, ∀k = (i, j) ∈ Ec, (gc)

where LCV [J/kg] denotes the lower calorific value of the gas, ηk [dimensionless] represents the
efficiency of the compressor, and γ [dimensionless] the ratio of specific heats (at constant volume
and constant pressure).

We present now some final comments regarding compressors:

• The gas consumed by the compressors is taken from the gas flowing through the network,
so a completely rigorous model should take this into account in the corresponding flow
conservation constraints. However, since this consumption is usually quite small it is
customary to work under the simplified model in which this gas is assumed to remain in
the network.8

• For a compressor k = (i, j) ∈ Ec with qk < 0 and ui < uj , Equation (gc) would imply
that a cost is paid for decompressing gas. However, as we discuss in Section 2.2, this won’t
be a problem for our approach.

• Actual compressors must operate within some operational ranges, which are briefly dis-
cussed in Section 2.2.

Objective function

The objective function consists in minimizing the gas consumption at compressors:

min
∑
k∈Ec

gk. (Obj)

2.2 Novel ingredients

We briefly outline now some novel elements and novel approaches to the modeling of gas trans-
mission networks that are the result of the feedback we got from the collaboration with our
partner in the gas industry and that have been incorporated to GANESOTM software. Again,
the reader interested on a deeper analysis may refer to González-Rueda (2017).

8González-Rueda (2017) reports that actual consumption is around 0.4% of the gas flowing through the
compressors, with similar figures having been reported in the literature.
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Enlarging the feasible region

It turns out that, for the final user of a tool as GANESOTM, it is crucial to get some useful infor-
mation even for infeasible optimization problems. In particular, since most of the infeasibilities
observed in practice could be solved by relaxing the pressure bounds, we implemented a varia-
tion of the model consisting in adding slack variables to pressure upper bound constraints (bc):

ulb
i ≤ ui ≤ uub

i + uextra
i , ∀i ∈ N,

uextra
i ≥ 0, ∀i ∈ N,

qlb

k ≤ qk ≤ qub

k , ∀k ∈ E,
(bcextra)

where the extra slack variables uextra
i would be appropriately penalized in the objective function,

obtaining

min
∑
k∈Ec

gk +M extra
∑
i∈N

uextra

i . (Objextra)

Then, if M > 0 is sufficiently large, whenever the original problem is infeasible and the problem
with constraints (bcextra) is not, those nodes for which uextra

i > 0 in a solution of the enlarged
problem deliver useful information regarding the reason for the infeasibility of the original prob-
lem.9

Modeling of compressor stations

Compressors are a crucial element of the optimization of gas transmission networks and, as
such, they do not appear in isolation, but as part of compressor stations. Figure 1 represents a
typical compressor station of the Spanish gas network (taken from Enagás GTS (2010)). This
compressor station appears in the connection of three pipes (from/to Montesa, Getafe, and
Córdoba).

Figure 1: Hydraulic scheme of the compressor station in Alcázar de San Juan (Spain).

9Interestingly, as we briefly discuss in Section 5.1.1, when applying a sequential linear programming technique
to solve the gas network optimization problem, the modeling with Equation (bcextra) is useful to sidestep potential
infeasibility issues in the resolution of the linearized subproblems.
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The elements TC1, TC2 and TC3 represent three unidirectional compressors working in
parallel (the gas to be compressed must enter through the upper part of the compressors). The
elements denoted by MOV-XXX represent control valves, allowing to configure the compressor
station so that any compressing possibility is possible. For instance, one could get gas from
Córdoba and send part of it to Getafe after compressing it, while the other part of the gas
could go to Montesa with no compression. Another possibility could be to take gas from Getafe
and Córdoba at different pressures, use the valves to bring them to the same pressure and then
compress the resulting gas to send it to Montesa.

The downside of the richness allowed by the scheme of the figure is that it requires 14 binary
variables for a single compressor station, one for each pressure control valve. This kind of
modeling for the Spanish gas network would result in the inclusion of more than 200 binary
variables in our MINLP problem just to model the compressor stations. In Figure 2 we present
an alternative modeling, an approximation that is at the core of GANESOTM and that has led
to good results in practice.

MontesaCórdoba

Getafe

(a) Triplication.

MontesaCórdoba

Getafe

(b) Duplication.

Figure 2: Y -shaped modeling of a compressor station.

The elements of the Y -shaped modeling in Figure 2 are the following. Each triangle represents
a unidirectional compressor, modeled as in Equation (uc); I represents compression from left
to right and J compression from right to left. Each ⊗ represents a control valve, modeled as in
Equation (cv). We refer to the representation in Figure 2(a) as triplication, since three edges
are used to represent the connection of each pipe to the compressor station: two compressors
and a valve. It turns out that the triplication modeling is quite flexible and allows essentially
all possibilities that can be obtained for a compressor station like the one in Figure 1, but with
only three control valves. Further, and we consider this a relevant feature of this novel Y -shaped
modeling, is that these three valves can be removed altogether leading to a modeling that we call
duplication (see Figure 2(b)). Interestingly, in terms of feasible solutions not much is lost since,
as we mentioned while discussing unidirectional compressors, they can be used to “decompress”,
effectively acting as a control valve if needed. The only problem with this simplified modeling is
that this decompression would come at a cost in the model while in reality would be for free.10

Operating costs at regasification plants: Boil-off costs

The tanks at a regasification plant are designed to stay cool, but they cannot provide perfect
insulation against warming. Heat slowly affects the tanks, which can cause the gas inside to

10In GANESOTM software this effect is corrected at a later stage.
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evaporate and produce the so-called boil-off gas. This increases the pressure in the tanks, and
must be cooled down again, burned, or injected into the network. This process entails non-
negligible costs, which can also be included into the mathematical programming problem. To
the best of our knowledge this is the first paper in which boil-off costs are explicitly incorporated
into the modeling of the optimization of gas transmission networks.

0

Boil-off gas

Gas supplied

TDc
i

P c
i

TDs
i Os

i cubi

Figure 3: Boil-off consumption of a regasification plant.

Let N rp be the set of nodes representing regasification plants. Then, for each i ∈ N rp, the
following elements are needed to model the boil-off costs (see Figure 3):

• P ci , the boil-off gas consumption of the plant when it is not supplying gas to the network.

• TDi = (TDs
i , TD

c
i ), the turn down point of the plant, which provides the minimum amount

of gas it can supply, TDs
i , and the boil-off consumption at this regime, TDc

i .

• Osi , the supply from which the boil-off consumption of the plant is negligible.

• Dc
i : it is the discharge consumption by unit of gas supplied from the plant.

Figure 3 represents the boil-off consumption as a function of the gas that the plant is sup-
plying, which in our model is represented, for each i ∈ N rp, by Qi =

∑
k∈Eini

i
qk −

∑
k∈Efin

i
qk.

Then, the cost function associated to regasification plant i, Bi(·), is given by

Bi(Q) =


P ci if Qi = 0

TDc
i −

TDci
Osi−TDsi

(Qi − TDs
i ) +Dc

iQi if TDs
i ≤ Qi ≤ Osi

Dc
iQi if Qi ≥ Osi .

The inclusion of this function in our mathematical programming model requires to use, for each
i ∈ N rp, a binary variable ybo

i that represents whether or not the plant is supplying gas to the
network:

Qi ≥ TDs
i y

bo
i ,

Qi ≤ cubi y
bo
i

(BO-1)

If ybo
i = 1 the plant is injecting gas into the network and TDs

i ≤ Qi ≤ cubi . If ybo
i = 0 then there

is no gas supplied by the plant, Qi = 0. Now, function Bi(·) is represented with a variable bi,
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by means of the following constraints, which include an auxiliary variable ri:

ri ≥ TDc
i −

TDci
Osi−TDsi

(Qi − TDs
i ),

ri ≥ 0,

bi = (1− ybo
i )P ci +Dc

iQi + ri − (1− ybo
i )(TDc

i +
TDci

Osi−TDsi
TDs

i ).

(BO-2)

The modification of the original cost function to include the costs associated to the plants on
top of the costs associated to the compressors results in

min
∑
k∈Ec

gk + α
∑
i∈Nrp

bi, (Objboil-off)

where parameter α can be used to adjust the relative weight of boil-off costs relative to those
associated to compressors.

Simplified modeling of the compressibility factor

In practice, the compressibility factor in natural gas networks does not have a lot of variability.
In particular, for high pressure networks where pressures vary between 30 · 105 and 90 · 105

pascals, the range for the compressibility factor is typically between 0.75 and 0.95. Because of
this, a natural simplification of the model is to assume that the compressibility factor is constant
(see, for instance, Martin et al. (2006), Koch et al. (2015), or De Wolfe and Smeers (2000)).

This approach is especially useful when applying a sequential programming algorithm to solve
the optimization problem. The reason is that, at iteration t of the algorithm, one can replace the
terms Z(pk, θ) with the values associated to the current solution pt, computed using pressure
ptk in Equation (zf). Then, if the algorithm converges, these approximations also converge to
their true values.11

Additional elements

We now briefly mention some additional elements included in the full model that is routinely
solved by the users in Reganosa Company but which, for the sake of exposition, have not been
included in the batteries of test problems discussed in Section 5. The interested reader may
refer to González-Rueda (2017) for more detailed descriptions.

• A completely rigorous model of a compressor station requires to include the operational
ranges associated to each compressor station. For instance, in the case of the compressor
station represented in Figure 1, one should ensure that the rate of compression given for
the flow entering the station can be achieved using three compressors working in parallel.
This requires to know the technical specifications of each compressor and, when translated
to the optimization problem, requires the use of additional binary variables.

• One can also model additional types of valves such as i) open/closed valves, which can
fully close the access of the gas through them and ii) regulation valves, which can be used
to automatically bring the pressure down to a pre-specified value before entering a given
part of the network.

• Additional cost drivers can be included into the model such as i) maximize/minimize
the total amount of gas present in the pipes, known as line-pack and ii) maximize im-
ports/exports from/to a given zone of the network.

11This iterative approach has also been implemented in GANESOTM to model the friction factor via Colebrook
equation, taking it as a constant for the linearized subproblems, but updating it after every iteration.
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2.3 Resulting optimization models and state of the art

The elements discussed so far in this section allow to define different optimization problems
over gas transmission networks, depending not only on the relevant cost drivers on which one
may desire to focus, but also on the desired trade-off between the precision on the modeling
of different elements and the difficulty of the resulting problem. To give a rough idea about
the typical complexity of these problems, in the particular case of the Spanish gas transmission
network, the resulting model has around 1000 variables and 1000 constraints, half of which
are nonlinear (and nonconvex). The number of binary variables can vary between 10 and 200,
depending on the number of valves considered, and the inclusion or not of elements such as
boil-off costs and triplications or operational ranges at compressor stations.

Interestingly, setting aside the binary variables, we have a problem where the number of
variables is similar to the number of constraints and a large number of these constraints are
equality constraints. This structure is similar to that of the problems in the oil industry where
sequential linear programming algorithms appeared for the first time starting with Griffith and
Stewart (1961) as a research project for Shell Development Company and with significant activity
in the seventies (Ali et al., 1978; Beale, 1978; Boddington and Randall, 1979). One of the first
papers to develop a mathematical analysis of SLP techniques is Palacios-Gomez et al. (1982),
where the authors already identify that “It appears that SLP will be most successful when
applied to large problems with low degrees of freedom”. To the best of our knowledge this
assessment is still valid nowadays, and this is one of the reasons why we have chosen to apply
these techniques to the optimization of gas transmission networks.

Before delving into the details of our approach, we present a brief overview of the state of the
art in the field. A recent survey of the different solution procedures to deal with this problem
can be found in Ŕıos-Mercado and Borraz-Sánchez (2015). A more general introduction to the
field of gas transmission networks can be found in the book Koch et al. (2015).

Part of the past literature has focused on NLP formulations of the problem, neglecting the
combinatorial aspects of the transmission networks (mainly valves and compressors). Dynamic
programming has been one of the first techniques to be applied to the optimization of gas
networks, although restricted to networks without cycles (Wong and Larson, 1968) and, more
recently, these techniques were applied to cyclic networks (Carter, 1998; Ŕıos-Mercado et al.,
2006). Sequential linear/quadratic programming ideas have also been seen in practice (Ehrhardt
and Steinbach, 2002). A different approach is taken in De Wolfe and Smeers (2000), where the
nonlinear pressure loss constraints are replaced by piecewise linear approximations and the
resulting problem is solved by an extension of the simplex method.

When the gas network is modeled using MINLP formulations, it is common to use two-step
procedures that fix the behavior of the combinatorial elements by solving a simplified MINLP
problem in the first step and then solve the resulting NLP problem in the second one (see, for
instance, Pfetsch et al. (2015). Two exceptions are Cobos-Zaleta and Ŕıos-Mercado (2002) and
Martin et al. (2006). In Cobos-Zaleta and Ŕıos-Mercado (2002) the solution technique is based
on an outer approximations combined with an augmented penalty algorithm. In Martin et al.
(2006), the authors present some novel techniques to obtain piecewise linear approximations
of the nonlinearities of the model, resulting in large MILP problems. This approach has the
advantage that if the piecewise linear approximations are accurate enough, globally optimal
solutions of the approximated problem are guaranteed. On the down side, the high number of
binary variables needed to get accurate approximations limits the size of the problems that can
be tackled with this approach.

In this paper we propose a 2-step SLP algorithm, whose first step is a natural modification
of the classic SLP approaches, which we call SLP-NTR, that handles the combinatorial features
of the problem (no simplification is made on the optimization problem in this step). Then,
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once the combinatorial elements are fixed, we run a more classic SLP algorithm that has better
convergence properties than the SLP-NTR used in the first step. This approach is relatively
close to the one used in Pratt and Wilson (1984), where the authors propose a successive mixed-
integer linear programming method in which, at each iteration, the pressure loss constraints
are linearized and a MILP is solved. As the algorithm progresses, the values of those binary
variables that have not changed for a given number of iterations are fixed. Pratt and Wilson
(1984) is mainly an applied contribution, containing no theoretical results. Differently, one of
the main contributions of this paper, included in the following section, is to study to what extent
the SLP-NTR preserves the theoretical properties of the classic SLP algorithms for general NLP
problems (and not only for gas network problems). Furthermore, the 2-step SLP described above
can be applied to general MINLP problems as a heuristic.12 The performance of the SLP and
2-step SLP algorithms for the optimization of gas transmission networks is studied in Section 5.

3 SLP without trust region for NLP and MINLP problems

We move now to the main methodological and theoretical contribution of this paper: a modifi-
cation of the classic sequential linear programming algorithms. More precisely, this modification
works with No Trust Region and, hence, the name SLP-NTR. The SLP-NTR is an algorithm
for general NLP problems which, moreover, will be the basis for the 2-step SLP algorithm, an
algorithm that can also be applied as a heuristic for MINLP problems.

3.1 Preliminaries and notations

Consider the standard formulation of a nonlinear programming problem NLP:

(NLP) Minimize f(xxx)
subject to gi(xxx) ≤ 0 ∀i ∈ Im = {1, . . . ,m}

hj(xxx) = 0 ∀j ∈ J l = {m+ 1, . . . ,m+ l}
xxx ∈ X = {xxx ∈ Rn : Axxx ≤ bbb},

where X denotes the set of linear constraints and the functions f : Rn → R, gi : Rn → R
for i ∈ Im and hj : Rn → R for j ∈ J l are assumed to be continuously differentiable. The
next definition associates, to each NLP problem, a linearization of it that is at the core of any
sequential linear programming algorithm.

Definition 1. The first-order Taylor linear programming approximation of the NLP problem
around xxx ∈ Rn with step sss ∈ Rn, TNLP(xxx,sss), is the following linear programming problem:

(TNLP(xxx,sss)) Minimize f(xxx) +∇f(xxx)T(xxx− xxx)
subject to gi(xxx) +∇gi(xxx)T(xxx− xxx) ≤ 0 ∀i ∈ Im

hj(xxx) +∇hj(xxx)T(xxx− xxx) = 0 ∀j ∈ J l
xxx ∈ X = {xxx ∈ Rn : Axxx ≤ bbb}
−sss ≤ xxx−xxx ≤ sss (trust region).

If we let xxx = xxx + ddd and think of TNLP(xxx,sss) in terms of the variables ddd = xxx − xxx, then
this problem can be seen as a direction-finding problem. This linear problem yields an optimal
solution ddd, which denotes the optimal descent direction from xxx. How far to proceed along this
direction is restricted by the trust region (−sss ≤ xxx+ ddd ≤ sss). We slightly abuse notation and use

12Given our experience, we conjecture that this 2-step SLP approach is especially suitable for “large problems
with low degrees of freedom” where the proportion of binary variables is relatively small.
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TNLP(xxx) = TNLP(xxx,∞) to denote the linear approximation of NLP in which there is no trust
region.

A SLP algorithm works as follows: given an initial point xxx (not necessary feasible for NLP)
and a step bound sss, it solves the linearized problem TNLP(xxx,sss). If the solution of the linearized
problem satisfies some criteria (a trade-off between feasibility and improvement of the objective
function), the solution is taken as the basis of a new linearization, the step bounds are (pos-
sibly) increased and the procedure is repeated. Otherwise, the step bounds are reduced to sss′

and the problem TNLP(xxx,sss′) is solved. The main mathematical property of these algorithms
(see (Bazaraa et al., 2006, Chapter 10.2)) is that if a point xxx solves TNLP(xxx,sss), then xxx is a
KKT point for NLP, so typical stopping criteria are based on ‖xxx− xxx‖ being sufficient small.

One of the main limitations of the SLP algorithms as we have described them is that, for
nonconvex problems, the linear problems TNLP(xxx,sss′) may be infeasible, even if the original
NLP problem is not. When the NLP under consideration may suffer from this problem, it is
natural to work with penalized versions of the linearized problems, which ensure feasibility after
every iteration. Next, we present one algorithm implementing these ideas and that will be the
benchmark for both the theoretical and numerical analysis developed in this paper.

3.2 Penalty Sequential Linear Programming

We present now the Penalty Sequential Linear Programming algorithm (PSLP), introduced in
Kim et al. (1985) and tested with real nonlinear problems at Exxon Company in Baker and
Lasdon (1985). We need some additional preliminaries before presenting the scheme of the
PSLP algorithm.

Definition 2. Given problem NLP, the penalized problem PNPµµµ with penalty parameter µµµ ∈
Rm+l is defined as:

(PNPµµµ) Minimize p(xxx) = f(xxx) +
∑
i∈Im

µi max{gi(xxx), 0}+
∑
j∈Jl

µj |hj(xxx)|

subject to xxx ∈ X = {xxx ∈ Rn : Axxx ≤ bbb}.

The following result, whose proof can be seen in (Bazaraa et al., 2006, Theorem 10.3.1),
establishes the relationship between the original NLP problem and problem PNPµµµ.

Theorem 1. Let NLP be a nonlinear problem and let PNPµµµ be the associated penalized problem
with penalty parameter µµµ. The following statements hold true:

i) If xxx is a KKT point for problem NLP with Lagrange multipliers (ui, vj) for all i ∈ Im,
j ∈ J l such that µi > |ui| for all i ∈ Im and µj > |vj | for all j ∈ J l, then xxx is a KKT
point for problem PNPµµµ.

ii) If xxx is a KKT point for problem PNPµµµ and xxx is feasible for NLP, then xxx is a KKT point
for NLP.

PSLP follows the idea of SLP algorithms but using linearizations of PNPµµµ instead of lin-
earizations of NLP. We now define the first-order Taylor linear approximation of the objective
function of PNPµµµ around a point xxx:

pL(xxx) = f(xxx) +∇f(xxx)T(xxx− xxx) +
∑
i∈Im

µi max{gi(xxx) +∇gi(xxx)T(xxx− xxx), 0}

+
∑
j∈Jl

µj |hj(xxx) +∇hj(xxx)T(xxx− xxx)|.
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Definition 3. Given the problem PNPµµµ, its first-order Taylor linear approximation around
xxx ∈ Rn with step sss is defined as the problem TPNPµµµ(xxx,sss), given by

(TPNPµµµ(xxx,sss)) Minimize pL(xxx)
subject to xxx ∈ X = {xxx ∈ Rn : Axxx ≤ bbb}

−sss ≤ xxx− xxx ≤ sss.

We can equivalently rewrite TPNPµµµ(xxx,sss) without the non-differentiable terms (absolute
value and maximum function) as follows:

(TPNPµµµ(xxx,sss)) Minimize pL(xxx) = f(xxx) +∇f(xxx)T(xxx− xxx) +
∑
i∈Im

µiyi +
∑
j∈Jl

µj(p
+
j + p−j )

subject to gi(xxx) +∇gi(xxx)T(xxx− xxx) ≤ yi ∀i ∈ Im
hj(xxx) +∇hj(xxx)T(xxx− xxx) = p+

j − p
−
j ∀j ∈ J l

xxx ∈ X = {xxx ∈ Rn : Axxx ≤ bbb}
−sss ≤ xxx− xxx ≤ sss
yi, p

+
j , p

−
j ≥ 0 ∀i ∈ Im,∀j ∈ J l.

Under this reformulation, TPNPµµµ(xxx,sss) is a linear problem. Finally, using the substitution
xxx = xxx + ddd and removing the constant term of the objective function, TPNPµµµ(xxx,sss) can be
equivalently rewritten as:

(TPNPµµµ(xxx,sss)) Minimize pL(xxx) = ∇f(xxx)Tddd+
∑
i∈Im

µiyi +
∑
j∈Jl

µj(p
+
j + p−j )

subject to gi(xxx) +∇gi(xxx)Tddd ≤ yi ∀i ∈ Im
hj(xxx) +∇hj(xxx)Tddd = p+

j − p
−
j ∀j ∈ J l

A(xxx+ ddd) ≤ bbb
−sss ≤ ddd ≤ sss
yi, p

+
j , p

−
j ≥ 0 ∀i ∈ Im,∀j ∈ J l.

This linear problem is the direction-finding subproblem.
The PSLP works as follows. Given a current iterate xxxk ∈ X and a trust region sssk, it solves

the direction-finding subproblem TPNPµµµ(xxxk, sssk) obtaining a solution dddk. Then, the decision
whether to accept or reject the new iterate xxxk +dddk and the modifications of the step bounds sssk

are made based on the ratio rk of the actual decrease ∆pk of the objective function of the problem
PNPµµµ, and the decrease ∆pkL of the linearized objective function used in TPNPµµµ, provided that
the latter is non-zero.13 These quantities are computed as follows:

∆pk = p(xxxk)− p(xxxk + dddk) and ∆pkL = pL(xxxk)− pL(xxxk + dddk).

Suppose that, at some iteration of the algorithm, we get that dddk = 000. Then, the optimality
conditions for TPNPµµµ coincide with those for PNPµµµ, obtaining that xxxk is a KKT point for
PNPµµµ. Thus, if xxxk is feasible for NLP, by item ii) of Theorem 1, xxxk is a KKT point for NLP.
On the other hand, if xxxk is not feasible for NLP, the penalty parameters µµµ may need to be
increased. The full description of PSLP is illustrated in Algorithm 1.

13The idea of the update of the trust region in Algorithm 1 is as follows. If the ratio rk is negative or close to
zero, the penalty function has either worsened or its improvement is very small. In this case, the algorithm rejects
the current solution and reduces the step bound. “Kim et al. (1985)” showed that within a finite number of such
reductions, a positive value of rk will be obtained. Otherwise, the current solution is accepted and, depending on
the improvement of the penalty function the step bound may be reduced if the improvement is below a threshold
ρ1 or increased if it is above another threshold ρ2.
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Algorithm 1 Penalty Sequential Linear Programming (PSLP)

1: Initialize xxx0 ∈ Rn satisfying the bound constraints of the problem, and sss0 ∈ Rn. Fix the
parameters µµµ, 0 < ρ0 < ρ1 < ρ2 < 1, 0 < β < 1, α > 0 and ε > 0. Let k = 0.

2: Solve TPNPµµµ(xxxk, sssk). Let xxxk be an optimal solution of TPNPµµµ(xxxk, sssk).
3: Compute ∆p = p(xxxk)− p(xxxk) and ∆pL = pL(xxxk)− pL(xxxk).
4: if ∆pL < ε then
5: STOP: Return xxxk.
6: else
7: Compute rk = ∆p

∆pL
.

8: end if
9: if rk < ρ0 then

10: xxxk+1 = xxxk and sssk+1 = βsssk.
11: else

12: xxxk+1 = xxxk and update sk+1 =


βsssk if rk < ρ1

sssk

β
if rk > ρ2

sssk otherwise.
13: end if
14: Take sk+1

i = max{sk+1
i , α} for all i ∈ {1, . . . , n}, let k = k + 1 → go to 2.

Regarding the convergence of PSLP, it cannot be ensured that the sequence {xxxl} converges.
However, the following theorem, whose proof can be seen in Kim et al. (1985), ensures that any
convergent subsequence converges to a KKT point for problem PNPµµµ which, if feasible for NLP,
is also a KKT point for NLP.

Theorem 2. Let {xxxl} be the sequence generated by the PSLP algorithm applied to the problem
PNPµµµ. If the set C = {xxx ∈ X : p(xxx) ≤ p(xxx1)} is bounded, then every accumulation point of {xxxl}
is a KKT point for PNPµµµ. Furthermore, if the accumulation point is also feasible for NLP, then
it is a KKT point for NLP.

3.3 Sequential linear programming with no trust region

We now define a natural modification of the SLP ideas that we call Sequential Linear Program-
ming with No Trust Region: SLP-NTR. The modification consists in removing the trust region,
so there is no control about how far from each other are two consecutive elements of the gen-
erated sequence. More precisely, given a solution xxxk, problem TNLP(xxxk) is solved, obtaining
xxxk+1. The algorithm finishes when ‖xxxk − xxxk+1‖ is sufficiently small. The scheme of SLP-NTR
is represented in Algorithm 2.

Algorithm 2 Sequential Linear Programming with No Trust Region (SLP-NTR)

1: Initialize xxx0 ∈ Rn. Fix ε > 0. Let k = 0.
2: Solve TNLP(xxxk). Let xxxk+1 be a solution of TNLP(xxxk).
3: if ‖xxxk − xxxk+1‖ < ε then
4: STOP: Return xxxk+1.
5: else
6: Let k = k + 1 → go to 2.
7: end if

Note that a limitation of SLP-NTR is that, for a given NLP problem, some of the TNLP(xxxk)
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subproblems may be infeasible. When working with problems in which this may be a concern,
one can apply the penalized version of the algorithm: PSLP-NTR, described in Algorithm 3.
The idea is to work with the linearizations of problem PNPµµµ, solving subproblems TPNPµµµ(xxxk),
whose feasibility is guaranteed.

Algorithm 3 Penalty Sequential Linear Programming with No Trust Region (PSLP-NTR)

1: Initialize xxx0 ∈ Rn. Fix ε > 0 and µµµ ∈ Rm+l. Let k = 0.
2: Solve TPNPµµµ(xxxk). Let xxxk+1 be a solution of TPNPµµµ(xxxk).
3: if ‖xxxk − xxxk+1‖ < ε then
4: STOP: Return xxxk+1.
5: else
6: Let k = k + 1 → go to 2.
7: end if

3.3.1 Strengths of SLP-NTR and PSLP-NTR algorithms

• The implementation of these algorithms is straightforward and, differently from classic
PSLP, there are no parameters to be tuned. The only exception is the penalization µµµ in
PSLP-NTR, which has to be chosen large enough to ensure that the algorithm returns
feasible solutions of NLP.

• One of the main contributions of this paper comes from the theoretical results obtained for
SLP-NTR and PSLP-NTR algorithms, developed in Section 4, and that can be summarized
as follows:

– If the sequence {xxxl} generated by SLP-NTR converges to a point xxx, then xxx is a KKT
point for NLP (Theorem 4).

– If the sequence {xxxl} generated by PSLP-NTR converges to a point xxx and xxx is feasible
for NLP, then xxx is a KKT point for NLP (Proposition 5).

– If two consecutive points xxxk−1 and xxxk in the sequence {xxxl} generated by SLP-NTR
are sufficiently close, then xxxk is an almost-KKT point of NLP (Theorem 9).

– If two consecutive points xxxk−1 and xxxk in the sequence {xxxl} generated by PSLP-NTR
are sufficiently close and xxxk is almost feasible, then xxxk is an almost-KKT point for
NLP (Proposition 10).

• One advantage of SLP-NTR and PSLP-NTR algorithms with respect to classic SLP algo-
rithms is that they can be readily applied, as a heuristic, to MINLP problems. Actually,
this is the main reason why we have chosen this approach to tackle optimization problems
in gas transmission networks.14

• The above heuristic is applied as a 2-step SLP procedure, formally defined in Section 3.4.
In the first step either SLP-NTR or PSLP-NTR are used to fix the binary variables and
then the classic PSLP is run on the resulting NLP problem.

14Adapting a classic PSLP algorithm to deal with integer variables is not straightforward, since it is hard to
reconcile the trust region philosophy of the algorithm with the discrete nature of the integer variables. A 0-1
change in a binary variable may have a big impact on the feasible region, so to get feasible solutions one may
need a large trust region for the continuous variables. For a recent exception where a trust region approach is
used in a convex MINLP problem refer to Kronqvist et al. (2018).
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• An important part of the role of SLP-NTR (or PSLP-NTR) in the first step of the
2-step SLP is to provide a good starting point to PSLP, which has better convergence
properties.

• Remarkably, as we discuss in Section 5, 2-step SLP exhibits a very good performance on
NLP and MINLP problems associated to gas transmission networks.

3.3.2 Weaknesses of SLP-NTR and PSLP-NTR algorithms

SLP-NTR and PSLP-NTR algorithms are just simplified versions of the classic SLP and PSLP
algorithms, and the introduction of the trust region probably came to overcome some limitations
of the “raw” versions, such as the ones we discuss below:

• SLP-NTR and PSLP-NTR algorithms rarely converge to interior points so, in particular,
they will rarely converge in problems with no KKT points in the boundary. The main
reason is that, since there is no trust region, the solution at every iteration will be an
extreme point of the linearization of the feasible region around the current point.15 To
illustrate, suppose that we want to minimize the function in Figure 4(a) over the [0, 1]
interval. The global minimum is at 0.625, with f(0.625) = 3. Yet, the SLP-NTR applied
to this function converges to one of the local minima on the boundary, being f(0) = f(1) =
4.7071. Arguably, the situation is even worse to minimize the function in Figure 4(b) over
the [0, 1] interval. The global minimum is at 0.5, with f(0.5) = 2. In this case, the
SLP-NTR does not converge, oscillating between 0 and 1.
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(a) f(x) = 4 + sin(2πx+ π/4).
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(b) f(x) = (4x− 2)2 + 2.

Figure 4: Weaknesses of SLP-NTR and PSLP algorithms.

• The removal of the trust region results in algorithms that are less stable in terms of
convergence, as illustrated with the problem in Figure 4(b). This suggests that some
form of stabilization (trust region, regularization, or line search) is needed to improve the
convergence.16

• Although convergence is not guaranteed either for classic SLP algorithms, theoretical re-
sults normally ensure that any accumulation point of the sequence generated by the al-
gorithm is a KKT point for NLP (see Theorem 2). This is not true for SLP-NTR and
PSLP-NTR algorithms. Indeed, in the problem in Figure 4(b), the two accumulation

15Judging from the numerical results reported in Section 5, this severe limitation of SLP-NTR and PSLP-NTR
algorithms does not seem critical in problems as the ones studied in this paper, with many equality constraints
and, thus, feasible regions with low degrees of freedom and “small” interiors (and relative interiors).

16The reader interested in different stabilization methods may refer to the book (Bazaraa et al., 2006, Chapter 8-
10) and references therein.
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points of the sequence would be the two global maxima of the problem. This limitation of
the algorithms is partially mitigated by the results obtained in Section 4, already outlined
above.

Despite of the above weaknesses, since our proposal is to run a 2-step SLP algorithm, without
trust region in the first step and with it in the second one, these theoretical limitations are not
so problematic in practice.

3.4 A 2-step SLP algorithm for NLP and MINLP problems

Before moving to the theoretical analysis of the properties of SLP-NTR and PSLP-NTR algo-
rithms for NLP problems, we formally present the 2-step SLP algorithm that, to some extent,
combines the advantages of the algorithms with and without trust region. The use of an al-
gorithm without trust region in the first step allows to heuristically tackle MINLP problems,
finding candidate values for the integer variables, and the use of an algorithm with trust region
in the second one allows to get better convergence properties for the resulting NLP problem.

Consider the standard formulation of a MINLP problem:

(MINLP) Minimize f(xxx)
subject to gi(xxx) ≤ 0 ∀i ∈ Im = {1, . . . ,m}

hj(xxx) = 0 ∀j ∈ J l = {m+ 1, . . . ,m+ l}
xxx ∈ X = {xxx ∈ Rn : Axxx ≤ bbb}
xi ∈ Z ∀i ∈ Z,

where Z denotes the index set of integer variables. In the first step of the 2-step SLP algorithm
one uses SLP-NTR or PSLP-NTR to solve the MINLP problem. The main goal in this first step
is to find suitable values for the integer variables. The latter are taken as fixed in the second
step, in which the classic PSLP algorithm is run.17 The scheme of 2-step SLP is represented in
Algorithm 4.

Algorithm 4 2-step SLP algorithm (2SLP)

1: Let PMINLP(xxx) be a MINLP problem.
2: Step 1:

3: Initialize xxxs1.
4: Apply SLP-NTR or PSLP-NTR to PMINLP(xxx) taking xxxs1 as initial solution.
5: Let xxxs1 be the solution.
6: Fixed the integer variables: xxxi = xxxs1

i for all i ∈ Z.
7: Let PNLP(xxx) be the resulting NLP problem.
8: Step 2:

9: Initialize xxxs2 = xxxs1.
10: Apply PSLP to PNLP(xxx) taking xxxs2 as initial solution.
11: Let xxxs2 be the solution.
12: Return xxxs2.

We conclude with some final considerations regarding the 2-step SLP approach, based on
our experience with it:

17It is worth noting that, when the algorithm run in the first step does not converge, one must identify the
“best solution” and use it to fix the integer variables. In Section 5 we explain the approach we have followed for
our computational tests.
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• Since the algorithm is just based on SLP approaches it is easy to implement, relying only
on general LP and MILP solvers.

• It does not require any simplification of the original problem in first step, which is a
departure from what is usually done in practice (see, for instance, the two-stage approach
in Pfetsch et al. (2015)).

• It is suitable for problems that have nearly as many constraints as variables and that have
relatively small number of integer variables with respect to the total number of variables.
This is the case of the optimization model for gas transmission networks presented in
Section 2.

• Although in practice we often observe a poor convergence of the algorithm without trust
region used in first step, this might even be an advantage, since it allows for large jumps in
the search space, and can therefore explore the search space to find good starting points.
Yet, it is important that this poor convergence is addressed in the second step when
running the PSLP algorithm.

• Since the 2-step SLP algorithm is at the core of GANESOTM software, it has been widely
tested on real instances of the gas industry (with over a thousand variables).

4 Theoretical analysis of SLP-NTR for NLP problems

This section is devoted to the study of the theoretical properties associated to the convergence
of the SLP-NTR and the PSLP-NTR algorithms for general NLP problems . Recall that all
the defining functions of NLP are assumed to be continuously differentiable. Hereafter we also
assume that the set X is bounded, so the feasible region of problem NLP is contained in a
compact set K ⊂ Rn. Boundedness is a relatively weak assumption that holds in most real life
applications. For the sake of notation, in this section we write TNLP(xxx) and TPNPµµµ(xxx) instead
of TNLP(xxx,∞) and TPNPµµµ(xxx,∞).

Next, we introduce an auxiliary result useful to proof next theorem of this section related to
the convergence properties of the SLP-NTR algorithm.

Lemma 3. Given the problem NLP and xxx ∈ Rn, suppose that functions f , gi for all i ∈ Im,
and hj for all j ∈ J l are continuously differentiable C1(Rn). Let TNLP(xxx) be the first order
Taylor approximation of NLP around xxx. Then, xxx is a KKT point of NLP if and only if xxx is an
optimal solution of TNLP(xxx).

Proof. Let xxx be an (global) optimal point of TNLP(xxx). Recall that for a linear programming
problem optimality conditions are equivalent to KKT conditions, therefore we have,

∇f(xxx) +
∑
i∈Im

ui∇gi(xxx) +
∑
j∈Jl

vj∇hj(xxx) = 000,

uigi(xxx) = 0, for all i ∈ Im,
ui ≥ 0, for all i ∈ Im.

These properties are exactly the conditions ensuring that xxx is a KKT point of NLP, so the
theorem is proven.

We start with a simple result, establishing some properties of the limit of the sequence
generated by the SLP-NTR algorithm, in case of convergence. The result relies on some basic
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results on stability of linear programming problems, which can be seen, for instance, in López-
Cerdá (2012) and Section 3.A.6 in González-Rueda (2017). Let F be the feasible set mapping
associated to the sequence of linear problems {TNLP(xxxl)}.

Theorem 4. Let {xxxl} be the sequence generated by the SLP-NTR algorithm. Suppose that {xxxl}
converges to a point xxx and F is lower semicontinuous at TNLP(xxx). The following sentences
hold true:

i) xxx is an optimal solution for TNLP(xxx).

ii) xxx is a feasible point for NLP.

iii) xxx is a KKT point for NLP.

Proof. By the convergence of {xxxl} to xxx, we have that the parameters defining each of the linear
problems in the sequence {TNLP(xxxl)} converge to those defining TNLP(xxx). Moreover, since
F is lower semicontinuous at TNLP(xxx), we have that F is closed at TNLP(xxx). Therefore, the
limit point xxx of the sequence of optimal points {xxxl} is an optimal solution of TNLP(xxx), and
statement i) is proved.
Statement ii) is directly deduced from statement i) and the fact that a point xxx is a feasible point
of TNLP(xxx) if and only if xxx is a feasible point of NLP. Statement iii) follows from statement i)
and Lemma 3.

Remark 1. The reader interested in the different approaches to establish the lower semicontinuity
of the feasible set mapping may refer, for instance, to the survey López-Cerdá (2012). �

We present below an analogous result for PSLP-NTR.

Proposition 5. Let {xxxl} be the sequence generated by the PSLP-NTR algorithm. Suppose that
{xxxl} converges to a point xxx and F is lower semicontinuous at TPNPµµµ(xxx). Then, if xxx is feasible
for problem NLP, xxx is a KKT point for NLP.

Proof. Applying PSLP-NTR to solve NLP is equivalent to apply SLP-NTR to solve the penalized
problem PNPµµµ. Thus, by Theorem 4, xxx is an optimal solution for TPNPµµµ(xxx) and a KKT point
for PNPµµµ. Furthermore, since xxx is feasible for problem NLP, by statement ii) of Theorem 1 we
have that xxx is a KKT point for NLP.

The above two results imply that, if the sequences generated by SLP-NTR or PSLP-NTR
converge, then the resulting solutions are, from a theoretical point of view, as good as the
one given by the classic PSLP. However, when convergence is not achieved, any accumulation
point of the sequence generated by PSLP is still a KKT point for problem PNPµµµ, whereas we
have seen that this may not be true for the methods without trust region. The rest of this
section is devoted to show that the stopping criterion ‖xxxk−xxxk+1‖ < ε for algorithms SLP-NTR
and PSLP-NTR is sound even when the algorithms do not converge. To do so we prove that,
whenever two consecutive points xxxk and xxxk+1 in the sequence are close enough to each other,
the point xxxk is an almost feasible and almost KKT point for NLP in a sense we formally describe
below.

4.1 Almost feasible points

Hereafter, we denote the feasible region of NLP by:

FNL = {xxx ∈ X ⊆ Rn : gi(xxx) ≤ 0 for all i ∈ Im and hj(xxx) = 0 for all j ∈ J l} ⊆ K.

We denote the set of active (binding) constraints at xxx as Ixxx = {i ∈ Im : gi(xxx) = 0}. Below we
formally introduce the definitions of almost feasible point and the set of almost active constraints.
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Definition 4. Let xxx ∈ K and ε > 0. Then, xxx is an ε-feasible point if:

gi(xxx) ≤ ε for all i ∈ Im and |hj(xxx)| ≤ ε for all j ∈ J l.

The set of ε-active constraints at xxx is defined as Iεxxx = {i ∈ Im : |gi(xxx)| ≤ ε}.

Let I be the set of infinitesimal functions at 0, that is:

I = { t : R+ → R+ such that lim
x→0

t(x) = 0}.

We now present two intuitive results regarding ε-feasible points, whose proofs have been relegated
to the Appendix. We denote by d(xxx, F ) the euclidean distance between point xxx and set F .

Proposition 6. Consider problem NLP. There is a non-decreasing function tF ∈ I such that,
if xxx ∈ K is an ε-feasible point, then d(xxx, FNL) ≤ tF (ε).

Proof. See Section A.1 in the Appendix.

Theorem 7 below is the main instrumental result of our analysis. Informally, it says that if
a point xxx is close enough to the feasible set, then there is a nearby feasible point xxx such that all
ε-active constraints at xxx are also active at xxx.

Theorem 7. Consider problem NLP. There are t̂ ∈ I and ε̄ > 0 such that, if xxx is an ε-feasible
point for 0 < ε < ε̄, then there is a feasible point xxx ∈ FNL such that:

a) ‖xxx− xxx‖ ≤ t̂(ε),

b) Iεxxx ⊆ Ixxx.

Proof. See Section A.2 in the Appendix.

4.2 Almost KKT points

An almost-KKT point xxx or, more precisely, an (ε1, ε2)-KKT point xxx is, intuitively, a point that
is almost feasible and, at the same time, it almost satisfies the KKT conditions. We refer the
reader to Han et al. (2010), Haeser (2010), Haeser and Schuverdt (2011), and Andreani et al.
(2011) for some references where related definitions of the notion of approximated-KKT are
introduced but in different settings.

Definition 5. Given ε1, ε2 ≥ 0, a point xxx ∈ K is an (ε1, ε2)-KKT point of NLP if

i) xxx is ε1-feasible and

ii) for each i ∈ Iε1xxx , there is ui ≥ 0 and, for each j ∈ J l, there is vj ∈ R, such that:

‖∇f(xxx) +
∑
i∈Iε1xxx

ui∇gi(xxx) +
∑
j∈Jl

vj ∇hj(xxx)‖ ≤ ε2.

Figure 5 ilustrates the concept of (ε1, ε2)-KKT point and also illustrates the statement of
Theorem 8 below, which says that if ε1 and ε2 are sufficiently small, then there is a feasible
point xxx that is very close to xxx and almost satisfies the KKT conditions. A bit more formally,
−∇f(xxx) almost belongs to the cone of the gradients of the binding constraints at xxx, i.e., either
−∇f(xxx) belongs to the cone or it forms a very small angle with a vector in it.
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FNL

g1(xxx) = 0

g2(xxx) = 0

∇g1(xxx)

∇g2(xxx)

−∇f(xxx)

xxx xxx

FNL

g1(xxx) = 0

g2(xxx) = 0

∇g1(x̄xx)

∇g2(x̄xx)

−∇f(x̄xx)

x̄xx

Figure 5: Illustration of the notion of almost-KKT point.

Remark 2. Recall that we are assuming that ∇f , ∇gi for all i ∈ Im and ∇hj for all j ∈ J l are
continuous functions in K. Thus, since K is compact, these functions are uniformly continuous
and there is t′ ∈ I such that, for each δ > 0, if ‖xxx− yyy‖ < δ, then:

‖∇f(xxx)−∇f(yyy)‖ ≤ t′(δ),
‖∇gi(xxx)−∇gi(yyy)‖ ≤ t′(δ), ∀i ∈ Im, and

‖∇hj(xxx)−∇hj(yyy)‖ ≤ t′(δ), ∀j ∈ J l. �

Theorem 8. There are t1, t2 ∈ I and ε̄ > 0 such that, if xxx is an (ε1, ε2)-KKT point with
0 ≤ ε1 < ε̄ and ε2 ≥ 0, then there is xxx ∈ FNL satisfying

i) ‖xxx− xxx‖ ≤ t1(ε1), and

ii) for each i ∈ Ixxx, there is ui ≥ 0 and, for each j ∈ J l, there is vj ∈ R, such that:

‖∇f(xxx) +
∑
i∈Ixxx

ui∇gi(xxx) +
∑
j∈Jl

vj∇hj(xxx)‖ ≤ ε∗,

where ε∗ = ε2 +
(
1 +

∑
i∈Ixxx

ui +
∑
j∈Jl vj

)
t2(ε1).

Proof. By definition, the (ε1, ε2)-KKT point xxx is ε1-feasible. By Theorem 7, there are ε̄ > 0
and t1 ∈ I such that, if ε1 < ε̄, then there is xxx ∈ FNL with ‖xxx− xxx‖ ≤ t1(ε1) and Iε1xxx ⊆ Ixxx. On
the other hand, by Definition 5, there are ui ≥ 0 for i ∈ Iε1xxx and vj ∈ R for j ∈ J l such that:

‖∇f(xxx) +
∑
i∈Iε1xxx

ui∇gi(xxx) +
∑
j∈Jl

vj ∇hj(xxx)‖ ≤ ε2.

Then, if we take ui = ui for i ∈ Iε1xxx , ui = 0 for i ∈ Ixxx \ Iε1xxx and vj = vj for j ∈ J l, we have that:

‖∇f(xxx) +
∑
i∈Ixxx

ui∇gi(xxx) +
∑
j∈Jl

vj ∇hj(xxx)‖ ≤

‖∇f(xxx) +
∑
i∈Iε1xxx

ui∇gi(xxx) +
∑
j∈Jl

vj ∇hj(xxx)‖+ ‖∇f(xxx)−∇f(xxx)‖ +∑
i∈Iε1xxx

ui‖∇gi(xxx)−∇gi(xxx)‖+
∑
j∈Jl

vj‖∇hj(xxx)−∇hj(xxx)‖.

Now we use the assumption that the functions ∇f , ∇gi for all i ∈ Im and ∇hj for all j ∈ J l are
uniformly continuous. Since ‖xxx−xxx‖ ≤ t1(ε1), by Remark 2, we can take t2 = t′ ◦ t1 ∈ I so that:

‖∇f(xxx) +
∑
i∈Ixxx

ui∇gi(xxx) +
∑
j∈Jl

vj ∇hj(xxx)‖ < ε2 + (1 +
∑
i∈Ixxx

ui +
∑
j∈Jl

vj)t2(ε1) = ε∗.
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We now go back to the sequence arising from the application of the SLP-NTR algorithm.

Remark 3. Given xxx0 ∈ K, let {xxxl}l∈N be the sequence resulting from the application of SLP-NTR.
Then, for each k ∈ N, xxxk is a KKT point for the linearized problem TNLP(xxxk−1), that is,

∇f(xxxk−1) +
∑
i∈IL

xxxk

ui∇gi(xxxk−1) +
∑
j∈Jl

vj ∇hj(xxxk−1) = 000,

where ILxxxk = { i ∈ Im : gi(xxx
k−1) +∇gi(xxxk−1)T(xxxk − xxxk−1) = 0 } and ui ≥ 0 for all i ∈ ILxxxk and

vj ∈ R for all j ∈ J l. The scalars ui and vj are the Lagrange multipliers associated with xxxk in
the linear problem TNLP(xxxk−1). �

Remark 4. For the next result we need an additional regularity assumption: gi, hj ∈ C2(K) for
all i ∈ Im and all j ∈ J l, i.e., these functions are twice continuously differentiable in K. Because
of the compactness of K, all second derivatives of gi and hj are then bounded and there is R > 0
such that the Hessian matrix satisfies ‖H(gi)(xxx)‖ < R and ‖H(hj)(xxx)‖ < R for all xxx ∈ K, all
i ∈ Im, and all j ∈ J l. By the first-order Taylor’s formula with Lagrange remainder at a point
xxx0 ∈ K, (see Theorem 5.6.2 in Cartan (1971)), we have

gi(xxx) = gi(xxx
0) +∇gi(xxx0)T(xxx− xxx0) +Rixxx0(xxx), ∀i ∈ Im,

hj(xxx) = hj(xxx
0) +∇hj(xxx0)T(xxx− xxx0) +Rjxxx0(xxx), ∀j ∈ J l,

where the remainders |Rixxx0(xxx)| and |Rjxxx0(xxx)| are bounded by ‖x
xx−xxx0‖2

2 R. �

The next result formally establishes that, if two consecutive points in the SLP-NTR sequence
are at distance δ, then the second one is an (ε1, ε2)-KKT, where ε1 and ε2 go to zero as δ goes
to zero.

Theorem 9. Suppose that gi and hj belong to C2(K) for all i ∈ Im and all j ∈ J l. Let {xxxl}
be the sequence generated by SLP-NTR for problem NLP. There are t1, t2 ∈ I such that, if xxxk

satisfies that ‖xxxk − xxxk−1‖ ≤ δ, then xxxk is an (ε1, ε2)-KKT point for NLP with ε1 = t1(δ) and
ε2 = (1 +

∑
i∈IL

xxxk
ui +

∑
j∈Jl vj)t2(δ), where ui and vj are the Lagrange multipliers associated

with xxxk in TNLP(xxxk−1).

Proof. First, we show that there is t1 ∈ I such that, if ‖xxxk − xxxk−1‖ ≤ δ then xxxk is ε1-feasible
with 0 < ε1 = t1(δ). Note that xxxk belongs to the feasible region of TNLP(xxxk−1), i.e.,

gi(xxx
k−1) +∇gi(xxxk−1)T(xxxk − xxxk−1) ≤ 0 ∀i ∈ Im,

hj(xxx
k−1) +∇hj(xxxk−1)T(xxxk − xxxk−1) = 0 ∀j ∈ J l.

Combining the above equations with Remark 4, we have

gi(xxx
k) = gi(xxx

k−1) +∇gi(xxxk−1)T(xxxk − xxxk−1) +Rixxxk−1(xxxk) ≤ Rixxxk−1(xxxk) ∀i ∈ Im,
hj(xxx

k) = hj(xxx
k−1) +∇hj(xxxk−1)T(xxxk − xxxk−1) +Rj

xxxk−1(xxxk) = Rj
xxxk−1(xxxk) ∀j ∈ J l,

and hence we have

gi(xxx
k) ≤ |Rixxxk−1(xxxk)| ≤ δ2R/2 = t1(δ), ∀i ∈ Im,

|hj(xxxk)| ≤ |Rj
xxxk−1(xxxk)| ≤ δ2R/2 = t1(δ), ∀j ∈ J l.

Thus, xxxk is an ε1-feasible point with ε1 = t1(δ).
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Second, we show that there are t2 ∈ I and scalars ui ≥ 0 for all i ∈ Iε1
xxxk

and vj ∈ R for all

j ∈ J l such that:

‖∇f(xxxk) +
∑
i∈Iε1

xxxk

ui∇gi(xxxk) +
∑
j∈Jl

vj ∇hj(xxxk)‖ < (1 +
∑
i∈ILk

ui +
∑
j∈Jl

vj)t2(δ).

By construction, ILxxxk ⊆ I
ε1
xxxk

. Now, since xxxk is a KKT point for TNLP(xxxk−1):

∇f(xxxk−1) +
∑
i∈IL

xxxk

ui∇gi(xxxk−1) +
∑
j∈Jl

vj ∇hj(xxxk−1) = 000,

with ui ≥ 0 for all i ∈ ILxxxk and vj ∈ R for all j ∈ J l. Then, we take ui = ui for all i ∈ ILxxxk , ui = 0
for all i ∈ Iε1

xxxk
\ ILxxxk and vj = vj ∈ R for all j ∈ J l. By the uniform continuity of the functions

∇f , ∇gi for all i ∈ Im and ∇hj for all j ∈ J l in K, using the notation in Remark 2, we can
define t2 = t′ ∈ I and we have:

‖∇f(xxxk) +
∑
i∈Iε1

xxxk

ui∇gi(xxxk) +
∑
j∈Jl

vj ∇hj(xxxk)‖ ≤

‖∇f(xxxk−1) +
∑
i∈IL

xxxk

ui∇gi(xxxk−1) +
∑
j∈Jl

vj ∇hj(xxxk−1)‖+ ‖∇f(xxxk−1)−∇f(xxxk)‖ +

+
∑
i∈IL

xxxk

ui‖∇gi(xxxk−1)−∇gi(xxxk)‖+
∑
j∈Jl

vj‖∇hj(xxxk−1)−∇hj(xxxk)‖ ≤

(1 +
∑
i∈IL

xxxk

ui +
∑
j∈Jl

vj)t2(δ) = ε2.

Next we show an analogous result but for the PSLP-NTR algorithm.

Proposition 10. Suppose that gi and hj belong to C2(K) for all i ∈ Im and all j ∈ J l. Let
{xxxl} be the sequence generated by PSLP-NTR for problem NLP. There are ε1, ε2 such that, if xxxk

is ε-feasible for problem NLP and it satisfies that ‖xxxk − xxxk−1‖ < δ, then xxxk is an (ε1, ε2)-KKT
point for NLP with ε1 = t1(δ) + ε and ε2 = (1 +

∑
i∈IPL

xxxk
ui +

∑
j∈Jl vj)t2(δ), where ui and vj

are part of the Lagrange multipliers associated with xxxk in TPNPµµµ(xxxk−1).

Proof. The PSLP-NTR algorithm consists in solving iteratively the problem TPNPµµµ. Let us
recall the definition of the problem TPNPµµµ(xxxk−1):

min pL(xxx) = f(xxxk−1) +∇f(xxxk−1)Txxx+

∑
i∈Im

µiyi +
∑
j∈Jl

µj(p
+
j + p−j )


subject to gi(xxx

k−1) +∇gi(xxxk−1)T(xxx− xxxk−1) ≤ yi ∀i ∈ Im
yi ≥ 0 ∀i ∈ Im
hj(xxx

k−1) +∇hj(xxxk−1)T(xxx− xxxk−1) = p+
j − p

−
j ∀j ∈ J l

p+
j ≥ 0 ∀j ∈ J l
p−j ≥ 0 ∀j ∈ J l
xxx ∈ X = {xxx ∈ Rn : Axxx ≤ bbb}.

Note that given xxxk ∈ X, the minimum value of the objective function of the previous problem
is realized by taking

yi = max{0, gi(xxxk−1) +∇gi(xxxk−1)T(xxx− xxxk−1)}, i ∈ Im,
p+
j + p−j = |hj(xxxk−1) +∇hj(xxxk−1)T(xxx− xxxk−1)|, j ∈ J l.
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Let IPLxxxk = { i ∈ Im : gi(xxx
k−1) +∇gi(xxxk−1)T(xxxk − xxxk−1)− yi = 0 }.

First note that if xxxk is ε-feasible for problem NLP, then xxxk−1 is also ε∗-feasible for ε∗ = t(δ)+ε
with t ∈ I. Indeed, by the continuity of gi and hj for all i ∈ Im and all j ∈ J l in K, we have

|gi(xxxk−1)| ≤ |gi(xxxk)− gi(xxxk−1)|+ |gi(xxxk)| ≤ t(δ) + ε = ε∗, i ∈ Im,

|hj(xxxk−1)| ≤ |hj(xxxk)− hj(xxxk−1)|+ |hj(xxxk)| ≤ t(δ) + ε = ε∗, j ∈ J l.

We prove now that there is ε1 > 0 such that IPLxxxk ⊆ Iε1
xxxk

. Given i ∈ IPLxxxk , we have yi =

gi(xxx
k−1) + ∇gi(xxxk−1)T(xxxk − xxxk−1). Therefore, by the sub-additivity absolute value and the

Cauchy-Schwarz inequality, we have

|yi| = |gi(xxxk−1) +∇gi(xxxk−1)T(xxxk − xxxk−1)| ≤ ε∗ + ‖∇gi(xxxk−1)‖δ.

Then, by Remark 4 we have

|gi(xxxk)| = |gi(xxxk−1) +∇gi(xxxk−1)T(xxxk − xxxk−1) +Rixxxk−1(xxxk)| ≤ |yi|+ |Rixxxk−1(xxxk)|

≤ ε∗ + || ∇gi(xxxk−1)||δ +
δ2

2
R = t1(δ) + ε,

being t1(δ) = t(δ) + || ∇gi(xxxk−1)||δ + δ2

2 R. Let ε1 = t1(δ) + ε, then i ∈ Iε1
xxxk

and we have showed

that IPLxxxk ⊆ I
ε1
xxxk

. Besides, ε1 > ε, so xxxk is also ε1-feasible for problem NLP.

Finally, we show that there are ε2 and scalars ui ≥ 0 for all i ∈ Iε1
xxxk

and vj ∈ R for all j ∈ J l
such that

‖∇f(xxxk) +
∑
i∈Iε1

xxxk

ui∇gi(xxxk) +
∑
j∈Jl

vj ∇hj(xxxk)‖ < ε2.

Since xxxk ∈ X is a KKT point for problem TPNPµµµ(xxxk−1), there are Lagrange multipliers u1
i ,

u2
i > 0 for all i ∈ Im and v1

j , v2
j and v3

j ∈ R for all j ∈ J l, associated to the different sets of
constraints, respectively, such that

∇f(xxxk−1) +
∑
i∈IPL

xxxk

u1
i ∇gi(xxxk−1) +

∑
j∈Jl

v1
j ∇hj(xxxk−1) = 000, (1)

µi − u1
i − u2

i = 0, i ∈ {i ∈ Im : gi(xxx
k−1) +∇gi(xxxk−1)T(xxxk − xxxk−1) = 0},

µj − v1
j − v2

j = 0, j ∈ {j ∈ J l : hj(xxx
k−1) +∇hj(xxxk−1)T(xxxk − xxxk−1) > 0},

µj + v1
j − v3

j = 0, j ∈ {j ∈ J l : hj(xxx
k−1) +∇hj(xxxk−1)T(xxxk − xxxk−1) < 0}.

Then, we take ui = u1
i for i ∈ IPLxxxk , ui = 0 for i ∈ Iε1

xxxk
\ IPLxxxk and vj = v1

j ∈ R for j ∈ J l. By
the uniform continuity of ∇f , ∇gi and ∇hj in K, using the notation in Remark 2, and taking
into account Equation (1), we have

‖∇f(xxxk) +
∑
i∈Iε1

xxxk

ui∇gi(xxxk) +
∑
j∈Jl

vj ∇hj(xxxk)‖ ≤

‖∇f(xxxk−1) +
∑
i∈IPL

xxxk

u1
i ∇gi(xxxk−1) +

∑
j∈Jl

v1
j ∇hj(xxxk−1)‖+ ‖∇f(xxxk−1)−∇f(xxxk)‖ +

+
∑
i∈IPL

xxxk

u1
i ‖∇gi(xxxk−1)−∇gi(xxxk)‖+

∑
j∈Jl

v1
j ‖∇hj(xxxk−1)−∇hj(xxxk)‖ ≤

(1 +
∑
i∈IPL

xxxk

u1
i +

∑
j∈Jl

v1
j )t2(δ) = (1 +

∑
i∈IPL

xxxk

ui +
∑
j∈Jl

vj)t2(δ)ε2.
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5 Computational results of the 2-step SLP algorithm

In this section we present the results of a series of tests in which the performance of the
2-step SLP algorithm is compared with that of classic PSLP and state of the art solvers for NLP
and MINLP problems such as local solvers Knitro 10.3.0 (Byrd et al., 2006) and Ipopt 3.12.8
(Wächter and Biegler, 2006) and global solver BARON 17.10.13 (Tawarmalani and Sahinidis,
2005). These solvers have been interfaced through AMPL modeling language (Fourer et al.,
1990), version 20180423, and the corresponding problem instances can be downloaded from
https://goo.gl/1We8yh. The LP and MILP problems associated with the SLP algorithms
have been solved with Gurobi 7.5.0 (Gurobi Optimization Inc., 2018).

Next, we briefly describe the parameters used for the SLP algorithms and the above solvers.
For the SLP algorithms, we take ε = 10−4 as stopping criteria, which is the unique parameter
needed by SLP-NTR. The additional parameters that we use to configure the PSLP algorithm
are the ones suggested in Bazaraa et al. (2006): ρ0 = 10−6, ρ1 = 0.25, ρ2 = 0.75, β = 0.5 and
∆LB = 0. With respect to the penalty parameter, in our experience µ = 10 has been sufficiently
large for all problems considered. We take 200 as the limit number of iterations of SLP-NTR
and PSLP algorithms.18 Nonlinear solvers use their default parameters except for the feasibility
tolerance that is set to 10−4, which is also imposed as feasibility threshold for the solutions
reported by SLP algorithms. The following time limits were used in the different tests sets: 300
seconds for Test 1 (NLP), 600 seconds for Test 2 (MINLP), and no time limit for Test 3 (NLP)
and Test 4 (MINLP), given that the problems in the latter two sets are relatively small. All
computations were performed on a Linux cluster, whose nodes have Intel(R) Xeon(R) 2.40GHz
quad core processors and 36GB of RAM. In order to deliver comparable results across solvers,
no parallelization was allowed to any of them.

It is worth noting that, through the course of our research, we have observed that the
computational results presented in this section seem robust to different variations of instances
and modeling choices. For instance, the results reported in González-Rueda (2017) were run on
a slight variation of the model presented here and are very similar qualitatively. Interestingly,
Section 4.5.2 in González-Rueda (2017) also presents results on the performance of 2-step SLP
on a different class of problems: multicommodity flow problems. The analysis there is run
on a set of problems taken from Babonneau and Vial (2009) and the reason for not reporting
the associated results in this paper is that the performance of all solution techniques is very
similar: PSLP, SLP-NTR, 2-step SLP, and state of the art NLP solvers deliver very similar
results (although the SLP algorithms required significantly shorter running times).

5.1 Computational tests on the Spanish gas transmission network

In this section we want to show the practical relevance of the 2-step SLP approach introduced
in this work over a set of instances of the Spanish gas transmission network. We also give details
regarding the performance of the SLP-NTR in the first step of the algorithm.19

18In case the algorithm SLP-NTR do not converge, we select the xxxk such that the distance ‖xxxk −xxxk+1‖ is the
smallest in the sequence generated by the algorithm.

19In our analysis here we do not enter into the specific results of each of the instances being solved, but the
interested reader may refer to Bermúdez et al. (2015), where a detailed case study is developed. In particular,
the results obtained after the application of 2-step SLP represent savings of around 82% with respect to the costs
associated to the operation reported by the Spanish Technical System Manager. Yet, this operation was reported
in a study about security of supply, with no mention to an optimized operation.
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5.1.1 Test sets for the Spanish gas transmission network

We employ a set of 120 different instances of the Spanish gas network to test the algorithms.
The process to generate the instances is as follows:

• We consider 12 representative instances of the Spanish gas network corresponding to dif-
ferent gas consumption periods over the year (winter, summer, peak days,. . . ). Thus, the
distribution of the gas demand over the different regions of the network varies and the
total gas demand is also different for every instance.

• Then, for each of the representative instances, we generate 9 new instances rescaling the
demand of the consumption points of the original instance. In particular:

– We generate 3 new instances with lower demands: 70%, 80% and 90% of the original
one.

– We generate 6 new instances with higher demands. In this case, if we denote by
maxcap the maximum amount of gas that can be sent to consumers from the supply
points and by inicons the total consumption of the original instance, we compute:

∆cons =
maxcap − inicons

10
.

Then, the total demand of these six scenarios is: inicons + i ·∆cons for i = 1 . . . , 6.

• Note that this process does not ensure feasibility of the resulting instances and, indeed,
for some of them no solver was able to find a feasible solution.

Compressor stations are modeled with the duplication approach described in Section 2.2.
The resulting instances have around 500 nodes and 500 edges, leading to optimization models
with around 1000 variables, with over 500 linear and 500 nonlinear (and nonconvex) constraints.
Based on these instances, we define two test sets, one for NLP problems and one for MINLP
ones.

• Test 1 (NLP): The NLP problems associated to the instances described above contain the
following objective function and constraints:

• Solvers interfaced through AMPL. The model includes the constraints given by Equa-
tions (bc), (apcom), (fc), (pl), and (zf) (See Section 2.1). The friction factor is
computed with Equation (ff). To get an NLP problem, no control valves are con-
sidered and Equations (uc) and (gc) are used to model compressors. The objective
function is given by Equation (Obj).

• SLP algorithms. For the PSLP run in the second step of the 2-step SLP algorithm, we
use exactly the same model we have just described. For the SLP-NTR model run in
step one, we make the following minor variations/simplifications:

– To ensure feasibility after every iteration, SLP-NTR uses the enlarged feasible
region as described in Section 2.2. Thus, Equation (bcextra) is used instead of
(bc), and the corresponding penalized term is added to the function, now given
by Equation (Objextra).

– We rely on the iterative nature of the algorithm to use the simplified model-
ing to iteratively update the compressibility factor as described in Section 2.2.
Similarly, to simplify the linearizations at each iteration, the average pressure in
Equation (apcom) is taken as a constant that is updated after every iteration.
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It is worth noting that the above variations of the model are not strictly needed.
Instead of enlarging the feasible region one could just apply PSLP-NTR in the first
step. Further, the simplifications regarding the average pressure and the computation
of the compressibility factor are quite minor, improve the speed of the algorithm, and
will anyway be adjusted in the second step of the algorithm.

• Test 2 (MINLP): The only difference with respect to the NLP model defined in Test 1 is
that we additionally include operating costs at supply points, including boil-off costs, so
we obtain MINLP problems with 10 binary variables. The main reason for using MINLP
problems with such a small number of binary variables is that they can be solved by
enumeration, which is very convenient for the analysis. Thus, with respect to the model
used for Test 1, we add Equations (BO-1) and (BO-2) (See Section 2.2). Accordingly,
for the objective function, Equation (Objboil-off) is used instead of Equation (Objboil-off).
The same considerations in Test 1 apply to the model variations associated to SLP-NTR
so, in particular, the objective function includes both the penalization associated to the
enlargement of the feasible region and the operating costs at supply points.

All solvers and SLP algorithms have been given the same initial solution. In particular, we
have set up an initial solution in which the flow through a pipe is proportional to its diameter,
except for those edges whose flows can be pre-computed explicitly given the demands and the
topology of the network, which have been intitialized to these values. The initial value for the
pressure at a node is set at the average of its lower and upper bounds. The initial solutions
obtained with such a naive approach are typically far from being feasible.

5.1.2 Computational results on NLP problems (Test 1)

Figure 6(a) shows the number of instances solved to feasibility by the different algorithms/solvers.
The behavior of PSLP and 2-step SLP is very similar, finding a feasible solution for 82 and 81
instances, respectively (they differ only in one instance, for which the 2-step SLP finds a solution
with a violation of 2.7 · 10−4, quite close to the feasibility threshold 10−4). On the other hand,
the state of the art solvers fail to recognize the feasibility of a considerable number of instances,
where Knitro is the solver reaching feasibility in more instances (66). SLP-NTR exhibits the
worst performance, finding a feasible solution in only 8 cases. The main reason for this behavior
is that SLP-NTR did not converge for most of the instances, as we had anticipated in Sec-
tion 3.3. More precisely, SLP-NTR did not converge for 108 instances, PSLP always converges,
and 2-step SLP does not converge for 2 instances (for which none of the approaches found a
feasible solution).

Figure 6(b) represents the quality of the feasible solutions. Given a feasible instance, we
take the best objective function found by the algorithms that solved it to feasibility and we
compute the relative difference of the objective function of each algorithm with respect to it.
Then, we represent, for each solver, the number of instances that fall within each “quality
interval”: worsening of at most 1%, between 1% and 2.5%, and so on. Figure 6(b) shows a very
good performance of the 2-step SLP algorithm, which will be a recurrent feature in all the test
instances discussed in this section. Note that the quality of the solutions of 2-step SLP is clearly
superior to the ones found by PSLP, which suggests that the solution provided by the SLP-NTR
in the first step (despite not having converged) is a good starting point that helps the PSLP to
find better solutions in second step.

Figure 7 represents box plots with the computational times. As we can see BARON is
the slowest solver, which is natural since it is a global optimization solver. In particular, in
Figure 7(a), where only instances solved to feasibility are considered, BARON always reaches
the time limit imposed of 300 seconds (note that this does not mean that BARON needs 300
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(a) Feasibility results (b) Quality of the feasible solutions.

Figure 6: Summary of results for Test 1 (NLP).

(a) CPU times in instances solved to feasibility by each
solver.

(b) CPU times in instances solved to feasibility (without
BARON).

Figure 7: Computational times (in seconds) for Test 1 (NLP).
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seconds to find a feasible solution, but trying to establish its global optimality). Interestingly,
Figure 7(b) shows that the best computational times are achieved by SLP-NTR and Knitro.
Yet, overall, it seems that 2-step SLP outperforms the rest of the algorithms/solvers in Test 1.

5.1.3 Computational results on MINLP problems (Test 2)

We move now to Test 2, where for each instance we have to solve a MINLP problem. Although
we cannot apply PSLP to these problems, we still denote by PSLP the solution obtained by
solving, with PSLP, each instance of the problem by enumeration of the combinations of the
binary variables. Furthermore, Ipopt is not included in the analysis since it does not solve
MINLP problems.

(a) Feasibility results (b) Quality of the feasible solutions.

Figure 8: Summary of results for Test 2 (MINLP).

As Figure 8 shows,20 the behavior of SLP-NTR and 2-step SLP algorithms is similar to the
one in Test 1 (NLP) regarding feasibility. However, now BARON is not able to find any feasible
solution while Knitro improves its performance. We must take into account that we impose a
time limit of 600 seconds for the state of the art solvers and BARON often reached this time
limit; see Figure 9(a).21 As expected, the computational time of the PSLP enumeration is the
largest one. Regarding the convergence of the SLP algorithms, the behavior is similar to the
one discussed in Test 1 (NLP).

Finally, Figure 8(b) shows that the quality of the solution provided by the 2-step SLP out-
performs both the PSLP enumeration and Knitro. In particular, the fact that 2-step SLP often
finds a better solution that the best one found by the PSLP enumeration probably means that
local solutions were found for some of the NLP subproblems.

20We only ran the PSLP by enumeration for those instances solved to feasibility by the 2-step SLP.
21This bad behavior of BARON had already been observed, although not so dramatically, in the analysis in

González-Rueda (2017) (which was ran on the same instances, but with some minor modeling differences).
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(a) CPU times considering all the instances. (b) CPU times in instances solved to feasibility by each
algorithm.

Figure 9: Computational times (in seconds) for Test 2 (MINLP).

5.2 Computational tests on the Belgian gas transmission network

In order to get a broader view of the performance of 2-step SLP on optimization problems in
gas transmission networks, we also study its performance on the optimization model developed
in De Wolfe and Smeers (2000). The model is similar to the one used in Test 1, but some of the
nonlinear expressions have been simplified. For the sake of exposition we do not present here the
detailed description of the differences between the two models, but the interested reader may
refer to Section 4.5.1 in González-Rueda (2017).

5.2.1 Test sets for the Belgian gas transmission network

We consider 300 different instances of the Belgian gas transmission network, wich are generated
by randomly modifying some parameters associated to a reference instance taken from data for
the Belgian gas transmission network provided in Appendix A of De Wolfe and Smeers (2000).
The reference instance contains 20 nodes and 24 edges (including 3 compressors), being the
resulting problems much smaller than those of Test 1 and Test 2.

Based on the above instances, we define two test sets, one for NLP problems (with around
60 continuous variables, 20 linear constraints and 25 nonlinear constraints) and one for MINLP
ones (with around 60 continuous variables, 20 integer variables, 125 linear constraints, and 25
nonlinear ones).

• Test 3 (NLP): All solvers and SLP algorithms run on the same model: the NLP model
in De Wolfe and Smeers (2000).

• Test 4 (MINLP): All solvers and SLP algorithms run on the same model. To obtain a
MINLP problems, the approach has been to replace the absolute value in the pressure loss
constraints, |q|, with a binary variable to account for the sign of q. The resulting MINLP
problems are mathematically equivalent to the original NLP ones.

This version: May 6, 2019
31



In these tests PSLP-NTR is run in the first step of 2-step SLP instead of SLP-NTR. The
initial solution has been defined as follows: flows have been set to the solution of solving the
model using only the linear constraints and pressures to the averages of the bounds.

5.2.2 Computational results on NLP problems (Test 3)

In Figure 10(a) we can see the feasibility analysis related to Test 3 (NLP). We can see that
the SLP algorithms, BARON, and Ipopt exhibit a good performance, but Knitro fails to find
a feasible solution for 32 instances. Remarkably, for this model the PSLP-NTR only fails to
recognize the feasibility of 1 instance, being the only one for which it does not converge, while
the PSLP and the 2-step SLP converge for all the instances. Regarding the quality of the
solution, given in Figure 10(b), all the algorithms/solvers find the best solution for almost all
the instances they solve to feasibility.

(a) Feasibility results (b) Quality of the feasible solutions.

Figure 10: Summary of results for Test 3 (NLP).

Concerning the computational time, given that most instances were identified as feasible, all
graphics with computational times are very similar and we only represent the one considering
all instances. We can see in Figure 11 that all solvers deliver running times under 1 second.
Ipopt and Knitro are especially fast, with PSLP-NTR being close to them.

5.2.3 Computational results on MINLP problems (Test 4)

First, recall that the optimal objective functions for problems in Test 3 (NLP) and Test 4
(MINLP) coincide, since the latter are just equivalent reformulations of the former. Thus,
similar results could be expected.

Regarding feasibility, depicted in Figure 12(a), the behavior is indeed similar to the one in
Test 3. Interestingly, the number of feasible instances found by Knitro increases from 268 to 289.
With respect to the quality of the solutions (see Figure 12(b)) the results are also similar, with
BARON now finding the best solution for all the instances. Finally, regarding computational
times, Figure 13 shows that the PSLP-NTR is the fastest algorithm and Knitro the slowest one
(the result would not change if we looked only at the solved instances).
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Figure 11: Computational times (in seconds) for Test 3 (NLP).

(a) Feasibility results (b) Quality of the feasible solutions.

Figure 12: Summary of results for Test 4 (MINLP).

Figure 13: Computational times (in seconds) for Test 4 (MINLP).
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6 Conclusions and future research

We have presented a new algorithm, 2SLP, that is a modification of classic SLP algorithms with
the additional feature that it can be applied not only to find local solutions to NLP problems,
but also as a heuristic for MINLP problems.

The 2SLP algorithm was born as part of a collaboration with a partner in the gas industry,
to solve optimization problems in gas transmission networks.

In Section 4 we presented some theoretical results underlying the SLP-NTR algorithm, which
is run in the first step of 2SLP and discussed its main limitations (such as poor convergence
properties) and strengths (ease of implementation, straightforward application to MINLP prob-
lems).

The performance of the 2SLP algorithm was then studied in a series of tests on different
NLP and MILP instances of optimization problems in gas networks. In these tests, the 2SLP
algorithm outperformed the classic SLP approaches and, moreover, also exhibited results in most
cases superior to those of state of the art solvers.

The future lines of research within this project are mostly driven by the requirements of our
industrial partner, and nowadays focus on two extensions of the models under consideration:

i) Inclusion of pooling constraints, that allow to keep track of different properties of the gas
in the network in the case in which there is a heteregeneous mix of gases flowing through
it. The pooling problem is a classic problem in energy related industries and has been
widely studied (see Misener and Floudas (2009)).

ii) Inclusion of uncertainty on prices and demand, so that GANESOTM can be used to help
to take decisions regarding mid and long-term infrastructure planning. This extension
requires the combination of the NLP and MINLP techniques discussed in this paper with
those of stochastic optimization and algorithms such as Progressive Hedging (see Birge
and Louveaux (2011) and Rockafellar and Wets (1991)).
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López-Cerdá, M. A. 2012. Stability in linear optimization and related topics. A personal tour.
TOP 20 217–244.
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A Proofs of auxiliary results in Section 4

A.1 Proof of Proposition 6

For each ε > 0, define Kε as the set of ε-feasible points of K. By the continuity of all the gi and
hj functions, the Kε sets are closed.22 Thus, by the compactness of K, they are also compact.

Let tF : R→ R be defined, for each ε > 0, by tF (ε) = maxxxx∈Kε d(xxx, FNL). The compactness
of Kε ensures that this function is well defined. Moreover, since ε < ε′ implies that Kε ⊆ Kε′ ,
the function tF is non-decreasing.

We now show that tF ∈ I, i.e., limε→0 t
F (ε) = 0. Suppose, on the contrary, that there is a

sequence {xxxn} ⊂ K of εn-feasible points with εn → 0 and a real number r > 0 such that, for
each n ∈ N, d(xxxn, FNL) > r.

By the compactness of K, there is a convergent subsequence {xxxnk} of {xxxn} on K. The limit
xxx of xxxnk belongs to FNL because it satisfies the constraints of the NLP problem:

gi(xxx) = lim
nk→∞

gi(xxx
nk) ≤ lim

nk→∞
εnk = 0,

0 ≤ |hj(xxx)| = lim
nk→∞

|hj(xxxnk)| ≤ lim
nk→∞

εnk = 0 =⇒ hj(xxx) = 0,

which contradicts that d(xxx, FNL) = limnk→∞ d(xxxnk , FNL) ≥ r > 0.

A.2 Proof of Theorem 7

We need some auxiliary notations and results. For each I ⊆ Im we define:

BNLI = {xxx ∈ FNL : gi(xxx) = 0 for all i ∈ I and gi(xxx) 6= 0 for all i /∈ I} = {xxx ∈ FNL : Ixxx = I}.

Informally, the set BNLI contains the feasible points whose active constraints are only those
belonging to I.

Remark 5. Note that BNLI ∩ BNLJ = ∅ if I 6= J , so thse sets form a partition of the feasible
region:

FNL =
⋃
I⊆Im

BNLI .

22They are the intersections of finitely many inverse images of closed sets.
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Moreover, when I = Im the set BNLI =
(⋂

i∈Im g
−1
i ({000})

)
∩
(⋂

j∈Jl h
−1
j ({000})

)
is a compact

set (possibly empty). On the other hand, if I ( Im, then either Cl(BNLI ) = BNLI and so BNLI
is compact or:23

Cl(BNLI ) \BNLI ⊆
⋃
J)I

BNLJ . (2)

Indeed, if xxx ∈ Cl(BNLI ) \ BNLI , there exists a sequence {xxxn} ∈ BNLI that converges to xxx. Since
xxx /∈ BNLI and, for each i ∈ I, gi(xxx) = limn→∞ gi(xxx

n) = 0, so i ∈ Ixxx and we have I ( Ixxx. Thus,
xxx ∈ BNLJ for J = Ixxx ) I. �

Finally, given a set of inequality constraints I ( Im and a feasible point xxx ∈ FNL, we define
a function that computes from those inequality constraints not belonging to set I, the minimum
distance about how far they are to be active constraints at point xxx. Formally, gImin : FNL → R
is the function defined, for each xxx ∈ FNL, by:

gImin(xxx) =
1

2
min{|gi(xxx)| : i /∈ I}.

For the sake of completeness, for Im, we define gI
m

min : FNL → R as the constant function with
value max{|gi(xxx)| : i ∈ Im, xxx ∈ FNL}. Clearly, the continuity of the gi functions implies the
continuity of the gImin(xxx) ones.

Remark 6. Since all the gi functions are uniformly continuous functions on K, there is a non-
decreasing function tU ∈ I such that, for each γ > 0, if xxx,yyy ∈ K with ‖xxx − yyy‖ ≤ tU (γ), then
|gi(xxx)− gi(yyy)| ≤ γ, for all i ∈ Im. �

Lemma 11. Take tU ∈ I as in Remark 6 and let xxx ∈ FNL. Then, we have that, for each
0 < γ ≤ gIxxxmin(xxx) and each yyy ∈ K such that ‖xxx− yyy‖ < tU (γ) the following conditions hold:

i) |gi(yyy)| ≤ γ for each i ∈ Ixxx,

ii) |gi(yyy)| ≥ γ for each i /∈ Ixxx.

Proof. Let xxx ∈ FNL. By Remark 6, for each 0 < γ ≤ gIxxxmin(xxx), if ‖xxx − yyy‖ ≤ tU (γ) then
|gi(xxx)− gi(yyy)| ≤ γ for all i ∈ Im. Now, if i ∈ Ixxx, gi(xxx) = 0, so statement i) is proved. Otherwise,
if i /∈ Ixxx, we have

∣∣|gi(xxx)| − |gi(yyy)|
∣∣ ≤ |gi(xxx)− gi(yyy)| ≤ γ. Then,

|gi(yyy)| ≥ |gi(xxx)| − γ ≥ 2gIxxxmin(xxx)− γ ≥ γ.

The next lemma provides the key ingredients for the proof of Theorem 7.

Lemma 12. Take tU ∈ I as in Remark 6. For each γ > 0, there are γ and γ, with 0 < γ ≤ γ ≤
γ, with the following property: for each xxx ∈ K \FNL with d(xxx, FNL) ≤ tU (γ), there is xxx ∈ FNL
such that:

i) ‖xxx− xxx‖ ≤ tU (γ),

ii) |gi(xxx)| ≤ γ for each i ∈ Ixxx, and

iii) |gi(xxx)| ≥ γ for each i /∈ Ixxx.

Proof. Given γ > 0, using an inductive process we define, for each I ⊆ Im with BNLI 6= ∅, a real
number γI ≤ γ and a set CI ⊆ Cl (BNLI ) as follows:

23Cl(S) denotes the topological closure of set S.
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• Case 1. I = Im and BNLI 6= ∅. Define γI = γ and CI = BNLI .

• Case 2. I 6= Im and BNLI 6= ∅. Suppose that γJ is defined whenever |J | > |I|. Define:

CI = Cl (BNLI ) \
⋃
J)I

( ⋃
zzz∈Cl(BNLI )∩BNLJ

B
(
zzz, tU (γJ)

))
,

which is a compact set. Furthermore note that, when BNLI is compact, then CI = BNLI .
By the compactness of CI we can define:

γI = min
{
{gImin(zzz) : zzz ∈ CI}, {γJ : |J | > |I|}

}
> 0.

It is important to remark that CI ⊆ FNL. Indeed, given xxx ∈ CI , if xxx ∈ BNLI it is trivial
because BNLI ⊆ FNL by definition. Otherwise, since CI ⊆ Cl (BNLI ), xxx ∈ Cl (BNLI )\BNLI ,
and we know by Equation (2) that xxx ∈ BNLIxxx with Ixxx ) I, so xxx ∈ FNL.

Informally, the set CI contains the points in the closure of BNLI that are not too close to a
point in FNL with more active constraints than those in I. This ensures that, when restricted
to CI , the function gImin is bounded away from zero. Now, let H = {I ⊆ Im : BNLI 6= ∅}. We
define:

γ = min
I∈H
{γI} and γ = max

I∈H
{γI}.

Note that, for each yyy ∈ K such that d(yyy, CI) ≤ tU (γI), there exists xxx ∈ CI ⊆ FNL with I = Ixxx
and by Lemma 11 we have that |gi(yyy)| ≤ γI for all i ∈ I and |gi(yyy)| ≥ γI for all i /∈ I.

Finally, we revise statements i), ii), and iii). Take xxx ∈ K \ FNL with d(xxx, FNL) ≤ tU (γ).

Let J ⊆ Im the largest subset of indices such that d(xxx,CJ) ≤ tU (γJ). Then, there exists
xxx ∈ CJ ⊆ FNL such that:

i) ‖xxx− xxx‖ ≤ tU (γJ) ≤ tU (γ).

Now, by definition of γJ and by Lemma 11 taking into account that J = Ixxx:

ii) |gi(xxx)| ≤ γJ ≤ γ for all i ∈ J

iii) |gi(xxx)| ≥ γJ ≥ γ for all i /∈ J .

We are finally equipped to prove Theorem 7.

Proof of Theorem 7. First, take tF as in the statement of Proposition 6 and tU as in Re-
mark 6. Lemma 12 associates, to each γ > 0, real numbers γ and γ with 0 < γ ≤ γ ≤ γ.24

Clearly, we can find ε > 0 small enough so that there is γ > 0 satisfying that ε < γ and

tF (ε) < tU (γ). Moreover, the monotonicity of tF ensures that the same γ would work for all
ε′ < ε. Then, define ε̄ as:

ε̄ = sup{ε > 0 : there is γ > 0 satisfying that ε < γ and tF (ε) < tU (γ)}.

Now, for each ε > 0, with ε < ε̄, define:

γε = inf{γ : ε < γ and tF (ε) < tU (γ)},

and let t̂ ∈ I be defined, for each ε < ε̄, by t̂(ε) = tU (γε).
Finally, let xxx be an ε-feasible point, with ε < ε̄. By Proposition 6, we have that d(xxx, FNL) ≤

tF (ε) < tU (γε). Then, take xxx ∈ FNL with the properties given in Lemma 12. We conclude by
showing that xxx satisfies a) and b).

24With some abuse of notation, in this proof we think of γ and γ as functions of γ.
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a) By statement i) in Lemma 12, ‖xxx− xxx‖ ≤ tU (γε) = t̂(ε), so a) is satisfied.

b) By statement iii) in Lemma 12, |gi(xxx)| ≥ γε for each i /∈ Ixxx. Then, since for each i ∈ Iεxxx
we have that |gi(xxx)| ≤ ε < γε, we deduce that Iεxxx ⊆ Ixxx.
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