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Abstract

In this paper we prove the existence of solution to a mathematical model for gas
transportation networks on non-flat topography. Firstly, the network topology is
represented by a directed graph and then a nonlinear system of numerical equations
is introduced whose unknowns are the pressures at the nodes and the mass flow
rates at the edges of the graph. This system is written in a compact vector form
in terms of the vector of the square pressures at the nodes and then an existence
result is proved under some simplifying assumptions. The proof is done in two steps:
the first one uses convex analysis tools and the second one the Brouwer fixed-point
theorem.
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1 Introduction

Due to their nature, gas transmission networks occupy vast extensions of land
which can be measured in thousands of kilometers. They are generally managed
from a control center by the Technical System Manager (TSM) based on the data
they receive from the different elements that form the network, namely, compres-
sion stations, pressure control valves, flow control valves, closing valves, regasifica-
tion plants, international connections, underground storages and deposit fields. A
gas transmission network is defined by its topology and its elements. More specif-
ically, the gas pipeline connections and geometrical properties as length, diameter,
roughness, and geographic coordinates of pipes and nodes.

Mathematical modelling of gas flow in pipelines is an important subject in plan-
ning and operating gas transportation networks (see reference books, [1], [2]). Some
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recent papers have been devoted to the transient case (see [3], [4]). Usually, they
assume isothermal or isentropic flow (see [5]) but in real networks neither temper-
ature nor entropy remain constant because, first, there is heat exchange with the
environment (see [6],[7]) and second there is dissipation in the boundary layer near
the wall of the pipelines due to viscous friction. These features complicate the model
because they lead to two respective source terms in the physical balance laws.

However, most papers and computer programs on the subject deal with the case
of steady-state because, based on simplified steady state models, network optimiza-
tion problems can be stated and solved even for large networks. Currently, in most
networks the first aim is to meet all consumer demands, the so-called security of
supply. However, compression stations and regasification plants use themselves the
gas as an internal power source, thus leading to operation costs. In order to min-
imize these costs it is necessary to pay particular attention to the way in which
the network is managed. Mathematical optimization theory is an important tool to
handle this problem (see [8], [9], [10], [11], [12]). Nevertheless, the analysis of these
optimization problems is beyond the scope of this paper which is rather focused in
the network simulation problem when the flow inputs and outputs are given and
the operating parameters of compressors (compression ratio or pressure jump) are
prescribed; more specifically, we deal with the existence of solution of a particular
but frequently used network mathematical model.

Despite their practical importance, to the best of the authors’ knowledge, the
proof of the existence of a solution to these simplified models has been only done
for the case of flat topography (see [13, Corollary 2]) and strictly speaking for a
network involving only pipes, neither compressors nor valves are considered. Thus,
the nontrivial extension of this result to the full more general model with non-flat
topography remains an open problem and it is the main goal of the present research.
It is worth emphasizing that the fact that nodes can have different heights has an
extremely important influence on the behaviour of gas networks. For instance, an
upwinding node may have a lower pressure than a downwinding one if the level of
the former is higher than the level of the latter. Of course this would never occur if
both are at the same level, unless the gas in the pipe between them does not move.

The paper is organized as follows: in Sections 2 and 3 the mathematical model
is established (further details are given in AppendixA). Then, in Section 4 the
existence of a solution to this model is proved as well as uniqueness in the case of
flat topography. At the end, two appendices deal, respectively, with obtaining the
model equations from the conservation principles of continuum thermomechanics
and with some elements on graph theory.

2 Mathematical model: data and unknowns

The goal of this section is to introduce a mathematical model for steady-state gas
flow in a gas transportation network which will be subsequently analyzed in Section
4. A gas transportation network consists of different elements and devices such as
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entry points, exit points, gas pipelines with different sizes, compression stations, flow
control valves (FCV), closing valves and pressure control valves (PCV). Its topology
can be represented by a directed graph corresponding to the following choices:

• The nodes represent the gas supply points, the gas consumption points, the
underground storages, the suction or discharge points in a compression station,
the interconnection points among pipelines, and the points where the latter
change diameter or some other property.

• The edges represent the pipelines, the compressors (each compressor links the
suction node and the discharge node by the ratio of their increasing pressures),
the flow control valves (FCV) (where the mass flow rate is imposed), the closed
closing valves (where the mass flow is zero), the bypasses or open closing valves,
the pressure control valves (PCV) (which link two nodes by the ratio of their
decreasing pressures).

The total number of nodes is denoted by n and the total number of edges by e.
Concerning the flow, the magnitudes involved in the model are:

1. The pressure at the nodes: {pi : i = 1, . . . , n}. We denote by p the column
vector of n components: p = (p1, . . . , pn)t .

2. The mass flow rate exchanged with the outside of the network at the nodes:
{ci : i = 1, . . . , n}. We denote by c the column vector of n components: c =
(c1, . . . , cn)t .

3. The mass flow rate at the edges: {qj : j = 1, . . . , e}. We denote by q the
column vector of e components: q = (q1, . . . , qe)

t .

Remark 2.1. It is possible to impose the values of some of the above magnitudes.
Thus, each of the above vectors will be divided into two parts: one corresponding to
imposed values (data of the model) and another one corresponding to values that have
to be computed (unknowns of the model). Moreover, the unknowns at the nodes have
to be alternatively chosen as either the mass flow rate exchanged with the outside (if
the pressure is imposed), or the pressure (if the mass flow rate exchanged with the
outside of the network is imposed).

In order to analyze and solve the model it is convenient to introduce the square
pressure at the nodes: ui, i = 1, . . . , n. Vector u will denote the column vector of n
components, u = (u1, . . . , un)t = (p21, . . . , p

2
n)

t
.

2.1 Data and unknowns of the model

Firstly, let us define the dimension of the different kind of nodes and edges:

• np: number of nodes where the pressure is imposed,

• er: number of edges corresponding to compressors or pressure control valves,

• et: number of flow control valves,

3



• ec: number of closed closing valves,

• ef = e − et − ec − er: number of edges which are neither flow control valves,
nor closed closing valves, nor compressors, nor pressure control valves. We
refer to these edges as free edges and, for the sake of exposition, they will be
numbered first.

Then the data of the model are the following:

• αR: vector of differences of square pressures between the two nodes of edges
associated with compressors or pressure control valves (er components),

• pU : vector of imposed pressures (np components),

• uU : vector of imposed square pressures (np components),

• cD: vector of imposed mass flow rates exchanged with the outside of the
network (n− np components),

• qV : vector of imposed mass flow rates (ev components, with ev = et + ec).

Consequently, the unknowns of the model are the following:

• pD: vector of pressures at nodes where pressure is not imposed (n− np com-
ponents),

• uD: vector of square pressures at nodes where square pressure is not imposed
(n− np components),

• qR: vector of mass flow rates along the edges associated with compressors or
pressure control valves (er components),

• qF : vector of mass flow rates along the free edges (ef components),

• cU : vector of mass flow rates exchanged with the outside of the network at
nodes where pressure is imposed (np components),

To clarify notations, let us summarize the meaning of superscripts U , D, V , R and
F :

• U identifies vectors whose components are associated with nodes where the
pressures are imposed,

• D identifies vectors whose components are associated with nodes where the
mass flow rates exchanged with the outside of the network are imposed,

• V identifies vectors whose components are associated with edges where the
mass flow rates are imposed,

• R identifies vectors whose components are associated with edges corresponding
to compressors or pressure control valves,

• F identifies vectors whose components are associated with the free edges.

Associated with the above vectors it is convenient to introduce the following matri-
ces:
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• Matrix U , of order np × n, extracts, from a vector of n components, the sub-
vector whose components correspond to the nodes where pressure is imposed
(and then the mass flow rate exchanged with the outside cannot not imposed)

• Matrix D, of order (n− np)× n, extracts, from a vector of n components, the
sub-vector whose components correspond to the nodes where the mass flow
rate exchanged with the outside is imposed (and then the pressure cannot not
imposed).

• Matrix V , of order ev × e, extracts, from a vector of e components, the sub-
vector of those corresponding to the edges where the mass flow rate is imposed,
namely, edges with flow control valves (FCV) or closing valves.

• Matrix R, of order er × e, extracts, from a vector of e components, the sub-
vector of those corresponding to the edges associated with compressors or
pressure control valves (PCV).

• Matrix F , of order ef × e, extracts, from a vector of e components, the sub-
vector of those associated with free edges, i.e., not corresponding to either
FCVs, or closing valves, or compressors, or PCVs).

According to these notations, vectors p, u, c and q can be written as follows:

p = DtpD + U tpU ,
u = DtuD + U tuU ,
c = U tcU +DtcD,
q = F tqF +RtqR + V tqV ,

where the first terms on the right-hand sides represent the unknowns and the last
ones the data. Related to the above decomposition of vector q, a block splitting of
the incidence matrix of the graph, A, (see Appendix B) arises:

Aq = AF tqF +ARtqR +AV tqV = AFq
F +ARq

R +AV q
V

=
(
AF AR AV

) qF

qR

qV

 ,

where AF = AF t, AR = ARt and AV = AV t. Thus, AF ∈ Mn×ef , AR ∈ Mn×er
and AV ∈ Mn×ev are the incidence matrices of the subgraphs including the free
edges, those associated with compressors or PCVs, and those associated with FCVs
or closed closing valves, respectively.

3 Mathematical model: equations

The equations of the model are mathematical expressions of mass conservation
at nodes and head loss along edges.
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3.1 Mass conservation

It is also known as Kirchhoff’s first law of the network because of its analogy with
this law for electric circuits. It establishes that, at any node, the sum of the ingoing
mass flow rates must be equal to the sum of outgoing mass flow rates. Thanks to
the incidence matrix of the graph representing the network, A, it can be written in
a compact way as

Aq = c. (1)

An important property of matrix A is the following. Let e be the vector of Rn

whose components are all equal to 1. From the definition of A it is straightforward
to check that Ate = 0. Then, scalar multiplication of equation (1) by e leads to

c · e =
n∑

i=1

ci = Aq · e = q · Ate = 0, (2)

which is an obvious necessary condition for the existence of a solution to the network
model: since the network is in steady state, the algebraic sum of the mass flow rates
exchanged with the outside of the network has to be null.

The above property implies that the maximum number of independent equations
in the linear system (1) is n−1. Thus, even if all components of vector c are known, in
general we need other equations to uniquely compute the flows in the network. These
additional equations will be written in the next section and come from the linear
momentum conservation principle. Meanwhile, let us analyze the set of solutions of
the mass conservation equation (1) assuming that c is given satisfying (2). For this
purpose, let us denote by q∗ a particular solution orthogonal to ker(A). Then the
set of solutions is the linear manifold q∗+ker(A). Let us take any w ∈ ker(A). This
means that Aw = 0. If the only physical constraint were mass conservation, the flow
corresponding to vector w could be considered as superfluous because it does not
help to transport gas from emission to consumption points. However, superfluous
flows are often needed to meet the linear momentum conservation equations to be
given below. In other words, it is unlikely that the vector of mass flow rates in a
real network be orthogonal to the vector space ker(A).

The flow vectors belonging to the kernel of A are called cycling flows. The
orthogonal projection of the actual vector of mass flow rates in a network onto
the space of cycling flows will be called the superfluous flows vector. We want to
emphasize once again that the latter are often needed in order to comply with the
momentum conservation principle.

For some particular calculations it can be necessary to “eliminate” the superflu-
ous flow vector. This can be done by making the projection of the mass flow rate
vector onto the orthogonal space to ker(A). A basis of this kernel can be obtained
from the so-called cycle matrix which, in its turn, can be obtained by means of
“graph algorithms” like the depth-first search (DFS) or “algebraic methods” based
on the singular-value decomposition (SVD) of matrix A.
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Moreover, according to the vector decompositions given in Section 2, the mass
conservation equation (1) can be rewritten in the form

AFq
F +ARq

R − U tcU = DtcD −AV q
V . (3)

Let us left-multiply this equality by matrix D. We get (notice that DU t = 0 and
DDt = I),

DAFq
F +DARq

R = g, (4)

with
g := cD −DAV q

V . (5)

3.2 Momentum conservation

It states that there is a pressure drop along pipelines due to the viscous stress
arising from friction with their walls which can be computed with the function
introduced in (A.14). This function can be rewritten as

Gj (pmj, θmj, qj) = rj (pmj, θmj)µj (qj) , (6)

where

rj (pmj, θmj) :=
16Lj R

π2D5
j

θmjZ (pmj, θmj) . (7)

Let us recall that pmj and θmj denote, respectively, average pressure and temperature
along the j-th edge (see AppendixA).

Let us recall that the free edges are numbered first. We define the “diagonal”
mapping GF : Ref → Ref by

GF

(
pm,θm,q

F
)
j

= Gj

(
pmj, θmj, q

F
j

)
, j = 1, · · · , ef

and the vector bF ∈ Ref by

bFj =
2g

Rθmj

umj

Z (pmj, θmj)

(
HM2,j

−HM1,j

)
, (8)

where Hi denotes the height of the i-th node, umj is the average value of u along
the j-th edge given by

umj =
uM1,j

+ uM2,j

2
,

and M1,j and M2,j are the two nodes of the j-th edge. We have,

At
Fu−GF

(
pm,θm,q

F
)

=bF (u), (9)

At
Ru =αR, (10)

and, since u = U tuU +DtuD, the first equation can also be written as

At
FDtuD −GF

(
pm,θm,q

F
)

= f , (11)
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with
f := bF (u)−At

FU tuU (12)

and the second one as
At

RDtuD = k, (13)

with
k := αR −At

RU tuU . (14)

Let us summarize the model of the gas transportation network:

Given,

• uU : the vector of imposed square pressures,

• qV : the vector of mass flow rates at the edges with flow control valves,

• αR: the vector of differences of square pressures between the two nodes of edges
associated with compressors or pressure control valves,

• cD: the vector of the mass flow rates exchanged with the outside of the network,
at nodes where pressure is not imposed,

find vectors uD, qF , qR and cU such that

DAFq
F +DARq

R = g, (15)

At
FDtuD −GF

(
qF
)

= f , (16)

At
RDtuD = k, (17)

AFq
F +ARq

R − U tcU = DtcD −AV q
V , (18)

with g, f and k given by (5), (12) and (14), respectively.

Remark 3.1. Notice that the unknowns of the model are uD (n− np numbers), qF

(ef numbers), qR (er numbers), and cU (np numbers) so that the total number of
unknowns is n − np + ef + er + np = n + ef + er, which is equal to the number of
equations: n− np + ef + er + np = n+ ef + er.

Remark 3.2. Let us notice that if we can solve equations (15), (16) and (17) for
uD, qF and qR, then (18) allows us to compute cU by

cU = UAFq
F + UARq

R + UAV q
V ,

in a second step. This is because UU t = I and UDt = 0.

Let us notice that unknown vector uD appears in the expression of the right-hand
side f of equation (16), namely, in vector bF (u). Thus, it is important to rewrite
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this equation by putting this term on the left-hand side. For this purpose, let us
introduce the following notation:

wj =
g

RθmjZ(pm, θmj)

(
HM2j

−HM1j

)
, (19)

for 1 ≤ j ≤ ef , and W denotes the ef × ef diagonal matrix

Wlj = wjδlj, 1 ≤ l, j ≤ ef .

Let the n× e matrix Λ be defined, for 1 ≤ i ≤ n, 1 ≤ j ≤ e, by

Λij = δiM1j
+ δiM2j

where δ is the Kronecker’s delta. Then vector bF (u) can be written as

bF (u) =WFΛtu =WFΛt
(
DtuD + U tuU)

and (16) becomes (
At

F −WFΛt
)
DtuD −GF

(
qF
)

= h, (20)

with
h :=

(
WFΛt −At

F

)
U tuU .

Now, from (20) we can obtain qF as

qF = G−1F

((
At

F −WFΛt
)
DtuD − h

)
,

and replacing this expression in (15) it can be written in terms of uD and qR, namely,

DAFG
−1
F

((
At

F −WFΛt
)
DtuD − h

)
+DARq

R = g. (21)

In order to prove the existence of a solution to (17) and (21) it is convenient to
subtract the term

DΛF tWG−1F

((
At

F −WFΛt
)
DtuD − h

)
,

to both sides of (21). We get

D
(
AF − ΛF tW

)
G−1F

((
At

F −WFΛt
)
DtuD − h

)
+DARq

R

= g −DΛF tWG−1F

((
At

F −WFΛt
)
DtuD − h

)
. (22)

Finally, by introducing the (n− np)× ef matrix

B := D
(
AF − ΛF tW

)
,

this equation can be rewritten as

BG−1F

(
BtuD − h

)
+DARq

R = g −DΛF tWG−1F

(
BtuD − h

)
. (23)

Remark 3.3. As mentioned before, matrix W depends on the solution through the
compressibility factor Z because this parameter is a function of pressure which, in
its turn, is the square root of u. The same is true for mapping GF .
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4 Existence of solution

In order to simplify the analysis, the existence theorem below will be proved
for an approximate model. It is obtained by freezing, at each edge, the friction
factor λ present in µ(q) = λ(q)|q|q (see (6)) and the compressibility factor Z (see
AppendixA) to constant values. These assumptions have also been done in [13]
where, in addition, the topography is assumed to be flat, i.e., the term (8) involving
the difference of heights at the nodes is not considered. We want to emphasize
that the presence of this term prevents us from using the same method as the one
employed in that paper, in order to prove the existence of a solution to the gas
network model. In particular, the system of equations (7) in [13] is no longer true
in our case.

The above simplifying assumptions mean that the pressure loss function
Gj(pmj, θmj, qj) is replaced by

G̃j (q) := r̃jλ̃j|q|q, (24)

with

r̃j :=
16Lj R

π2D5
j

θmjZ̃j,

where λ̃j and Z̃j, j = 1, · · · , ef are constant values given for each edge of the
network, and that numbers wj are approximated by

w̃j =
g

RθmjZ̃j

(
Hm(2,j) −Hm(1,j)

)
,

for 1 ≤ j ≤ ef . Thus, we replace the diagonal matrix W by W̃ with W̃ij := w̃jδij,
1 ≤ i, j ≤ e. For the sake of simplicity in notation it is convenient to introduce
matrix B̃ by

B̃ := D
(
AF − ΛF tW̃

)
.

The goal of this section is to prove the existence of a solution to the problem

B̃G̃−1F

(
B̃tuD − h

)
+DARq

R = g −DΛF tW̃G̃−1F

(
B̃tuD − h

)
, (25)

At
RDtuD = k (26)

where (
G̃F (qF )

)
j

= G̃j(qj).

It will be achieved in two steps:

1. In the first step, we freeze the value of uD on the right-hand side of (25) to a
given vector uD∗ and consider the one on the left-hand side as unknown, i.e.,
we look for uD satisfying the system of equations

B̃G̃−1F

(
B̃tuD − h

)
+DARq

R = g −DΛF tW̃qF∗, (27)

At
RDtuD = k, (28)
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where
qF∗ := G̃−1F

(
B̃tuD∗ − h

)
.

Then we prove the existence of a unique solution to this problem.

2. In the second step, we prove the existence of a solution to (25) by showing
that the mapping

qF∗ −→ F̃(qF∗) := G̃−1F

(
B̃tuD − h

)
,

being uD the solution of the system given by (27), (28), has a fixed point.

4.1 First step: existence and uniqueness of solution to the system given by (27)
and (28)

Let χ̃j : R → R be the primitive function of G̃j satisfying χ̃j (0) = 0. Since G̃j

is strictly monotone, then χ̃j is strictly convex. In fact, it is easy to see that

χ̃j(q) =
1

3
r̃jλ̃j|q|3. (29)

Moreover, from convex analysis it is well known that G̃−1j is the derivative of the
conjugate function of χ̃j, to be denoted by χ̃∗j , which is defined by (see, for instance
[14]),

χ̃∗j(y) = supq∈R (yq − χ̃j (q)) .

That is,
χ̃∗j
′ (y) = G̃−1j (y) . (30)

From the definition of χ̃∗j and (29) we easily deduce that

χ̃∗j(y) =
2

3

|y|3/2

(r̃jλ̃j)1/2
,

so the proof of the next result is straightforward.

Lemma 4.1. The following coerciveness property for function χ̃∗j holds:

lim
|y|→∞

χ̃∗j(y)

|y|
=∞. (31)

Let χ̃ : Ref → R be defined by

χ̃
(
qF
)

=

ef∑
j=1

χ̃j

(
qFj
)
.
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Then the conjugate function of χ̃ is given by

χ̃∗ (y) =

ef∑
j=1

χ̃∗j (yj) .

We will prove that (27) and (28) are the necessary and sufficient optimality
conditions for a particular linearly constrained convex minimization problem. For
this purpose, let us introduce φ : Rn−np → R to be the function defined by

φ
(
uD
)

:= χ̃∗
(
B̃tuD − h

)
− g∗ · uD, (32)

where
g∗ := g −DΛF tW̃G̃−1F

(
B̃tuD∗ − h

)
.

By using the chain rule it is easy to see that

gradφ
(
uD
)

= B̃G̃−1F

(
B̃tuD − h

)
− g∗,

We consider the constrained optimization problem

min{φ(uD) : uD ∈ Rn−np , At
RDtuD = k}. (33)

We notice that (27) and (28) are the Karush-Kuhn-Tucker necessary (and actu-
ally sufficient) optimality conditions of the above minimization problem. In partic-
ular, vector qR is the vector Lagrange multiplier associated with equality constraint
(28).

The following lemmas will be used to prove the existence and uniqueness of
solution to (33).

Lemma 4.2. Let us assume np < n and that there is a node in each connected
component of the free-edges graph where the pressure is imposed. Then the linear
mapping At

FDt is injective. Hence it has a left-inverse and consequently there exists
a positive constant C such that

‖wD‖ ≤ C‖At
FDtwD‖ ∀uD ∈ Rn−np . (34)

Proof : Firstly, let us notice that At
FDt is an ef × (n − np) matrix. From graph

theory (see Appendix B), m := dim ker (At
F ) is equal to the number of connected

components of the free-edges graph. Let {a1, . . . , am} ⊂ Rn be the basis of ker (At
F )

where ai is the vector whose components corresponding to nodes in the i-th con-
nected component are ones and the rest of them are null. We notice that vectors
ai, i = 1, · · · ,m, cannot belong to im (Dt) which is the vector space spanned by the
rows of D. Indeed, in each row of D there is exactly a one and zeros. Moreover, by
assumption, the pressure is imposed in at least one of the nodes of the i-th connected
component of the free-edges graph and hence there is not any row in D having the
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one in the column corresponding to this node. Therefore, for i = 1, · · · ,m, ai cannot
be written as a linear combination of the rows of D which implies that

ker
(
At

F

)
∩ im

(
Dt
)

= {0} .

Hence At
FDt is injective and has a left-inverse given by (DAFAt

FDt)−1DAF . Taking
norms in the equality

wD = (DAFAt
FDt)−1DAFAt

FDtwD ∀wD ∈ Rn−np ,

we easily get (34).

Remark 4.1. Under the assumption in the previous lemma, since At
FDt is injective

then n− np ≤ ef .

Remark 4.2. It is not difficult to prove that, in absence of topography terms given
in (8), the above result and the properties of the pressure-loss function allow us
to prove the existence and uniqueness of a solution to the gas network model by
reformulating it as a linearly constrained minimization problem for a strictly convex
and coercive function. However, if topography is non-flat this issue is more difficult
as we will see below.

In order to prove the existence theorem below we need a similar property as (34)
but for matrix B̃t instead of At

FDt. This property will be taken as an assumption.

Lemma 4.3. Under the assumption,

B̃t = (At
F − W̃FΛt)Dt is injective, (35)

the following properties are satisfied by function φ:

1. φ is differentiable,
2. φ is strictly convex,
3. lim
‖wD‖→∞

φ
(
wD
)

=∞.

Proof :

1. It is a consequence of the fact that χ̃∗ is differentiable at any x ∈ R.
2. Let uD,wD ∈ Rn−np ,uD 6= wD. Then B̃tuD 6= B̃twD because B̃t is injective.

Since χ̃∗ is strictly convex, for λ ∈ (0, 1) we have

φ
(
λuD + (1− λ)wD

)
= χ̃∗

(
λB̃tuD + (1− λ) B̃twD

)
− g∗ ·

(
λuD + (1− λ)wD

)
< λ

[
χ̃∗
(
B̃tuD

)
− g∗ · uD

]
+ (1− λ)

[
χ̃∗
(
B̃twD

)
− g∗ ·wD

]
= λφ

(
uD
)

+ (1− λ)φ
(
wD
)
.

13



3. Firstly, from Lemma 4.1 we deduce

lim
‖x‖→∞

χ̃∗ (x)

‖x‖
=∞ . (36)

Moreover,

φ
(
uD
)

= χ̃∗
(
B̃tuD

)
− g∗ · uD

≥ χ̃∗
(
B̃tuD

)
− ‖g∗‖‖uD‖ =

 χ̃∗
(
B̃tuD

)
‖uD‖

− ‖g∗‖

 ‖uD‖

≥

 χ̃∗
(
B̃tuD

)
C‖B̃tuD‖

− ‖g∗‖

 ‖uD‖.

(37)

From assumption (35) we get

lim
‖uD‖→∞

‖B̃tuD‖ =∞ ,

and then, (36) yields

lim
‖uD‖→∞

χ̃∗
(
B̃tuD

)
‖B̃tuD‖

=∞ .

This result and (37) allow us to conclude the proof.

The next result shows that (35) is indeed a crucial assumption to ensure that the
minimization problem (33) has a unique solution. We only need to complement (35)
with any condition that guarantees that the set of constraints given by equation
(28) has some solution.

Theorem 4.1. Let vectors H ∈ Rn, uU ∈ Rnp, qV ∈ Rev , cD ∈ Rn−np and αR ∈
Rer be given. Under assumption (35) and one of the following:

• There are neither compressors nor PCVs in the network,

• The set {uD ∈ Rn−np : At
RDtuD = αR −At

RU tuU} is nonempty,

the minimization problem (33) has a unique solution uD.

Proof of the Theorem: It is a straightforward consequence of Lemma 4.3 and
standard results in convex optimization theory (see for instance [15]).
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Corollary 4.1. Under the assumptions of Theorem 4.1 there exists a solution to
the system given by (27) and (28). Moreover, if uD

i , q
F
i , i = 1, 2 are two solutions,

then
uD
1 = uD

2 and qR
1 − qR

2 ∈ ker(DAR).

Proof : It can be immediately deduced from [14, Cor. 28.2.2] that allows us to write
the Karush-Kuhn-Tucker optimality conditions of the above minimization problem,
namely, (27) and (28).

Remark 4.3. Notice that the Lagrange multiplier qR is the vector of mass flow rates
along edges corresponding to compressors or pressure control valves. If ker(DAR) 6=
{0}, there must exist cycles such that all their edges are either compressors or pres-
sure control valves. Since this is quite unusual, in most practical cases all the mass
flow rates are also unique.

Now, from Theorem 4.1 we can easily deduce the existence result proved in [13]:

Corollary 4.2. Let us assume that the network topography is flat and there are
neither compressors nor valves. Then B̃ = DAF and hence, under the assumption
of Lemma 4.2, there exists a unique solution to the gas network model.

4.2 Second step: fixed-point method

The following technical lemmas are important tools for the proofs below.

Lemma 4.4. We have

(|x|x− |y|y)(x− y) ≥ 1

2
|x− y|3 ∀x, y ∈ R (38)

Proof : Firstly, let us notice that if y = 0 then (38) is trivially true. Otherwise,
since the expressions in the above inequality are homogeneous of degree three, then
dividing (38) by |y|3 we deduce that it is equivalent to

(|x
y
|x
y
− 1)(

x

y
− 1) ≥ 1

2
|x
y
− 1|3 ∀x, y ∈ R

and also to

(|z|z − 1)(z − 1) ≥ 1

2
|z − 1|3 ∀z ∈ R.

Since this inequality trivially holds for z = 1 it is enough to prove that

inf
16=z∈R

(|z|z − 1)(z − 1)

|z − 1|3
≥ 1

2
,

which is straightforward. Let us remark that the lower bound cannot be improved.
Indeed, for z = −1 we have

(|z|z − 1)(z − 1)

|z − 1|3
=

(| − 1|(−1)− 1)(−1− 1)

| − 1− 1|3
=

1

2
.
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Lemma 4.5. We have∣∣∣ |x|x− |y|y ∣∣∣ ≤ |x− y|(|x|+ |y|) ∀x, y ∈ R. (39)

Proof : Similarly, if y = 0 (39) is trivially true. Otherwise, since the expressions
on the two members are homogeneous of degree two, then dividing by y2 we deduce
that (39) holds if and only if

(|z|z − 1)(z − 1) ≤ |z − 1|(|z|+ 1) ∀z ∈ R.

Since this inequality is trivially true for z = 1, it is enough to prove the following
one,

sup
16=z∈R

(|z|z − 1)(z − 1)

|z − 1|(|z|+ 1)
≤ 1,

which easily holds true. Moreover, we notice that the upper bound cannot be
improved because the value of the left-hand side is exactly 1 for z = 0.

Corollary 4.3. Function x ∈ R → |x|x ∈ R is Lipschitz-continuous on bounded
sets.

Lemma 4.6. We have

(G̃j(x)− G̃j(y))(x− y) ≥ 1

2
r̃jλ̃j|x− y|3 ∀x, y ∈ R (40)

Proof: It follows from (24) and estimate (38).

Lemma 4.7. We have

|G̃j(x)− G̃j(y)| ≤ r̃jλ̃j|x− y|(|x|+ |y|) ∀x, y ∈ R. (41)

Proof :It follows from (24) and estimate (39).

Let us introduce the weighted norm

‖q‖ =
( ef∑

j=1

r̃jλ̃j|qj|3
)1/3

.

Its dual norm is

‖q‖′ =
( ef∑

j=1

(r̃jλ̃j)
−1/2|qj|3/2

)2/3
.

Indeed, let us prove that

|a · b| ≤ min{‖a‖‖b‖′ , ‖a‖′‖b‖} ∀a, b ∈ Ref .
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Since 3 and 3/2 are conjugate numbers, by using Hölder’s inequality we get

|a · b| =
ef∑
j=1

ajbj =

ef∑
j=1

(r̃jλ̃j)
1/3aj (r̃jλ̃j)

−1/3bj

≤
( ef∑

j=1

r̃jλ̃ja
3
j

)1/3 ( ef∑
j=1

(r̃jλ̃j)
−1/2b

3/2
j

)2/3
≤ ‖a‖‖b‖′ .

Lemma 4.8. We have(
G̃F

(
qF
1

)
− G̃F

(
qF
2

))
·
(
qF
1 − qF

2

)
≥ 1

2
‖qF

1 − qF
2 ‖3 ∀qF

i ∈ Ref , i = 1, 2. (42)

Proof : From (40), we get

(
G̃F

(
qF
1

)
− G̃F

(
qF
2

))
·
(
qF
1 − qF

2

)
=

ef∑
j=1

(
G̃j (q1j)− G̃j (q2j)

)
· (q1j − q2j)

≥ 1

2

ef∑
j=1

r̃jλ̃j|q1j − q2j|3 =
1

2
‖qF

1 − qF
2 ‖3

Corollary 4.4. We have(
(G̃F )−1

(
zF1
)
− (G̃F )−1

(
zF2
) )
·
(
zF1 − zF2

)
≥ 1

2
‖(G̃F )−1

(
zF1
)
− (G̃F )−1

(
zF2
)
‖3 ∀zFi ∈ Ref , i = 1, 2. (43)

Lemma 4.9. We have

‖G̃F

(
qF
1

)
− G̃F

(
qF
2

)
‖′ ≤ ‖qF

1 − qF
2 ‖
(
‖qF

1 ‖+ ‖qF
2 ‖
)

∀qF
i ∈ Ref , i = 1, 2. (44)

Proof. From (41) we get, by using (41) and Cauchy-Schwartz inequality,

‖G̃F

(
qF
1

)
− G̃F

(
qF
2

)
‖′3/2 =

ef∑
j=1

(r̃jλ̃j)
−1/2(G̃j(q1j)− G̃j(q2j)

)3/2
≤

ef∑
j=1

r̃jλ̃j
(
q1j − q2j

)3/2(|q1j|+ |q2j|)3/2
≤
( ef∑

j=1

(
(r̃jλ̃j)

1/2
(
q1j − q2j

)3/2)2)1/2( ef∑
j=1

(
(r̃jλ̃j)

1/2
(
|q1j|+ |q2j|

)3/2)2)1/2
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from which it follows that

‖G̃F

(
qF
1

)
− G̃F

(
qF
2

)
‖′ ≤

( ef∑
j=1

(r̃jλ̃j)
(
q1j − q2j

)3)1/3 × · · ·
( ef∑

j=1

(
(r̃jλ̃j)

(
|q1j|+ |q2j|

)3))1/3 ≤ ‖qF
1 − qF

2 ‖
(
‖qF

1 ‖+ ‖qF
2 ‖
)
.

Lemma 4.10. There exists a positive constant C such that

‖F̃(qF∗
1 )− F̃(qF∗

2 )‖2 ≤ C‖qF∗
1 − qF∗‖

(
‖F̃(qF∗

1 )‖+ ‖F̃(qF∗
2 )‖

)
. (45)

Proof : Let qF
i = F̃(qF∗

i ), i = 1, 2. Then, qF
i = G̃−1F

(
B̃tuD

i − h
)
, with

B̃(G̃F )−1(B̃tuD
i − h) +DARq

R
i = g −DΛF tW̃qF∗

i , (46)

At
RDtuD

i = k, (47)

for i = 1, 2.
By subtracting equalities (46) for i = 1, 2 and making the scalar product by

uD
1 − uD

2 we get(
(G̃F )−1(B̃tuD

1 − h)− (G̃F )−1(B̃tuD
2 − h)

)
·
(
B̃tuD

1 − B̃tuD
2

)
+(qR

1 − qR
2 ) · At

RDt(uD
1 − uD

2 ) = −DΛF tW̃
(
qF∗
1 − qF∗

2

)
· (uD

1 − uD
2 ).

Let us denote by (B̃t)−1 the left-inverse of the injective mapping B̃t. By using the
above equality with (43), (44) and (47), we get

1

2
‖F̃(qF∗

1 )− F̃(qF∗
2 )‖3 =

1

2
‖(G̃F )−1

(
B̃tuD

1 − h
)
− (G̃F )−1

(
B̃tuD

2 − h
)
‖3

≤
(

(G̃F )−1(B̃tuD
1 − h)− (G̃F )−1(B̃tuD

2 − h)
)
·
(
B̃tuD

1 − B̃tuD
2

)
= −

(
(B̃t)−1)tDΛF tW̃(qF∗

1 − qF∗
2 ) · (B̃tuD

1 − B̃tuD
2 )

≤ ‖
(
(B̃t)−1)tDΛF tW̃‖‖qF∗

1 − qF∗
2 ‖‖B̃tuD

1 − B̃tuD
2 ‖

′

= ‖
(
(B̃t)−1)tDΛF tW̃‖‖qF∗

1 − qF∗
2 ‖‖G̃F

(
(G̃F )−1

(
B̃tuD

1 − h
))

−G̃F

(
(G̃F )−1

(
B̃tuD

2 − h
))
‖′

= ‖
(
(B̃t)−1)tDΛF tW̃‖‖qF∗

1 − qF∗
2 ‖‖G̃F

(
F̃(qF∗

1 )
)
− G̃F

(
F̃(qF∗

2 )
)
‖′

≤ ‖
(
(B̃t)−1)tDΛF tW̃‖‖qF∗

1 − qF∗
2 ‖‖F̃(qF∗

1 )− F̃(qF∗
2 )‖

(
‖F̃(qF∗

1 )‖+ ‖F̃(qF∗
2 )‖

)
,

where

‖
(
(B̃t)−1)tDΛF tW̃‖ = max{‖

(
(B̃t)−1)tDΛF tW̃qF‖ : ‖qF‖ = 1}
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If ‖F̃(qF∗
1 )− F̃(qF∗

2 )‖ = 0 then (45) is trivially true. Otherwise, it is deduced for

C := 2‖
(
(B̃t)−1)tDΛF tW̃‖

by dividing the above inequality by ‖F̃(qF∗
1 )− F̃(qF∗

2 )‖.

Lemma 4.11. Let us denote F̃0 := F̃(0). Then the following estimate holds:

‖F̃(qF∗)‖ ≤ max{‖F̃0‖,
1

4

(
C1/2‖qF∗‖1/2 +

√
C‖qF∗‖+ 8‖F̃0‖

)2
− ‖F̃0‖}

∀qF∗ ∈ Ref . (48)

Proof : If F̃(qF∗)‖ < ‖F̃0‖ the results trivially follows. Otherwise, let us suppose
that F̃(qF∗)‖ ≥ ‖F̃0‖. By taking qF∗

1 = qF∗ and qF∗
2 = 0 in (45) we get

‖F̃(qF∗)− F̃0‖2 ≤ C‖qF∗‖
(
‖F̃(qF∗)‖+ ‖F̃0‖

)
. (49)

Then (
‖F̃(qF∗)‖ − ‖F̃0‖

)2 ≤ ‖F̃(qF∗)− F̃0‖2 ≤ C‖qF∗‖
(
‖F̃(qF∗)‖+ ‖F̃0‖

)
and also

‖F̃(qF∗)‖ ≤ C1/2‖qF∗‖1/2
(
‖F̃(qF∗)‖+ ‖F̃0‖

)1/2
+ ‖F̃0‖.

By adding ‖F̃0‖ to both sides of this inequality we get

‖F̃(qF∗)‖+ ‖F̃0‖ ≤ C1/2‖qF∗‖1/2
(
‖F̃(qF∗)‖+ ‖F̃0‖

)1/2
+ 2‖F̃0‖.

Let us denote x :=
(
‖F̃(qF∗)‖ + ‖F̃0‖

)1/2
. Then the above inequality can be

rewritten as follows:
x2 − C1/2‖qF∗‖1/2x− 2‖F̃0‖ ≤ 0,

which implies

x ≤ 1

2

(
C1/2‖qF∗‖1/2 +

√
C‖qF∗‖+ 8‖F̃0‖

)
,

so finally

‖F̃(qF∗)‖ ≤ 1

4

(
C1/2‖qF∗‖1/2 +

√
C‖qF∗‖+ 8‖F̃0‖

)2
− ‖F̃0‖.

Corollary 4.5. Mapping F̃ transforms bounded sets into bounded sets.
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Corollary 4.6. If ‖qF∗‖ ≤ ‖F̃0‖
C

then

‖F̃(qF∗)‖ ≤ 3‖F̃0‖.

Proof : From estimate (48) we get

‖F̃(qF∗)‖ ≤ max{‖F̃0‖,
1

4

(√
‖F̃0‖+

√
‖F̃0‖+ 8‖F̃0‖

)2
− ‖F̃0‖}

= max{‖F̃0‖, 4‖F̃0‖ − ‖F̃0‖} = 3‖F̃0‖.

Now we are in a position to prove the following result:

Proposition 4.1. If C ≤ 1
3

then F̃ maps the ball with center 0 and radius ‖F̃0‖
C

into
itself.

Proposition 4.2. The mapping F̃ : Ref → Ref is Hölder continuous with exponent
1/2 on bounded sets. In particular it is continuous at any point in Ref .

Proof : From estimate (48) we deduce that given any R > 0 there exists M > 0
such that if ‖qF∗‖ < R then ‖F̃(qF∗)‖ < M . Therefore, (45) yields

‖F̃(qF∗
1 )− F̃(qF∗

2 )‖2 ≤ 2MC‖qF∗
1 − qF∗

2 ‖ ∀qF∗
i with ‖qF∗

i ‖ < R, i = 1, 2

and then

‖F̃(qF∗
1 )− F̃(qF∗

2 )‖ ≤
√

2MC‖qF∗
1 − qF∗

2 ‖1/2 ∀qF∗
i with ‖qF∗

i ‖ < R, i = 1, 2.

From the above results one can prove the main result of this article.

Theorem 4.2. Under the assumptions:

B̃t = (At
F − W̃FΛt)Dt is injective, (50)

C ≤ 1

3
(51)

the nonlinear system of equations (25) has a solution for given vectors αR, cD, qV

and uU .

Proof : It is a straightforward consequence of the above results and the Brouwer
fixed-point theorem (see, for instance, [16]) applied to mapping F̃.

Remark 4.4. It is worth mentioning that assumptions (50) and (51) only depend
on intrinsic structural characteristics of the network but not on any flow data, so
it can be checked a priori for each specific network. Moreover, they are plausible
because for real networks, the numbers wi defined in (19) are largely smaller than
one as far as the height difference between the two nodes of each edge is not too big.
Indeed, we notice that in the definition of wi (see (19)), R is about 440 in the SI, θ
is larger than 273K and Z is close to one. In fact we have checked them for several
networks.
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Remark 4.5. The numerical resolution of the model introduced in Section 3 can be
done by using Newton-like methods. Moreover, this model can be used to optimize
the network design and operation. The latter has been done, for instance, in [9]
where the self-consumption of gas in the compression stations is minimized under
some constraints regarding the security of supply and the maximum and minimum
pressure at the nodes.

5 Example

In this section we illustrate the above results on a small gas network. The
topology of this network is shown in Figure 1, and physical data for nodes and
edges are given in Table 1. Briefly, it has eleven edges including one compressor,
one pressure control valve and one flow control valve, and eleven nodes, the pressure
being imposed at two of them. In addition, this network has a cycle.

Figure 1: The network topology.
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NODES EDGES
Num. Node Height Edge Initial Final Length Diameter

type [m] type node node [m] [m]
1 imp. press. 16 structural 1 2 47900 0.6350
2 consumer 17 PCV 2 3 50 0.6350
3 structural 17 structural 3 4 91000 0.4064
4 consumer 469 structural 2 5 50400 0.5080
5 consumer 256 compressor 5 6 50 0.6350
6 structural 256 structural 6 7 98200 0.5080
7 consumer 145 structural 7 9 87300 0.5080
8 consumer 19 structural 9 8 24900 0.5080
9 consumer 104 structural 8 5 52500 0.5080

10 structural 104 FCV 10 9 50 0.6350
11 imp. press. 44 structural 11 10 26600 0.5080

Table 1: Physical information about the nodes and the edges.
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Besides, we consider the following realistic mean values for each edge:

• the temperature of the gas θ: 288.15 K.

• the constant of the gas R: 476.7388 J/(kg K).

• the compressibility factor Z: 0.8248.

• the friction factor λ: 0.0123.

Based on the above data, one can compute matrix B̃ and constant C and check
that assumptions of Theorem 4.2 are satisfied. Indeed, B̃t is one-to-one and C =
0.1861 < 1/3.

6 Conclusions

In this paper we have proved the existence of solution to a steady-state mathe-
matical model of a gas transportation network on non-flat topography. The model
is introduced in a detailed way and includes all elements existing in such networks:
emission and consumption points, pipes, compressor stations, flow control valves
and pressure control valves. The existence is proved in two steps. The first one uses
convex analysis and the second one a fixed-point theorem.
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AppendixA The mathematical model

In this appendix we recall the model analyzed in this paper. Since the length
of a pipeline is much greater than the diameter we can obtain a 1D model by
integrating on the cross-sections of the pipeline the 3D Navier-Stokes equations for
the isothermal flow of a real gas. For this purpose, the curve joining the centers
of the cross-sections is parametrized with respect to the arc length to be called x;
we denote by L the length of this curve, i.e., the length of the pipeline. Moreover,
some approximations will be done. In particular, the viscous force and thermal
conduction terms involving second-order derivatives in the pipeline direction will be
neglected, but the other terms will not and they will be modelled. In particular, for
the tangential viscous force the Darcy-Weisbach formula will be used (see below).

One-dimensional model
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• Mass conservation equation:

A
∂ρ

∂t
(x, t) +

∂q

∂x
(x, t) = 0, (A.1)

where

– A is the area of the cross-sections (m2).

– ρ(x, t) is the average density on section x at time t (kg/m3).

– q(x, t) is the mass flow rate across the x section at time t (kg/s).

The mass-weighted average velocity on section x is defined by

v (x, t) =
q (x, t)

Aρ (x, t)
.

Let us recall that equation (A.1) is exact because no approximations are needed
to get it.

• Linear momentum equation:

∂(ρv1)

∂t
(x, t) +

∂(ρv2)

∂x
(x, t) +

∂p

∂x
(x, t)

+
λρ(x, t)

2D
|v(x, t)|v(x, t)− gρ(x, t)h′(x) = 0. (A.2)

where

– p(x, t) is the average pressure on the x cross-section, at time t (N/m2).

– g is the gravity acceleration (m/s2)

– h(x) is the height of the x cross-section (m)

– D is the diameter of the pipe (m)

– λ is the friction factor between the gas and the pipe walls; it is a non-
dimensional number depending on the diameter of the pipe, the rugosity
of its wall and the Reynolds number of the flow.

The computation of λ can be made by using the Colebrook’s equation (see
[17]):

1√
λ

= −2 log10

(
2.51

Re
√
λ

+
k

3.7D

)
= −2 log10

(
2.51πDη

4 |q|
√
λ

+
k

3.7D

)
, (A.3)

where k is the roughness coefficient of the pipe (m).
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The last term in (A.2) arises from the gravity force. In fact, the correct
expression of that term is gρ(x, t) sin(π − α(x)) (see Figure A.2) but, if the
slope of the pipeline is small, i.e., if

|h′(x)| � 1

then
sin(π − α(x)) ≈ tan(π − α(x)) = − tanα(x) = −h′(x).

Figure A.2: The gravity force term.

Isothermal steady state model

From this point forward, we will suppose that the flow is in steady-state so partial
derivatives with respect to time are null. Hence, the system of equations becomes

dq

dx
(x) = 0, (A.4)

A
dp

dx
(x) +

λ (q (x))

2DA

1

ρ (x)
|q (x)| q (x) + Agρ (x)

dh (x)

dx
= 0, (A.5)

Z (p (x) , θ (x)) ρ (x)Rθ (x) = p (x) , (A.6)

where θ is the absolute temperature, which is supposed to be known lengthwise the
pipe. The last equation is the equation of state for real gases. Notations are as
follows:

R =
R
M
,
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where R is the universal gas constant (J/(k-mol K), and M is the molar mass (kg/k-
mol). The compressibility factor, Z, depends on pressure and temperature. It can
be determined using different equations, like the van der Waals equation, but in
the gas transportation industry the AGA8 model is widely used. This model is an
empirical equation proposed by the American Gas Association [18], namely,

Z = Ẑ (p, θ) = 1 + pr0.257− 0.533
pr
θr
, (A.7)

being pr := p/pc, θr := θ/θc, and pc and θc the critical pressure and the critical
temperature, respectively. Let us recall that above the critical temperature it is
impossible to liquefy a gas, while the critical pressure is the minimum pressure
required to liquefy a gas at its critical temperature. For natural gas the critical
temperature is around 170 K and the critical pressure around 5 MPa. Notice that
the first equation implies that the mass flow is constant along the pipe, q (x) =
q ∀x ∈ (0, L).

Approximate solution of the model

The approximate solution of the previous problem requires, on the one hand, to
know the boundary conditions (for example, the pressures at the ends of the pipe)
and, on the other hand, the use of numerical methods. Nevertheless, for numerical
simulation of gas transmission networks a simplified model is used which is deduced
by integrating the equation (A.5) between the ends of the pipe, x = 0 and x = L
and making certain approximations.

Firstly, the mean density in the section is replaced with the following expression,
deduced from the equation of state for real gases:

ρ (x) =
p (x)

Z (p (x) , θ (x)) Rθ (x)
.

Thus, we obtain

Ap (x)
dp

dx
(x) +

λ(q)

2DA
Z (p (x) , θ (x)) Rθ (x) |q| q

+Ag
p2 (x)

Z (p (x) , θ (x)) Rθ (x)
h′(x) = 0. (A.8)

Integrating this equation from x = 0 to x = L and dividing by A/2 yields,

p2 (L)− p2 (0) = −λ (q)

DA2
R |q| q

∫ L

0

Z (p (x) , θ (x)) θ (x) dx

− 2g

R

∫ L

0

p2 (x)

Z (p (x) , θ (x)) θ (x)
h′(x) dx. (A.9)
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At this point, let us rewrite equation (A.9) by using the new variable u (x) :=
p2 (x),

u (L)− u (0) = −λ (q)

DA2
R |q| q

∫ L

0

Z (p (x) , θ (x)) θ (x) dx

− 2g

R

∫ L

0

u (x)

Z (p (x) , θ (x)) θ (x)

dh (x)

dx
dx. (A.10)

Now the integrals of the second member are approximated using average values
of pressure and temperature in the pipe, denoted by pm and θm, respectively, whose
expression will be specified below:∫ L

0

Z (p (x) , θ (x)) θ (x) dx ≈ Z (pm, θm) θmL,∫ L

0

u (x)

Z (p (x) , θ (x)) θ (x)

dh (x)

dx
dx ≈ um

Z (pm, θm) θm
(h (L)− h (0)).

Replacing in (A.10), we finally obtain,

u (0)−u (L) =
λ (q)L

DA2
Rθm |q| qZ (pm, θm)+

2g

Rθm

um
Z (pm, θm)

(h (L)− h (0)) , (A.11)

Assuming that the section of the pipe is circular (A = πD2/4), we have,

u (0)− u (L) = G (pm, θm, q) +
2g

Rθm

um
Z (pm, θm)

(h (L)− h (0)) (A.12)

where

G (pm, θm, q) :=
16λ (q)L

π2D5
Rθm |q| qZ (pm, θm) , (A.13)

or, introducing µ (q) := λ (q) |q| q,

G (pm, θm, q) =
16µ (q)L

π2D5
RθmZ (pm, θm) , (A.14)

and the average um can be computed by the following alternatives:

um :=
u (0) + u (L)

2
, (A.15)

um :=
2

3

(
u (0) + u (L)− u (0)u (L)

u (0) + u (L)

)
, (A.16)

and similar expressions for θm. Let us recall that the absolute temperatures at points
x = 0 and x = L are assumed to be known.
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AppendixB Short background of graph theory

In this appendix we recall some elementary results from graph theory. Further
details can be found, for instance, in reference [19].

The topology of a gas network can be modeled by a direct graph. A direct graph
G is a pair of finite sets G = (N , E), so that E ⊂ N ×N . Thus, each element from
E is an ordered pair of elements from N . The elements of N are called nodes and
the ones of E edges. A graph can be represented on a plane: the nodes are points
and the edges are arcs.

Let us denote by n the number of nodes and by e the number of edges. For
j = 1, · · · , e, M1,j and M2,j denote the numbers of the first and second nodes,
respectively, of edge number j.

Matrix M, of order 2× e, is called connectivity matrix of the direct graph.
The incidence matrix of the direct graph is the matrix A, of order n× e, defined

as follows:

Aij =


0 if node Ni does not belong to edge Ej,
1 if node Ni belongs to edge Ej and also i =M1,j,
−1 if node Ni belongs to edge Ej and also i =M2,j.

A set of edges r1, . . . , rm of a graph is a path between nodes a and b if the
following conditions hold: 1) Two consecutive edges of the set ri, ri+1 always have
a common node. 2) There is not any node of the graph belonging to more than two
edges of the set. 3) Node a is a node of only one edge of the set and the same is
true for b. A graph is said connected if there is a path between any two nodes. The
following result can be proved: the graph G has exactly m connected components if
and only if rank(A) = n −m. From this result we deduce that if G is a connected
graph with n nodes and e edges then n− 1 ≤ e.

From this point forward we will assume that G is a connected graph. A subgraph
S of a graph G is said a cycle if the following conditions hold: 1) S is connected. 2)
Each node of S belongs to exactly two edges of S.

Let G be a graph with n nodes and e edges. Let l be the number of its cycles
which have been provided with an orientation. The cycle matrix C ∈ Me×l is defined
as follows: for each k ∈ {1, . . . , l},

Cij =


0, if edge j does not belong to cycle k,
−1, if edge j belongs to cycle k but they have opposed orientations,
1, if edge j belongs to cycle k and they have the same orientation.

One can prove that AC = 0, and therefore im(C) ⊂ ker(A) and rank(C) ≤ e−n+ 1.
In fact, one can prove a stronger result, namely, rank(C) = e−n+ 1. The dimension
of rank(C) = ker(A) is equal to the number of so-called fundamental cycles of the
graph.
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