
Loss allocation in energy transmission networks
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1Department of Statistics and Operations Research, University of Vigo
2Department of Statistics and Operations Research, University of Santiago de

Compostela

Published in Games and Economic Behavior (2016)
Published version available at http://www.sciencedirect.com/

DOI 10.1016/j.geb.2016.10.012

Abstract

In this paper we study a cost allocation problem that is inherent to most energy
networks: the allocation of losses. In particular, we study how to allocate gas losses
between haulers in gas transmission networks. We discuss four allocation rules, two of
them have already been in place in real networks and two others that are defined for
the first time in this paper. We then present a comparative analysis of the different
rules by studying their behavior with respect to a set of principles set forth by the
European Union. This analysis also includes axiomatic characterizations of two of
the rules. Finally, as an illustration, we apply them to the Spanish gas transmission
network.

Keywords. Gas transmission networks, loss allocation, cost allocation,
management

1 Introduction

We study the allocation of losses in energy transmission networks, in which the energy
(gas, electricity,...) is sent through pipes from suppliers to consumers. A common prob-
lem is that, in virtually any network, there are losses whose sources are normally difficult
to identify. Thus, one must anticipate them so that they do not lead to deficit in the
system. In many cases the transmission network is owned by different agents and, typ-
ically, the authorities that manage the network decide how much energy each agent is
allowed to lose. This decision should follow some general principles, which would then
appear in the relevant regulations. For instance, one would like that the loss allocated
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to each agent takes into account characteristics of the agents, such as the size of its sub-
network or the amount of energy managed. In this paper we study rules for allocating
losses among the agents. Even though our results could be applied to any transmission
network with losses, we use gas transmission networks and, in particular, the Spanish
network, as our leading example. Interestingly, we include a section in which the analysis
developed in the rest of the paper is illustrated on this real gas network. Natural gas
is an important energy resource, whose usage has increased very significantly over the
last three decades. According to data from the EIA (United States Energy Information
Administration), between 1980 and 2010, consumption of natural gas world wide rose
from 53 million cubic feet to 113 million, leading to a 23.9% share of global primary
energy consumption (British Petroleum, 2013). As a consequence of this, there is an
increasing need for construction and expansion of gas transmission networks and, more
importantly, an increasing need for its efficient management and operation.

Different networks have different estimates on the percentage of gas/electricity that
is lost during transportation. In Spain, for instance, this estimate is 0.2% for the gas
transported in the high pressure gas network and similar figures have been reported
in other countries.1 In order to prevent the ensuing monetary losses, a standard ap-
proach in energy networks is to withhold at the entry points a pre-set percentage of the
gas/electricity entering the network; by doing this, the energy companies that use the
network for transportation are the ones effectively assuming the associated cost in the
first instance. In particular, in the Spanish high pressure gas network the pre-set per-
centage withhold to anticipate the estimated losses is precisely 0.2%. In monetary terms,
the annual cost of the gas entering the Spanish gas network is around 1200 millions of
Euro,2 which results in approximately 25 millions of Euro in losses in the transmission
network.

It is precisely at this point where the main question we try to address in this paper
arises. Since a gas network is typically owned by different agents, called haulers, it
must be decided how to share the withhold gas among them. More precisely, it must
be decided, for each agent, the percentage of the gas entering his subnetwork that can
lost. Note that it is not possible to let each agent lose the same percentage that has been
withhold for the entire network. Since most gas entering the network crosses several
subnetworks, this naive approach would result in allowing the agents to lose, in aggregate,
more gas than the withhold amount.

To illustrate, consider the network depicted in Figure 1. There are two supply nodes,
s1 and s2, and a demand node, c1. There are three haulers in this network and v and f
denote, respectively, a pipe’s volume and the units of gas that flow through it. Since the
network is transporting 1200 units of gas, according to the 0.2% mentioned above, it is
estimated that 2.4 units of flow will be lost in the transmission process. The question is,
how much of this loss is allowed to each hauler? We cannot assign to each of them 0.2%

1See Article 17.c) in Bolet́ın Oficial del Estado (2013a) for the Spanish regulation and ERGEG (Eu-
ropean Regularors Group for Electricity and Gas) (2008) and Comisión Nacional de la Enerǵıa (2006)
for an overview of these estimates in different countries in both the gas and the electricity networks.

2Estimate based on the information provided by the Spanish Technical System Manager (Enagás
GTS, 2013) and on a gas price of 30000 e/GWh.
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Figure 1: Example of the gas loss allocation problem.

of the gas he is carrying because that would result in 1.2, 1.2, and 2.4 being allocated to
them, which results in a total of 4.8 units being allocated while the amount to allocate
is just 2.4. A sensible alternative is to split the 2.4 units proportionally to the flows, so
that hauler h3 is assigned a loss of 1.2 units of flow and h1 and h2 a loss of 0.6 each. Yet,
one can argue that the gas in the pipe of h3 is covering half the distance (assuming that
all pipes have the same diameter) and that the assigned loss should also reflect this fact,
leading to 0.8 being allocated to each hauler. Even in a small network is not entirely
obvious how the gas loss should be allocated, and other considerations arise for more
general networks.

The European Union has already set forth some principles that should be pursued
with the national and international regulations regarding the natural gas market. One
of the main documents in this respect is Regulation (EC) (no. 55/2003), and some
relevant principles mentioned there are non-discrimination, cost-reflectivity, and fostering
competition. We formalize these principles with several properties, some of which we
outline below, but first we build upon the Spanish system to be more explicit about the
kind of mechanisms normally used regarding loss allocation. The Spanish regulations are
designed trying to follow the principles of the European Union. In particular, Bolet́ın
Oficial del Estado (2013b, page 106656) presents the incentive mechanism to induce
haulers to reduce the losses which we now outline. At the end of every period of one
year the following values are computed:

• In view of the total amount of gas withhold in the network and following a well
defined rule, the ‘allowed’ loss assigned to each hauler h, Ah.

• The real loss of each hauler h, Lh, is computed as the balance between entries and
exits of gas in his subnetwork.

• Given a price p per unit of gas, the haulers pay p(Lh−Ah) when Ah−Lh < 0 and,
otherwise, they get p

2(Lh −Ah).

Given this mechanism, it should be apparent that the definition of the rule to assign the
‘allowed’ losses is a relevant issue for the management of gas transmission networks.

There is an important observation regarding the impact of the rule on the hauler’s
behavior. One may argue that, when designing one such rule one should take into account
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not only the fairness considerations appearing in the European regulations, but also the
impact the chosen rule might have on the hauler’s incentives. Yet, we consider that in
this specific setting there is not much room for the latter. Once the entries and exits
of gas in the network are fixed, the network operation is essentially determined by the
Technical System Manager, and there is not much a hauler can do to influence the final
value of Ah.3 Therefore, given that final payments due to losses depend on Lh−Ah and
the above arguments regarding the (lack of) control of haulers over Ah, the best a hauler
can do, regardless of the chosen rule, is to try to reduce the losses in his subnetwork (as
intended by the mechanism).

We now discuss the principles mentioned in the European regulation. We start with
the principle of cost-reflectivity. Independence of unused edges says that if we remove
from the network pipes without flow, then the loss allocated to the haulers does not
change. Suppose that a hauler has a pipe from node i to node j and a pipe from j to k.
Besides, node j does not belong to more pipes. Thus, we can represent the gas network
with two edges, (i, j) and (j, k), or with one edge, (i, k). Independence of edge sectioning
says that the rule does not depend on the chosen representation. Suppose that a hauler
has several pipes from node i to node j, so we can represent the gas network with several
edges from i to j or with a unique edge from i to j where the volume of this edge is the
sum of the volumes of all pipes from i to j. Independence of edge multiplication says
again that the rule does not depend on the chosen representation. Independence by sales
says that if one hauler sells some of his edges to another hauler, then the loss allocated
to the rest of the haulers does not change. Independence of irrelevant changes says that
if there is a change in the gas network that does not affect to the gas that flows through
the subnetwork of a hauler, then the loss allocated to such hauler should not change.

We move now to non-discrimination. The properties we define regarding this principle
are based on the notion of proportionality. Flow proportionality on edges says that the
loss allocated to two haulers, each one owning a unique edge with the same volume,
should be proportional to the flow of their edges. Consider two haulers, each owning a
unique edge and transporting the same amount of gas. Volume proportionality on edges
says that the loss allocated to both haulers should be proportional to the volumes of
their edges. This property does not take into account the position of the edges in the gas
network. Volume proportionality on paths does it by asking for the proportionality on
volumes when both edges have the same flow and the same “position” in the gas network.
Namely, when the edges belong to the same paths (from supply nodes to demand nodes).

Finally, fostering competition is modeled by merging-proofness, which says that if
two haulers merge in a new hauler, then the total loss allocated to the new hauler is not
larger than the sum of the losses allocated to the original haulers. It is worth noting
that this property also has a strong connection with the principle of non-discrimination,
since a rule that does not satisfy merging-proofness discriminates small haulers.

In this paper we discuss four different loss allocation rules: the one used in Spain

3Changes in the network of a hauler that might influence Ah, such as changes in the volumes of the
pipes, normally require an authorization of the corresponding national authorities and, therefore, are not
easy to implement.
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until 2013 (called aggregate edge’s rule), the one used since 2014 (called flow’s rule), and
two other rules we define (called edge’s rule and proportional tracing rule). As we have
mentioned above, it is generally difficult to identify the sources of gas losses. There
have been qualified experts arguing that losses depend mainly on the flows, while other
experts have argued that they depend in a multiplicative way on the flow and volume of
the pipes. Our rules cover both situations. The flow’s rule divides the loss proportionally
to the gas transported by each hauler. Thus, it only considers the flow. The other three
rules divide the loss considering both flow and volume. The aggregate edge’s rule divides
the loss proportionally to the product of the volume and the gas transported by each
hauler. The edge’s rule is based on a similar idea. First, the loss is divided among the
edges proportionally to the product of the flow and the volume of each edge. Then,
the loss allocated to each hauler is the sum of the losses allocated to his edges. The
proportional tracing rule is defined in a more elaborate way. First it allocates the loss
among the different paths connecting supply nodes with demand nodes. Next, the loss
assigned to each path is divided among the edges of the path proportionally to their
volumes. Finally, the loss allocated to each hauler is the sum the loss assigned to his
edges in each path.

Next, the paper presents a detailed analysis of the behavior of the rules with respect
to the set of properties which are in turn related to the aforementioned European Union
principles. One of the conclusions of our analysis is that the rule that exhibits worst
behavior with respect to the EU principles is the aggregate edge’s rule, the one that
was in place in Spain until 2013. Interestingly, this rule was replaced by the flow’s rule
because of the strong opposition of most of the haulers (on the grounds that it favored
big haulers). We find that the proportional tracing rule and the edge’s rule are better
than the flow’s rule (in terms of the EU principles), with the former seeming slightly
preferable.

We present axiomatic characterizations of two of the rules under study. The edge’s
rule is characterized with independence of edge sectioning, independence by sales and
flow proportionality on edges. The proportional tracing rule is characterized with inde-
pendence of unused edges, independence of edge multiplication, independence by sales,
volume proportionality on paths and tracing additivity (a weak additivity property).

We also present an illustration of the different rules in the Spanish gas network, which
is owned by a big hauler (owning 90% of the gas network) and six small haulers. We see
that the change from the aggregate edge’s rule to the flow’s rule leaves the big hauler
worse off and the small haulers better off. Actually, the rule was changed because the
small haulers complained, arguing than the former Spanish rule unfairly favored the big
hauler (and we agree with these arguments). We also note that there are significant
differences in the allocations proposed by the rules, with the maximum gap we observed
for a hauler having an annual monetary equivalent of almost 10 million Euro. Therefore,
the issue of selecting a fair allocation rule can be very important for the haulers.

The paper is structured as follows. In Subsection 1.1 we review the literature more
related to our work. In Section 2 we present a brief introduction to some relevant
characteristics of the management and operation of a gas transmission network. In
Section 3 we present the formal mathematical model. Sections 4 and 5 are devoted
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to the definitions of the rules and properties, respectively. In Section 6 we discuss the
behavior of the rules with respect to the properties and EU principles. In Section 7 we
present two axiomatic characterizations. Section 8 contains an illustration of the rules
in the Spanish gas transmission network. In Section 9 we present some conclusions. For
the sake of exposition, all proofs have been relegated to the Appendix.

1.1 Related literature

We study the problem of cost allocation in networks. See Sharkey (1995) for a survey
on networks models in economics. We follow the axiomatic approach, where rules are
compared in terms of the axioms (properties) they satisfy. See Thomson (2001) for
an overview of the axiomatic method and Moulin (2002) for a survey of the axiomatic
method in cost allocation problems.

Some papers like Moulin and Shenker (1992) and Sprumont (1998) study general
cost allocation problems. Other papers study cost allocation problems associated with
some network structure. We mention some of them. In Littlechild and Owen (1973) it is
allocated the construction cost of a landing strip. In Ni and Wang (2007) it is allocated
the cost of cleaning a polluted river. In Bergantiños and Vidal-Puga (2007) it is allocated
the cost of connecting all agents to a source. In Bogomolnaia et al. (2010) it is allocated
the cost of a network connecting a group of agents. In Moulin and Laigret (2011) it is
allocated the cost of some resources among a set of agents. In Estevez-Fernandez (2012)
it is allocated the penalty of delaying a project. In Bergantiños and Mart́ınez (2014)
it is allocated the maintenance cost of a network connecting some agents. In all these
problems, and also in this paper, some cost allocation rules are studied in terms of the
properties they satisfy. In some of these papers the rule studied is the Shapley value
of an associated cooperative game. In Bergantiños et al. (2014), an extended version
of this paper, we also consider a rule based on the Shapley value. This Shapley rule is
technically more complicated and does not exhibit a specially good performance with
respect to the properties we study.

Loss allocation has received a lot of attention in the electricity sector (see Kyung-Il
et al. (2010), Conejo et al. (2002), Galiana et al. (2002), and references therein). However,
most of the effort there concentrates on defining algorithms that allow to estimate the
sources of the losses which would then make the “allocating task” straightforward. As
far as we know, the former identification is much harder in gas networks and there
are no such algorithms available. Maybe more importantly, we have found no paper
developing a formal analysis of the properties of the different methods. The closest
we have found to an axiomatic analysis is Lima and Padilha-Feltrin (2004), where the
authors compare different allocation methods by means of their behavior in a series of
examples. Interestingly, there are several papers that use game theoretical models to
define new loss allocation methods, but do not build upon them to develop axiomatic
analysis (Molina et al., 2010; Lima et al., 2008).
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2 The underlying gas network problem

A gas network is formed by nodes and pipes. Some nodes are demand nodes, at which
some gas leaves the network. Some nodes are supply nodes, from which the gas enters the
network. The rest of the nodes are simply points at which two or more pipes intersect.
Each pipe belongs to a hauler and each hauler may own several pipes. The gas network
operation is decided by the Technical System Manager. Once the System Manager knows
the demand of gas in each demand node he decides, following some criteria, the amount
of gas that should be introduced in each supply node and how to route it so that the
total demand is fulfilled.

Naturally, the most important element of our cost allocation model is the gas network,
which we assume is in steady state, i.e., the gas flowing through each pipe and the
pressure at each node are constant.4 Then, for the purposes of this paper, in order
to have the network configuration completely specified we need to know, for each pipe,
its volume and the amount of gas flowing through it. The flow represents the total
amount of energy each pipe carries during a given period of time (which, when needed,
we represent as GWh/d). In particular, it is worth noting that, as far as this paper is
concerned, there is no direct connection between the volume of the pipe and the amount
of gas that can flow through it. The volume of a pipe just depends on its length and
its diameter and, since natural gas is a compressible fluid, the capacity of a pipe also
depends on the construction materials and the maximum pressure they can support.

Ideally, the chosen flow configuration should be based on some realistic scenario of
demands and operating regime. In energy networks it is customary to work with reference
scenarios with high/peak demand and we will do so when working with the Spanish gas
network in Section 8. Yet, this is not critical for the normative analysis in this paper.
Indeed, once a methodology is chosen to allocate the losses, it can be run on a daily
basis if needed to ensure that the final allocations stem from representative network
configurations.

Given a network configuration and a percentage estimate for the gas loss, one can
obtain an estimate for the total loss of the system during the given period. Suppose such
a loss is L. Then, this total loss L has to be allocated among the haulers, conditioning
on the current network configuration. Let Ah be the loss assigned to hauler h and let Lh
be the real loss measured in the subnetwork of hauler h during this period. Then, the
hauler is penalized if Ah − Lh < 0 and rewarded otherwise. As we already mentioned
in the Introduction, L can be of the order of millions of Euro (around 25 million in the
Spanish network) and so the way L is allocated is very important for the haulers.

In the allocation rules we study in this paper Ah is computed as a function of the
flows and volumes of the pipes in the network. Thus, one may wonder to what extent a
hauler can manipulate these parameters in order to influence the final allocation. As we
mentioned above, the flow configuration is beyond their control, since it is determined by
the Technical System Manager. Importantly, energy networks are under a strict control

4The steady state assumption is not realistic for real time analysis of the network operation but, since
steady state modeling is much simpler, it is the standard approach for medium and long term analysis
of energy networks.
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of the corresponding national authorities, who must approve any change in the topology
of the network. In particular, the modification of the volume of existing pipes or the
construction of new ones is something a hauler cannot decide on his own.

3 The mathematical model

Let U = {1, 2, 3, . . .} be the (infinite) set of possible nodes. A graph is a pair g = (N,E)
where N ⊂ U is the (finite) set of nodes and E is a collection of ordered pairs in N ,
i.e., E ⊂ {(i, j) : (i, j) ∈ N × N and i 6= j}. The pairs (i, j) are called edges. More
generally, a multigraph is also a pair g = (N,E), but where the set of edges is a multiset
E ⊂ N ×N × N. In particular, we say that two edges (i, j, n) and (i′, j′, n′) are part of
a multiedge if i = i′, j = j′, and n 6= n′. We say that E does not have multiedges if the
projection of E on N ×N is injective.

A path in g between i and j is a sequence of l > 1 nodes {k1, . . . , kl} such that i = k1,
j = kl, and (kq−1, kq) ∈ E for all q ∈ {2, . . . , l}. A simple path in g between i and j is a
path where all nodes are different. For the sake of notation we often identify a path with
the set of edges {(kq−1, kq)}q∈{2,...,l}. A graph g is connected if for each pair of nodes i
and j there is a path between i and j in the non-oriented version of g. We avoid the
trivial extension of these definitions for multigraphs.

A gas loss problem G is a 5-tuple (g, v, f,H, α) where

i) The multigraph g = (N,E) represents the gas network.

We assume that g is a connected graph without cycles modeling the way in which
the gas flows. If e = (i, j, l) ∈ E, then there may be gas flowing from i to j.

ii) v = (ve)e∈E where for each e ∈ E, ve > 0 denotes the volume of e.

iii) f = (fe)e∈E is the flow configuration where, for each e ∈ E, fe ≥ 0 denotes the
instantaneous flow of gas through e. There is some flow of gas, i.e.,

∑
e∈E fe > 0.

iv) H = (H, {Eh}h∈H) is the hauler structure, where H denotes the set of haulers
and, for each h ∈ H, Eh denotes the (possibly empty) set of edges of hauler h. In
particular, E =

⊔
h∈H Eh.

v) α ∈ [0, 1] denotes the proportion of gas allowed to be lost by the set of haulers.

We present an example of a gas problem below but, before that, we make some
observations and assumptions:

• For the sake of notation simplicity, we work with graphs instead of multigraphs,
and explicitly refer to the later when they can make a difference.

• We assume that the set of haulers H is infinite, although only a finite number of
them will effectively own some edge for each given problem. We do it because
we want to be able to model situations in which a hauler sells one of its edges to
another hauler in H having no edge. This assumption simplifies the notation. In
the examples we only mention the haulers having some edges.
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Example 1. Let G be the gas problem where

i) g = (N,E) where N = {s1, s2, 1, c1, c2} and E = {(s1, 1), (1, c1), (s2, 1), (1, c2)}.

ii) v(s1,1) = v(s2,1) = v(1,c1) = v(1,c2) = 100.

iii) f(s1,1) = 20, f(s2,1) = 80, f(1,c1) = 60, and f(1,c2) = 40.

iv) H = (H, {Eh}h∈H), where H = {h1, h2, h3} and Eh1 = {(s1, 1), (1, c1)}, Eh2 =
{(s2, 1)}, and Eh3 = {(1, c2)}.

v) α = 0.1.

s1

s2

1

c1

c2

f = 20

v = 100

f = 80

v = 100

f = 60

v = 100

f = 40

v = 100

h1

h2

h3

Figure 2: Representation of the gas problem in Example 1.

This gas problem is represented in Figure 2 and will be used extensively as a running
example to illustrate the different concepts and definitions. 3

We now introduce some terminology. For each i ∈ N , we denote by Qi the gas balance
at node i, i.e., the amount of gas leaving node i minus the amount of gas arriving at
node i. Formally,

Qi =
∑

(i,j)∈E

f(i,j) −
∑

(j,i)∈E

f(j,i).

The set of suppliers S ⊂ N of the gas problem G is defined as the set of nodes s ∈ N
such that Qs > 0. On the other hand, the set of consumers C ⊂ N is defined as the
set of nodes c ∈ N such that Qc < 0. For the rest of nodes i ∈ N \ (S ∪ C), we have
that Qi = 0. We make the natural assumption that total supply and total demand are
balanced, namely, ∑

s∈S
Qs = −

∑
c∈C

Qc or, equivalently,
∑
i∈N

Qi = 0.

The total loss allowed to the haulers is L = α
∑

s∈S Qs. The flow carried by each
hauler h ∈ H, denoted by fh, is defined as the gas that reaches one of the edges of
hauler h from outside, that is, from some provider s ∈ S or from an edge of another
hauler. Formally, we first define, for each node i ∈ N and each hauler h ∈ H, Qhi =
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max{
∑

(i,j)∈Eh
f(i,j)−

∑
(j,i)∈Eh

f(j,i), 0}; if no edge of hauler h contains node i we define

Qhi = 0. Then, for each h ∈ H,

fh =
∑
i∈N

Qhi .

In particular, fh = 0 whenever Eh = ∅.5
Given a gas problem G and a pair (s, c) ∈ S×C, we define P (s, c) as the set of simple

paths in g from s to c. We denote by P (S,C) the set of all simple paths from suppliers
to consumers. Namely,

P (S,C) =
⋃

(s,c)∈S×C

P (s, c).

We now want to define an important notion for our analysis that we call hauler’s influence
network, which, given a hauler h, would contain all edges whose gas might either reach
some edge in Eh or come from some edge in Eh. Formally, for each h ∈ H, we define
N h = (gh, vh, fh), as the subnetwork of (g, v, f) where gh = (Nh, Eh) and

Eh = {e ∈ E : there is p ∈ P (S,C) with e ∈ p and p ∩ Eh 6= ∅},
Nh = {i ∈ N : i ∈ e for some e ∈ Eh},
vh = (ve)e∈Eh ,

fh = (fe)e∈Eh .

Sometimes we slightly abuse language and refer to an edge’s influence network, to mean
the influence network that would have a hauler who owned only that edge. Note that
two edges with the same influence network belong to the same paths and, therefore, must
carry the same flow.

Example 1. (cont.) Going back to the gas problem in Figure 2, we have that Qs1 = 20,
Qs2 = 80, Q1 = 0, Qc1 = −60, and Qc2 = −40. Thus, S = {s1, s2} and C = {c1, c2}. If
we compute Qhi we have the following table:

Qhi s1 s2 1 c1 c2 fh
h1 20 0 40 0 0 60
h2 0 80 0 0 0 80
h3 0 0 40 0 0 40

The influence networks corresponding to this example are represented in Figure 3. 3

3.1 Flow tracing methods

Given a gas problem G, we know the amount of gas flowing through each edge of the
network. Ideally, we would also like to know how much of this gas comes from each
supplier and how much goes to each consumer. Unfortunately, tracing the gas in a

5There are alternative ways to define the notion of “flow carried by a hauler”, but, as far as our
analysis is concerned, they would lead to similar results. Our formulation is the one implicit in the
Spanish Regulations (Bolet́ın Oficial del Estado, 2011, 2013b).
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Figure 3: Illustration of the hauler’s influence networks of Example 1.

network is far from being a trivial physical problem and, to the best of our knowledge,
one has to settle for some approximations.

A tracing method, Γ, describes how the gas arriving at a given node is split towards
the different outbound destinations. Once this is known, a tracing method can be used
to obtain, for each pair (s, c) ∈ S ×C and each p ∈ P (s, c), an estimation of the amount
of gas fΓ

p going from s to c through path p.6 For this last part, one has to build upon
the natural assumption that the gas that enters a given pipe mixes to form a completely
homogeneous gas. To illustrate, consider a situation where the gas of several (incoming)
pipes meets at a given node and then is split in several outbound pipes. Let e1 be one of
the incoming pipes and e2 be one of the outbound pipes. The tracing method delivers the
proportion q of the gas flowing through e2 that comes from e1. Suppose that, somewhere
else down the network, e2 is an incoming pipe at some other node and its gas is split as
well in several outbound pipes, one of them being e3. Again, the tracing method pins
down the proportion q̄ of the gas flowing through e3 that comes from e2. The issue now
would be to determine the proportion of the gas flowing through e3 that comes from e1.
The homogeneity assumption on the gas flowing through e2 immediately leads to the
conclusion that qq̄ is the proportion of the gas flowing through e3 that comes from e1.

Figure 4 represents the relevant information to define a tracing rule: inbound and
outbound flows. In particular, it does not depend on the rest of the topology of the
network, the haulers owning the different pipes, or the volumes of the pipes.

f1

f2

fn

f̂1

f̂2

f̂m

Figure 4: A tracing method only depends on the inbound and outbound flows.

Now we present a natural tracing method, referred to as the proportional tracing
method, Γpt, introduced in Bialek (1996) and whose idea is that the incoming flow at
a node is split on the outbound edges proportionally to their flows. Interestingly, this

6Then, for each e ∈ E, we would be able to recover fe as
∑

p∈P (S,C), e∈p f
Γ
p .
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method has already been used to study the allocation of losses in electricity networks
(Conejo et al., 2002; Bialek and Kattuman, 2004).7 In Bialek and Kattuman (2004) the
authors write “This assumption can be neither proved nor disproved physically” and try
to “rationalize” it. The proportional tracing method has also appeared in the context of
gas networks (see, for instance, Alonso et al. (2010)).

Consider a node as the one in Figure 4. Denote by ei the inbound “edge” with flow
fi and by êj the outbound one with flow f̂j .

8 Then, for each i ∈ {1, . . . , n} and each
j ∈ {1, . . . ,m}, the proportional tracing method computes the amount of gas coming
through ei that is leaving through êj as

fi∑n
l=1 fl

f̂j .

Example 1. (cont.) We illustrate the proportional tracing method using again our
running example.

• If we consider the 60 units of flow of edge (1, c1), they are split so that 20
20+8060 = 12

come from (s1, 1) and 80
20+8060 = 48 come from edge (s2, 1).

• Similarly, the 40 units of edge (1, c2) are split so that 20
20+8040 = 8 come from edge

(s1, 1) and 80
20+8040 = 32 come from edge (s2, 1). 3

Concerning how the flow is split in the different paths, we would have

(s, c) P (s, c) fΓpt

p

(s1, c1) {(s1, 1), (1, c1)} 12
(s1, c2) {(s1, 1), (1, c2)} 8
(s2, c1) {(s2, 1), (1, c1)} 48
(s2, c2) {(s2, 1), (1, c2)} 32

4 Rules

The main question we study in this paper is how to allocate the loss allowed by the
regulatory authority, L, among the haulers. We present several allocation rules, one of
them in place in Spain. Another one was used in Spain from 2011 until 2013.

Identifying the source of such losses is a very complex physical problem. The loss
may come from the different active elements of the network such as valves, compres-
sors, regulation and measurement points. Indeed, even the measurement precision is

7Even though these papers apply the proportional tracing method for estimating the way in which the
electricity flows, the approach in their setting is different from ours. Because of the physical differences
between gas and electricity networks, in the later the tracing methods allow to pin down precisely where
the losses take place and therefore can be used directly to allocate losses. In our setting the tracing
method is not used to identify the sources of the losses, but to estimate how much each hauler is using
each part of the network.

8Recall that here an “edge” may represent gas coming from outside the network or gas leaving the
network.
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a limitation since the precision of measurement instruments depends on gas pressure,
temperature and other factors that may vary substantially across the network. Given
these limitations, it is standard to assume that there is some proportionality connecting
gas losses with gas flow and volume.9 Most of the rules below build upon this idea.

A rule is a function assigning to each gas problem G a vector R(G) ∈ RH+ such that∑
h∈H Rh(G) = L, where Rh(G) denotes the loss assigned to hauler h. In this paper

we restrict attention to rules that divide the loss among the haulers present in a given
problem, in the sense of owning some edges, i.e., Rh(G) = 0 whenever Eh = ∅. Clearly,
it makes no sense to assign losses to haulers that are not present in the network at hand.
We consider four rules.10 The first one is based on the flows, ignoring the volumes: the
loss allocated to a hauler is proportional to the flow entering in the hauler’s network.

Flow’s rule, Rflow. For each gas problem G and each hauler h ∈ H,

Rflow
h (G) = L

fh∑
ĥ∈H fĥ

.

This rule is the one in place in the Spanish gas transmission network since 2014.
According to the official regulation published in Bolet́ın Oficial del Estado (2013b): “the
loss allocated to each hauler shall be computed sharing the total loss allocated to the
transmission network proportionally to the gas entering the network of each hauler in
the given year” (translated from Spanish).

The next three rules: aggregate edge’s rule, edge’s rule and proportional tracing rule
offer different interpretations of the idea that the loss depends in a multiplicative way
on both flow and volume. The first one computes, for each hauler, the product of his
flow and his volume (the sum of the volumes of his edges) and allocates the total loss
proportionally.

Aggregate edge’s rule, RAedge. For each gas problem G and each hauler h ∈ H,

RAedge
h (G) = L

fh
∑

e∈Eh
ve∑

ĥ∈H(fĥ
∑

e∈Eĥ
ve)

.

The aggregate edge’s rule was the one used in Spain since 2011 (Bolet́ın Oficial del
Estado, 2011), until it was replaced by the flow’s rule. The next rule computes, for each

9We present a couple of brief intuitions for the role of flow and volume in gas losses. These intuitions
come from basic physical principles combined with the opinion of experts in the field. First, in a given
pipe, more gas flow leads to more pressure. Since higher pressures put more stress on the pipe walls,
the amount of flow may be correlated with pipe breaches. On the other hand, for a given pipe and flow,
pressure decreases with volume, so one could argue that the role of volume goes in the opposite direction.
Yet, higher volume is associated with more surface in the pipe walls, which may increase the likelihood
of some breach due to manufacturing defects or external factors. Maybe more importantly, volume is
typically positively correlated with length, and longer pipes have more active elements in them such as
valves and measurement points. Defects in the assembly process of these active elements with the pipes
may lead to gas losses.

10In a previous version of this paper we followed a game theory approach to define a fifth rule, which
we called the Shapley rule (see Bergantiños et al. (2014)). The idea is to associate a cooperative game to
each gas problem and obtain the loss allocated to each hauler from the Shapley value of the game. The
axiomatic analysis for this rule is more complex than for the other four and, further, its behavior is not
good. Thus, we have decided not to include the Shapley rule in the present paper.
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edge, the product of its flow and its volume and allocates losses to edges proportionally.
Then, the loss allocated to a hauler is the sum of the losses allocated to his edges.

Edge’s rule, Redge. For each gas problem G and each hauler h ∈ H,

Redge
h (G) = L

∑
e∈Eh

feve∑
ê∈E fêvê

.

The following rule incorporates to the calculation the way in which the gas flows
through the network as given by the proportional tracing method.

Proportional tracing rule, RΓpt
. In general we say that a rule is a tracing rule

RΓ if there is a tracing method Γ such that

RΓ
h(G) = α

∑
e∈Eh

∑
p∈P (S,C)

e∈p

fΓ
p

ve∑
ê∈p vê

.

A tracing rule can be seen as a two-step procedure. First, one allocates the loss L
among the different paths, p ∈ P (S,C), proportionally to their flows, fΓ

p . Second, inside
each path, the loss allocated to it is split among its edges proportionally to their volumes.
Finally, the loss allocated to each hauler is the sum of the losses allocated to his edges.
In the particular case of the proportional tracing method we have for each gas problem
G and each hauler h ∈ H,

RΓpt

h (G) = L
∑

p∈P (S,C)

fΓpt

p∑
p̂∈P (S,C) f

Γpt

p̂

·
∑

e∈Eh∩p ve∑
ê∈p vê

= L
∑
e∈Eh

∑
p∈P (S,C)

e∈p

fΓpt

p∑
p̂∈P (S,C) f

Γpt

p̂

· ve∑
ê∈p vê

.

Since
∑

p∈P (S,C) f
Γpt

p =
∑

s∈S Qs is the total amount of gas flowing through the

network and L = α
∑

s∈S Qs, R
Γpt

h (G) can be rewritten as

RΓpt

h (G) = α
∑
e∈Eh

∑
p∈P (S,C)

e∈p

fΓpt

p

ve∑
ê∈p vê

,

which corresponds with the general expression given above.

Example 1. (cont.) In our running example the loss to allocate is L = 10. If we
compute the losses assigned to each hauler with the different rules, we would get the
following results

h fh Rflow RAedge Redge RΓpt

h1 60 3.33 5 4 4
h2 80 4.44 3.33 4 4
h3 40 2.22 1.66 2 2

Although Redge and RΓpt
lead to different allocations in general, this example belongs to

a class of gas problems in which they coincide. This is shown in the result below. 3
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Lemma 1. Let G be a gas problem with the following properties:

i) All edges have the same volume.

ii) All paths have the same number of edges.

Then, all tracing rules coincide with Redge.

Proof. By i) we have

Redge
h (G) = L

∑
e∈Eh

feve∑
ê∈E fêvê

=
L∑
ê∈E fê

∑
e∈Eh

fe.

Hence, Redge
h (G) is proportional to the sum of the flows of the edges of hauler h. The same

conclusion arises for any tracing rule RΓ, just by noting that ve/
∑

ê∈p vê is independent

of e and p (by i) and ii), respectively), and that fe =
∑

p∈P (S,C), e∈p f
Γ
p .

5 Properties

Once we have defined the different rules the next objective is to set up a benchmark
that allows to compare them. Here we follow an axiomatic approach, defining several
properties that a rule should satisfy; recall the discussion in the introduction regarding
the (lack of) impact of the rules on hauler’s incentives. Most of the properties try to
formalize the general principles established in the European regulations. We assign each
property to one of the principles of these regulations, although we acknowledge that this
classification is arbitrary and that some properties respond to various of the principles.
Other properties are inspired in well established principles of game theory and cost
allocation theory.

In Directive 2003/55/EC of the European parliament and the council of 26 June
2003 (Regulation (EC), no. 55/2003), concerning common rules for the internal market
in natural gas, establishes some general principles that must be pursued. Some of them
are the following:

i) “tariffs are published prior to their entry into force”.

ii) “the provision of adequate economic incentives, using, where appropriate,
all existing national and Community tools. These tools may include liability mech-
anisms to guarantee the necessary investment”.

iii) “national regulatory authorities should ensure that transmission and distribution
tariffs are non-discriminatory and cost-reflective”.

iv) “Progressive opening of markets towards full competition should as soon as pos-
sible remove differences between Member States.”
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The Spanish regulation related to the gas loss ensures that tariffs are published prior
to their entry into force. Moreover, since the amount received or paid by each hauler
depends monotonically on their loss (the larger is the loss, the larger is the amount the
hauler pays) we can say that it provides the adequate economic incentives.

Regarding the principles of being non-discriminatory, cost-reflective, and foster com-
petition we proceed as follows. We introduce some properties related to these principles.
Next, we check whether or not the different rules satisfy these properties and present a
discussion based on these properties.

5.1 Cost-reflective properties

The first property requires that haulers that do not transport gas do not have any
assigned loss.

Null hauler (NH). Let G = (g, v, f,H, α) and h ∈ H be such that for each e ∈ Eh,
fe = 0. Then, Rh(G) = 0.

The following property has a spirit similar to that of NH. If two gas problems only
differ on edges without flow, then the losses assigned to each hauler should coincide.

Independence of unused edges (IUE). Let the gas problems G = (g, v, f,H, α)
and Ḡ = (ḡ, v̄, f̄ , H̄, α) be such that H = H̄ and, for each h ∈ H, Ēh = Eh \ Ê, where
Ê ⊂ E satisfies that, for each e ∈ E \ Ê, f̄e = fe and v̄e = ve, and, for each e ∈ Ê,
fe = 0. Then, R(G) = R(Ḡ).

A cost-reflective rule should not be sensitive to “equivalent” representations of the
same network. The next property captures this idea. Suppose that an edge is (trans-
versely) sectioned in several edges. Then the rule should not be affected by this operation.

Independence of edge sectioning (IES). Let the gas problems G = (g, v, f,H, α)
and Ḡ = (ḡ, v̄, f̄ , H̄, α) be such that H = H̄ and there are ĥ ∈ H and (i, j) ∈ Eĥ
satisfying

• ḡ = (N̄ , Ē), where N̄ = N ∪ {l} and l /∈ N , Ēĥ = (Eĥ\{(i, j)}) ∪ {(i, l), (l, j)} and,

for each h ∈ H\{ĥ}, Ēh = Eh, and

• f̄(i,l) = f̄(l,j) = f(i,j), v̄(i,l) + v̄(l,j) = v(i,j), and, for each e ∈ E\{(i, j)}, f̄e = fe and
v̄e = ve.

11

Then, for each h ∈ H, Rh(G) = Rh(Ḡ).
The next property goes along similar lines, but focusing on the longitudinal repre-

sentation of the network instead of the transverse sectioning. For this property we need
to explicitly consider that the gas network can be a multigraph: if a hauler duplicates
one of his edges then, as long as the total flow carried by them is the same, the loss
allocation should not change.

11The condition v̄(i,l) + v̄(l,j) = v(i,j) just reflects that, when a pipe is transversely cut (orthogonally
to the direction of the flow), the volume of the resulting two pipes adds up to the volume of the original
pipe (and the same flow that was crossing the original pipe is crossing the two pipes in which it has been
divided f̄(i,l) = f̄(l,j) = f(i,j)).
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Independence of edge multiplication (IEM). Let G = (g, v, f,H, α) and Ḡ =
(ḡ, v̄, f̄ , H̄, α) be such that H = H̄ and there are ĥ ∈ H, e = (i, j,m) ∈ E, ē1 = (i, j, l1) ∈
Ē, and ē2 = (i, j, l2) ∈ Ē satisfying

• ḡ = (N, Ē), where Ēĥ = (Eĥ \ {e}) ∪ {ē1, ē2} and, for each h ∈ H\{ĥ}, Ēh = Eh,
and

• fe = f̄e1 + f̄e2 , ve = v̄e1 = v̄e2 , and, for each e ∈ E\{e}, f̄e = fe and v̄e = ve.
12

Then, for each h ∈ H, Rh(G) = Rh(Ḡ).
To prevent haulers from artificially distorting the final allocation of losses, if two

haulers engage in some trades affecting their own edges, then the rest of the haulers
should not be affected. This implies, in particular, that the loss allocated to a hauler
does not depend on who owns the edges different from his own.

Independence by sales (IS). Let G = (g, v, f,H, α), Ḡ = (g, v, f, H̄, α), h1 and
h2 in H, and e ∈ E be such that Ēh1 = Eh1\{e}, Ēh2 = Eh2 ∪ {e}, and, for each
h ∈ H\{h1, h2}, Ēh = Eh. Then, for each h ∈ H\{h1, h2}, Rh(G) = Rh(Ḡ).

The rules satisfying IS have an interesting property, that we call edge decomposability
(ED). Namely, these rules can be computed in a two stage procedure. We first decide the
allowed loss on each edge and later compute the allowed loss to each hauler adding the
amount assigned to each of his edges. Formally, given a gas problem G = (g, v, f,H, α),
we define the canonical gas problem associated with G, Gc = (g, v, f,Hc, α), by consid-
ering that each edge belongs to a different hauler; for each h ∈ Hc, |Eh| = 1 and we can
identify Hc with the edge set E. Then, for each gas problem G and each h ∈ H,

Rh(G) =
∑
e∈Eh

Re(G
c).

We define below a property that deals with the way in which some changes in the
gas network should affect the loss allocated to the different haulers. It says that the gas
allocated to a hauler should not be affected by changes outside his influence network.

Independence of irrelevant changes (IIC). Consider the gas problems G =
(g, v, f,H, α) and Ḡ = (ḡ, v̄, f̄ , H̄, α) and let h ∈ H ∩ H̄ be such that N h = N̄ h. Then,
Rh(G) = Rh(Ḡ).

5.2 Non-discriminatory properties

Next, we present properties related with the principle of non-discrimination. The most
standard non-discriminatory principle says that we should offer an equal treatment to
equal agents. Some of the following properties deal with formalizations of this general
notion. We start with an illustrative example.

Example 2. Let G be the gas problem depicted in Figure 5. Assume that the volume
of the three edges is 100 and α = 0.06. Since there is only one supply node and 100 units
of gas are entering through it, we have L = α · 100 = 6.

12In this case, the condition ve = v̄e1 = v̄e2 just reflects that the original pipe e is being replaced
by two pipes identical to it: same volume and same endpoints. The total flow in the network remains
unchanged, so these two new pipes, together, carry the same flow as e (fe = f̄e1 + f̄e2).
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Figure 5: Allocating the loss among “symmetric” haulers.

How we allocate the loss among the three haulers? Two approaches seem reasonable:

i) We focus on edges. Three edges (haulers) are needed to send the 100 units of flow.
All edges are “symmetric” because they have the same volume and the same flow.
The loss allowed to each hauler is 2.

ii) We focus on flows. The flow is sent through two independent paths, each of them
carrying 50 units of flow and so it seems natural to assign the same loss, 3, to both
paths. The first path has a unique edge, thus the 3 units of loss go to h1. The
second path has two edges which are “symmetric” because they have the same flow
and the same volume. Thus, we assign the same loss to each one. Then, the loss
allocated to h2 is 1.5 and the loss allocated to h3 is 1.5. 3

The first symmetry property is related with the first approach. Thus, we focus only
on flows and volumes.

Symmetry on edges (SE). Let G = (g, v, f,H, α) and h, h̄ ∈ H be such that
Eh = {e}, Eh̄ = {ē}, fe = fē, and ve = vē. Then, Rh(G) = Rh̄(G).

The next symmetry property is related with the second approach and we have to
consider also the rest of the graph. If two haulers own exactly one edge each and have
the same influence network, then, provided that the two edges have the same volume,
the rule should assign the same loss to both haulers.

Symmetry on paths (SP). Let G = (g, v, f,H, α) and h, h̄ ∈ H be such that
Eh = {e}, Eh̄ = {ē}, ve = vē, and N h = N h̄. Then, Rh(G) = Rh̄(G).

Since two edges with the same influence network have the same volume and must
carry the same flow, symmetry on edges implies symmetry on paths.

The following properties build upon the idea that there should be some kind of
proportionality on flow and volume.

Flow proportionality on edges (FPE). Let G = (g, v, f,H, α) and h, h̄ ∈ H be
such that Eh = {e}, Eh̄ = {ē}, and ve = vē. Then, if fē > 0, we have

Rh(G) =
fe
fē
Rh̄(G).

We could also define a flow proportionality on paths property but, since all the edges
with the same influence network would carry the same flow, such a property would be
equivalent to SP.
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Volume proportionality on edges (VPE). Let G = (g, v, f,H, α) and h, h̄ ∈ H
be such that Eh = {e}, Eh̄ = {ē}, and fe = fē. Then,

Rh(G) =
ve
vē
Rh̄(G).

Volume proportionality on paths (VPP). Let G = (g, v, f,H, α) and h, h̄ ∈ H
be such that Eh = {e}, Eh̄ = {ē}, and N h = N h̄. Then,

Rh(G) =
ve
vē
Rh̄(G).

5.3 Properties to foster competition

The way in which losses are allocated among haulers should not harm competition among
agents. In particular, two haulers should not be better off by merging together.

Merging proofness (MP). Let G = (g, v, f,H, α), Ḡ = (g, v, f, H̄, α), h1, h2 ∈ H,
and h ∈ H̄ be such that Ēh = Eh1 ∪Eh2 and, for each ĥ ∈ H \ {h1, h2}, Ēĥ = Eĥ . Then
Rh(Ḡ) ≤ Rh1(G) +Rh2(G).

It is important to emphasize the importance of the previous property. Not only it is
important for its direct implications towards facilitating competition, but also because
of its connection with non-discrimination. Clearly, a rule in which merging is profitable
is also a rule that favors big haulers with respect to small haulers, which is size discrim-
ination.13 This is not saying that big haulers should not get assigned a higher loss, but
that the way the assigned loss grows with size should obey some principles (which we
have captured with the notion of merging proofness).

Because of the above comments, in the discussion in Section 6, the MP property will
be considered both a property to foster competition and a non-discriminatory property.

5.4 Additivity properties

In this subsection we present two properties that deal with how a rule should react when
we add gas problems defined on the same gas network. They are standard in game theory
and cost allocation theory. The first property says that if a gas problem can be obtained
as the sum of the flows of other problems, then the loss should be the sum of the losses.

Strong additivity (SA). For each i ∈ {1, . . . , n}, let Gi = (g, v, fi,H, α) and let
G∗ = (g, v,

∑n
i=1 fi,H, α). Then, R(G∗) =

∑n
i=1R(Gi)

It turns out that this property is very strong and quite incompatible with the proper-
ties we have discussed so far. In the example below we show that SA is incompatible with
SP and NH. Recall that NH seems to be an essential cost-reflective requirement and,
moreover, Proposition 1 in Section 5.5 shows that SP is the weakest non-discriminatory
property.

Example 3. Let G1 = (g, v, f1,H, α), G2 = (g, v, f2,H, α), Ḡ1 = (g, v, f̄1, H, α), and
Ḡ2 = (g, v, f̄2,H, α), be as depicted in Figure 6 with H = E and all the volumes being
100. Note that G∗ = (g, v, f1 + f2,H, α) = (g, v, f̄1 + f̄2,H, α).

13This is illustrated in Section 8 for the Spanish gas transmission network.
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Figure 6: Incompatibility of SA with NH and SP.

Suppose that R is a rule satisfying SA, NH, and SP. Then, by SA

Rh1(G∗) = Rh1(G1) +Rh1(G2) = Rh1(Ḡ1) +Rh1(Ḡ2).

By NH all haulers with flow 0 must receive 0. Thus, Rh1(G2) = Rh1(Ḡ2) = 0. By
SP, Rh1(G1) = 1

3L and Rh1(Ḡ1) = 1
2L, which leads to a contradiction. 3

It is worth noting that all the rules we have defined satisfy SP and NH, so they
don’t satisfy SA. For this reason we exclude SA from the rest of the analysis and define
a weaker additivity property, which imposes a consistency condition between the flows
of the gas problems to be combined. Consider the gas problems G1 = (g, v, f1,H, α),
G2 = (g, v, f2,H, α),. . . , Gn = (g, v, fn,H, α), and G∗ = (g, v, f1 + f2 + . . . + fn,H, α),
for some n ∈ N, and let Γ be a tracing rule. We say that G1, G2, . . . , Gn are Γ-compatible
if they have the same sets of suppliers and consumers and G∗ is such that, for each
p ∈ P ∗(S,C), fΓ

p (G∗) =
∑n

i=1 f
Γ
p (Gi).

14

Tracing additivity (TA). Let Γ be a tracing method. Consider the set of Γ-
compatible gas problems {Gi = (g, v, fi,H, α)}i∈{1,...,n} and let G∗ = (g, v,

∑n
i=1 fi,H, α).

Then, R(G∗) =
∑n

i=1R(Gi).
This property is weaker than SA since, given a tracing methodology Γ, requiring that

a set of gas problems is Γ-compatible is typically quite demanding.

5.5 Relationships between the properties

The proposition below summarizes some connections between the different properties we
have defined in this section.

Proposition 1. The following individual relationships hold:

14Note that P1(S,C) = . . . = Pn(S,C) = P ∗(S,C).
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i) IIC implies IS.

ii) IS implies MP.

iii) SE implies SP.

iv) VPE implies SE and VPP.

v) VPP implies SP.

vi) FPE implies SE.

vii) IS implies ED.

IIC IS MP

VPE

SE

SP

VPP

FPE

ED

Relationships in Proposition 1.

Proof. The first 6 statements are straightforward and we omit their proof.
We now prove statement vii). Let G be a gas problem and R a rule satisfying IS.

Let Gc be the canonical gas problem associated with G. Let Eh =
{
e1
h, ..., e

p
h

}
denote

the edges of hauler h in G. Let Gh,1 be the problem obtained from G when hauler h sells
edge e1

h to hauler e1
h. By IS, Rh′ (G) = Rh′

(
Gh,1

)
for each h′ ∈ H\ {h}. Thus,

Rh (G) = Re1h

(
Gh,1

)
+Rh

(
Gh,1

)
.

Let Gh,2 be the problem obtained from Gh,1 when hauler h sells edge e2
h to hauler

e2
h. By IS, Re1h

(
Gh,1

)
= Re1h

(
Gh,2

)
and Rh′

(
Gh,1

)
= Rh′

(
Gh,2

)
for each h′ ∈ H\ {h}.

Thus, noting that Rh
(
Gh,1

)
= Re2h

(
Gh,2

)
+Rh

(
Gh,2

)
, we have

Rh (G) = Re1h

(
Gh,2

)
+Re2h

(
Gh,2

)
+Rh

(
Gh,2

)
.

Repeating this argument we can prove that

Rh (G) =

p∑
k=1

Rekh

(
Gh,p

)
.

Let h′ ∈ H\ {h}. Let Eh′ =
{
e1
h′ , ..., e

p′

h′

}
denote the edges of hauler h′ in G. Let

Gh
′,1 be the problem obtained from Gh,p when hauler h′ sells edge e1

h′ to hauler e1
h′ . By

IS, Rh∗
(
Gh,p

)
= Rh∗

(
Gh
′,1
)

for each h∗ ∈ Eh. Thus,

Rh (G) =

p∑
k=1

Rekh

(
Gh
′,1
)
.

If we continue with this procedure until each hauler h′ ∈ H\ {h} sells each of its
edges e to hauler e, then the gas problem obtained at the end is just Gc. By IS,

Rh (G) =

p∑
k=1

Rekh
(Gc) ,

which means that R satisfies ED.
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Interestingly, we also show in Appendix B that the combination of IES, IS, and
FPE implies both NH and VPE (lemmas 2 and 3). This implication is crucial for the
characterization of the edge’s rule in Section 7.

6 Comparing the rules

In this section we study the behavior of the different rules with respect to the properties
defined in the previous section. For the sake of exposition, we present the results in
Table 1, where we have underlined those properties used in a characterization in Section 7.
The proofs can be found in Appendix A.

EU Principles

XXXXXXXXXXXProperty
Rule

Flow Aedge Edge
Prop.

Tracing

Cost-reflective

Null hauler X X X X
Indep. Unused Edges X X X
Indep. Edge Sectioning X X X X
Indep. Edge Mult. X X X
Ind. Sales X X
Indep. Irrelevant Changes X

Non-discriminatory

Symmetry on Edges X X X
Symmetry on Paths X X X X
Flow Proportionality Edges X X X
Volume Proportionality Edges X X
Volume Proportionality Paths X X X
Merging Proofness X X X

Competition Merging Proofness X X X
Additivity Tracing Additivity X

Table 1: Behavior of the different rules with respect to the different properties.

6.1 Discussion

If we take a general look at the table, there are two rules that stand as the ones with
a better behavior: the proportional tracing rule and the edge’s rule. In the following
lines we take a closer look, with the focus on the principles taken from the European
regulations. Depending on the behavior with respect to the properties associated to each
principle, we assign a “grade” or “degree of fulfillment” of each principle by each rule.
These grades, on which we elaborate below are summarized in the following table:

Principle \ Rule Flow Aedge Edge Prop. tracing

Cost-reflective Normal Low High Very high

Non-discriminatory High High Very high High

Competition Very high Low Very high Very high
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It is important to recall that one might have chosen a different classification of the
properties into principles, so the grades and ensuing discussion might change. Thus,
the arguments in this section partially respond to our subjective criteria when assigning
properties to principles. In particular, we have chosen to include merging proofness
in two categories, because we consider it is strongly related to non-discrimination and
fosters competition. Yet, we consider that, overall, the main conclusions we draw in this
section are quite objective.

Since the proportional tracing rule satisfies all cost-reflective properties, its grade is
very high. Then, the edge’s rule only violates IIC and gets a high grade. Flow’s rule also
violates IS, which we consider an important cost reflective property, so it gets a normal
grade. Finally, aggregate edge’s gets a low grade.

Concerning non-discrimination, the grades require some explanation. First, since the
edge’s rule satisfies all properties, it gets again a very high grade. The aggregate edge’s
rule only violates one of the properties, since it favors the haulers with large networks.15

Thus, the grade for this rule is high. Flow’s rule satisfies all properties but the ones
related with the volume. The idea underlying this rule is that gas losses are much more
related with flows than with volumes and, under this assumption, the properties related
to volumes make no sense. Thus, we still classify the flow’s rule as high. We move now
to the proportional tracing rule. Most of our non-discriminatory properties build upon
the principle of equal treatment of equals but, as we already argued when we introduced
them, it is not clear when should we consider two agents equal. We can focus on flows
and the paths they follow or on edges. In the first case the proportional tracing rule
would be non-discriminatory and in the second it would be discriminatory. We believe
that focusing on flows and paths is more reasonable, because the whole structure of the
graphs is taken into account and not only the edges on isolation. Thus, we still give a
high grade to the proportional rule.

The grades related to the competition principle are the natural ones.
We are in position of revisiting our initial comparison of rules in the light of the

grade’s table. According to it, if we had to provide a ranking of the rules we would have
the proportional rule and the edge’s rule on top. Interestingly both of them dominate the
third one, the flow’s rule, according to all principles and the flow’s rule also dominates
the aggregate’s edges rule, which is the last one.

In the light of the previous discussion we can also draw some normative conclusions
regarding the situation in the Spanish gas transmission network:

i) The flow’s rule satisfies more principles than the aggregate edge’s rule. Thus, the
change in the Spanish law can be seen as an improvement.

ii) There are other rules that seem to exhibit a better behavior than the flow’s rule
with respect to those principles.

15Recall that this is not saying that big haulers should not get assigned a higher loss (see the discussion
in Section 5.3 and the illustration in Section 8).
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7 Axiomatic characterizations

In this section we present axiomatic characterizations of the edge’s rule and the general
family of tracing rules. We also present an independent characterization of the propor-
tional tracing rule. The proofs can be found in Appendix B.

7.1 Edge’s rule characterization

We first present a characterization of edge’s rule using two cost-reflective properties (IES
and IS), and a non-discriminatory property (FPE).

Theorem 1. The edge’s rule is the unique rule satisfying IES, IS, and FPE. Besides,
the properties are independent.

7.2 Tracing rules characterization

We present a characterization of the tracing rules using two cost reflective properties,
IUE and IS, one non-discriminatory property, VPP, and one additivity property, TA.

Theorem 2. The tracing rules are the unique rules satisfying IUE, IS, VPP, and TA.
Besides, the properties are independent.

In particular, the proportional tracing rule is characterized with TA with respect to
the proportional tracing.

Corollary 1. The proportional tracing rule is the unique rule satisfying IUE, IS, VPP,
and TA with respect to Γpt. Besides, the properties are independent.

The characterizations in Theorem 1 and Corollary 1 share property IS. Then, for
the edge’s rule we have added IES, which is also satisfied by the proportional tracing
rule and FPE, which is not. For the proportional tracing rule we have added IUE and
VPP, which are also satisfied by the edge’s rule, and TA, which is not. Thus, the main
difference comes from FPE vs. TA.

To conclude, we present another characterization of the proportional tracing rule.

Theorem 3. The proportional tracing rule is the unique tracing rule satisfying IEM. In
particular, it is the unique rule satisfying IUE, IS, VPP, TA, and IEM. Besides, the
properties are independent.

8 Illustration using the Spanish gas transmission network

In this section we illustrate the rules discussed in this paper by applying them to the
Spanish transmission network, which has a total extension of around 11000 km.16 The

16To be precise, what we are representing is the primary network, the high pressure one (operating
pressures from 40 to 80 bar). The network representation is based on official documents and the ownership
of the different pipes is based on the information provided by the Technical System Manager, where the
area of operation of each hauler is specified.
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computations build upon the optimal network operation in a hypothetical day of very
high demand.17

h1

h2

h3

h4

h5 h6

h6

h7

h7

h7

h7

Figure 7: Haulers of the Spanish gas transmission network.

In Figure 7 we represent the Spanish gas transmission network. We have boxed the
pipes belonging to each hauler, except for hauler h1 who owns all the remaining ones. It
is worth noting this hauler corresponds with Enagás, a former public body who initially
owned the whole network and still owns around 10000 km of pipes, much more than any
other hauler. The second largest one is Enagás Transporte del Norte with approximately
350 km and it is worth noting that 90% of this last company is also owned by Enagás.

In tables 2-4 we present the results of applying the different rules to the Spanish gas
network. All of them are based on a parameter α = 0.002, which is the parameter used
in Spain (Bolet́ın Oficial del Estado, 2013a).18 Table 2 represents the allocated losses
measured in gas units, Table 3 represents the percentage allocated to each hauler, and
Table 4 contains an estimation of the annual monetary equivalent; under the assumption

17The main reason for taking a day with very high demand as reference instead of an average day is
that, when studying energy networks for different purposes (capacity, expansion planning, security of
supply,. . . ), peak days are the norm and so finding realistic data on peak demand is easier. On the other
hand, for the determination of the optimal network operation, we have relied on GANESOTM, a software
developed by researchers at the University of Santiago de Compostela for Reganosa Company (a hauler
in the Spanish network).

18For the sake of clarity, each number is presented with the precision needed to show the first non-zero
decimal digit and also the following one.
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Gas losses Network
Flow Aedge Edge

Prop.
in GWh/d Owned (%) Tracing

Enagás (h1) 91.44 4.55 5.32 5.27 4.72

Reganosa (h2) 1.76 0.21 0.0024 0.031 0.21

Gas Extremadura (h3) 0.61 0.0071 0.000010 0.00020 0.000073

Enagás Transporte del Norte (h4) 3.54 0.31 0.0086 0.027 0.24

Transportista Regional Gas (h5) 1.46 0.016 0.000051 0.0005 0.00052

Endesa Gas Transportista (h6) 0.36 0.0045 0.0000019 0.000029 0.000035

Gas Natural (h7) 0.82 0.24 0.00095 0.0062 0.17

Table 2: Gas loss allocated to the haulers (GWh/d) with α = 0.002.

Percentage Network
Flow Aedge Edge

Prop.
of gas losses (%) Owned (%) Tracing

Enagás (h1) 91.44 85.19 99.77 98.77 88.37

Reganosa (h2) 1.76 3.97 0.046 0.59 3.95

Gas Extremadura (h3) 0.61 0.13 0.00019 0.0037 0.0014

Enagás Transporte del Norte (h4) 3.54 5.74 0.16 0.51 4.44

Transportista Regional Gas (h5) 1.46 0.31 0.00096 0.0094 0.0098

Endesa Gas Transportista (h6) 0.36 0.083 0.000035 0.00055 0.00066

Gas Natural (h7) 0.82 4.58 0.018 0.12 3.23

Table 3: Percentage of gas loss allocated to the haulers.

Monetary equivalent Network
Flow Aedge Edge

Prop.
in millions of e Owned (%) Tracing

Enagás (h1) 91.44 49.77 58.30 57.71 51.64

Reganosa (h2) 1.76 2.32 0.027 0.34 2.31

Gas Extremadura (h3) 0.61 0.077 0.00011 0.0022 0.00080

Enagás Transporte del Norte (h4) 3.54 3.35 0.095 0.30 2.60

Transportista Regional Gas (h5) 1.46 0.18 0.00056 0.0055 0.0057

Endesa Gas Transportista (h6) 0.36 0.049 0.000020 0.00032 0.00039

Gas Natural (h7) 0.82 2.68 0.010 0.068 1.89

Table 4: Annual monetary equivalent, assuming that 1 GWh = 30000 e.
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that the given scenario repeats itself throughout the year. For this last table it should
be taken into account that the peak day considered has nearly twice the demand of an
average day, so dividing by two the amounts in Table 4 would deliver more realistic
figures. In practice, in order to minimize the dependence of the final allocation on the
chosen demands and network configuration, one might for instance apply the chosen rule
on a daily basis and then add up the daily allocations to get the annual loss allocation.

We can readily see that all rules allocate the largest gas loss to Enagás, which agrees
with the fact that Enagás is, by far, the biggest hauler. Yet, according to the aggregate
edge’s rule 99.77% of the allocated losses go to Enagás, which we believe is unreasonable
even if we take into account that this hauler owns 91.44% of the network. This goes
along the lines mentioned when discussing the properties of the rules, where we argued
that the aggregate edge’s rule size discriminates, penalizing small haulers and favoring
mergers, which hurts competition. Indeed, the allocated loss under the flow’s rule is, for
most haulers, over 100 times larger than it was before; for instance, Gas Natural (h7)
gets more than two millions of Euro when, according to the aggregate edge’s rule, it was
barely getting ten thousand. This probably explains why most Spanish haulers strongly
opposed to the aggregate edges rule until it was finally replaced by the flow’s rule.

Pursuing the above discussion a bit further, one might wonder what would happen if
the haulers could choose the rule by some voting mechanism. Although a general answer
is beyond the scope of this paper, in the Spanish network all haulers except Enagás
would have the flow’s rule as their first choice and the aggregate edge’s rule as the last
one. Also, the tracing rule would be chosen in second place, since only Enagás and Gas
Extremadura would rank the edge’s rule on top of it.

9 Conclusions

We have addressed the issue of how to allocate losses between the agents of an energy
transmission network. To the best of our knowledge, this is the first time this problem
is formally studied for gas networks and the first time a formal axiomatic approach is
developed for any kind of energy network.

We have discussed several allocation rules, two of them that have already been used
in practice and two new ones we define. We have studied their behavior with respect
to some principles set forth by the European Union such as non-discrimination, and
cost-reflectivity. As a result, we have seen that one of the rules that has already been
used in practice exhibits by far the worst behavior with respect to these principles. On
the other side, the two rules we define seem to abide better by them.

From a more theoretical perspective, we have introduced several properties repre-
senting the EU principles. Besides, we have obtained axiomatic characterizations of two
of the rules.

Finally, we have applied the developed methodology to the Spanish gas transmission
network and noted that the allocated losses vary significantly depending on the chosen
rule. Thus, confirming that the selection of a fair allocation scheme is an important issue
for the haulers.

27



Acknowledgements

The authors acknowledge support from the Spanish Ministry for Economics and Com-
petitivity and FEDER through projects MTM2011-27731-C03, MTM2014-60191-JIN,
ECO2011-23460, and ECO2014-52616-R. Support from Xunta de Galicia through projects
INCITE09-207-064-PR, GRC 2015/014 and EM 2012/111 is also acknowledged. Ángel
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Fernández de Córdoba (2014): “Gas loss allocation in gas transmission networks,”
Tech. Rep. 14-02, Department of Statistics and Operations Research. University of
Santiago de Compostela.

Bergantiños, G. and R. Mart́ınez (2014): “Cost allocation in asymmetric trees,”
European Journal of Operational Research, 237, 975–987.

Bergantiños, G. and J. Vidal-Puga (2007): “A fair rule in minimum cost spanning
tree problems,” Journal of Economic Theory, 137, 326–352.

Bialek, J. (1996): “Tracing the flow of electricity,” in IEE Proceedings on Generation
Transmission and Distribution, vol. 143.

Bialek, J. W. and P. A. Kattuman (2004): “Proportional sharing assumption in
tracing methodology,” in IEE Proceedings on Generation Transmission and Distribu-
tion, vol. 151.

Bogomolnaia, A., R. Holzman, and H. Moulin (2010): “Sharing the cost of a
capacity network,” Mathematics of Operations Research, 35, 173–192.

Bolet́ın Oficial del Estado (2011): “Incentivo a la reducción de mermas en la red
de transporte,” in Orden ITC/3128/2011, Spanish Government, vol. 278.

——— (2013a): “Coeficientes de mermas en las instalaciones gasistas,” in Orden
IET/2446/2013, Spanish Government, vol. 312.

——— (2013b): “Incentivo a la reducción de mermas en la red de transporte (Amend-
ment),” in Orden IET/2446/2013, Spanish Government, vol. 312.

British Petroleum (2013): “BP Statistical Review of World Energy,” Annual report.

28
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A Results concerning the properties of the different rules

Unless explicitly mentioned otherwise, in all the examples in this section we assume that
the volume of the edges is 1, so the number on the edges represents flows.

Proposition 2. i) Rflow satisfies NH, IUE, IES, IEM, SE, SP, FPE, and MP.

ii) Rflow does not satisfy IS, VPE, VPP, IIC, and TA.

Proof. • NH. Let G = (g, v, f,H, α) and h ∈ H be such that, for each e ∈ Eh, fe = 0.
Then,

fh =
∑
i∈N

Qhi =
∑
i∈N

(max{
∑

(i,j)∈Eh

f(i,j) −
∑

(j,i)∈Eh

f(j,i), 0}) = 0,

and so Rflow
h (G) = L fh∑

ĥ∈H fĥ
= 0.

• IUE. Let G = (g, v, f,H, α) and Ḡ = (ḡ, v̄, f̄ , H̄, α) be as in the definition of IUE,
that is, there is Ê ⊂ E such that, for each h ∈ H, Ēh = Eh \ Ê and, for each e ∈ Ê,
fe = 0.

If i ∈ N \ N̄ , the edges of E of the form (i, j) or (j, i) belong to Ê and have flow zero.
Thus, for each h ∈ H,

Qhi = max{
∑

(i,j)∈Eh

f(i,j) −
∑

(j,i)∈Eh

f(j,i), 0} = 0. (1)

If i ∈ N̄ , since fe = 0 for e ∈ Ê and fe = f̄e for e ∈ E \ Ê, we have, for each h ∈ H,

Qhi = max{
∑

(i,j)∈Eh
f(i,j) −

∑
(j,i)∈Eh

f(j,i), 0}
= max{

∑
(i,j)∈Eh\Ê f(i,j) −

∑
(j,i)∈Eh\Ê f(j,i), 0}

= max{
∑

(i,j)∈Ēh
f̄(i,j) −

∑
(j,i)∈Ēh

f̄(j,i), 0}
= Q̄hi .

(2)
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Then, Rflow
h (G) = Rflow

h (Ḡ), since, by (1) and (2) we have that, for each h ∈ H,

fh =
∑
i∈N

Qhi =
∑
i∈N̄

Qhi =
∑
i∈N̄

Q̄hi = f̄h.

• IES. Let G = (g, v, f,H, α) and Ḡ = (ḡ, v̄, f̄ , H̄, α) be two problems that only
differ because there are ĥ ∈ H and (i, j) ∈ Eĥ satisfying that (i, j) is sectioned in two
consecutive edges (i, l), (l, j) ∈ Ēĥ.

Since f̄(i,l) = f̄(l,j) = f(i,j) we have that, for each h ∈ H and each k ∈ N̄ \ {l},
Q̄hk = Qhk . Further, it is easy to see that for each h ∈ H, Q̄hl = 0. Thus, for each h ∈ H,
f̄h = fh and, therefore, Rflow

h (G) = Rflow
h (Ḡ).

• IEM. It is straightforward.
• SE and SP. Since SE and SP are weaker than FPE (Proposition 1), SE and SP

follow from the fact that Rflow satisfies FPE (see below).
• FPE. Let G be as in the definition of FPE. Since Eh = {e} and Eh̄ = {ē}, we have

that fh = fe and fh̄ = fē > 0. Then, the definition of Rflow ensures that

Rflow
h (G) =

fe
fē
Rflow
h̄ (G).

• MP. Let G = (g, v, f,H, α), Ḡ = (g, v, f, H̄, α), h, h1, and h2 be as in the definition
of MP. Now, to compute Qhi , the gas reaching i through edges of h1 and exiting through
edges of h2 cancels out, whereas it does not cancel out to compute Qh1

i ; a similar obser-

vation holds for Qh2
i . Then, for each i ∈ N , Qhi ≤ Q

h1
i +Qh2

i and, hence, f̄h ≤ fh1 + fh2 .
Let F =

∑
h̄∈H̄\{h} f̄h̄ =

∑
h̄∈H\{h1,h2} fh̄. Then, since F ≥ 0, x

x+F is an increasing
function,

Rflow
h (Ḡ) = L

f̄h
f̄h + F

≤ L fh1 + fh2

fh1 + fh2 + F
= Rflow

h1
(G) +Rflow

h2
(G).

Next, we present some counterexamples to prove statement ii) of Proposition 2.
• IS. Let G = (g, v, f,H, α) and Ḡ = (g, v, f, H̄, α) as in the picture below.

G
1

1

1

1

Ḡ
1

1

1

1

h1

h2

h3

Problems G and Ḡ satisfy the assumptions of the definition of IS. However, we have that
Rflow
h3

(G) = L1
3 6= L1

4 = Rflow
h3

(Ḡ).

• VPE. Since VPE is stronger than VPP (Proposition 1) and Rflow does not satisfy
VPP (see below), Rflow does not satisfy VPE.
• VPP. Let G = (g, v, f,H, α), h1 and h2 be as in the picture below.

G
f = 1
v = 1

f = 1
v = 2

h1

h2
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Then,

Rflow
h2

(G) = Rflow
h1

(G) 6= 2Rflow
h1

(G) =
vh2

vh1

Rflow
h1

(G).

• IIC. Let G = (g, v, f,H, α) and Ḡ = (g, v, f̄ ,H, α) be as in the picture below.

G
1

1

1 Ḡ
1

2

1 h1

h2

h3

The gas problems G and Ḡ are as in the definition of IIC. However,

Rflow
h1

(G) = α
1

3
6= α

1

4
= Rflow

h1
(Ḡ).

• TA. Let G = (g, v, f,H, α), Ḡ = (g, v, f̄ ,H, α), and G∗ = (g, v, f + f̄ ,H, α) be as
in the picture below.

G

s1

c2

c1

1

1

0

1 Ḡ

s1

c2

c1

1

0

1

0 G∗

s1

c2

c1

2

1

1

1

h1

h2

h3

Let p1 be the path from s1 to c1 and p2 the path from s1 to c2. Then, {p1, p2} = P (S,C) =
P̄ (S,C) = P ∗(S,C). Moreover, for each tracing method Γ and each i ∈ {1, 2}, we have
fΓ
pi(G) + fΓ

pi(Ḡ) = 1 = fΓ
pi(G

∗). Thus, G, Ḡ, and G∗ satisfy the assumptions of the
definition of TA with respect to any tracing method Γ. However,

Rflow
h3

(G) +Rflow
h3

(Ḡ) =
L

3
+ 0 = α

1

3
6= α

1

5
=
L∗

5
= Rflow

h3
(G∗).

Proposition 3. i) RAedge satisfies NH, IES, SE, SP, FPE, VPE, and VPP.

ii) RAedge does not satisfy IUE, IEM, IS, IIC, MP, and TA.

Proof. • NH. Trivially, a hauler who does not carry flow through his edges gets 0
according to the aggregate edge’s rule.
• IES. Let G = (g, v, f,H, α) and Ḡ = (ḡ, v̄, f̄ , H̄, α) be two problems that only

differ because there are ĥ ∈ H and (i, j) ∈ Eĥ satisfying that (i, j) is sectioned in two
consecutive edges (i, l), (l, j) ∈ Ēĥ.

Since v(i,j) = v̄(i,l) + v̄(l,j), we have that, for each h ∈ H,
∑

e∈Eh
ve =

∑
e∈Ēh

v̄e.

Moreover, in the proof of IES in Proposition 2 we showed that f̄h = fh for all h. Thus,

RAedge
h (G) = L

fh(
∑

e∈Eh
ve)∑

ĥ∈H fĥ(
∑

e∈Eĥ
ve)

= L
f̄h(
∑

e∈Eh
v̄e)∑

ĥ∈H f̄ĥ(
∑

e∈Ēĥ
v̄e)

= RAedge
h (Ḡ).

• SE and SP. Since SE and SP are weaker than FPE (Proposition 1), SE and SP
follow from the fact that RAedge satisfies FPE (see below).
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• FPE. Let G be as in the definition of FPE. Since Eh = {e} and Eh̄ = {ē} we have
that fh = fe and fh̄ = fē. Thus, since ve = vē, the definition of aggregate edge’s rule
implies that

RAedge
h (G) =

fe
fē
RAedge

h̄
(G).

• VPE. Let G be as in the definition of VPE. Since Eh = {e} and Eh̄ = {ē} we have
that fh = fe = fē = fh̄. Then, the definition of aggregate edge’s rule implies that

RAedge
h (G) =

ve
vē
RAedge

h̄
(G).

• VPP. The aggregate edge’s rule satisfies VPP, since we have seen that it satisfies
VPE and, by Proposition 1, VPE implies VPP.

Next, we present some counterexamples to prove statement ii) of Proposition 3.
• IS. Since IS is stronger than MP (Proposition 1) and RAedge does not satisfy MP

(see below), RAedge does not satisfy IS.
• IUE. Let G = (g, v, f,H, α) and Ḡ = (ḡ, v̄, f̄ , H̄, α) be as in the picture below.

G

c2 s1 c1

0 1 1

Ḡ

s1 c1

1 1

h1

h2

Clearly, G and Ḡ are as in the definition of IUE. However,

RAedge
h2

(G) = L
2

3
6= L

1

2
= RAedge

h2
(Ḡ)

• IEM. Let G = (g, v, f,H, α) and Ḡ = (ḡ, v̄, f̄ , H̄, α) be as in the picture below.

G
2

1

Ḡ 1

1

1

h1

h2

Clearly, G and Ḡ are as in the definition of IEM. However,

RAedge
h1

(G) = L
2

3
6= L

4

5
= RAedge

h1
(Ḡ).

• IIC. We can use the same counterexample used for Rflow in Proposition 2, since
Rflow and RAedge coincide for the gas problems there.
• MP. Let G = (g, v, f,H, α) and Ḡ = (g, v, f, H̄, α) be as in the picture below.

G
1

1

1 Ḡ
1

1

1 h1

h2, h

h3
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Note that H = {h1, h2, h3} and H̄ = {h1, h} where h is the union of h2 and h3. Problems
G and Ḡ are as in the definition of MP. However,

RAedge
h (Ḡ) = L

4

5
> L

1

3
+ L

1

3
= RAedge

h2
(G) +RAedge

h3
(G).

• TA. We can use the counterexample used for Rflow in Proposition 2, where

RAedge
h3

(G) +RAedge
h3

(Ḡ) =
L

3
+ 0 = α

1

4
6= α

1

7
=
L∗

7
= RAedge

h3
(G∗).

Proposition 4. i) Redge satisfies NH, IUE, IES, IEM, IS, SE, SP, FPE, VPE, VPP,
and MP.

ii) Redge does not satisfy IIC and TA.

Proof. • NH. Trivially, a hauler who does not carry flow through his edges gets 0
according to the edge’s rule.
• IUE. It is obvious.
• IES. Let G = (g, v, f,H, α) and Ḡ = (ḡ, v̄, f̄ , H̄, α) be two problems that only

differ because there are ĥ ∈ H and (i, j) ∈ Eĥ satisfying that (i, j) is sectioned in two
consecutive edges (i, l), (l, j) ∈ Ēĥ. Since v(i,j) = v̄(i,l) + v̄(l,j) and f(i,j) = f̄(i,l) = f̄(l,j),
we have

f(i,j)v(i,j) = f(i,j)(v̄(i,l) + v̄(l,j)) = f̄(i,l)v̄(i,l) + f̄(l,j)v̄(l,j).

Then, for each h ∈ H,
∑

e∈Eh
feve =

∑
e∈Ēh

f̄ev̄e and Redge
h (G) = Redge

h (Ḡ).

• IEM. Let G = (g, v, f,H, α) and Ḡ = (ḡ, v̄, f̄ , H̄, α) be two problems that only differ
because there are ĥ ∈ H and e ∈ Eĥ satisfying that e is duplicated in two multiedges
e1, e2 ∈ Ēĥ, with ve = v̄e1 = v̄e2 . Since fe = f̄e1 + f̄e2 , we have

feve = (f̄e1 + f̄e2)ve = f̄e1 v̄e1 + f̄e2 v̄e2 .

Then, for each h ∈ H,
∑

e∈Eh
feve =

∑
e∈Ēh

f̄ev̄e and Redge
h (G) = Redge

h (Ḡ).

• IS. Let G = (g, v, f,H, α), Ḡ = (g, v, f, H̄, α), h1, h2 ∈ H and e ⊂ Eh1 be such
that, Ēh1 = Eh1\{e}, Ēh2 = Eh2 ∪ {e} and, for each h ∈ H\{h1, h2}, Ēh = Eh.

Note that
∑

e∈E feve =
∑

e∈E f̄ev̄e and that, for each h ∈ H \{h1, h2},
∑

ē∈Eh
fēvē =∑

ē∈Ēh
f̄ēv̄ē. Then, for each h ∈ H \ {h1, h2}, Redge

h (G) = Redge
h (Ḡ) .

• SE and SP. Since SE and SP are weaker than FPE (Proposition 1), SE and SP
follow from the fact that Redge satisfies FPE (see below).
• FPE. Let G be as in the definition of FPE. Since Eh = {e}, Eĥ = {ê} and ve = vê

it is straightforward to see that

Redge
h (G) =

fe
fê
Redge

ĥ
(G).

• VPE. Let G be as in the definition of VPE. Since Eh = {e} and Eĥ = {ê} with
fe = fê, it is straightforward to see that

Redge
h (G) =

ve
vê
Redge

ĥ
(G).
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• VPP. The edge’s rule satisfies VPP, since we have seen that it satisfies VPE and,
by Proposition 1, VPE implies VPP.
• MP. The edge’s rule satisfies MP, since we have seen that it satisfies IS and, by

Proposition 1, IS implies MP.
Next, we present some counterexamples to prove statement ii) of Proposition 4.
• IIC. We can use the same counterexample used for Rflow in Proposition 2, since

Redge and Rflow coincide for the gas problems there.
• TA. We can use the counterexample used for Rflow in Proposition 2, assuming that

all edges have the same volume.

Redge
h3

(G) +Redge
h3

(Ḡ) =
L

3
+ 0 = α

1

3
6= α

1

5
=
L∗

5
= Redge

h3
(G∗).

Proposition 5. i) RΓpt
satisfies NH, IUE, IES, IEM, IS, SP, VPP, IIC, MP, and

TA.

ii) RΓpt
does not satisfy SE, FPE, and VPE.

Proof. • NH. Let G = (g, v, f,H, α) and h ∈ H be such that, for each e ∈ Eh fe = 0.
Then, for each p ∈ P (S,C) with e ∈ p, fΓpt

p = 0, since all fΓpt

p flows are nonnegative

numbers and 0 = fe =
∑

p∈P (S,C),e∈p f
Γpt

p . Then, the definition of RΓpt
immediately

implies that RΓpt

h (G) = 0.
• IUE. Let G = (g, v, f,H, α) and Ḡ = (ḡ, v̄, f̄ , H̄, α) be as in the definition of IUE,

that is, there is Ê ⊂ E such that, for each h ∈ H, Ēh = Eh \ Ê and, for each e ∈ Ê,
fe = 0.

Reasoning as above, we again have that, for each p ∈ P (S,C) such that p ∩ Ê 6= ∅,
fΓpt

p = 0. Moreover, P̄ (S,C) = P (S,C) \ {p ∈ P (S,C) : p ∩ Ê 6= ∅}. Thus,

RΓpt

h (Ḡ) = α
∑
e∈Ēh

∑
p∈P̄ (S,C)

e∈p

f̄Γpt

p (
v̄e∑
ê∈p v̄ê

) = α
∑

e∈Eh\Ê

∑
p∈P (S,C)

e∈p, p∩Ê=∅

fΓpt

p (
ve∑
ê∈p vê

) = RΓpt

h (G).

• IES. Let G = (g, v, f,H, α) and Ḡ = (ḡ, v̄, f̄ , H̄, α) be two problems that only
differ because there are ĥ ∈ H and (i, j) ∈ Eĥ satisfying that (i, j) is sectioned in two
consecutive edges (i, l), (l, j) ∈ Ēĥ.

Since (i, l) and (l, j) are the only two edges containing node l, then, given p ∈ P̄ (S,C),
(i, l) ∈ p if and only if (l, j) ∈ p. On the other hand,

P (S,C) \ {p ∈ P (S,C) : (i, j) ∈ p} = P̄ (S,C) \ {p ∈ P (S,C) : (i, l) ∈ p}.

Thus, there is a natural bijection between {p ∈ P (S,C) : (i, j) ∈ p} and {p ∈ P̄ (S,C) :
(i, l) ∈ p}, so, hereafter, we identify P̄ (S,C) with P (S,C). Then, for each p ∈ P (S,C),
fΓpt

p = f̄Γpt

p .
Since v(i,j) = v̄(i,l)+v̄(l,j) we have that, for each p ∈ P (S,C) with (i, j) ∈ p,

∑
ê∈p vê =∑

ê∈p v̄ê and

fΓpt

p

v(i,j)∑
ê∈p vê

= f̄Γpt

p

v̄(i,l)∑
ê∈p v̄ê

+ f̄Γpt

p

v̄(l,j)∑
ê∈p v̄ê

.
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Therefore, for each h ∈ H,

RΓpt

h (G) = α
∑
e∈Eh

∑
p∈P (S,C)

e∈p

fΓpt

p

ve∑
ê∈p vê

= α
∑
e∈Ēh

∑
p∈P̄ (S,C)

e∈p

f̄Γpt

p

v̄e∑
ê∈p v̄ê

= RΓpt

h (Ḡ).

• IEM. Let G = (g, v, f,H, α) and Ḡ = (ḡ, v̄, f̄ , H̄, α) be two problems that only differ
because there are ĥ ∈ H and e ∈ Eĥ satisfying that e is duplicated in two multiedges
e1, e2 ∈ Ēĥ, with ve = v̄e1 = v̄e2 .

For each path p ∈ P (S,C) with e ∈ p, there are two paths p1, p2 ∈ P̄ (S,C) such that
e1 ∈ p1, e2 ∈ p2, and p1 \ {e1} = p2 \ {e2} = p \ {e}. Further, the proportional tracing
method ensures that f̄Γpt

p1
+ f̄Γpt

p2
= fΓpt

p . Hence, for each p ∈ P (S,C) with e ∈ p,

fΓpt

p

ve∑
ê∈p vê

= (f̄Γpt

p1
+ f̄Γpt

p2
)

ve∑
ê∈p vê

= f̄Γpt

p1

v̄e1∑
ê∈p1

v̄ê
+ f̄Γpt

p2

v̄e2∑
ê∈p2

v̄ê
.

On the other hand, for each p ∈ {p ∈ P (S,C) : e /∈ p} = {p ∈ P̄ (S,C) : e1, e2 /∈ p},
we have that fΓpt

p = f̄Γpt

p and for each ê ∈ p, vê = v̄ê. Therefore, for each h ∈ H,

RΓpt

ĥ
(G) = RΓpt

ĥ
(Ḡ).

• IS. Let G = (g, v, f,H, α), Ḡ = (g, v, f, H̄, α), h1, h2 ∈ H and e ⊂ Eh1 be such
that, Ēh1 = Eh1\{e}, Ēh2 = Eh2 ∪ {e} and, for each h ∈ H\{h1, h2}, Ēh = Eh.

Obviously, P (S,C) = P̄ (S,C) and, for each p ∈ P (S,C), f̄Γpt

p = fΓpt

p . Now, for

each h ∈ H\{h1, h2}, we have that Ēh = Eh and the definition of RΓpt
implies that

RΓpt

h (G) = RΓpt

h (Ḡ).
• SP. Since SP is weaker than VPP (Proposition 1), SP follows from the fact that

RΓpt
satisfies VPP (see below).
• VPP. Let G be as in the definition of VPP. Since Eh = {e}, Eh̄ = {ē}, and

N h = N ĥ, we have that, for each p ∈ P (S,C), e ∈ p if and only if ê ∈ p, . Then, the
definition of RΓpt

implies that

RΓpt

h (G) =
ve
vē
RΓpt

h̄ (G).

• IIC. Let G = (g, v, f,H, α), Ḡ = (ḡ, v̄, f̄ , H̄, α), and h ∈ H ∩ H̄ be such that
N h = N̄ h. Then {p ∈ P (S,C) : p ∩ Eh 6= ∅} = {p ∈ P̄ (S,C) : p ∩ Ēh 6= ∅} and the
proportional method assigns to all these paths the same flow in both problems. Since
N h = N̄ h, we have that for each e ∈ Eh = Ēh, ve = v̄e. Thus, RΓpt

h (G) = RΓpt

h (Ḡ).
• MP. The proportional tracing rule satisfies MP, since we have seen that it satisfies

IS and, by Proposition 1, IS implies MP.
• TA. Let G1 = (g, v, f1,H, α), G2 = (g, v, f2,H, α),. . . , Gn = (g, v, fn,H, α) be n

Γpt-compatible problems, and let G∗ = (g, v, f1 + f2 + . . . + fn,H, α). Recall that, by
definition, for each h ∈ H, Eih = E∗h and Pi(S,C) = P ∗(S,C), for each i ∈ {1, . . . , n}.
Moreover, for each p ∈ P ∗(S,C), fΓpt

p (G∗) =
∑n

i=1 f
Γpt

p (Gi). Then, the definition of RΓpt

implies that RΓpt
(G∗) =

∑n
i=1R

Γpt
(Gi).

Next, we present some counterexamples to prove statement ii) of Proposition 5.
• SE. Let G = (g, v, f,H, α) as in the picture below.
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G

1

1

1

h1

h2

h3

Problem G is as in the definition of SE, since h1 = {e1} and h2 = {e2} with fe1 = fe2
and ve1 = ve2 . However,

RΓpt

h1
(G) =

L

2
6= L

4
= RΓpt

h2
(G).

• FPE and VPE. Since FPE and VPE are stronger than SE (Proposition 1) and
RΓpt

does not satisfy SE, RΓpt
satisfies neither FPE nor VPE.

B Proofs of the axiomatic characterizations

B.1 Edge’s rule

Before proving Theorem 1, we present two lemmas.

Lemma 2. Let R be a rule satisfying IES, IS, and FPE, then R satisfies NH.

Proof. Let (g, v, f,H, α) be a gas problem. Since IS implies ED we can assume that G is
a canonical gas problem, i.e, for each h ∈ H, |Eh| = 1. Thus, we can identify H and E.

We assume that there are e, ê ∈ E with fe = 0 and fê > 0 and show that Re(G) = 0
(the case where the flow of each edge is 0 is obvious). Let n > 1 be such that ve

n < vê.
Consider the gas problem Ḡ = (ḡ, v̄, f̄ , H̄, α) obtained from G by dividing edge e in n
consecutive edges e1, e2, . . . , en (as in the definition of IES) with v̄ei = ve

n and by dividing
the edge ê in two consecutive edges ê1, ê2 such that v̄ê1 = ve

n .
We can construct a sequence of problems starting inG and finishing in Ḡ by sectioning

at each step of the sequence only one edge. Applying sequentially IES we get that

Re(G) = Re1(Ḡ) + . . .+Ren(Ḡ). (3)

Note that, for each i ∈ {1, . . . , n}, f̄ei = fe = 0 and f̄ê1 = f̄ê2 = fê > 0. Thus, for
each i ∈ {1, . . . , n}, since v̄ei = v̄ê1 , FPE implies that

Rei(Ḡ) =
f̄ei
f̄ê1

Rê1(Ḡ) = 0,

which, combined with (3), leads to Re(G) = 0.

Lemma 3. Let R be a rule satisfying IES, IS, and FPE, then R satisfies VPE.

Proof. Let (g, v, f,H, α) be a gas problem. By IS we can assume that G is a canonical
gas problem, i.e, for each h ∈ H, |Eh| = 1. Thus, we can identify H and E.

Let e, ê ∈ E be two edges such that fe = fê, we have to prove that Re(G) = ve
vê
Rê(G).

By Lemma 2, R satisfies NH and, hence, if fe = fê = 0 we have Re(G) = ve
vê
Rê(G) = 0.

37



On the other hand, if ve = vê, then, by FPE, Re(G) = fe
fê
Rê(G) = Rê(G) = ve

vê
Rê(G).

Thus, we can assume that fe = fê > 0 and, for instance, that ve > vê.
Consider the gas problem Ḡ = (ḡ, v̄, f̄ , H̄, α) obtained from G by dividing the edge e

in two consecutive edges e1, e2 (as in the definition of IES) where v̄e1 = vê, v̄e2 = ve − vê
and f̄e1 = f̄e2 = fe. By IES,

Rê(G) = Rê(Ḡ) and Re(G) = Re1(Ḡ) +Re2(Ḡ). (4)

Since v̄e1 = v̄ê, by FPE,

Re1(Ḡ) =
f̄e
f̄ê
Rê(Ḡ) =

fe
fê
Rê(Ḡ) = Rê(Ḡ). (5)

From (4) and (5) we have

Re(G)

Rê(G)
=
Re1(Ḡ) +Re2(Ḡ)

Re1(Ḡ)
= 1 +

Re2(Ḡ)

Re1(Ḡ)
.

Now, if we were able to prove that Re2(Ḡ) =
v̄e2
v̄e1
Re1(Ḡ) we would have

Re(G)

Rê(G)
= 1 +

v̄e2
v̄e1

=
v̄e1 + v̄e2
v̄e1

=
ve
vê
, and so Re(G) =

ve
vê
Rê(G),

obtaining the desired result.
Thus, it suffices to prove that, when an edge e is sectioned in two edges e1, e2, then

Re2(Ḡ) =
v̄e2
v̄e1
Re1(Ḡ). We consider two cases, when

v̄e1
ve

is a rational number and when it

is not.
• Case 1:

v̄e1
ve

∈ Q. Thus, v̄e1 = p
qve with p, q ∈ N and so v̄e2 = q−p

q ve. Consider

the gas problem Ĝ = (ĝ, f̂ , v̂, Ĥ, α) obtained from G by sequentially dividing the edge e
in 2 consecutive edges (as in the definition of IES) so that in the end we have ê1, . . . , êq,

where, for each i ∈ {1, . . . , q}, v̂êi = 1
qve and f̂êi = fe.

Now, for each pair i, j ∈ {1, . . . , q}, we can apply FPE to get that Rêi(Ĝ) =
f̂êi
f̂êj
Rêi(Ĝ) = Rêj (Ĝ).

Now,
Re2(Ḡ) = Rêp+1(Ĝ) + . . .+Rêq(Ĝ) = (q − p)x.

where x = Rêp+1(Ĝ). Besides

Re1(Ḡ) = Rê1(Ĝ) + . . .+Rêp(Ĝ) = px

Thus,

Re2(Ḡ) = (q − p)x =

q−p
q ve
p
qve

px =
v̄e2
v̄e1

Re1(Ḡ).
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• Case 2:
v̄e1
ve

/∈ Q. Thus, v̄e1 = sve with s /∈ Q and 0 < s < 1. Then, v̄e2 = (1−s)ve.
Consider two sequences {qn} and {pn}, both converging to s, with 0 < qn < s < pn < 1
and qn, pn ∈ Q for all n ∈ N.

Given n ∈ N, consider two gas problems Ĝn = (ĝ, f̂ , v̂, Ĥ, α) andG
′
n = (g′, f ′, v′,H′, α)

obtained from G by dividing the edge e in two consecutive edges (as in the definition of
IES) e1

qn , e
2
qn and e1

pn , e
2
pn respectively, where v̂e1qn = qnve and v′e1pn

= pnve.

We are in the hypothesis of Case 1, so we have

Re2qn (Ĝn)

Re1qn (Ĝn)
=
v̂e2qn
v̂e1qn

=
1− qn
qn

and
Re2pn (G′n)

Re1pn (G′n)
=
v′e2pn
v′
e1pn

=
1− pn
pn

. (6)

Note that, for each n ∈ N, Re1qn (Ĝn) ≤ Re1(Ḡ) ≤ Re1pn (G′n) and Re2pn (G′n) ≤ Re2(Ḡ) ≤
Re2qn (Ĝn), since each edge is a section of the next one. Then, by (6), we have

1− pn
pn

=
Re2pn (G′)

Re1pn (G′)
≤ Re2(Ḡ)

Re1(Ḡ)
≤
Re2qn (Ĝ)

Re1qn (Ĝ)
=

1− qn
qn

.

Finally, when n goes to infinity, both 1−qn
qn

and 1−pn
pn

converge to 1−s
s and we have

Re2(Ḡ)

Re1(Ḡ)
=

1− s
s

=
v̄e2
v̄e1

and so Re2(Ḡ) =
v̄e2
v̄e1

Re1(Ḡ).

Proof of Theorem 1. By Proposition 4 we already know that the edge’s rule satisfies IS,
IES, and FPE. Now, we we prove that no other rule does. Let R be a rule satisfying
IES, IS, and FPE. By lemmas 2 and 3 we know that R also satisfies NH and VPE.

Let (g, v, f,H, α) be a gas problem. By IS we can assume that G is a canonical gas
problem, i.e, for each h ∈ H, |Eh| = 1. Thus, we can identify H and E. By NH, For

each e ∈ E with fe = 0, Re(G) = 0, so Re(G) = Redge
e (G). Below we prove the equality

for e ∈ E with fe > 0.
Let λ > 0 be such that, for each e ∈ E, ve > λ. Let Ḡ = (ḡ, v̄, f̄ , H̄, α) be the problem

obtained from G by dividing each edge e in two consecutive edges (as in the definition of
IES) e1, e2, where v̄e1 = λ, v̄e2 = ve−λ and f̄e1 = f̄e2 = fe. We can construct a sequence
of problems starting in G and finishing in Ḡ by changing, at each step of the sequence,
an edge e by the two edges e1 and e2.

By sequentially applying IES we get that, for each e ∈ E, Re(G) = Re1(Ḡ) +Re2(Ḡ).
Moreover, if fe > 0, we have that f̄e1 = f̄e2 > 0 and, by VPE, Re2(Ḡ) = ve−λ

λ Re1(Ḡ).
Combining the above two equalities we get that

Re(G) =
ve
λ
Re1(Ḡ).

Since R is such that
∑

h∈H Rh(G) = L > 0, there is e ∈ E such that Re(G) > 0. Now,
for each ê ∈ E with fê > 0,

Rê(G)

Re(G)
=

vê
λ Rê1(Ḡ)
ve
λ Re1(Ḡ)

=
vê
ve

Rê1(Ḡ).

Re1(Ḡ)
(7)
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Since v̄e1 = v̄ê1 , by FPE, Rê1(Ḡ) =
f̄ê1

f̄e1
Re1(Ḡ) = fê

fe
Re1(Ḡ), and by (7) we have

Rê(G) =
fê
fe

vê
ve
Re(G). (8)

Note that NH implies that (8) also holds for ê ∈ E with fê = 0. Then,

L =
∑
ê∈E

Rê(G) =
∑
ê∈E

fê
fe

vê
ve
Re(G) =

∑
ê∈E

fêvê
Re(G)

feve
.

Therefore, Re(G) = L feve∑
ê∈E fêvê

= Redgee (G).

To conclude the proof we show the independence of the properties.
• IES. For each edge e let we = dvee, that is, the smallest integer greater than ve.

Let R be the rule defined as

Rh(G) = L

∑
e∈Eh

fewe∑
ê∈E fêwê

.

It is not difficult to prove that R satisfies IS, and FPE, but violates IES.
• IS. By Proposition 3 the aggregate edge’s rule satisfies IES and FPE, but violates

IS.
• FPE. By Proposition 5, the proportional tracing rule satisfies IES and IS, but

violates FPE.

B.2 Tracing rules

Proof of Theorem 2. By Proposition 5 we already know that the proportional tracing
rule satisfies IS, IUE, VPP, and TA. Using the same arguments it can be shown that all
tracing rules satisfy IS, IUE, VPP, and TA.

We now prove the uniqueness. Let R be a rule satisfying IS, IUE, VPP, and TA. We
claim that R = RΓ for some tracing method Γ. Let G = (g, v, f,H, α) be a gas problem.
By IS we can assume that G is a canonical problem, i.e, for each h ∈ H, |Eh| = 1. Thus,
we can identify H and E.

Since R satisfies TA, R is additive with respect to a flow tracing method Γ. For each
p ∈ P (S,C) we define the problem Gp = (g, fp, v,H, α) obtained from G by assuming
that the only gas in Gp that flows through p according to Γ. Formally, fpe = fΓ

p (G) if
e ∈ p and fpe = 0 if e /∈ p. Note that G =

∑
p∈P (S,C)G

p and we are in the assumptions
of TA because for each p̂ ∈ P (S,C),

fΓ
p̂ (G) =

∑
p∈P (S,C)

fΓ
p̂ (Gp) = fΓ

p̂ (Gp̂).

Since R satisfies TA with respect to Γ, we have that, for each e ∈ E,

Re(G) = Re(
∑

p∈P (S,C)

Gp) =
∑

p∈P (S,C)

Re(G
p).

40



Let ê /∈ p and let Gp−ê be obtained from Gp by removing edge ê. By IUE, for each
e ∈ E \ {ê}, Re(Gp) = Re(G

p−ê). Since∑
e∈E\ê

Re(G
p) =

∑
e∈E\ê

Re(G
p−ê) = αfΓ

p (G) =
∑
e∈E

Re(G
p),

we get that Rê(G
p) = 0. Then, for each e ∈ E,

Re(G) =
∑

p∈P (S,C), e∈p

Re(G
p). (9)

Let Gp−E be obtained from Gp by removing all edges not belonging to p. Let e, ê ∈ p.
We have that N e(Gp−E) = N ê(Gp−E) = p. By VPP,

Rê(G
p−E) =

vê
ve
Re(G

p−E).

By IUE, for all e ∈ p, Re(Gp) = Re(G
p−E). Hence, Rê(G

p) = vê
ve
Re(G

p). Thus,

αfΓ
p (G) =

∑
ê∈E

Rê(G
p) =

∑
ê∈p

Rê(G
p) =

∑
ê∈p

(
vê
ve

)Re(G
p)

and we get that, for each e ∈ p,

Re(G
p) = αfΓ

p (G)(
ve∑
ê∈p vê

). (10)

Finally, combining (9) and (10), we have that

Re(G) =
∑

p∈P (S,C)
e∈p

αfΓ
p (G)(

ve∑
ê∈p vê

) = RΓ
e (G).

To conclude the proof we show the independence of the properties.
• IS. Given e ∈ E, let he denote the hauler owning edge e. For each p ∈ P (S,C) and

each ê ∈ p, let n(hê, p) be the number of edges that hê owns in p. Let R1 be defined as

R1
h(G) = α

∑
e∈Eh

∑
p∈P (S,C)

e∈p

fΓpt

p

ven(he, p)∑
ê∈p vên(hê, p)

It is not difficult to prove that R1 satisfies IUE, VPP, and TA, but violates IS.
• VPP. Let |p| denote the number of edges of a path p and let R be defined as

R2
h(G) = α

∑
e∈Eh

∑
p∈P (S,C)

e∈p

fΓpt

p

1

|p|
.

It is not difficult to prove that R2 satisfies IS, IUE, and TA, but violates VPP.
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• IUE. Let P 1 be the set of problems such that no two edges have the same influence
network (so any rule trivially satisfies VPP for all problems in P 1). We define R3 such
that R3(G) = R2(G) when G ∈ P 1 and R3(G) = RΓpt

(G) otherwise. It is not difficult
to prove that R3 satisfies IS, VPP, and TA, but violates IUE.
• TA. The edge’s rule satisfies IS, IUE, and VPP but violates TA.

Proof of Corollary 1. In the proof of Theorem 2 we proved that if a rule satisfies IS, IUE,
VPP, and TA with respect to a tracing method Γ, then R = RΓ. Consequently, RΓpt

is
the unique rule satisfying IS, IUE, VPP and TA with respect to Γpt.

B.3 Proportional tracing rule

We start introducing a last property that will be useful in the proof of Theorem 3.
Equally treatment of equals (ETE). Let G = (g, v, f,H, α) be such that there are

two haulers h, h̄ ∈ H, and two edges e = (i, j, l1) ∈ E and ē = (i, j, l2) ∈ E satisfying
that Eh = {e} and Eh̄ = {ē} with ve = vē and fe = fē. Then, Rh(G) = Rh̄(G).

Lemma 4. Let R be a rule satisfying IEM and IS, then R satisfies ETE.

Proof. Let G = (g, v, f,H, α) be as in the definition of ETE. Consider the gas problem
Ĝ = (ĝ, v̂, f̂ ,H, α) obtained fromG by duplicating e and ē in two multiedges e1 = (i, j, l3),
e2 = (i, j, l4), and ē1 = (i, j, l5), ē2 = (i, j, l6) respectively, with v̂ei = v̂ēi = ve and
f̂ei = f̂ēi = 1

2fe for i ∈ {1, 2}. By IEM, Rh(G) = Rh(Ĝ).
Now, consider G∗ = (g∗, v∗, f∗,H∗, α) obtained from G by duplicating e and ē in two

multiedges e1 = (i, j, l5), e2 = (i, j, l6), and ē1 = (i, j, l3), ē2 = (i, j, l4) respectively, with
v∗ei = v∗ēi = ve and f∗ei = f∗ēi = 1

2fe for i ∈ {1, 2}. By IEM, Rh̄(G) = Rh̄(G∗).

Let Ĝ12 (respectively G∗12) be obtained from Ĝ (respectively G∗) when hauler h sells
his edges to hauler h1 and hauler h̄ sells his edges to hauler h2 (we assume that haulers
h1 and h2 have not edges in G). By IS, Rh(Ĝ) = Rh1(Ĝ12) and Rh̄(G∗) = Rh1(G∗12)

Since Ĝ12 and G∗12 are the same problem, Rh1(Ĝ12) = Rh1(G∗12). Thus, Rh(G) =
Rh̄(G).

Proof of Theorem 3. By Proposition 5 we already know that the proportional tracing
rule satisfies IS, IUE, IEM, VPP, and TA. Further, by Lemma 4, it also satisfies ETE.
By Theorem 2, it suffices to show that RΓpt

is the unique tracing rule satisfying IEM.
More precisely, we want to show that if a tracing rule RΓ satisfies ETE and IEM, then
the gas arriving at a given node is split towards the different outbound destinations
using the proportional method. In order to characterize the underlying tracing method
it suffices to consider a canonical gas problem G = (g, v, f,H, α), where g is as in the
picture below.
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Given i ∈ {1, . . . , n} and j ∈ {1 . . . ,m}, we denote by pij = {ei, êj} the path from
si to c containing êj and by fij = fΓ

pij (G) the amount of gas that flows through pij . We
denote by F the gas entering in the network, that is F =

∑n
i=1 fei =

∑m
j=1 fêj =

∑
i,j fij .

We want to prove that, for each i ∈ {1, . . . , n} and each j ∈ {1 . . . ,m},

fij =
feifêj
F

.

We consider three cases: in the first one we assume that the outbound edges have the
same flow, in the second one their flows may be different but are rational numbers, and
in the last one we consider the general case where outbound flows can be different and
irrational. Since a tracing method is independent of the volumes, we can assume that
vê1 = . . . = vêm = v.

Case 1. Assume that fê1 = . . . = fêm = F
m . By ETE, RΓ

ê1
(G) = . . . = RΓ

êm
(G).

Thus, from the definition of the Γ-tracing rule we get

n∑
i=1

fi1
v

vei + v
= . . . =

n∑
i=1

fim
v

vei + v
.

The above equalities hold independently of the values of vei and this implies that, for
each i ∈ {1, . . . , n}, fi1 = . . . = fim. On the other hand, since fei =

∑m
j=1 fij = mfij ,

we have that

fij =
fei
m

=
feifêj
mfêj

=
feifêj

m F
m

=
feifêj
F

.

Case 2. Assume that fê1 , . . . , fêm are (maybe different) rational numbers. Then,

there are natural numbers nj ∈ N such that
fê1
n1

= . . . =
fêm
nm

= r for some r > 0.

Consider the gas problem Ḡ = (ḡ, v̄, f̄ , H̄, α) obtained by multiplying each edge êj in
nj multiedges {êj1, . . . , êjnj} with v̄êjl = vêj = v. Further, according to f̄ , the flow of the
original edge is equally divided among the multiedges, that is, for each j ∈ {1, . . . ,m}
and each l ∈ {1, . . . , nj}, f̄êjl =

fêj
nj

= r.

From Ḡ we obtain the canonical problem ḠĒ where each edge is a hauler. Now, for
each i ∈ {1, . . . , n}, each j ∈ {1, . . . ,m}, and each l ∈ {1, . . . , nj}, let f̄ijl be the flow
through the path in ḠĒ from si to c through edge êjl. Then, since ḠĒ satisfies the
assumptions of Case 1, we have

f̄ijl =
f̄ei f̄êjl
F

=
fei .fêj
njF

. (11)
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On the other hand, by IEM and IS, we have that, for each h ∈ H,

RΓ
h(G) = RΓ

h(Ḡ) =
∑
e∈Ēh

RΓ
e (ḠĒ). (12)

Moreover, by ETE,
RΓ
êj1

(ḠĒ) = . . . = RΓ
êjnj

(ḠĒ). (13)

Now, combining (12) and (13), we have that RΓ
êj

(G) = njR
Γ
êj1

(ḠĒ), that is,

n∑
i=1

fij
v

v + vei
= nj

n∑
i=1

f̄ij1
v̄

v̄ + v̄ei
=

n∑
i=1

nj f̄ij1
v

v + vei
.

The above equalities hold, for each j, independently of the vei values and this implies
that, for each i ∈ {1, . . . , n} and each j ∈ {1, . . . ,m}, fij = nj f̄ij1. Thus, we can conclude
by (11) that

fij = nj f̄ij1 =
fei .fêj
F

.

Case 3. Assume that the flows fê1 , . . . , fêm may be different and irrational. For
each j ∈ {1, . . . ,m}, take a sequence {qtj}t∈N such that limt→∞ q

t
j = fêj , with qtj ∈ Q

and qtj < fêj for each t ∈ N. Let εtj = fêj − qtj . Then, for each t ∈ N, there are natural

numbers ntj ∈ N for j ∈ {1, . . . ,m} such that
qt1
nt

1
= . . . = qtm

nt
m

= rt for some rt > 0.

For each t ∈ N, consider the gas problem Gt = (gt, f t, vt,Ht, α) obtained from G by
multiplying each edge êj in ntj + 1 multiedges {êj1, . . . , êjnt

j+1} with the same volume

v and such that, for each j ∈ {1, . . . ,m} and each l ∈ {1, . . . , ntj}, f têjl =
qtj
nt
j

= rt and

f tê
jnt

j
+1

= εtj .

From Gt we obtain the canonical problem where each edge is a hauler. For the sake
of notation, hereafter we assume that Gt itself is canonical. For each i ∈ {1, . . . , n}, each
j ∈ {1, . . . ,m}, and each l ∈ {1, . . . , ntj + 1}, let f tijl denote the flow inside the path in

Gt from si to c through edge êjl. By ETE, for each t ∈ N,

RΓ
ê11

(Gt) = . . . = RΓ
ê
1nt

1

(Gt) = . . . = RΓ
êm1

(Gt) = . . . = RΓ
ê
mnt

m
(Gt).

By the definition of the Γ-tracing rule, we have that

n∑
i=1

f ti11

v

vtei + v
= . . . =

n∑
i=1

f ti1nt
1

v

vtei + v
= . . . =

n∑
i=1

f tim1

v

vtei + v
= . . . =

n∑
i=1

f timnt
m

v

vtei + v
.

Since the above equalities hold independently of the vtei values, we have that, for each
t ∈ N and each i ∈ {1, . . . , n}, there is rti such that

f ti11 = . . . = f ti1nt
1

= . . . = f tim1 = . . . = f timnt
m

= rti . (14)
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Combining (14) with IEM and IS, we have that, for each j ∈ {1, . . . ,m} and each
l ∈ {1, . . . , ntj},

RΓ
êj

(G) =
( nt

j∑
l=1

RΓ
êjl

(Gt)
)

+RΓ
ê
jnt

j
+1

(Gt) = ntjR
Γ
êjl

(Gt) +RΓ
ê
jnt

j
+1

(Gt).

Therefore, for each i ∈ {1, . . . , n}, each j ∈ {1, . . . ,m}, and each l ∈ {1, . . . , ntj},

fij = ntjf
t
ijl + f tijnt

j+1 = ntjr
t
i + f tijnt

j+1. (15)

On the other hand, fei =
∑m

j=1 fij =
∑m

j=1(ntjr
t
i + f t

ijnt
j+1

) = (nt1 + . . . + ntm)rti +∑m
j=1 f

t
ijnt

j+1
. Then,

rti =
fei −

∑m
j=1 f

t
ijnt

j+1

nt1 + . . .+ ntm
. (16)

Moreover, combining (15) and (16) we have

fij =
ntj

nt1 + . . .+ ntm
(fei −

m∑
j=1

f tijnt
j+1) + f tijnt

j+1 (17)

Taking into account that, as t goes to infinity, ntjr
t = qtj converges to fêj and f t

ijnt
j+1
≤

f t
jnt

j+1
= εtj converges to 0, we have that

fij = lim
t→∞

qtj
qt1 + . . .+ qt1

(fei −
m∑
j=1

f tijnt
j+1) + f tijnt

j+1 =
fêjfei
F

.

To conclude the proof we show the independence of the properties.
• IEM. By Theorem 2, it suffices to find a tracing rule different from RΓpt

. Consider
the tracing method defined as follows: the flow inbound edge with the highest flow goes
to the outbound edge with the highest flow. If after “filling” it there is some flow left, it
goes to the one with the second largest flow and so on. If the flow of an inbound edge is
finished before the outbound edge at hand is “filled”, the inbound edge with the highest
flow among the remaining ones is used to continue. If several edges have the same flow,
they are taken simultaneously, that is, the flows of inbound edges with the same flow is
divided proportionally among the outbound edge(s) at hand.
• IS, VPP, IUE, and TA. We can take the same rules used to establish the inde-

pendence of these properties in the proof of Theorem 2, since all of them also satisfy
IEM.
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