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Abstract

An approach to define a rule for an airport problem is to associate to each problem a cooperative game,
an airport game, and using game theory to come out with a solution. In this paper we study the rule that
is the average of all the core allocations: the core-center (González-Dı́az and Sánchez-Rodŕıguez, 2007). The
structure of the core is exploited to derive insights on the core-center. First, we provide a decomposition of
the core in terms of the cores of the downstream-substraction reduced games. Then, we analyze the structure
of the faces of the core of an airport game that correspond to the no-subsidy constraints to find that the faces
of the core can be seen as new airport games, the face games, and that the core can be decomposed through
the no-subsidy cones (those whose bases are the cores of the no-subsidy face games). As a consequence, we
provide two methods for computing the core-center of an airport problem, both with interesting economic
interpretations: one expresses the core-center as a ratio of the volume of the core of an airport game for which
a player is cloned over the volume of the original core, the other defines a recursive algorithm to compute
the core-center through the no-subsidy cones. Finally, we prove that the core-center is not only an intuitive
appealing game-theoretic solution for the airport problem but it has also a good behavior with respect to the
basic properties one expects an airport rule to satisfy. We examine some differences between the core-center
and, arguably, the two more popular game theoretic solutions for airport problems: the Shapley value and
the nucleolus.

Keywords: cooperative TU games, core, core-center, airport games, face games.

1 Introduction

The airport problem, introduced by Littlechild and Owen (1973), is a classic cost allocation problem that has
been widely studied. To get a better idea of the attention it has generated one can refer to the survey by
Thomson (2013). One standard approach to study this problem consists of associating a cooperative game with
it and take advantage of all the machinery developed for cooperative games to gain insights in the original
problem. The core, introduced by Gillies (1953), stands as one of the most studied solution concepts in the
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theory of cooperative games. Its properties have been thoroughly analyzed and, when a new class of games is
studied, one of the first questions to ask is whether or not the games in that class have a nonempty core. This
is because of the desirable stability requirements underlying core allocations.

Importantly, the cooperative game associated with an airport problem with n agents has a special structure
that can be exploited to facilitate the analysis of different solutions. In particular, 2n− 1 parameters are needed
to define a general n-player cooperative game, whereas for an airport game one just needs n. This special
structure simplifies the geometry of the core of such games, since they turn to be defined by 2n − 1 inequality
constraints instead of the usual 2n − 2.

When the core of a game is nonempty, there is a set of alternatives at which agents’ payoffs differ that are
coalitionally stable. The core-center (González-Dı́az and Sánchez-Rodŕıguez, 2007), selects the expected value of
the uniform distribution over the core of the game: the center of gravity of the core. Therefore, the core-center is
an intuitive appealing game-theoretic solution for the airport problem since it represents the “average behavior”
of all the stable allocations. There are two important issues concerning the core-center of the airport game
that we want to address. First, the computation of the core-center of a general balanced game is very complex.
Second, existing rules for the airport problem are evaluated and compared with the core-center in terms of the
properties they satisfy or violate. In both cases, the corresponding analysis must be carried out by a detailed
examination of the core structure.

The core of an n-player airport game is a (n − 1)-dimensional convex polytope, so its (n − 1)-Lebesgue
measure (its volume) can be seen as the “amount” of stable allocations. Naturally, the mathematical expression
of the core-center of an airport game is given in terms of integrals over the core of the game. We provide a
decomposition of the core in terms of the cores of the downstream-substraction reduced games that allows us
to find explicit integral formulae for the core-center of an airport game. Building upon this expression, we
establish our main result. For each player j, consider the airport problem obtained when agent j makes a clone
of himself, that is, replicates his cost. Then, what the core-center assigns to agent j (in the original problem)
is the ratio of the number of stable allocations in the game with the clone of player j over the original stable
allocations. An important implication of this result is the possibility to implement general volume computation
algorithms for convex polytopes to develop methods that effectively compute the core-center of an airport
problem. Furthermore, we can easily check that the core-center satisfies many desirable properties: homogeneity,
equal treatment of equals, order preservation for contributions and benefits, and last-agent cost additivity among
others.

To each agent j, we can associate a face of the core polytope that corresponds to the j-th no-subsidy
constraint. Each no-subsidy face is the cartesian product of the cores of two reduced airport games. This
particular facial structure of the core of an airport game allows us to derive several results. The rate of change
of the number of stable allocations with respect to a parameter cost ci is proportional to the amount of stable
allocations of the j-face game. The variation of what the core-center assigns to player j with respect to the cost
parameter ci depends on the relative position of the core-center of the game and the core-center of the j-face
games. As a consequence, we derive a necessary and sufficient condition for the monotonicity of the core-center
with respect to the cost parameters in terms of its relative position with respect to the centroids of the no-
subsidy faces of the core. Applying this characterization, González-Dı́az et al. (2015) show that the core-center
satisfies some important monotonicity properties: individual cost monotonicity, downstream-cost monotonicity,
weak cost monotonicity, and population monotonicity.

The cones rooted at the origin and whose bases are the cores of the no-subsidy face games are called the no-
subsidy cones. The core of the airport game can be decomposed as the union of the no-subsidy cones. Using this
decomposition we present the sketch of a recursive algorithm to compute the core-center through the no-subsidy
cones. At the end of this recursive process, the core-center is a weighted sum of the core-centers of reduced
two-player airport games (geometrically, the midpoints of all the core edges corresponding to the no-subsidy
constraints).

In summary, besides the intuition provided by its own definition, the core-center is a well behaved rule and
it may be an interesting addition to the list of solutions for the class of airport problems. In that respect, we
point out some differences between the core-center and, arguably, the two more popular game theoretic solutions
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for airport problems: the Shapley value (Shapley, 1953) and the nucleolus (Schmeidler, 1969). For instance, we
define a natural property, unequal treatment of unequals, and show that, whereas the Shapley value and the
core-center satisfy it, the nucleolus does not.

The paper is structured as follows. In Section 2 we present the basic concepts and notations. Then, in
Section 3 we obtain the fundamental integral representation of the core-center as the ratio of volumes. The basic
properties of the core-center are examined in Section 4. In Section 5 the structure of the faces of the core of an
airport game is exploited to obtain a necessary and sufficient condition for the monotonicity of the core-center
and an expression that relates the core-center of the game with the centroids of the no-subsidy faces of the core.
We conclude in Section 6 with some summarizing remarks and further comments.

2 Preliminaries

We assume that there is an infinite set of potential players, indexed by the natural numbers. Then, in each given
problem only a finite number of them are present. Let N be the set of all finite subsets of N = {1, 2, . . . }.

A cost game with transferable utility is a pair (N, c), where N ∈ N and c : 2N → R is a function assigning,
to each coalition S, its cost c(S). By convention c(∅) = 0. Let VN be the domain of all cooperative cost games
with player set N . Given a coalition of players S, |S| denotes its cardinality. Given N ∈ N and S ⊆ N , a vector
x ∈ RN is referred to as an allocation and x(S) =

∑
i∈S xi; also, eS ∈ {0, 1}N is defined as eiS = 1 if i ∈ S and

eiS = 0 otherwise. An allocation is efficient if x(N) = c(N). A cost game c ∈ VN is concave if, for each i ∈ N
and each S and T such that S ⊆ T ⊆ N\{i}, c(S ∪ {i})− c(S) ≥ c(T ∪ {i})− c(T ).

For most of the discussion and results, we have a fixed n-player set N = {1, 2, . . . , n}. A solution is a
correspondence ψ defined on some subdomain of cost games that associates to each game c ∈ VN in the
subdomain a subset ψ(c) of efficient allocations. If a solution is single-valued then it is referred to as an
allocation rule.

Given a cost game c ∈ VN , the imputation set, I(c), consists of the individually rational and efficient
allocations, i.e., I(c) = {x ∈ Rn : x(N) = c(N) and xi ≤ c({i}) for all i ∈ N}. The core (Gillies, 1953), is
defined as C(c) = {x ∈ I(c) : x(S) ≤ c(S) for each S ⊂ N}.

An airport problem (Littlechild and Owen, 1973) with set of agents N ∈ N is a non-negative vector c ∈ RN ,
with ci ≥ 0 for each i ∈ N . Let CN denote the domain of all airport problems with agent set N . Throughout
the paper, given an airport problem c ∈ RN , we make the standard assumption that for each pair of agents i
and j, if i < j then ci ≤ cj . An allocation for an airport problem is given by a non-negative vector x ∈ RN
such that x(N) = cn. An allocation rule selects an allocation for each airport problem in a given subdomain. A
complete survey on airport problems is Thomson (2013).

Given an allocation x, the difference ci − xi between agent i’s cost parameter and his contribution can be
seen as his profit at x. A basic requirement is that at an allocation x no group N ′ ⊂ N of agents should
contribute more that what it would have to pay on its own, max{ci : i ∈ N ′}. Otherwise, the group would
unfairly “subsidize” the other agents. The constraints

∑
j≤i xj ≤ ci are called the no-subsidy constraints.

To each airport problem c ∈ CN one can associate a cost game c ∈ VN defined, for each S ⊆ N , by setting
c(S) = max{ci : i ∈ S}; such a game is called an airport game. We have denoted by the same letter c both the
airport problem and the associated cost game. It should be clear by the context to which one we are referring
to. Airport games are concave and their core coincides with the set of allocations satisfying the no-subsidy
constraints:

C(c) =
{
x ∈ Rn : x ≥ 0, x(N) = cn and

∑
j≤i

xj ≤ ci for each i < n
}
.

The core of the airport game is contained in the efficiency hyperplane x1 + · · · + xn = cn and it is defined by,
at most, 2n − 2 inequality constraints, instead of the maximum number of 2n − 2 inequality constraints of an
arbitrary cost game. This makes the structure of the core of an airport game more tractable. In particular,
whenever c1 > 0, the core of an airport game is a (n−1)-dimensional convex polytope. Then, in what follows, we
will always assume that c1 > 0. Further, because of the no-subsidy constraints, any core payoff for the highest

3



cost agent (agent n) can be obtained by adding the incremental cost cn − cn−1 to any core allocation of the
airport game where agents n− 1 and n have the same cost cn−1. Therefore,

C(c) = (cn − cn−1)e{n} + C(c− (cn − cn−1)e{n}).

Now, suppose that the agent with the lowest cost leaves the game paying x1, with 0 ≤ x1 ≤ c1. Since
0 ≤ c2 − x1 ≤ c3 − x1 ≤ · · · ≤ cn − x1, we have a new airport problem c1,x1 = (c2 − x1, . . . , cn − x1) =
cN\{1} − x1eN\{1} with an associated reduced cost game c1,x1 ∈ VN\{1}. The problem c1,x1 ∈ CN\{1} is known
as the downstream-substraction reduced problem of c ∈ CN with respect to N\{1} and x1 (Thomson, 2013). In
general, given i ∈ N , and 0 ≤ xi ≤ ci, the downstream-substraction reduced problem of c ∈ CN with respect to
N\{i} and xi, c

i,xi ∈ CN\{i}, is defined by

ci,xi

k =

{
ck − xi k > i

min{ci − xi, ck} k < i
.

The next proposition, whose proof is straightforward, relates the core of the airport game c ∈ VN and the core
of the c1,x1 ∈ VN\{1} reduced games.

Proposition 1. Let c ∈ CN be an airport problem. Then

C(c) =
{

(x1, xN\{1}) ∈ Rn : 0 ≤ x1 ≤ c1, xN\{1} ∈ C(c1,x1)
}

=
⋃

0≤x1≤c1

{x1} × C(c1,x1).

Geometrically, when 0 < x1 < c1, the core of the downstream-substraction reduced problem of c with
respect to N\{1} and x1, C(c1,x1), is a cross-section of the core C(c). Now, if we repeatedly apply the above
decomposition, the core of the airport game can be covered with the cores of reduced games of s agents,
1 ≤ s ≤ n− 1. In particular, we have the following result for s = n− 1.

Corollary 1. Given an airport problem c ∈ CN , the allocation (x1, . . . , xn) belongs to C(c) if, and only if, for
each j ∈ N\{n}, 0 ≤ xj ≤ cj −

∑
i<j xi and xn = cn −

∑
i<n xi.

González-Dı́az and Sánchez-Rodŕıguez (2008) associate a face game with each face of the core and show that
these games have interesting properties for the class of convex (concave) games. In terms of cost games, given
a coalition T ⊂ N , the face FT of the core contains the allocations that are worst for T and best for N\T . The
downstream-substraction reduced games for the cases x1 = c1 and x1 = 0 are the face games for agent 1 and
coalition N\{1}, respectively.

In general, the core of an airport game c ∈ VN can be described using reduced airport games with respect
to other players. Indeed, for each i ∈ N we have that

C(c) =
⋃

0≤xi≤ci

{xi} × C(ci,xi). (1)

3 The core-center and its integral representation

One of the main goals of this paper is to gain insights on the structure of the core of an airport game by
studying its center of gravity. Given a cooperative game c ∈ VN , its core-center, µ(c), is defined as the expected
value of the uniform distribution over the core of the game (González-Dı́az and Sánchez-Rodŕıguez, 2007). The
core-center treats all the stable allocations equally and picks up their mean value. In this section we develop
some analytic tools that exploit the structure of the core of an airport game. Given a convex set A we denote
by µ(A) its center of gravity.

In the case of an airport game c ∈ VN the core is an (n− 1)-manifold contained in the efficiency hyperplane,
x1 + · · · + xn = cn. The latter is, therefore, the tangent space at each point of the manifold. The vector
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(1, 1, . . . , 1) ∈ Rn is normal to the manifold at each point and it has length
√
n. The transformation g : Rn−1 →

Rn, g(x1, . . . , xn−1) = (x1, . . . , xn−1, cn−x1−· · ·−xn−1) defines a coordinate system for C(c), so that g−1(C(c))
is the projection of the core onto Rn−1 that simply “drops” the n-th coordinate. Let Ĉ(c) = g−1(C(c)) ⊂ Rn−1.
This transformation is illustrated in Figure 1.

x2

x3

x1

I(c)

C(c)

Ĉ(c)

x1

x2

0 c1

c2

(c1, c2 − c1)
Ĉ(c)

Figure 1: The core C(c) and its projection Ĉ(c) in the three-player case.

Given 1 ≤ r ≤ n, let mr be the r-dimensional Lebesgue measure. Then, the (n− 1)-dimensional measure of
the core is given by

mn−1(C(c)) =

∫
C(c)

dmn−1 =

∫
g−1(C(c))

√
n dmn−1 =

√
n mn−1(Ĉ(c)).

Hence, the volume of the core as a subset of Rn is
√
n times the volume of its projection onto Rn−1. Analogously,

for each i ∈ N\{n}, the corresponding component of the core-center is given by

µi(c) =
1

mn−1(C(c))

∫
C(c)

xi dmn−1 =
1

mn−1(C(c))

∫
Ĉ(c)

√
nxi dmn−1

=
1

mn−1(Ĉ(c))

∫
Ĉ(c)

xi dmn−1.

Example 1. Let N = {1, 2} and c = (c1, c2) ∈ CN . Clearly, the core of the airport game is the segment

C(c) = {λ(0, c2) + (1− λ)(c1, c2 − c1), 0 ≤ λ ≤ 1} ⊂ R2. Then, µ1(c) =
∫ c1
0 x1dx1∫ c1
0 dx1

= c1
2 and µ2(c) = c2 − c1

2 .

The above integral expression for the core-center can be written in terms of iterated integrals. First, we
introduce some notation. Given 0 < c1 ≤ c2 ≤ · · · ≤ cn−1 ≤ cn and j ∈ {1, . . . , n− 1}, we define

U jn−1(c1, . . . , cn−1) =

∫ c1

0

∫ c2−x1

0

· · ·
∫ cn−1−

n−2∑
k=1

xk

0

xj dxn−1 . . . dx2dx1,

Vn−1(c1, . . . , cn−1) =

∫ c1

0

∫ c2−x1

0

· · ·
∫ cn−1−

n−2∑
k=1

xk

0

dxn−1 . . . dx2dx1, and

µ̂j(c1, . . . , cn−1) =
U jn−1(c1, . . . , cn−1)

Vn−1(c1, . . . , cn−1)
,
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x2

x3

x1

(c1, c2 − c1, 0)

(c1, 0, c3 − c1)

c1

(0, c2, c3 − c2)

c2

c3

Ĉ(c1, c2, c3, c4)

Figure 2: The domain of integration of V3(c1, c2, c3).

with the convention that V0 = 1. Clearly, U jn−1 is a homogeneous function of degree n, Vn−1 is a homogeneous

function of degree n− 1, and µ̂j is a homogeneous function of degree 1. Figure 2 shows Ĉ(c) in the four-player
case. Now, applying Corollary 1, it is easy to derive the following result.

Theorem 1. Let c ∈ CN be an airport problem. Then, mn−1(Ĉ(c)) = Vn−1(c1, . . . , cn−1). Moreover, for each
j ∈ N\{n}, µj(c) = µ̂j(c1, . . . , cn−1) and µn(c) = µ̂n−1(c1, . . . , cn−1) + (cn − cn−1).

Note that all the coordinates of the core-center, except the last one, are independent of cn. In addition, all
the coordinates µj are homogeneous functions of degree 1.

Certainly, the decomposition in expression (1) gives rise to alternative integral expressions for the core-center,
one for each i ∈ N\{1}, although we will not use them in this paper.

Let c ∈ CN be an airport problem. From the integral expressions derived previously it is clear that the
functions Vn−1 and U jn−1, j ∈ N\{n}, can be differentiated with respect to the ci costs, with i ∈ N\{n}. As a
first consequence, we obtain a result that is fundamental for the analysis in this paper, namely, a representation
of the core-center as a ratio of volumes of cores of airport games. We start by proving two auxiliary results.

Lemma 1. Given 0 < c1 ≤ · · · ≤ ck, k ∈ N, we have that V1(c1) = c1, V2(c1, c2) =
c22
2 −

(c2−c1)2
2 , and, if k ≥ 3,

Vk(c1, . . . , ck) =
ckk
k!
− (ck − c1)k

k!
−
k−1∑
i=2

(ck − ci)k−i+1

(k − i+ 1)!
Vi−1(c1, . . . , ci−1).

Proof. The expressions for V1(c1) and V2(c1, c2) are straightforward. The result also holds for k = 3, since

V3(c1, c2, c3) =
∫ c1
0
V2(c2 − x1, c3 − x1)dx1 =

∫ c1
0

(
(c3−x1)

2

2 − (c3−c2)2
2

)
dx1 =

c33
3! −

(c3−c1)3
3! − (c3−c2)2

2 c1. We

proceed by induction. Let k ∈ N, k > 3, and assume that the result holds for k − 1. Then,

Vk(c1, . . . , ck) =

∫ c1

0

Vk−1(c2 − x1, . . . , ck − x1)dx1

=

∫ c1

0

( (ck − x1)k−1

(k − 1)!
− (ck − c2)k−1

(k − 1)!
−
k−2∑
i=2

(ck − ci+1)k−i

(k − i)!
Vi−1(c2 − x1, . . . , ci − x1)

)
dx1.
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We compute separately the integral of each addend:∫ c1

0

(ck − x1)k−1

(k − 1)!
dx1 =

ckk
k!
− (ck − c1)k

k!
,

∫ c1

0

(ck − c2)k−1

(k − 1)!
dx1 =

(ck − c2)k−1

(k − 1)!
V1(c1), and∫ c1

0

Vi−1(c2 − x1, . . . , ci − x1)dx1 = Vi(c1, . . . , ci).

By the linearity of the integral,

Vk(c1, . . . , ck) =
ckk
k!
− (ck − c1)k

k!
− (ck − c2)k−1

(k − 1)!
V1(c1)−

k−2∑
i=2

(ck − ci+1)k−i

(k − i)!
Vi(c1, . . . , ci)

=
ckk
k!
− (ck − c1)k

k!
−
k−2∑
i=1

(ck − ci+1)k−i

(k − i)!
Vi(c1, . . . , ci),

which, after a simple rearrangement of the indices, coincides with the desired expression.

Lemma 2. Let 0 < c1 ≤ · · · ≤ ck, k ∈ N, x1 ≤ c1, and denote uk(x1) = Vk(c1 − x1, . . . , ck − x1). Then,

duk
dx1

(x1) = −Vk−1(c2 − x1, . . . , ck − x1).

Proof. The proof is by induction. The property holds for k = 1, since u1(x1) = V1(c1 − x1) = c1 − x1 and
du1

dx1
(x1) = −1. It also holds for k = 2, because u2(x1) = (c2−x1)

2

2 − (c2−c1)2
2 and du2

dx1
(x1) = −(c2 − x1). Now, let

k ≥ 3 and suppose that the property is true for ui, 1 ≤ i ≤ k − 1. Then, according to Lemma 1,

uk(x1) = Vk(c1 − x1, . . . , ck − x1) =
(ck − x1)k

k!
− (ck − c1)k

k!
−
k−1∑
i=2

(ck − ci)k−i+1

(k − i+ 1)!
ui−1(x1).

Differentiating with respect to x1,

duk
dx1

(x1) = − (ck − x1)k−1

(k − 1)!
−
k−1∑
i=2

(ck − ci)k−i+1

(k − i+ 1)!

dui−1
dx1

(x1).

By the induction hypothesis, if i ≥ 2, dui−1

dx1
(x1) = −Vi−2(c2 − x1, . . . , ci−1 − x1). Therefore,

duk
dx1

(x1) = − (ck − x1)k−1

(k − 1)!
+

(ck − c2)k−1

(k − 1)!
+

k−1∑
i=3

(ck − ci)k−i+1

(k − i+ 1)!
Vi−2(c2 − x1, . . . , ci−1 − x1).

Renumbering the terms,

duk
dx1

(x1) = −
(

(ck − x1)k−1

(k − 1)!
− (ck − c2)k−1

(k − 1)!
−
k−2∑
i=2

(ck − ci+1)k−i

(k − i)!
Vi−1(c2 − x1, . . . , ci − x1)

)
= −Vk−1(c2 − x1, . . . , ck − x1),

where the last equality follows directly from Lemma 1.

Now, we can show that, in fact, each coordinate of the core-center is the ratio of two volumes. To be precise,
consider for each player j ∈ N\{n} the airport problem (c1, . . . , cj , cj , . . . , cn−1), obtained when agent j makes
a clone of himself, that is, replicates his cost.1 Then, what the core-center assigns to agent j (in the original
problem) is the percentage of stable allocations in the game with the clone of player j over the original stable
allocations. Mathematically, the j-th coordinate of the core-center is the ratio of the volumes of the core of the
airport game obtained by replicating agent j and the core of the original game.

1The idea of replication has been already used in the literature, see for instance Debreu and Scarf (1963), Thomson (1988).
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Theorem 2. Let c ∈ CN be an airport problem and j ∈ N \ {n}. Then:

1. U jn−1(c1, . . . , cn−1) = Vn(c1, . . . , cj , cj , . . . , cn−1)

2. µ̂j(c1, . . . , cn−1) =
Vn(c1, . . . , cj , cj , . . . , cn−1)

Vn−1(c1, . . . , cn−1)

Proof. First observe that

Vn(c1, . . . , cj , cj , . . . , cn−1) =

∫ c1

0

· · ·
∫ cj−

j−1∑
k=1

xk

0

Vn−j
(
cj −

j∑
k=1

xk, . . . , cn−1 −
j∑

k=1

xk
)
dxj . . . dx1.

If un−j(xj) = Vn−j

(
cj −

j∑
k=1

xk, . . . , cn−1 −
j∑

k=1

xk

)
then, by Lemma 2,

dun−j
dxj

(xj) = −Vn−j−1
(
cj+1 −

j∑
k=1

xk, . . . , cn−1 −
j∑

k=1

xk

)
.

Integrating by parts,

∫ cj−
j−1∑
k=1

xk

0

Vn−j
(
cj −

j∑
k=1

xk, . . . , cn−1 −
j∑

k=1

xk
)
dxj =

[
xjVn−j

(
cj−

j∑
k=1

xk, . . . , cn−1−
j∑

k=1

xk
)]cj−j−1∑

k=1

xk

0

+

∫ cj−
j−1∑
k=1

xk

0

xjVn−j−1
(
cj+1−

j∑
k=1

xk, . . . , cn−1−
j∑

k=1

xk
)
dxj .

The bracketed expression vanishes, since Vn−j(0, cj+1 − cj , . . . , cn−1 − cj) = 0. Consequently,

∫ cj−
j−1∑
k=1

xk

0

Vn−j

(
cj −

j∑
k=1

xk, . . . , cn−1 −
j∑

k=1

xk

)
dxj =

∫ cj−
j−1∑
k=1

xk

0

xjVn−j−1

(
cj+1 −

j∑
k=1

xk, . . . , cn−1 −
j∑

k=1

xk

)
dxj . (2)

Finally,

Vn(c1, . . . , cj , cj , . . . cn−1) =

∫ c1

0

· · ·
∫ cj−

j−1∑
k=1

xk

0

xjVn−j−1

(
cj+1 −

j∑
k=1

xk, . . . , cn−1 −
j∑

k=1

xk

)
dxj . . . dx1

= U jn−1(c1, . . . , cn−1).

This last result follows from the previous property and the definition of µ̂.

Corollary 2. Let c ∈ CN be an airport problem. Then

µn(c) =
Vn(c1, . . . , cn)

Vn−1(c1, . . . , cn−1)
.

Proof. It follows from the combination of Theorems 1 and 2 and simple calculus.
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Apart from being a key tool for the ensuing analysis, Theorem 2 is interesting on its own. There are no
known efficient deterministic algorithms for computing the centroid of a convex body. Therefore, the issue of
computing the core-center of a general balanced game is very complex. The second statement in Theorem 2 says
that the j-th coordinate of the core-center of an airport game can be computed just by using the volume of its
core and the volume of the core of the airport game obtained by replicating agent j. Then, Theorem 2 opens
the door to implementing volume computation algorithms for convex polytopes to compute, in a relatively easy
way, the core-center of an airport game.2

Geometrically, we must note that µj(c) =
Vn(c1,...,cj ,cj ,...,cn−1)
Vn−1(c1,...,cn−1)

=
√

n+1
n

mn(C(c1,...,cj ,cj ,...,cn))
mn−1(C(c1,...,cn))

and that C(c) is

a face of C(c1, . . . , cj , cj , . . . , cn), in fact, the intersection of C(c1, . . . , cj , cj , . . . , cn) with the hyperplane xj+1 = 0.
Then µj(c) is a measure of the ratio between the volume of the core of the problem with a clone of agent j and
a particular face of it, the core of the original problem.

From a game-theoretic perspective, recall that c(S∪{j})−c(S) measures the marginal contribution of player

j ∈ N to a coalition S ⊂ N . We can interpret the ratio
Vn(c1,...,cj ,cj ,...,cn−1)
Vn−1(c1,...,cn−1)

as another way of computing the

contribution of player j ∈ N to the game: it measures the change on the set of stable allocations when a clone
of player j is added to the initial set of players.

4 General properties of the core-center

Next we study some basic properties that are satisfied by the core-center of the airport game. For a complete
survey on airport problems the reader is referred to Thomson (2013). We say that a rule ψ satisfies:

• Non-negativity if, for each c ∈ CN and each i ∈ N , ψi(c) ≥ 0.

• Cost boundedness if, for each c ∈ CN and each i ∈ N , ψi(c) ≤ ci.

• Efficiency if for each c ∈ CN ,
∑
i∈N ψi(c) = cn.

• No-subsidy if, for each c ∈ CN and each S ⊂ N ,
∑
i∈S ψi(c) ≤ maxi∈S ci.

• Homogeneity if, for each c ∈ CN and each α > 0, ψ(αc) = αψ(c).

• Equal treatment of equals if, for each c ∈ CN and each pair {i, j} ⊂ N with ci = cj , ψi(c) = ψj(c).

• Continuity if, for each sequence {(cν)}ν∈N of elements of CN and each c ∈ CN , if cν → c then ψ(cν)→ ψ(c).

Proposition 2. The core-center satisfies non-negativity, cost-boundedness, efficiency, no-subsidy, homogeneity,
equal treatment of equals, and continuity.

Proof. The first five properties follow from the fact that any core allocation satisfies them. A couple of comments
on the last two properties are needed. González-Dı́az and Sánchez-Rodŕıguez (2007) prove that the core-center
treats symmetric players equally and that it is a continuous function of the values of the characteristic function.
In our context, equal treatment of equals holds because agents with the same cost parameter are symmetric
players in the associated airport game. Similarly, continuity holds because the values of the characteristic
function are continuous with respect to the cost parameters. Then, the core-center satisfies continuity since it
is a composition of continuous functions.

Equal treatment of equals states that if two agents have the same cost they should pay equal amounts. Now,
we focus on the reverse property: if two agents have different costs then they should pay different amounts.

2The reader interested in the difficulties and algorithms for computing volumes of convex polytopes may refer to Lasserre (1983),
Lasserre and Zeron (2001) and references therein. Regarding the computational aspects of cooperative game theory, the survey
paper Bilbao et al. (2000) and the book by Chalkiadakis et al. (2011) provide excellent starting points to the field.
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• A rule ψ satisfies unequal treatment of unequals if, for each c ∈ CN and each pair {i, j} ⊂ N with ci 6= cj ,
ψi(c) 6= ψj(c).

Obviously, the Shapley value satisfies unequal treatment of unequals. Nevertheless, the nucleolus violates
this property. Observe that, for the airport problem (1.1, 1.5, 3) ∈ C{1,2,3} the nucleolus is (0.5, 0.5, 2).

Proposition 3. The core-center satisfies unequal treatment of unequals.

Proof. Let c = (c1, . . . , cn) ∈ CN . We have to prove that for all i ∈ {1, . . . , n − 1}, µi(c) 6= µi+1(c) whenever
ci 6= ci+1. If i = n− 1, the result is clear since µn(c) = µn−1(c) + (cn − cn−1). Now, if i ∈ {1, . . . , n− 2} then,
by Theorem 2,

µi+1(c)− µi(c) =
Vn(c1, . . . , ci, ci+1, ci+1, ci+2, . . . , cn−1)− Vn(c1, . . . , ci, ci, ci+1, ci+2, . . . , cn−1)

Vn−1(c1, . . . , cn−1)
.

Therefore, µi+1(c) = µi(c) if, and only if,

Vn(c1, . . . , ci, ci+1, ci+1, ci+2, . . . , cn−1) = Vn(c1, . . . , ci, ci, ci+1, ci+2, . . . , cn−1),

that is, if and only if ci = ci+1.

The order preservation for contributions (benefits) property states that if agent i′s cost parameter is at least
as large as agent j′s cost parameter, agent i should contribute (or benefit) at least as much as agent j does.

• A rule ψ satisfies order preservation for contributions if, for each c ∈ CN and each pair {i, j} ⊂ N with
ci ≤ cj , ψi(c) ≤ ψj(c).

• A rule ψ satisfies order preservation for benefits if, for each c ∈ CN and each pair {i, j} ⊂ N with ci ≤ cj ,
ci − ψi(c) ≤ cj − ψj(c).

Proposition 4. The core-center satisfies order preservation for contributions.

Proof. Let c ∈ CN . Trivially, by Theorem 1, µn−1(c) ≤ µn(c). Now, take two consecutive agents i and i + 1
where i < n− 1. Then, by Theorem 2, µi(c) ≤ µi+1(c) if, and only if,

Vn(c1, . . . , ci, ci, ci+1, . . . , cn−1) ≤ Vn(c1, . . . , ci, ci+1, ci+1, . . . , cn−1),

which is immediate since ci ≤ ci+1.

Proposition 5. The core-center satisfies order preservations for benefits.

Proof. Let c ∈ CN . Recall that µn−1(c)−µn(c) = cn−1−cn. Let i < n−1. We have to prove that µi+1(c)−µi(c) ≤
ci+1 − ci. Applying Theorem 2, the difference µi+1(c)− µi(c) can be written as follows:

µi+1(c)− µi(c) =

∫ c1

0

∫ c2−x1

0

· · ·
∫ ci−

i−1∑
j=1

xj

0

∫ ci+1−
i∑

j=1
xj

ci−
i∑

j=1
xj

· · ·
∫ cn−1−

n−1∑
j=1

xj

0

dxn . . . dx2dx1

Vn−1(c1, . . . , cn−1)

=

∫ c1

0

∫ c2−x1

0

· · ·
∫ ci+1−

i∑
j=1

xj

ci−
i∑

j=1
xj

Vn−1−i
(
ci+1 −

i+1∑
j=1

xj , . . . , cn−1 −
i+1∑
j=1

xj
)
dxi+1dxi . . . dx1

Vn−1(c1, . . . , cn−1)
.
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Now, by the mean-value theorem for integrals, there exists a point ξ ∈ (ci −
i∑

j=1

xj , ci+1 −
i∑

j=1

xj) such that

∫ ci+1−
i∑

j=1
xj

ci−
i∑

j=1
xj

Vn−1−i
(
ci+1 −

i+1∑
j=1

xj , . . . , cn−1 −
i+1∑
j=1

xj
)
dxi+1 =

(ci+1 − ci)Vn−1−i
(
ci+1 −

i∑
j=1

xj − ξ, . . . , cn−1 −
i∑

j=1

xj − ξ
)
.

But, since cs −
i∑

j=1

xj − ξ ≤ cs − ci for all i+ 1 ≤ s ≤ n− 1, we have that

Vn−1−i
(
ci+1 −

i∑
j=1

xj − ξ, . . . , cn−1 −
i∑

j=1

xj − ξ
)
≤ Vn−1−i(ci+1 − ci, . . . , cn−1 − ci).

Therefore,

µi+1(c)− µi(c) ≤ (ci+1 − ci)

∫ c1

0

· · ·
∫ ci−

i−1∑
j=1

xj

0

Vn−1−i(ci+1 − ci, . . . , cn−1 − ci)dxi . . . dx1

Vn−1(c1, . . . , cn−1)

= (ci+1 − ci)

∫ c1

0

· · ·
∫ ci−

i−1∑
j=1

xj

0

Vn−1−i(ci+1 − ci, . . . , cn−1 − ci)dxi . . . dx1

∫ c1

0

· · ·
∫ ci−

i−1∑
j=1

xj

0

Vn−1−i(ci+1 −
i∑

j=1

xj , . . . , cn−1 −
i∑

j=1

xj)dxi . . . dx1

≤ ci+1 − ci

where the last inequality holds because,

i∑
j=1

xi ≤ ci implies that cs − ci ≤ cs −
i∑

j=1

xi for i+ 1 ≤ s ≤ n− 1.

The next property demands that the payment required to the last agent should increase by an amount equal
to the increase in his cost parameter.

• A rule ψ satisfies last-agent cost additivity if for each pair {c, c′} of elements of CN , each γ ≥ 0, and each
i ∈ N such that ci = max{cj : j ∈ N}, whenever c′N\{i} = cN\{i} and c′i = ci + γ, then ψN\{i}(c

′) =

ψN\{i}(c) and ψi(c
′) = ψi(c) + γ.

Proposition 6. The core-center satisfies last-agent cost additivity.

Proof. Let c, c′ ∈ CN be airport games satisfying the hypothesis of last-agent cost additivity. Then

(x1, . . . , xn−1, cn −
n−1∑
i=1

xi) ∈ C(c)⇔ (x1, . . . , xn−1, c
′
n −

n−1∑
i=1

xi) ∈ C(c′).

Hence, Ĉ(c) = Ĉ(c′) and µN\{n}(c
′) = µN\{n}(c). By Theorem 1, µn(c′) = µn−1(c′) + (c′n − c′n−1) = µn−1(c) +

(cn + γ − cn−1) = µn(c) + γ.
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A property, introduced in Mirás-Calvo et al. (2016), demands that the last two agents must have equal
benefits.

• A rule ψ satisfies last two agents equal benefits if for each airport problem c ∈ CN , then cn − ψn(c) =
cn−1 − ψn−1(c).

We have seen in Theorem 1 that the core-center satisfies last two agents equal benefits. In fact, see Mirás-Calvo
et al. (2016), a rule3 ψ satisfies last two agents equal benefits if, and only if, for each c ∈ CN ,

ψn−1(c) =
1

2

(
cn−1 −

n−2∑
i=1

ψi(c)
)
.

Also, one can easily check that if a rule ψ satisfies efficiency, equal treatment of equals, and last-agent cost
additivity, then it satisfies last two agents equal benefits. Therefore, in order to have the core-center of a
n-player airport game one needs to compute just n − 2 coordinates. For example in a 3-player game, the
computation of the first coordinate gives the entire allocation as the following example shows.

Example 2. Let N = {1, 2, 3} and c = (c1, c2, c3) ∈ CN . Then, µ1(c) =

∫ c1
0

∫ c1−x
0

∫ c2−x−y
0

dzdydx∫ c1
0

∫ c2−x
0

dydx
=

c1
3

3c2 − 2c1
2c2 − c1

. Then µ2(c) = 1
2 (c2 − µ1(c)). Finally, by efficiency, µ3(c) = (c3 − c2) + µ2(c).

5 No-subsidy face games

We devote this section to analyze the structure of the faces of the core of an airport game that correspond to
the no-subsidy constraints. We exploit this facial structure to obtain two interesting results: a necessary and
sufficient condition for the monotonicity of the core-center with respect to the cost parameters and an expression
that relates the core-center of the game with the centroids of the no-subsidy faces of the core. As a consequence,
we will provide a recursive algorithm to compute the core-center of an airport game through the no-subsidy
cones (those whose bases are the cores of the no-subsidy face games).

Let c ∈ CN be an airport game with agent set N . Denote by Fi, i ∈ N\{n}, the i-th no-subsidy face of Ĉ(c),
i.e.,

Fi = Ĉ(c) ∩ {x ∈ Rn−1 : x1 + · · ·+ xi = ci} ⊂ Rn−1.

Let mn−2(Fi) be its (n− 2)-measure and µ(Fi) be its centroid.
The next decomposition of Fi, that it is easily derived, states that for each player i ∈ N\{n}, Fi is the

cartesian product of two cores of reduced airport games. The first game is played by the first i players and it
is given by the airport problem (c1, . . . , ci). The second game is played by the rest of the players where all the
costs parameters are reduced by ci, which corresponds to the airport problem (ci+1− ci, . . . , cn− ci). So, players
{1, . . . , i} pay ci and players {i+ 1, . . . , n} pay cn − ci (see Figure 3).

Proposition 7. For all i ∈ N\{n}, we have that

Fi = C(c1, . . . , ci)× Ĉ(ci+1 − ci, . . . , cn − ci).

The coordinates of the centroid µ(Fi) are

µj(Fi) =

{
µj(c1, . . . , ci) if j ≤ i
µ̂j−i(ci+1 − ci, . . . , cn−1 − ci) if i < j ≤ n− 1

.

3In this paper, by definition, a rule must choose a stable allocation.
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x2

x3

x1

F1 = {c1} × Ĉ(c1,c1)

x2

x3

x1

F2 = C(c1, c2)× Ĉ(c3 − c2, c4 − c2)

x2

x3

x1

F3 = C(c1, c2, c3)

Figure 3: The Fi-faces of Ĉ(c) in the four-agent case.

Since the faces of the core are again cores of new airport games, Theorem 1 can be used to compute their
centroids.

We present a series of results that relate the partial derivatives of the functions Vn−1 and U jn−1 to the faces

of Ĉ(c) and their centroids.4

Proposition 8. For all i ∈ N\{n},

∂Vn−1
∂ci

(c1, . . . , cn−1) = Vi−1(c1, . . . , ci−1)Vn−1−i(ci+1 − ci, . . . , cn−1 − ci).

Proof. Since Vn−1(c1, . . . , cn−1) =

∫ c1

0

· · ·
∫ ci−

i−1∑
k=1

xk

0

Vn−1−i
(
ci+1 −

i∑
k=1

xk, . . . , cn−1 −
i∑

k=1

xk
)
dxi . . . dx1, a direct

computation using Leibniz’s rule shows that

∂Vn−1

∂ci
(c1, . . . , cn−1) =

∫ c1

0

· · ·
∫ ci−1−

i−2∑
k=1

xk

0

∂
∂ci

(∫ ci−
i−1∑
k=1

xk

0

Vn−1−i
(
ci+1 −

i∑
k=1

xk, . . . , cn−1 −
i∑

k=1

xk
)
dxi

)
dxi−1 . . . dx1

=

∫ c1

0

· · ·
∫ ci−1−

i−2∑
k=1

xk

0

Vn−1−i(ci+1 − ci, . . . , cn−1 − ci)dxi−1 . . . dx1

= Vn−1−i(ci+1 − ci, . . . , cn−1 − ci)
∫ c1

0

· · ·
∫ ci−1−

i−2∑
k=1

xk

0

dxi−1 . . . dx1

= Vn−1−i(ci+1 − ci, . . . , cn−1 − ci)Vi−1(c1, . . . , ci−1).

This concludes the proof.

Proposition 9. Let i, j ∈ N\{n}. Then,

∂U jn−1
∂ci

(c1, . . . , cn−1) =


Vi−1(c1, . . . , ci−1)U j−in−1−i(ci+1 − ci, . . . , cn−1 − ci) i < j

U ji−1(c1, . . . , ci−1)Vn−1−i(ci+1 − ci, . . . , cn−1 − ci) i > j

Vi(c1, . . . , ci)Vn−1−i(ci+1, . . . , cn−1)) i = j

.

4Since by Theorem 1 the core-center is the ratio of volumes, this part could be rewritten only with Vn−1 and Vn.
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Moreover, Vi(c1, . . . , ci)Vn−1−i(ci+1, . . . , cn−1) can be equivalently written as

(
ciVi−1(c1, . . . , ci−1)−

i−1∑
k=1

Uki−1(c1, . . . , ci−1)
)
Vn−1−i(ci+1 − ci, . . . , cn−1 − ci).

Proof. The computations when i 6= j are straightforward from the chain rule, Theorem 2 and Proposition 8. The
same applies to the first equality in the case j = i. The alternative expression is obtained by directly applying
Leibniz’s rule to the integral formulation of U jn−1.

As a consequence, we show that, whenever the (n− 2)-measure of the face Fi is positive, the rate of change
of the number of stable allocations with respect to a cost ci is proportional to the volume of Fi. In addition,
the center of gravity of Fi can be obtained using the partial derivatives computed above.

Proposition 10. Let c ∈ CN be an airport game. For all i, j ∈ N\{n} such that mn−2(Fi) > 0,

1.
∂Vn−1
∂ci

(c1, . . . , cn−1) = 1√
i
mn−2(Fi).

2. µj(Fi) =

∂Uj
n−1

∂ci
(c1, . . . , cn−1)

∂Vn−1

∂ci
(c1, . . . , cn−1)

.

Proof. Assume that mn−2(Fi) > 0. Recall that C(c1, . . . , ci) is an (i− 1)-dimensional polytope contained in the
hyperplane x1 + · · ·+ xi = ci, so

mi−1
(
C(c1, . . . , ci)

)
=
√
i mi−1

(
Ĉ(c1, . . . , ci)

)
=
√
i Vi−1(c1, . . . , ci−1).

On the other hand, the measure of Ĉ(ci+1−ci, . . . , cn−ci) as a subset of Rn−1−i is Vn−1−i(ci+1−ci, . . . , cn−1−ci).
Therefore, the first assertion follows immediately from Proposition 8 and the decomposition of Proposition 7.

The proof of the second property is divided in three cases. First, assume that i < j. Then, by Proposition 7,

µj(Fi) = µ̂j−i(ci+1 − ci, . . . , cn−1 − ci) =
U j−in−1−i(ci+1 − ci, . . . , cn−1 − ci)
Vn−1−i(ci+1 − ci, . . . , cn−1 − ci)

=

∂Uj
n−1

∂ci
(c1, . . . , cn−1)

∂Vn−1

∂ci
(c1, . . . , cn−1)

,

where the last equality follows from Propositions 8 and 9.
If i > j, then, as above, by Propositions 8, 9 and 7, we have

µj(Fi) = µj(c1, . . . , ci)

= µ̂j(c1, . . . , ci−1) =
U ji−1(c1, . . . , ci−1)

Vi−1(c1, . . . , ci−1)
=

∂Uj
n−1

∂ci
(c1, . . . , cn−1)

∂Vn−1

∂ci
(c1, . . . , cn−1)

.

Finally, when j = i, by Proposition 7,

µi(Fi) = µi(c1, . . . , ci) = ci −
i−1∑
k=1

µk({1, . . . , i}, (c1, . . . , ci))

= ci −
i−1∑
k=1

µ̂k(c1, . . . , ci−1) = ci −
i−1∑
k=1

Uki−1(c1, . . . , ci−1)

Vi−1(c1, . . . , ci−1)
.
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Therefore,

µi(Fi)Vi−1(c1, . . . , ci−1) = ciVi−1(c1, . . . , ci−1)−
i−1∑
k=1

Uki−1(c1, . . . , ci−1).

Substituting this expression in Proposition 9 and using Proposition 8, the result follows.

We would like to remark that the first equality of Proposition 10 admits a generalization for any convex
polyhedron (Lasserre, 1983).

Relational requirements on rules are of great interest. The monotonicity properties study the behavior of the
rules if one single cost ci increases while the others are held constant. In Thomson (2013), there is a summary of
the main monotonicity properties that have been studied in the literature. The next result provides a necessary
and sufficient condition for the monotonicity of the core-center in terms of its relative position with respect to
the centroids of the no-subsidy faces of the core.

Proposition 11. Let c ∈ CN be an airport problem and let i, j ∈ N\{n}. Then, µj(c) is increasing with
respect to ci if, and only if, µj(c) ≤ µj(Fi). Conversely, µj(c) is decreasing with respect to ci if, and only if,
µj(c) ≥ µj(Fi).

Proof. Recall that µj(c) = µ̂j(c1, . . . , cn−1) and, by Theorem 2,

∂µ̂j
∂ci

(c1, . . . , cn−1) =

∂Uj
n−1

∂ci
(c1, . . . , cn−1)Vn−1(c1, . . . , cn−1)− U jn−1(c1, . . . , cn−1)∂Vn−1

∂ci
(c1, . . . , cn−1)

(Vn−1(c1, . . . , cn−1))2
.

Thus, µj(c) is increasing with respect to ci if, and only if, the numerator is positive. Now, by Proposition 10
the latter is equivalent to

µj(Fi) =

∂Uj
n−1

∂ci
(c1, . . . , cn−1)

∂Vn−1

∂ci
(c1, . . . , cn−1)

≥
U jn−1(c1, . . . , cn−1)

Vn−1(c1, . . . , cn−1)
= µj(c).

We have established that the variation of what the core-center assigns to player j with respect to the cost
parameter ci depends on the relative position of the core-center of the game and the centroid of the no-subsidy
face Fi. Therefore, the monotonicity properties (see Thomson (2013) for a complete description) of the core-
center of an airport game can be studied by comparing the core-center assignments given to a player in the
original game and those in the corresponding no-subsidy face games. González-Dı́az et al. (2015) follow this
approach to prove that the core-center satisfies individual cost monotonicity, downstream-cost monotonicity,
weak cost monotonicity, and population monotonicity.

To end the section, we will further explore the relationship of the core-centers of the no-subsidy faces of
the core and the core-center of the core itself. This analysis will lead to a recursive algorithm to compute the
core-center of an airport game in terms of the core-centers of the reduced games of Proposition 7.

Let c ∈ CN be an airport problem. For each i ∈ N\{n}, let Ki = {λz : 0 ≤ λ ≤ 1, z ∈ Fi} denote the
no-subsidy cone rooted at the origin and generated by the i-th no-subsidy face Fi of Ĉ(c). The no-subsidy
cone Ki contains all the line segments for which one end point is the origin and the other end point belongs to
the no-subsidy face Fi. Since the i-th no-subsidy face Fi contains the worst core allocations for the coalition
{1, . . . , i} and the origin is the best core allocation for any coalition for which the highest cost airline does not
belong to, the no-subsidy cone Ki can be interpreted as the set of all stable allocations that are a trade-off
between the most desirable payment and one of the worst payments for the coalition of all airlines with cost less
or equal than ci.

Certainly, any two no-subsidy cones have negligible intersection and Ĉ(c) is the union of all the no-subsidy
cones. Moreover, the (n−1)-volume and centroid of the no-subsidy cone Ki are proportional to the (n−2)-volume
and centroid of the no-subsidy face Fi, respectively.
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Proposition 12. Let c ∈ CN be an airport problem and i ∈ N\{n}. Then:

1. Ĉ(c) =

n−1⋃
i=1

Ki and mn−1(Ki ∩Kj) = 0 if i 6= j.

2. mn−1(Ki) = ci
(n−1)

√
i
mn−2(Fi) and µ(Ki) = n−1

n µ(Fi).

3. mn−1
(
Ĉ(c)

)
= 1

n−1

n−1∑
i=1

ωi, where ωi = ci√
i
mn−2(Fi) for all i ∈ N\{n}.

4. µj(c) = n−1
n

n−1∑
i=1

ωi
n−1∑
k=1

ωk

µj(Fi), for all j ∈ N\{n}.

Proof. In general, let K ⊂ Rn be a finite cone rooted at the origin whose base Kh belongs to the hyperplane
xn = h. For every t ∈ [0, h] denote by Kt the intersection of K with the hyperplane xn = t, that is Kt = K∩{x ∈
Rn : xn = t}. Then Kt = t

hKh, mn−1(Kt) =
(
t
h

)n−1
mn−1(Kh) and µ(Kt) = t

hµ(Kh). Now, integrating

mn(K) =

∫ h

0

mn−1(Kt)dt =

∫ h

0

(
t
h

)n−1
mn−1(Kh)dt = h

nmn−1(Kh).

mn(K)µj(K) =

∫ h

0

mn−1(Kt)µj(Kt)dt =

∫ h

0

(
t
h

)n
mn−1(Kh)µj(Kh)dt = h

n+1mn−1(Kh)µj(Kh).

Therefore, mn(K) = h
nmn−1(Kh) and µ(K) = n

n+1µ(Kh). Applying these general equalities, all the statements

are straightforward.5

Naturally, Proposition 12 reduces the computation of the core-center of an airport game to the computation
of the core-centers of the no-subsidy faces. But, by Proposition 7, the no-subsidy faces are indeed cores of
airport games. Then, we have outlined a recursive algorithm to compute the core-center of an airport problem.
Observe that, in the final step, the core-center is obtained as a weighted sum of the midpoints of all the edges
of the no-subsidy faces of the core, that is, the core-centers of all the two-agent airport problems obtained by
recursively applying Proposition 7.

6 Concluding remarks

Following a game-theoretic approach, we have thoroughly studied the behavior in airport problems of a rule
defined for more general cooperative games, namely, the core-center. The definition of the core-center is very
intuitive, it is the average of all the stable allocations. Though the exact calculation of the core-center is always
a difficult task, we have provided two alternative methods to compute the core-center of an airport problem that
have a distinctive economic flavor: one based on the representation of the core-center as a ratio of the volume
of the core of an airport game for which a player is cloned over the volume of the original core, the other that
gives the core-center as a weighted average of the core-center of some basic two-agent airport problems obtained
recursively from the no-subsidy faces of the core.

We have seen that the core-center is a well behaved rule. It satisfies the following properties: non-negativity,
cost-boundedness, efficiency, no-subsidy, homogeneity, equal treatment of equals, continuity, order preservation
for contributions, order preservations for benefits, last two agents equal benefits, and last-agent cost additivity.
Moreover, using the necessary and sufficient condition for the monotonicity of the core-center with respect

5The equality for mn−1

(
Ĉ(c)

)
can be obtained directly from the decomposition of Ĉ(c) or by applying the general formula given

in Lasserre (1983) to compute the volume of a polyhedron P = {x : Ax ≤ b} in terms of the volumes of its facets.
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to the cost parameters developed in this paper, González-Dı́az et al. (2015) show that the core-center also
satisfies individual cost monotonicity, downstream-cost monotonicity, weak cost monotonicity, and population
monotonicity.6

The two more notable game-theoretic solutions for the airport problem, the nucleolus and the Shapley value
satisfy all the properties listed above (see Thomson (2013)). Therefore, we would like to point out some instances
in which the behavior of the core-center and that of the Shapley value and the nucleolus differ. Loosely speaking,
a variation, no matter how small, in any cost parameter of an airport problem, produces a change in the shape
of the core and therefore in its volume. The core-center is highly sensitive to such changes. We have already seen
that the core-center satisfies unequal treatment of unequals (agents with different costs pay different amounts)
a property that the nucleolus violates. In order to study the monotonicity of the core-center, González-Dı́az
et al. (2015) introduced two new properties that reflect whether or not a variation in a particular agent’s cost
is beneficial to the other agents.7 It is easy to check that given an agent i, a variation on the cost parameter
of any airline with cost higher than ci has no effect on the Shapley value of agent i. As for the core-center, if
a single cost ci increases, then the contributions requested by the rule for the agents with cost lower than ci
strictly increase (while the contributions for the agents with cost higher than ci strictly decrease).

Besides, an examination of these three rules based on how differentially they treat relatively larger airlines
as compared to relatively smaller airlines has been carried out in Mirás-Calvo et al. (2016). The Lorenz order
is commonly used as an egalitarian criteria. In order to compare a pair of allocations, x and y, with the Lorenz
ordering, first one has to rearrange the coordinates of each allocation in a non-decreasing order. Then, we say
that x Lorenz dominates y, and write x � y, if all the cumulative sums of the rearranged coordinates are greater
with x than with y. It is shown that the core-center is a rule that Lorenz dominates the Shapley value, Sh, and
is Lorenz dominated by the nucleolus, η, that is, η � µ � Sh.

The question of finding characterizations of the core-center rule goes beyond the scope of this paper. Never-
theless, we would like to point out some directions that could lead to an axiomatic characterization of this value
and the difficulties that might be encountered. One possible approach is to adapt the characterization of the
core-center given in González-Dı́az and Sánchez-Rodŕıguez (2009) for the general class of balanced games to the
airport problem. The key property for that characterization is a weighted additivity, called the trade-off prop-
erty, that is based on a principle of fairness with respect to the core. The general idea of the characterization is
to decompose the original core in pieces that are “simple” cores of games. The solution in these “simple” cores is
described by standard axioms (efficiency and symmetry properties). Then, the trade-off property is used to ob-
tain the core-center as the weighted sum of the solution applied to the “simple” cores of the decomposition. The
downside when considering airport games is that the pieces of the core dissection are not cores of airport games
themselves but translates of cores of airport games. Therefore, one has to work in a larger class of problems. A
different approximation consists in using a consistency type property as the basis for a characterization of the
core-center rule. As a first attempt, we say that a rule satisfies first-agent weighted consistency if the payment
required to each agent is a weighted average of the corresponding payments in all the downstream-substraction
reduced problems of c with respect to N\{1} and x1 ∈ [0, c1].

• A rule ψ satisfies first-agent weighted consistency if, for each c ∈ CN and each i ∈ N\{1, n},

ψi(c) =

∫ c1

0

ψi(N\{1}, c1,x1)f(x1, c)dx1,

where f(x1, c) = mn−2(Ĉ(N\{1},c1,x1 ))

mn−1(Ĉ(N,c))
.

It is easy to prove that the core-center satisfies first-agent weighted consistency. On the other hand, we have
shown that the core-center satisfies last two agents equal benefits. We claim that these two properties characterize

6The core-center does not satisfy other properties such as marginalism or the different types of consistency properties given in
the literature. The reader can construct easy three-agent examples to observe this point.

7These properties are called higher-cost decreasing monotonicity and lower-cost increasing monotonicity.
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the core-center rule. Indeed, if a rule satisfies last two agents equal benefits then we know how the rule chooses for
any two-agent problem. Then, a repeated application of first-agent weighted consistency would allow us to prove
that it must coincide with the core-center. As we see it, the weakness of this approach is that the consistency
axiom is too strong, so a weaker form of it should be found in order to have a useful characterization.
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González-Dı́az, J. and Sánchez-Rodŕıguez, E. (2009). Towards an axiomatization of the core-center. European
Journal of Operational Research, 195:449–459.

Lasserre, J. B. (1983). An analytical expression and an algorithm for the volume of a convex polyhedron in Rn.
Journal of Optimization Theory and Applications, 39:363–367.

Lasserre, J. B. and Zeron, E. S. (2001). A laplace transform algorithm for the volume of a convex polytope.
Journal of the Association for Computing Machinery, 48:1126–1140.

Littlechild, S. C. and Owen, G. (1973). A simple expression for the Shapley value in a special case. Management
Science, 20:370–372.

Mirás-Calvo, M. A., Quinteiro-Sandomingo, C., and Sánchez-Rodŕıguez, E. (2016). Monotonicity implications
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