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Abstract

One of the main goals of this paper is to improve the understanding of the way in which the core of a specific
cooperative game, the airport game (Littlechild and Owen, 1973), responds to monotonicity properties. Since
such properties are defined for single-valued allocation rules, we use the core-center (González-Dı́az and
Sánchez-Rodŕıguez, 2007) as a proxy for the core. This is natural, since the core-center is the center of
gravity of the core and its behavior with respect to a given property can be interpreted as the “average
behavior” of the core. We also introduce the lower-cost increasing monotonicity and higher-cost decreasing
monotonicity properties that reflect whether or not a variation in a particular agent’s cost is beneficial to
the other agents.

Keywords: cooperative TU games, monotonicity, core, core-center, airport games.

1 Introduction

The airport problem, introduced by Littlechild and Owen (1973), is a classic cost allocation problem that has
been widely studied. To get a better idea of the attention it has generated one can refer to the survey by
Thomson (2007). The core, introduced by Gillies (1953), stands as one of the most studied solution concepts in
the theory of cooperative games. Its properties have been thoroughly analyzed. Airport games are concave games
and therefore balanced games, games with a nonempty core. There is an important family of properties one
often studies when working with single-valued solution concepts: the monotonicity properties. These properties
are very hard to adapt to set-valued solutions. In this respect, there is virtually no paper that studies the
monotonicity of the core. A related issue deals with the question of defining allocation rules that meet some
monotonicity requirement and always selects a core allocation. This issue goes back to Young (1985) and was
followed by series of other results such as Housman and Clark (1998) and, more recently, Arin (2013).1 This type
of studies have also given rise to new set-valued solution concepts that aim to integrate the stability requirements
of the core with some monotonicity properties (see, for instance, Calleja et al. (2009) and Getán et al. (2009)).

∗Corresponding author: mmiras@uvigo.es
1Similar studies for the bargaining set and the kernel go even further back, to Megiddo (1974).
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Importantly, the cooperative game associated with an airport problem has a special structure that can be
exploited to facilitate the analysis of different solutions. In particular, 2n − 1 parameters are needed to define a
general n-player cooperative game, whereas for an airport game one just needs n. This special structure simplifies
the geometry of the core of such games, since it turns out to be defined by 2n− 1 inequality constraints instead
of the usual 2n − 2.

When the core of a game is nonempty, there is a set of alternatives at which agents’ payoffs differ that are
coalitionally stable. Studying the center of gravity of such set may be interesting in many cases. The core-center
(González-Dı́az and Sánchez-Rodŕıguez, 2007) selects the mathematical expectation of the uniform distribution
over the core of the game. The intuition provided by its definition is a good reason to be interested in it and to
justify the study of its properties.

As we already have mentioned, on the domain of balanced games the properties of core stability and mono-
tonicity are not compatible. However, the existence of monotonic core selectors is known on subdomains of the
domain of balanced games, such as the airport games. The Shapley value and the nucleolus are the best known
monotonic core selectors. A consequence of the results in this paper is that the core-center is also a monotonic
core selector.

Throughout this paper we exploit the aforementioned structure of the core of an airport game to gain
insights in the monotonicity properties of its core-center. More precisely, since most of these properties are
only defined for single-valued allocation rules, we use one special allocation in the core of an airport game as
a proxy to improve our understanding of the core. Naturally, the behavior of the core-center with respect to a
monotonicity property can be interpreted as the “average” behavior of the core with respect to it.

The formal definition of the core-center is given in terms of integrals over the core of the airport game. In
fact, (González-Dı́az et al., 2014) show that the j-th coordinate of the core-center of an airport game is the
ratio of the volumes of the core of the airport game obtained by replicating agent j and the core of the original
game. A variation, no matter how small, in any cost parameter of an airport game, produces a change in the
shape of the core and therefore in its volume. The core-center is very sensitive to such changes. This approach
leads, in a natural way, to the definition of two new monotonicity properties that restrict how a change on a
cost parameter of a given agent affects the payoffs of the other agents. They are called “higher-cost decreasing
monotonicity” and “lower-cost increasing monotonicity”. The first one says that if a cost ci increases, then the
payoffs of all players with costs higher than ci decrease. The second property is a kind of reciprocal, the payoffs
of all players with costs lower than ci increase. The study of these properties allows us to check whether or not
the core-center satisfies the usual monotonicity properties in the literature.

The paper is structured as follows. In Section 2 we present the basic concepts and notations. In Section 3 we
derive several ways of decomposing the core volume as a sum of volumes of airport games with some cloned costs.
Higher-cost decreasing monotonicity is introduced in Section 4. We develop our main mathematical results, which
build upon a thorough exploration of the derivatives of the volumes of the core of an airport game, to prove that
the core-center satisfies this property. Similarly, in Section 5 we introduce lower-cost increasing monotonicity
and prove that the core-center satisfies it. Relying on the previous properties, we analyze in Section 6 which of
the classical monotonicity properties are satisfied or violated by the core-center.

2 Preliminaries

There is an infinite set of potential agents, indexed by the natural numbers. Then, in each given problem, only
a finite number of those players are present. Let N be the set of all finite subsets of N = {1, 2, . . .}.

An airport problem (Littlechild and Owen (1973)) with set of agents N ∈ N is a non-negative vector c ∈ RN+ .
Let CN denote the domain of all airport problems with agent set N . We make the standard assumption that,
for each pair of agents i, j ∈ N , if i < j then ci ≤ cj . A cost allocation for c ∈ CN is a non-negative vector
x ∈ RN+ such that 0 ≤ xi ≤ ci for all i ∈ N and

∑
i∈N xi = cn. A basic requirement is that at an allocation x no

group N ′ ⊂ N of agents should contribute more that what it would have to pay on its own, max{ci : i ∈ N ′}.
Otherwise, the group would unfairly “subsidize” the other agents. The constraints

∑
j≤i xj ≤ ci, i ∈ N , are
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called the no-subsidy constraints. A rule ψ associates to each airport problem c ∈ CN a cost allocation ψ(c)
satisfying the no-subsidy constraints. For a complete survey on airport problems the reader is referred to
Thomson (2007).

A cooperative cost game with transferable utility is a pair (N, c), where N ∈ N is the set of players and the
characteristic function c : 2N → R is a function assigning, to each coalition S ⊂ N , its cost c(S). By convention
c(∅) = 0. Let VN be the domain of all cooperative cost games with player set N . Given a coalition of players
S ⊂ N , |S| denotes its cardinality. Given N ∈ N , a vector x ∈ RN is referred to as an allocation. For every
S ⊂ N denote x(S) =

∑
i∈S xi. An allocation is efficient if x(N) = c(N). A cost game c ∈ VN is concave if

c(S ∪ {i})− c(S) ≥ c(T ∪ {i})− c(T ), for each i ∈ N and each S and T such that S ⊆ T ⊆ N\{i}. A solution
defined on some subdomain of cost games is a correspondence ψ that associates to each cost game c ∈ VN in the
subdomain a subset ψ(c) of efficient allocations. Given a cost game c ∈ VN , the imputation set comprises the
individually rational and efficient allocations, I(c) = {x ∈ RN : x(N) = c(N), xi ≤ c({i}) for all i ∈ N}. The
core (Gillies (1953)) is defined as C(c) = {x ∈ I(c) : x(S) ≤ c(S) for all S ⊂ N}. If a solution is single-valued
then it is referred to as a rule.

To each airport problem c ∈ CN one can associate a cost game c ∈ VN with N as the set of players and the
characteristic function given, for each S ⊆ N , by c(S) = maxi∈S{ci}. Such a game is called an airport game.
We denote by the same letter c both the airport problem and the associated cost game. It should be clear from
the context to which one we are referring to. Naturally, any given solution to coalitional games provides a rule
for the airport problem when applied to the associated coalitional airport game. Existing rules are evaluated
and compared in terms of the properties they satisfy or violate. There is an important family of properties that
specify how a rule should respond to changes in the cost parameters of an airport problem: the monotonicity
properties. Generally, these properties are concerned with the effect of a variation of an agent cost parameter,
or the cost parameters of a particular group, on the contribution of that agent, or of that group of agents. We
say that a rule ψ satisfies:

• Individual cost monotonicity if, for each pair c, c′ ∈ CN and each i ∈ N such that c′i ≥ ci and, for all
j ∈ N\{i}, c′j = cj , then ψi(c

′) ≥ ψi(c).

• Others-oriented cost monotonicity if, under the assumptions of individual cost monotonicity, for each
j ∈ N\{i}, ψj(c′) ≤ ψj(c).

• Population monotonicity if, for each N and N ′ with N ′ ⊂ N , ψN ′(c) ≤ ψ(cN ′).

• Strong cost monotonicity if, for each pair c, c′ ∈ CN such that c ≤ c′, then ψ(c) ≤ ψ(c′).

• Weak cost monotonicity if, for each pair c, c′ ∈ CN such that c′ = c+c′′ for some c′′ ∈ CN , then ψ(c′) ≥ ψ(c).

• Downstream cost monotonicity if, for each pair c, c′ ∈ v and each i ∈ N , such that for each j ∈ N with
cj < ci, c

′
j = cj and for each j ∈ N with cj ≥ ci, c

′
j − cj = c′i − ci ≥ 0, then for each j ∈ N such that

cj ≥ ci, ψj(c′) ≥ ψj(c).

• Marginalism if, under the hypotheses of downstream cost monotonicity, for each j ∈ N such that cj < ci,
ψj(c

′) = ψj(c).

When the core of a cooperative game is nonempty, there is a set of alternatives that are coalitionally stable
at which agents’ payoffs differ. If one considers that all of the core alternatives are equally preferable, then
selecting the average stable payoff seems to be a natural choice. Given a balanced game v ∈ VN , the core-center
µ(v) (González-Dı́az and Sánchez-Rodŕıguez, 2007) is defined as the mathematical expectation of the uniform
distribution over the core of the game, i.e., the center of gravity of C(v). Given a convex polytope K ⊂ I(v),
denote its center of gravity by µ(K). Then µ(v) = µ(C(v)). Any airport game c ∈ VN is a concave game and
its core coincides with the set of allocations satisfying the no-subsidy constraints:

C(c) =
{
x ∈ RN : x ≥ 0, x(N) = cn,

∑
j≤i

xj ≤ ci for all i ∈ N
}
.
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The core of the airport game is contained in the efficiency hyperplane x1 + · · ·+ xn = cn and it is defined by, at
most, 2n− 2 inequality constraints, so, whenever c1 > 0, it is a (n− 1)-dimensional convex polytope. Therefore,
the core-center, when applied to airport games, provides an rule for the airport problem. Exploiting the special
structure of the core of an airport game, (González-Dı́az et al., 2014) obtained an integral expression for the

core-center. Given 0 < a1 ≤ · · · ≤ ak, let Vk(a1, . . . , ak) =

∫ a1

0

∫ a2−x1

0

· · ·
∫ ak−

k−1∑
j=1

xj

0

dxk . . . dx2dx1 and let

µ̂i(a1, . . . , ak) =
Vk+1(a1, . . . , ai, ai, . . . ak)

Vk(a1, . . . , ak)
, i = 1, . . . , k. Then, for any airport problem c ∈ CN the core-center

µ(c) is given by: µi(c) = µ̂i(c1, . . . , cn−1) if i ∈ N \{n}, and µn(c) = cn−
n−1∑
i=1

µi(c). The value Vn−1(c1, . . . , cn−1)

coincides, up to a scaling factor
√
n, with the volume of the core, C(c), see Figure 1. Then, what the core-center

assigns to agent j in the original problem is the percentage of stable allocations in the game with a clone of
player j over the original stable allocations. Mathematically, the core-center is the ratio of the volumes of the
core of the airport game obtained by replicating agent j and the core of the original game.

x1

x2

x1 = c1

x1 + x2 = c2

0

x2

x3

x1

x1 = c1

x1 + x2 = c2

x1 + x2 + x3 = c3

Figure 1: The domain of integration of V2(c1, c2) (left) and V3(c1, c2, c3) (right).

The main goal of this paper is to study which monotonicity properties are satisfied or violated by the core-
center. For most of the following discussion, we start with a fixed n-player set N = {1, 2, . . . , n}. The following
result (González-Dı́az et al., 2014), is a key tool to understanding how the core-center varies with respect to
changes in the cost parameters.

Proposition 1. Let c ∈ CN be an airport game with 0 < c1 and i, j ∈ N\{n}. Then, if i ≤ j, µj(c) is increasing
with respect to ci if and only if µj(c1, . . . , cn) ≤ µj(c1, . . . , ci). Conversely, if i < j, µj(c) is decreasing with
respect to ci if and only if µ̂j(c1, . . . , cn−1) ≥ µ̂j−i(ci+1 − ci, . . . , cn−1 − ci).

Therefore, the monotonicity properties of the core-center of an airport game can be studied by comparing the
core-center assignments given to a player in the original game and in some particular “truncated” games2. These
truncated games suggest the introduction of two new monotonicity properties. Assume that airline i increases
its cost from ci to c′i. We consider two groups: the first group is formed by the airlines with cost larger than

2Given an airport problem c ∈ CN denote by Ĉ(c) the projection of the core C(c) onto Rn−1 that simply “drops” the n-th

coordinate. Figure 1 shows Ĉ(c) for a 3-agent and 4-agent problem. The face Fi = Ĉ(c) ∩ {x ∈ Rn−1 : x1 + · · · + xi = ci},
i ∈ N \ {n}, of the polytope Ĉ(c) is a cross product of the cores of two airport games: Fi = C(c1, . . . , ci)× Ĉ(ci+1− ci, . . . , cn− ci).

4



ci, and the second group is formed by the airlines with cost lower than or equal to ci. Higher-cost decreasing
monotonicity requires that only the higher-cost agents (individually) should benefit (or should not be harmed)
from agent’s i cost increase, because the differences ck − c′i < ck − ci have diminished for all k > i. Conversely,
lower-cost increasing monotonicity requires that the lower-cost agents should pay more (should not be favored),
because the differences c′i − ck > ci − ck have increased for all k < i. We devote Sections 4 and 5 to formally
define both properties and to prove that the core-center satisfies them.

3 Decompositions of the core volume

Let N = {1, 2, . . . , n} and let c ∈ CN be an airport problem. We devote this section to derive some technical
decompositions of the volume functions Vk. Easily, one can prove (González-Dı́az et al., 2014), that V1(c1) = c1,

V2(c1, c2) =
c22
2 −

(c2−c1)2
2 , and, for all k ≥ 3,

Vk(c1, . . . , ck) =
ckk
k!
− (ck − c1)k

k!
−
k−1∑
i=2

(ck − ci)k−i+1

(k − i+ 1)!
Vi−1(c1, . . . , ci−1). (1)

First, we introduce some notations. By convention, V0 = 1. An expression like Vp+s−1(c1, . . . , cp, s. . ., cp) means
that cost cp is repeated s times. When all the costs are equal, we write Vk(c1, . . . , c1) instead of Vk(c1, k. . ., c1).

Lemma 1. For all k ∈ N and α ≥ 0, Vk(α, . . . , α) = αk

k! .

Proof. Clearly, the property holds for k = 1. Assume that the result is true for k− 1 and proceed by induction.

Then, Vk(α, . . . , α) =
∫ α
0
Vk−1(α− x1, . . . , α− x1)dx1 =

∫ α
0

(α−x1)
k−1

(k−1)! dx1 =
αk

k!
.

Lemma 2. Given k ∈ N and 0 < α ≤ β ≤ c1 ≤ · · · ≤ ck, we have that∫ β

α

Vk(c1 − x1, . . . , ck − x1)dx1 = Vk+1(β − α, c1 − α, . . . , ck − α).

Proof. The result is true for k = 1 since
∫ β
α

(c1 − x1)dx1 = (c1−α)2
2 − (c1−β)2

2 . Assume that the equality holds
for all i < k. Then,∫ β

α

Vk(c1 − x1, . . . , ck − x1)dx1

=

∫ β

α

(ck − x1)k

k!
dx1 −

∫ β

α

(ck − c1)k

k!
dx1 −

k−1∑
i=2

(ck − ci)k−i+1

(k − i+ 1)!

∫ β

α

Vi−1(c1 − x1, . . . , ci−1 − x1)dx1

=
(ck − α)k+1

(k + 1)!
− (ck − β)k+1

(k + 1)!
− (ck − c1)k

k!
(β − α)−

k−1∑
i=2

(ck − ci)k−i+1

(k − i+ 1)!
Vi(β − α, c1 − α . . . , ci−1 − α),

where the first equality holds by Equality (1) and the second by the induction hypothesis. Again by (1), the
last expression equals Vk+1(β − α, c1 − α, . . . , ck − α).

The following result allows to decompose any given volume in terms of volumes with repeated costs.

Proposition 2. If 0 < α ≤ c1 ≤ · · · ≤ ck, k ∈ N, then

1. Vk(c1, . . . , ck) =

k∑
i=0

Vi(α, . . . , α)Vk−i(ci+1 − α, . . . , ck − α).
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2. Vk(c1 − α, . . . , ck − α) =

k∑
i=1

Vi(c1 − α, . . . , c1 − α)Vk−i(ci+1 − c1, . . . , ck − c1).

3. Vk(c1 − α, . . . , ck − α) =

k∑
i=2

Vi(c1 − α, c2 − α, i−1. . ., c2 − α)Vk−i(ci+1 − c2, . . . , ck − c2).

Proof. Assume that 0 < α ≤ c1 ≤ · · · ≤ ck and let us prove the three statements above.

1. Let s ∈ N such that 1 ≤ s ≤ k − 2 and denote

Is =

∫ cs+1−
s∑

j=1
xj

0

· · ·
∫ ck−

k−1∑
j=1

xj

0

dxk . . . dxs+1 = Vk−s

(
cs+1 −

s∑
j=1

xj , . . . , ck −
s∑
j=1

xj

)
.

We claim that

∫ α

0

· · ·
∫ α−

s−1∑
j=1

xj

0

Is dxs . . . dx1 =

Vs(α, . . . , α)Vk−s(cs+1 − α, . . . , ck − α) +

∫ α

0

· · ·
∫ α−

s∑
j=1

xj

0

Is+1 dxs+1 . . . dx1 (2)

Indeed,

∫ α

0

· · ·
∫ α−

s−1∑
j=1

xj

0

Is dxs . . . dx1 =

∫ α

0

· · ·
∫ α−

s∑
j=1

xj

0

Is+1 dxs+1 . . . dx1 +

∫ α

0

· · ·
∫ cs+1−

s∑
j=1

xj

α−
s∑

j=1
xj

Is+1 dxs+1 . . . dx1.

Then, in order to prove the claim, we just have to decompose the second summand of the last expression.

But, since Is+1 = Vk−s−1

(
cs+2 −

s+1∑
j=1

xj , . . . , ck −
s+1∑
j=1

xj

)
, we have, by Lemma 2,

∫ cs+1−
s∑

j=1
xj

α−
s∑

j=1
xj

Is+1 dxs+1 =

Vk−s
(
cs+1 − α, cs+2 − α. . . . , ck − α

)
. Consequently,

∫ α

0

· · ·
∫ cs+1−

s∑
j=1

xj

α−
s∑

j=1
xj

Is+1 dxs+1 . . . dx1 =

∫ α

0

· · ·
∫ α−

s−1∑
j=1

xj

0

Vk−s
(
cs+1 − α, . . . , ck − α

)
dxs . . . dx1

= Vk−s
(
cs+1 − α, . . . , ck − α

) ∫ α

0

· · ·
∫ α−

s−1∑
j=1

xj

0

dxs . . . dx1

= Vk−s(cs+1 − α, . . . , ck − α)Vs(α, . . . , α).

Then, Equation (2) holds. Next, observe that

Vk(c1, . . . , ck) =

∫ c1

0

I1dx1 =

∫ α

0

I1dx1 +

∫ c1

α

I1dx1

=

∫ α

0

I1dx1 +

∫ c1

α

Vk−1(c2 − x1, . . . , ck − x1)dx1 =

∫ α

0

I1dx1 + Vk(c1 − α, . . . , ck − α),
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where the last equality holds by Lemma 2. But, now, according to Equation (2),∫ α

0

I1dx1 =

∫ α

0

∫ α−x1

0

I2dx2dx1 + Vk−1(c2 − α, . . . , ck − α)V1(α).

Then, Vk(c1, . . . , ck) = Vk(c1−α, . . . , ck−α)+V1(α)Vk−1(c2−α, . . . , ck−α)+

∫ α

0

∫ α−x1

0

I2dx2dx1. Decompose∫ α

0

∫ α−x1

0

I2dx2dx1 applying Equation (2), and repeat the process until the intended equality is reached.

2. To prove the second statement, just take A = c1 − α, so that (ci − α)−A = ci − c1, and apply statement 1.

Vk(c1 − α, . . . , ck − α) =

k∑
i=0

Vi(c1 − α, . . . , c1 − α)Vk−i(ci+1 − c1, . . . , ck − c1).

Now, simply observe that, for i = 0, Vk(c1 − c1, c2 − c1, . . . , ck − c1) = 0.

3. From Lemma 2 and statement 2.

Vk(c1 − α, . . . , ck − α) =

∫ c1

α

Vk−1(c2 − x1, . . . , ck − x1)dx1

=

k∑
i=2

Vk−i(ci+1 − c2, . . . , ck − c2)

∫ c1

α

Vi−1(c2 − x1, . . . , c2 − x1)dx1.

But, by Lemma 2,

∫ c1

α

Vi−1(c2 − x1, . . . , c2 − x1)dx1 = Vi(c1 − α, c2 − α, i−1. . ., c2 − α).

The next step consists of providing a way to decompose any given volume in terms of volumes involving only
the costs up to a fixed cp.

Proposition 3. Let p, k ∈ N be such that p < k and 0 < c1 ≤ · · · ≤ ck. Then,

Vk(c1, . . . , ck) =

k−p∑
i=0

Vk−p−i(cp+1+i − cp, . . . , ck − cp)Vp+i(c1, . . . , cp, i+1. . ., cp).

Proof. First we prove that

Vk(c1, . . . , ck) = Vk−p(cp+1 − cp, . . . , ck − cp)Vp(c1, . . . , cp) + Vk(c1, . . . , cp, cp, cp+2, . . . , ck). (3)

Indeed, we know that

Vk(c1, . . . , ck) =

∫ c1

0

· · ·
∫ cp−

p−1∑
j=1

xj

0

Vk−p

(
cp+1 −

p∑
j=1

xj , . . . , ck −
p∑
j=1

xj

)
dxp . . . dx1. (4)

If uk−p(xp) = Vk−p

(
cp+1−

p∑
j=1

xj , . . . , ck−
p∑
j=1

xj

)
then3,

duk−p(xp)

dxp
= −Vk−p−1

(
cp+2−

p∑
j=1

xj , . . . , ck−
p∑
j=1

xj

)
.

3In general, let 0 < c1 ≤ · · · ≤ ck, k ∈ N, x1 ≤ c1, and denote uk(x1) = Vk(c1 − x1, . . . , ck − x1). Then, duk
dx1

(x1) =

−Vk−1(c2 − x1, . . . , ck − x1).
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Integrating by parts,

∫ cp−
p−1∑
j=1

xj

0

Vk−p

(
cp+1 −

p∑
j=1

xj , . . . , ck −
p∑
j=1

xj

)
dxp =

Vk−p(cp+1 − cp, . . . , ck − cp)
(
cp −

p−1∑
j=1

xj

)
+

∫ cp−
p−1∑
j=1

xj

0

xpVk−p−1

(
cp+2 −

p∑
j=1

xj , . . . , ck −
p∑
j=1

xj

)
dxp. (5)

Analogously, integrating by parts,4

∫ cp−
p−1∑
j=1

xj

0

Vk−p

(
cp −

p∑
j=1

xj , cp+2 −
p∑
j=1

xj , . . . , ck −
p∑
j=1

xj

)
dxp =

∫ cp−
p−1∑
j=1

xj

0

xpVk−p−1

(
cp+2 −

p∑
j=1

xj , . . . , ck −
p∑
j=1

xj

)
dxp. (6)

Then, combining equations (4), (5), and (6),

Vk(c1, . . . , ck) = Vk−p(cp+1 − cp, . . . , ck − cp)
∫ c1

0

· · ·
∫ cp−1−

p−2∑
j=1

xj

0

(
cp −

p−1∑
j=1

xj

)
dxp−1 . . . dx1

+

∫ c1

0

· · ·
∫ cp−

p−1∑
j=1

xj

0

Vk−p

(
cp −

p∑
j=1

xj , cp+2 −
p∑
j=1

xj , . . . , ck −
p∑
j=1

xj

)
dxp . . . dx1

= Vk−p(cp+1 − cp, . . . , ck − cp)Vp(c1, . . . , cp) + Vk(c1, . . . , cp, cp, cp+2, . . . , ck).

Therefore, Equation (3) holds. Now, applying Equation (3) to Vk(c1, . . . , cp, cp, cp+2, . . . , ck), we find that

Vk(c1, . . . , cp, cp, cp+2, . . . , ck) =

Vk−p+1(cp+2 − cp, . . . , ck − cp)Vp+1(c1, . . . , cp, cp) + Vk(c1, . . . , cp, cp, cp, cp+3, . . . , ck).

Repeating this process, the result eventually follows.

4 Higher-cost decreasing monotonicity

The higher-cost decreasing monotonicity property states that if a single cost ci increases, then the contributions
requested by the rule for the agents with cost higher than ci should not increase.

Definition 1. A rule ψ satisfies higher-cost decreasing monotonicity if for each pair c, c′ ∈ CN and each i ∈ N
such that c′i ≥ ci and c′j = cj for all j ∈ N\{i}, then ψj(c

′) ≤ ψj(c) whenever cj > ci.

As already pointed out, since the core-center is very sensible to changes in the cost parameters, proving
monotonicity properties of the core-center is not a simple task. Basically, one has to check an inequality of
the type µ̂p(c1, . . . , ck) ≤ µ̂p+1(d1, . . . , dk+1), p ≤ k, which in turn, since the core-center is a ratio of air-
port core volumes, is equivalent to an inequality such as Γ = Vk+1(c1, . . . , cp, cp, . . . , ck)Vk+1(d1, . . . , dk+1) −

4In fact, this equality is the key result to express the core-center as a ratio of volumes, see (González-Dı́az et al., 2014).
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Vk(c1, . . . , ck)Vk+2(d1, . . . , dp+1, dp+1, . . . , dk+1) ≤ 0. Then, one uses the volume decompositions developed in
Section 3 to write each of the volumes involved in expression Γ in terms of volumes of certain “manageable”
types. Finally, one has to rearrange Γ as a sum of expressions involving these types of “manageable” volumes
and study, by induction, their sign.

Let us see how this general scheme works to prove that the core-center satisfies higher-cost decreasing
monotonicity. First, we study one type of “manageable” volumes. We need to introduce some notations. Given
k ∈ N and 0 < c1 ≤ · · · ≤ ck, let Z0 = 1 and Zαs = Vs(ck−s+1 − α, . . . , ck − α), for all s = 1, . . . , k, α < ck−s+1.
When no confusion arises, we write Zs instead of Zαs .

Remark 1. Let q, k ∈ N, q < k, 0 < c1 ≤ · · · ≤ ck, and fix α < ck−q. Clearly, Zα1 = V1(ck −α) = ck −α. Now,
let A0 = 1 and Ar = Z

ck−q+1
r = Vr(ck−r+1− ck−q+1, . . . , ck− ck−q+1), for r = 1, . . . , q− 1. Then, by statement 2

and statement 3 of Proposition 2, respectively,

Zαq =

q∑
i=1

ViAq−i, with Vi = Vi(ck−q+1 − α, . . . , ck−q+1 − α), i = 1, . . . , q,

Zαq+1 =

q+1∑
i=2

V̄iAq+1−i, with V̄j = Vj(ck−q − α, ck−q+1 − α, j−1. . . , ck−q+1 − α), j = 2, . . . , q + 1.

Lemma 3. For all q, k ∈ N, q < k, and 0 < c1 ≤ · · · ≤ ck, fix α < ck−q. Then, Zα1 Z
α
q − Zαq+1 ≥ 0.

Proof. We use the notation and decompositions of Remark 1. Clearly, by Lemma 1,

Vi =
(ck−q+1 − α)i

i!
, i = 1, . . . , q. (7)

Besides, applying the definition of V̄i and Lemma 1,

V̄i =

∫ ck−q

0

(ck−q−1 − α− x1)i−1

(i− 1)!
dx1 =

1

i!

(
(ck−q+1 − α)i − (ck−q+1 − ck−q)i

)
= Vi −Xi, where Xi =

1

i!
(ck−q+1 − ck−q)i, i = 2, . . . , q + 1. (8)

In order to prove that Z1Zq −Zq+1 =

q−1∑
i=0

(
(ck − α)Vq−i − V̄q−i+1

)
Ai ≥ 0, we check that, for all i = 0, . . . , q − 1,

(ck − α)Vq−i − V̄q−i+1 ≥ 0. Certainly,

(ck − α)Vq−i − V̄q−i+1 =
(ck − α)(ck−q+1 − α)q−i

(q − i)!
− (ck−q+1 − α)q−i+1

(q − i+ 1)!
+

(ck−q+1 − ck−q)q−i+1

(q − i+ 1)!
≥ 0,

since (ck − α) ≥ (ck−q+1 − α) and (q − i+ 1)! ≥ (q − i)!.

Proposition 4. Let t, q, k ∈ N be such that t ≤ q < k and c1 ≤ · · · ≤ ck. Fix α < ck−q. Then, Zαt Z
α
q −

Zαt−1Z
α
q+1 ≥ 0.

Proof. We proceed by induction on t ∈ N. The case t = 1 has been proved in Lemma 3. Now, assume that the
result holds for any i ≤ t− 1, i.e.,

Zβi Z
β
j − Z

β
i−1Z

β
j+1 ≥ 0, i ≤ j < k, β < ck−j , (9)
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and then, let us prove that it also holds for t < k. According to the notation and decompositions of Remark 1,

ZtZq − Zt−1Zq+1 =
( t∑
i=0

ViAt−i
)( q∑

i=1

ViAq−i
)
−
(t−1∑
i=0

ViAt−1−i
)(q+1∑

i=2

V̄iAq+1−i

)
=

t−1∑
s=0

q−1∑
r=0

AsAr
(
Vt−sVq−r − Vt−1−sV̄q+1−r

)
+At

q∑
r=1

Aq−rVr.

Certainly, At

q∑
r=1

Aq−rVr ≥ 0. Then, it suffices to prove that

S =

t−1∑
s=0

q−1∑
r=0

AsAr∆s,r ≥ 0, where ∆s,r = Vt−sVq−r − Vt−s−1V̄q−r+1. (10)

First, we claim that
ViVj − Vi−1V̄j+1 ≥ 0, if i ≤ j + 1. (11)

Indeed, applying Equality (8) in Lemma 3, we have to prove that ViVj − Vi−1Vj+1 + Vi−1Xj+1 ≥ 0. Since
Vi−1Xj+1 ≥ 0, it suffices to prove that ViVj − Vi−1Vj+1 ≥ 0 whenever i ≤ j + 1. Let B = (ck−q+1 − α) and
apply Equation (7) in Lemma 3,

ViVj − Vi−1Vj+1 =
Bi

i!

Bj

j!
− Bi−1

(i− 1)!

Bj+1

(j + 1)!
=
( 1

i!j!
− 1

(i− 1)!(j + 1)!

)
Bi+j .

Now Equation (11) is straightforward, since 1
i!j! −

1
(i−1)!(j+1)! ≥ 0 if and only if i ≤ j + 1.

s

r
r = s+ b

0 1
. . .

t− 2

q − t+ 1

...

q − 1

Figure 2: The straight line r = s+ b, with b = q − t+ 1.

Let b = q− t+ 1 > 0 and T = {(s, r) ∈ [0, t− 2]× [0, q− 1] : r > s+ b} ⊂ N2 be the set depicted in Figure 2.
According to Equation (11), if (s, r) ∈ [0, t−1]× [0, q−1] but (s, r) 6∈ T then AsAr∆s,r ≥ 0. Now, take (r, s) ∈ T
such that AsAr∆s,r ≤ 0, then h = (r − s) − b > 0 and (s + h, r − h) 6∈ T , because (r − h) ≤ (s + h) + b. In
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addition, t − s − h = q − r + 1 and q − r + h = t − s − 1. Therefore, each negative addend AsAr∆s,r ≤ 0 in
Equation (10) can be paired with the corresponding As+hAr−h∆s+h,r−h ≥ 0 in the following way

AsAr∆s,r +As+hAr−h∆s+h,r−h =

AsAr

(
Vt−sVq−r − Vt−s−1V̄q−r+1

)
+As+hAr−h

(
Vt−s−hVq−r+h − Vt−s−h−1V̄q−r+h+1

)
=

AsAr

(
Vt−sVq−r − Vt−s−1

(
Vq−r+1 −Xq−r+1

))
+As+hAr−h

(
Vq−r+1Vt−s−1 − Vq−r

(
Vt−s −Xt−s

))
=

AsAr
(
Vt−sVq−r − Vt−s−1Vq−r+1

)
+As+hAr−h

(
Vq−r+1Vt−s−1 − Vq−rVt−s

)
+

AsArVt−s−1Xq−r+1 +As+hAr−hVq−rXt−s =(
As+hAr−h −AsAr

)(
Vt−s−1Vq−r+1 − Vq−rVt−s

)
+AsArVt−s−1Xq−r+1 +As+hAr−hVq−rXt−s.

Therefore, if we prove that the last expression is positive whenever (s, r) ∈ T , then S ≥ 0. Clearly, the
last two terms are positive. Since (q − r + 1) < (t − s − 1) + 1 then, applying Equation (11), we get that
Vt−s−1Vq−r+1 − Vq−rVt−s ≥ 0. It remains to show that for all (s, r) ∈ T , As+hAr−h − AsAr ≥ 0. Now, if
(s, r) ∈ T , then

1. s ≤ r−h ≤ s+h ≤ r, since s ≤ s+h = r− b ≤ r, s ≤ s+ b = r−h ≤ r and (r−h) < (s+h) + b ≤ (s+h).

2. s+ h ≤ t− 2, since s+ h = r − b ≤ q − 1− b = t− 2.

Thus, Ar−hAs+h−AsAr =
(
Ar−hAs+h−Ar−h−1As+h+1

)
+
(
Ar−h−1As+h+1−Ar−h−2As+h+2

)
+· · ·+

(
As+1Ar−1−

AsAr
)
. All the expressions in parentheses are of the form AiAj−Ai−1Aj+1 = Zβi Z

β
j −Z

β
i−1Z

β
j+1, with i ≤ t−2,

i ≤ j and β = ck−q+1. Therefore, we can apply Equation (9), the induction hypotheses, and conclude that all
the addends AiAj −Ai−1Aj+1 ≥ 0 are positive and so As+hAr−h −AsAr ≥ 0 as well.

Lemma 4. Let m ∈ N. Given real numbers Hj , Gj, j = 1, . . . ,m+ 2, and Zi, i = 1, . . . ,m+ 1, then

(m+1∑
i=0

Gi+1Zm+1−i

)( m∑
i=0

Hi+1Zm−i

)
−
( m∑
i=0

Gi+1Zm−i

)(m+1∑
i=0

Hi+1Zm+1−i

)
=

=

m∑
i=0

m∑
j=i

(
Gm+2−iHm+1−j −Gm+1−jHm+2−i)(ZiZj − Zi−1Zj+1

)
.

where Gr = Hr = 0 for all r 6= 1, . . . ,m+ 2, Z0 = 1 and Zr = 0 for all r 6= 0, . . . ,m+ 1.

Proof. Let

D =
(m+1∑
i=0

Gi+1Zm+1−i

)( m∑
i=0

Hi+1Zm−i

)
−
( m∑
i=0

Gi+1Zm−i

)(m+1∑
i=0

Hi+1Zm+1−i

)
.

Straightforward computations show that

D =

m∑
i=0

(
Gm+2−iHm+1−i −Gm+1−i Hm+2−i)ZiZi +

m∑
i=0

(
G1Hm+1−i −Gm+1−i H1

)
ZiZm+1

+

m−1∑
i=0

m∑
j=i+1

(
Gm+2−iHm+1−j +Gm+2−jHm+1−i −Gm+1−iHm+2−j −Gm+1−jHm+2−i)ZiZj .
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Next, we group all terms of the type ∆(q, t) = GqHt−GtHq, with t < q. Let A(i, j), i ≤ j, be the coefficient of
ZiZj in the last expression and let A+(i, j) = ∆(m+ 2− i,m+ 1− j) and A−(i, j) = ∆(m+ 1− i,m+ 2− j).
For all i = 0, . . . ,m, A−(i, i+ 1) = 0, so, in particular, A(m,m+ 1) = A−(m,m+ 1) = 0. Then,

A(i, j) =


A+(i, i) if i = j ∈ {0, . . . ,m}
A+(i, i+ 1) if j = i+ 1 ∈ {1, . . . ,m}
−A−(i,m+ 1) if j = m+ 1, i ∈ {0, . . . ,m− 1}
A+(i, j)−A−(i, j) if i ∈ {0, . . . ,m− 2}, i+ 2 ≤ j ≤ m.

Observe that m + 2 − i ≥ m + 1 − j whenever i ≤ j and also m + 1 − i ≥ m + 2 − j whenever j ≥ i + 2.
All the coefficients A+(i, j) and A−(i, j) involved are of the type ∆(q, t) with t < q. But, clearly, A−(i, j) =
A+(i+ 1, j − 1). Then,

D =

m∑
i=0

A+(0, i)Zi +

m−1∑
i=0

m+1∑
j=i+2

A+(i+ 1, j − 1)(Zi+1Zj−1 − ZiZj).

Rearranging the indices and setting, if necessary, Gr = Hr = 0 for all r 6= 1, . . . ,m + 2 and Zr = 0 for all
r 6= 0, . . . ,m+ 1, we obtain the expression of the statement of the theorem.

Next, we use the decomposition of Proposition 3 to extend, by induction, the sign inequalities of the “man-
ageable” volumes Zt to volumes of a more general type. We need some extra notation. Given p, s ∈ N and
0 < δ ≤ d1 ≤ · · · ≤ dp, we write gsp = (d1− δ, . . . , dp− δ, s. . ., dp− δ), Gsp = Vp+s−1(gsp), h

s
p = (δ, d1, . . . , dp, s. . ., dp)

and Hs
p = Vp+s(h

s
p).

Lemma 5. For all s ∈ N and 0 < δ ≤ d1, we have µ̂1(d1 − δ, s. . ., d1 − δ) ≤ µ̂2(δ, d1, s. . ., d1).

Proof. By Lemma 1, µ̂1(d1 − δ, s. . ., d1 − δ) = d1−δ
s+1 . We have to prove that Λ = (d1−δ)

s+1 Vs+1(δ, d1, s. . ., d1) −
Vs+2(δ, d1, s+1. . . , d1) ≤ 0. Now, by Proposition 3 with p = 1 and k = s + 1, and Lemma 1, Vs+2(δ, d1, s+1. . . , d1) =
s+1∑
i=0

(d1 − δ)s−i+1

(s− i+ 1)!

δi+1

(i+ 1)!
and

(d1−δ)
s+1 Vs+1(δ, d1, s. . ., d1) = (d1−δ)

s+1

s∑
i=0

(d1 − δ)s−i

(s− i)!
δi+1

(i+ 1)!
=

s∑
i=0

(d1 − δ)s−i+1

(s+ 1)(s− i)!
δi+1

(i+ 1)!
.

Then, since (s− i+ 1)! = (s− i+ 1)(s− i)! and s+ 1 ≥ s+ 1− i, for all 0 ≤ i ≤ s,

Λ =

s∑
i=0

(d1 − δ)s−i+1δi+1

(i+ 1)!

( 1

(s+ 1)(s− i)!
− 1

(s− i+ 1)!

)
− δs+2

(s+ 2)!
≤ 0,

as we wanted to prove.

Proposition 5. Let p, s, t, q ∈ N and 0 < δ ≤ d1 ≤ · · · ≤ dp. It holds that

1. µ̂p(d1 − δ, . . . , dp − δ, s. . ., dp − δ) ≤ µ̂p+1(δ, d1, . . . , dp, s. . ., dp).

2. if t < q then GqpH
t
p −GtpHq

p ≤ 0.

Proof. Let us prove the first statement proceeding by induction on p ∈ N. Lemma 5 solves the case p = 1. Next,
fix p > 1, and assume that for all s ∈ N, µ̂p−1(d1 − δ, . . . , dp−1 − δ, s. . ., dp−1 − δ) ≤ µ̂p(δ, d1, . . . , dp−1, s. . ., dp−1),

or, equivalently, for all s ∈ N,
Gs+1

p−1

Gs
p−1
≤ Hs+1

p−1

Hs
p−1

. We claim that

Gqp−1H
t
p−1 −Gtp−1H

q
p−1 ≤ 0, for all t < q. (12)
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Indeed
Gq

p−1

Gt
p−1
≤ Hq

p−1

Ht
p−1

because of the induction hypothesis and the fact that
Gq

p−1

Gt
p−1

=
Gq

p−1

Gq−1
p−1

Gq−1
p−1

Gq−2
p−1

. . .
Gt+1

p−1

Gt
p−1

and

Hq
p−1

Ht
p−1

=
Hq

p−1

Hq−1
p−1

Hq−1
p−1

Hq−2
p−1

. . .
Ht+1

p−1

Ht
p−1

. In order to establish the result for p > 1, we have to prove that for all s ∈ N,

Gs+1
p Hs

p −GspHs+1
p ≤ 0. From Proposition 3, Gs+1

p =

s+1∑
i=0

Gi+1
p−1Zs+1−i, H

s
p =

s∑
i=0

Hi+1
p−1Zs−i, G

s
p =

s∑
i=0

Gi+1
p−1Zs−i

and Hs+1
p =

s+1∑
i=0

Hi+1
p−1Zs+1−i, where Z0 = 1 and Zr = Vr(dp − dp−1, . . . , dp − dp−1), for all r = 1, . . . , s + 1.

By Lemma 4, Gs+1
p Hs

p −GspHs+1
p =

s∑
i=0

s∑
j=i

(
Gs+2−i
p−1 Hs+1−j

p−1 −Gs+1−j
p−1 Hs+2−i

p−1
)(
ZiZj −Zi−1Zj+1

)
, where Zr = 0

for all r 6= 0, . . . , s + 1 and Grp−1 = Hr
p−1 = 0 for all r 6= 1, . . . , s + 2. Applying Equation (12), the induction

hypothesis, and Proposition 4, we obtain that indeed, Gs+1
p Hs

p −GspHs+1
p ≤ 0.

As for the second statement, it is in fact a generalization of statement 1. Indeed, we have just proved

that for all s ∈ N, Gs+1
p Hs

p − GspHs+1
p ≤ 0 or, equivalently,

Gs+1
p

Gs
p
≤ Hs+1

p

Hs
p

. Now, given t < q, we have that

GqpH
t
p −GtpHq

p ≤ 0 if and only if
Gq

p

Gt
p
≤ Hq

p

Ht
p
. Again, this inequality follows directly from the hypothesis and the

decompositions
Gq

p

Gt
p

=
Gq

p

Gq−1
p

Gq−1
p

Gq−2
p

. . .
Gt+1

p

Gt
p

and
Hq

p

Ht
p

=
Hq

p

Hq−1
p

Hq−1
p

Hq−2
p

. . .
Ht+1

p

Ht
p

.

Finally, we can state and prove the main result of this section.

Theorem 1. For all p, k ∈ N such that k ≥ p, and all 0 < δ ≤ d1 · · · ≤ dp ≤ · · · ≤ dk, we have that

µ̂p(d1 − δ, . . . , dp − δ, . . . , dk − δ) ≤ µ̂p+1(δ, d1, . . . , dp, . . . , dk).

Proof. By definition,

µ̂p(d1 − δ, . . . , dp − δ, . . . , dk − δ) =
Vk+1(d1 − δ, . . . , dp − δ, dp − δ, . . . , dk − δ)

Vk(d1 − δ, . . . , dp − δ, . . . , dk − δ)

µ̂p+1(δ, d1, . . . , dp, . . . , dk) =
Vk+2(δ, d1, . . . , dp, dp . . . , dk)

Vk+1(δ, d1, . . . , dp, . . . , dk)
.

Therefore, µ̂p(d1 − δ, . . . , dp − δ, . . . , dk − δ) ≤ µ̂p+1(δ, d1, . . . , dp, . . . , dk) if and only if

∆ = Vk+1(d1 − δ, . . . , dp − δ, dp − δ, . . . , dk − δ)Vk+1(δ, d1, . . . , dp, . . . , dk)

− Vk(d1 − δ, . . . , dp − δ, . . . , dk − δ)Vk+2(δ, d1, . . . , dp, dp, . . . , dk) ≤ 0. (13)

Now, applying Proposition 3, we decompose each of the four factors in the last inequality as sums involving
volumes of the types Gsp and Hs

p . Then,

Vk(d1 − δ, . . . , dk − δ) =

k−p∑
i=0

Gi+1
p Zk−p−i, Vk+1(d1 − δ, . . . , dp − δ, dp − δ, . . . , dk − δ) =

k−p∑
i=0

Gi+2
p Zk−p−i,

Vk+1(δ, d1, . . . , dk) =

k−p∑
i=0

Hi+1
p Zk−p−i, Vk+2(δ, d1, . . . , dp, dp, . . . , dk) =

k−p∑
i=0

Hi+2
p Zk−p−i,

where Z0 = 1 and Zt = Vt(dk−t+1 − δ, . . . , dk − δ), t = 1, . . . , k − p. Therefore, applying Lemma 4,

∆ =

k−p∑
i=0

k−p∑
j=i

(
Gk−p+2−i
p Hk−p+1−j

p −Gk−p+1−j
p Hk−p+2−i

p

)(
ZiZj − Zi−1Zj+1

)
.
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where Zr = 0 for all r 6= 0, . . . , k − p and Grp = Hr
p = 0 for all r 6= 1, . . . , k − p + 2. Therefore, for ∆ ≤ 0 it

is sufficient to establish that ∆(q, t) ≤ 0 whenever t < q and that ZtZq − Zt−1Zq+1 ≥ 0 if t ≤ q. These two
properties were already proved in Propositions 5 and 4, respectively.

As a particular case of Theorem 1 we deduce that the core-center satisfies higher-cost decreasing monotonicity.

Proposition 6. The core-center satisfies higher-cost decreasing monotonicity.

Proof. Let c ∈ CN be an airport problem. Given j ∈ {2, . . . , n − 1} and r ∈ {0, . . . , j − 2}, the inequality
µ̂j−r(cr+1−cr, . . . , cn−1−cr) ≥ µ̂j−r−1(cr+2−cr+1, . . . , cn−1−cr+1) follows by taking k = n−r−2, p = j−r−1
and (δ, d1, . . . , dk) = (cr+1 − cr, cr+2 − cr, . . . , cn−1 − cr) in Theorem 1. Therefore, if j ∈ {2, . . . , n− 1} then

µ̂j(c1, . . . , cn−1) ≥ µ̂j−1(c2 − c1, . . . , cn−1 − c1) ≥ · · · ≥ µ̂1(cj − cj−1, . . . , cn−1 − cj−1).

Now, applying Proposition 1, if i, j ∈ N\{n}, i < j, then µj(c) is decreasing with respect to ci.

5 Lower-cost increasing monotonicity

The lower-cost increasing monotonicity property states that if a single cost ci increases, then the contributions
requested of the agents with cost lower than ci should not decrease.

Definition 2. A rule ψ satisfies lower-cost increasing monotonicity if for each pair c, c′ ∈ CN and each i ∈ N
such that c′i ≥ ci and c′j = cj for all j ∈ N\{i}, then ψj(c

′) ≤ ψj(c) whenever cj ≤ ci.

In order to establish that the core-center satisfies lower-cost increasing monotonicity, we follow the scheme
developed in Section 4 but with a significant difference: the decomposition of a given volume provided by
Proposition 3 has to be changed (Proposition 7). We need some extra notations. Given p, k, s, t, q ∈ N
such that k ≥ p and 0 < c1 ≤ · · · ≤ cp ≤ · · · ≤ ck, write Apk,s = Vk+s−1(c1, . . . , cp, . . . , ck, s. . ., ck), Âpk,s =

Vk+s(c1, . . . , cp, cp . . . , ck, s. . ., ck) and ∆p
k(t, q) = Âpk,tA

p
k,q − Apk,tÂ

p
k,q. The superscript in Apk,s, though some-

how unnecessary or ambiguous in cases like Âpp,s = App,s+1, is helpful to refer to a particular coordinate of the
core-center. It is also worth noting that ∆p

k(t, t) = 0.

Proposition 7. Given p, k, s ∈ N such that k ≥ p > 1 and 0 < c1 ≤ · · · ≤ cp ≤ · · · ≤ ck, let δ(p, k) = p − 1 if
p = k and δ(p, k) = p if p < k. Then,

Apk,s =

s∑
i=0

1

i!
A
δ(p,k)
k−1,s+1−i (ck − ck−1)i, Âpk,s =

s∑
i=0

1

i!
Â
δ(p,k)
k−1,s+1−i (ck − ck−1)i.

Proof. Let p, k, s ∈ N with k > p > 1. Then

Apk,s = Vk+s−1(c1, . . . , cp, . . . , ck, s. . ., ck) =

∫ c1

0

· · ·
∫ ck−1−

k−2∑
j=1

xj

0

Vs
(
ck −

k−1∑
j=1

xj , . . . , ck −
k−1∑
j=1

xj
)
dxk−1 . . . dx1

=

∫ c1

0

· · ·
∫ ck−1−

k−2∑
j=1

xj

0

1

s!

(
ck −

k−1∑
j=1

xj
)s
dxk−1 . . . dx1

where the last equality is obtained applying Lemma 1. Now, we expand the integrand by the binomial theorem,

setting Xk = ck − ck−1 and Yk−1 = ck−1 −
k−1∑
j=1

xj . Then,

1

s!

(
ck −

k−1∑
j=1

xj
)s

=
1

s!
(Xk + Yk−1)s =

1

s!

s∑
i=0

(
s

i

)
Xi
kY

s−i
k−1 =

s∑
i=0

1

i!(s− i)!
Xi
kY

s−i
k−1 .
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Therefore, Apk,s =

s∑
i=0

1

i!

(∫ c1

0

· · ·
∫ ck−1−

k−2∑
j=1

xj

0

1

(s− i)!
Y s−ik−1dxk−1 . . . dx1

)
Xi
k. Again, by Lemma 1, 1

(s−i)!Y
s−i
k−1 =

Vs−i(Yk−1, . . . , Yk−1) and, consequently,

∫ c1

0

· · ·
∫ ck−1−

k−2∑
j=1

xj

0

1

(s− i)!
Y s−ik−1dxk−1 . . . dx1 =

∫ c1

0

· · ·
∫ ck−1−

k−2∑
j=1

xj

0

Vs−i(Yk−1, . . . , Yk−1)dxk−1 . . . dx1

=

∫ c1

0

· · ·
∫ ck−2−

k−3∑
j=1

xj

0

Vs+1−i

(
ck−1 −

k−2∑
j=1

xj , . . . , ck−1 −
k−2∑
j=1

xj

)
dxk−2 . . . dx1 = Apk−1,s+1−i.

The above equality leads to Apk,s =

s∑
i=0

1

i!
Apk−1,s+1−i X

i
k.

The case k = p and the second part of the proof can be easily adapted from the previous one.

Lemma 6. Given p, k, s ∈ N such that k ≥ p > 1 and 0 < c1 ≤ · · · ≤ cp ≤ · · · ≤ ck, let Xk = ck − ck−1. Then,

∆p
k(s, s+ 1) =

2s∑
i=0

( ri∑
r=0

B(i, r)∆
δ(p,k)
k−1 (t(i, r), q(i, r))

)
Xi
k,

where, ri ∈ N for all i ∈ {0, . . . , 2s}. Besides, for all r ∈ {0, . . . , ri}, it holds that B(i, r) ≥ 0 and t(i, r) < q(i, r).

Proof. Using the decomposition of Proposition 7, one can derive that

∆p
k(s, s+ 1) =

s∑
i=0

( i∑
r=0

1

r!(i− r)!
∆
δ(p,k)
k−1 (t1(i, r), q1(i, r))

)
Xi
k

+

2s+1∑
i=s+1

(2s+1−i∑
r=0

1
(s+1−r)!(i−(s+1−r))!∆

δ(p,k)
k−1 (t2(i, r), q2(i, r))

)
Xi
k,

where t1(i, r) = s+ 1− r, q1(i, r) = s+ 2− (i− r), t2(i, r) = 2s+ 2− i− r and q2(i, r) = r + 1.
First, we examine the coefficients of the powers Xi

k, i = 0, . . . , s, in the sum above. Observe that the

coefficient of X0
k that corresponds to i = 0, r = 0, is just ∆

δ(p,k)
k−1 (s + 1, s + 2). Next, fix i ∈ {1, . . . , s} and

introduce r∗i = i−1
2 . Clearly, if i is an odd number, r∗i ∈ N and the term corresponding to the index r = r∗i is

zero, because t1(i, r∗i ) = q1(i, r∗i ). As a consequence, the coefficient of Xi
k has an odd number of addends, in fact,

i when i is odd and i+ 1 when i is even. In any case, the term corresponding to the index r = i (the last one)

is B(i, i)∆
δ(p,k)
k−1 (t(i, i), q(i, i)) where B(i, i) = 1

i! ≥ 0, t(i, i) = s+ 1− i, and q(i, i) = s+ 2. Since i ∈ {0, . . . , s},
t(i, i) < q(i, i). Therefore, we are left with an even number of terms.

Now, consider the terms corresponding to indices r1, r2 ∈ {0, . . . , i − 1} such that r1 < r2 and r1 +
r2 = i − 1. We have that r1 < r∗i < r2, t1(i, r1) = q1(i, r2), and q1(i, r1) = t1(i, r2). Subsequently,

∆
δ(p,k)
k−1 (t1(i, r1), q1(i, r1)) = −∆

δ(p,k)
k−1 (t1(i, r2), q1(i, r2)), so we can add up both terms and write

1

r1!(i− r1)!
∆
δ(p,k)
k−1 (t1(i, r1), q1(i, r1)) +

1

r2!(i− r2)!
∆
δ(p,k)
k−1 (t1(i, r2), q1(i, r2))

=
( 1

r2!(i− r2)!
− 1

r1!(i− r1)!

)
∆
δ(p,k)
k−1 (t1(i, r2), q1(i, r2)).

Therefore each pair of indices r1, r2, with the properties listed above, produces a single term of the form

B(i, r)∆
δ(p,k)
k−1 (t(i, r), q(i, r)) satisfying:
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1. B(i, r) ≥ 0.

Indeed, 1
r2!(i−r2)! −

1
r1!(i−r1)! ≥ 0 if and only if (i−r1)!

r2!
≥ (i−r2)!

r1!
. But, r1 + r2 = i − 1 implies that

i− r1 = r2 + 1, i− r2 = r1 + 1. Then, (i−r1)!
r2!

= r2 + 1 > (i−r2)!
r1!

= r1 + 1.

2. t(i, r) < q(i, r).
Certainly, t(i, r) = t1(i, r2) = s+ 1− r2 < q(i, r) = q1(i, r2) = s+ 2− (i− r2) if and only if r2 >

i−1
2 = r∗i .

A similar analysis can be done for the coefficients of the powers Xi
k, i = s+ 1, . . . , 2s+ 1.

Lemma 7. For all p, s ∈ N, µp(c1, . . . , cp, s. . ., cp) ≥ µp(c1, . . . , cp, s+1. . . , cp).

Proof. We proceed by induction on p. The case p = 1, that is, µ1(c1, s. . ., c1) ≥ µ1(c1, s+1. . . , c1) for all s ∈ N, is a
simple consequence of the fact that µ1(c1, s. . ., c1) = c1

s . Next, assume that the result holds for p− 1, that is, for

all s ∈ N, µp−1(c1, . . . , cp−1, s. . ., cp−1) ≥ µp−1(c1, . . . , cp−1, s+1. . . , cp−1). Then, it follows that ∆p−1
p−1(s, s + 1) ≥ 0

for all s ∈ N, or equivalently, ∆p−1
p−1(t, q) ≥ 0 whenever t < q. We have to prove that the result holds for p.

But, again, that is equivalent to proving that ∆p
p(s, s + 1) ≥ 0, for all s ∈ N, which is a direct consequence of

Lemma 6 and the induction hypothesis.

Lemma 8. For all p, k, s ∈ N such that k ≥ p, µp(c1, . . . , cp, . . . , ck, s. . ., ck) ≥ µp(c1, . . . , cp, . . . , ck, s+1. . . , ck).

Proof. We proceed by induction on k. The case k = p was proven in Lemma 7. Next, assume that the result
holds for k − 1 ≥ p, that is, µp(c1, . . . , cp, . . . , ck−1, s. . ., ck−1) ≥ µp(c1, . . . , cp, . . . , ck−1, s+1. . . , ck−1), for all s ∈ N.
Then, ∆p

k−1(s, s + 1) ≥ 0 for all s ∈ N, or equivalently, ∆p
k−1(t, q) ≥ 0 whenever t < q. We have to prove that

the result holds for k > p. But, again, that is equivalent to proving that ∆p
k(s, s + 1) ≥ 0, for all s ∈ N. But

this inequality follows immediately from Lemma 6 and the induction hypothesis.

Theorem 2. Given p, s ∈ N and costs 0 < c1 ≤ · · · ≤ cp ≤ cp+1 ≤ · · · ≤ cp+s, we have that

µp(c1, . . . , cp) ≥ µp(c1, . . . , cp, cp+1) ≥ · · · ≥ µp(c1, . . . , cp, cp+1, . . . , cp+s).

Proof. Observe that µp(c1, . . . , cp) = (cp − cp−1) + µ̂p−1(c1, . . . , cp−1) and µp(c1, . . . , cp, cp+1) = µ̂p(c1, . . . , cp).

Then, µp(c1, . . . , cp) ≥ µp(c1, . . . , cp, cp+1) if and only if ∆p = (cp−cp−1)Ap−1p−1,1A
p
p,1+Ap−1p−1,2A

p
p,1−A

p
p,2A

p−1
p−1,1 ≥

0. Note that ∆p does not depend on the cost cp+1, therefore, using Lemma 7, it is easy to see that the first
inequality of the chain is satisfied.

Now, whenever k > p, µp(c1, . . . , ck) ≥ µp(c1, . . . , ck, ck+1) if and only if µ̂p(c1, . . . , ck−1) ≥ µ̂p(c1, . . . , ck).

The last inequality is equivalent to Âpk−1,1A
p
k,1−Â

p
k,1A

p
k−1,1 ≥ 0. Consider the left-hand expression as a function

of the cost ck, that is, f(ck) = Âpk−1,1A
p
k,1 − Âpk,1A

p
k−1,1, ck ∈ [ck−1, ck+1]. A straightforward computation

shows that f ′(ck) = 0. Henceforth, f is constant in the interval [ck−1, ck+1]. Consequently, f(ck) ≥ 0 if and
only if f(ck−1) ≥ 0. Since f(ck−1) = ∆p

k−1(1, 2) then f(ck−1) ≥ 0 if and only if µ̂p(c1, . . . , cp, . . . , ck−1) ≥
µ̂p(c1, . . . , cp, . . . , ck−1, ck−1). Finally, the last inequality has already been established in Lemma 8.

Immediately from Theorem 2, we deduce that the core-center satisfies lower-cost increasing monotonicity.

Proposition 8. The core-center satisfies lower-cost increasing monotonicity.

Proof. Let c ∈ CN be an airport problem. Then the core-center satisfies lower-cost increasing monotonicity if
and only if µj(c) is increasing with respect to ci for all j ≤ i ≤ n. First, assume that j ≤ i < n. According
to Theorem 2, µj(c1, . . . , cj) ≥ µj(c1, . . . , cj , . . . , ci) ≥ µj(c1, . . . , cn) = µj(c), and lower-cost increasing mono-
tonicity is now a direct consequence of Proposition 1. As for the case j ≤ i = n, we already know that µj(c),

j = 1, . . . , n− 1, is independent of cn, and that ∂µn

∂cn
(c) = 1.
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6 Monotonicity properties

The monotonicity properties in the literature on airport problems focus on how changes in the cost parameters
of an agent, or group of agents, impact the payoff assigned by a single-valued rule to that particular agent or
group of agents. Of course, such cost variations also have an effect on the core of the airport game. But, how to
measure it? We argue that the core-center, as the “average” stable payoff vectors, is a good indicator of the core
monotonicity. In fact, the lower-cost increasing monotonicity and higher-cost decreasing monotonicity properties
studied in the previous sections capture the general behavior of the core-center with respect to such changes,
providing an insight on the corresponding core fluctuations. In this section, building on these two properties,
we analyze whether or not the core-center satisfies the usual monotonicity properties listed in Section 2.

First, we state several implications relating some of these well known properties with higher-cost decreasing
monotonicity and lower-cost increasing monotonicity.

Proposition 9. If a rule satisfies lower-cost increasing monotonicity then it satisfies individual cost monotonic-
ity. If a rule satisfies downstream cost monotonicity and lower-cost increasing monotonicity then it satisfies weak
cost monotonicity.

Proof. The first statement is trivial. Then, we just have to prove that, for each pair c, c′ ∈ CN such that
c′ = c+ c′′ for some c′′ ∈ CN , then ψ(c′) ≥ ψ(c). Consider the following airport problems:

Problem Costs
c0 = c c1 c2 . . . ci . . . cn
c1 c1 + c′′1 c2 + c′′1 . . . ci + c′′1 . . . cn + c′′1
· · ·
ci c1 + c′′1 c2 + c′′2 . . . ci + c′′i . . . cn + c′′i
· · ·

cn = c′ c1 + c′′1 c2 + c′′2 . . . ci + c′′i . . . cn + c′′n

Now, noting that c′ = cn and combining downstream cost monotonicity (DOWN) and lower-cost increasing
monotonicity (LCIM) we have

ψ1(cn)≥ LCIM . . . ≥ LCIM ψ1(ci)≥ LCIM . . . ≥ LCIM ψ1(c1)≥ DOWNψ1(c)
ψ2(cn)≥ LCIM . . . ≥ LCIM ψ2(ci)≥ LCIM . . . ≥ DOWNψ2(c1)≥ DOWNψ2(c)
· · ·

ψi(c
n)≥ LCIM . . . ≥ LCIM ψi(c

i)≥ DOWN. . . ≥ DOWNψi(c
1)≥ DOWNψi(c)

· · ·
ψn(cn)≥ DOWN. . . ≥ DOWNψn(ci)≥ DOWN. . . ≥ DOWNψn(c1)≥ DOWNψn(c).

Then, in fact, ψ(c′) ≥ ψ(c).

As an immediate consequence of Propositions 8 and 9 we have the following result.

Proposition 10. The core-center satisfies individual cost monotonicity.

Obviously, if a rule satisfies others-oriented cost monotonicity then it also satisfies higher-cost decreasing
monotonicity. Nevertheless, the converse is not true.

Example 1. Let N = {1, 2, 3}. Consider the pair of airport problems c, c′ ∈ CN where c = (1, 2, 3) and
c′ = (1, 3, 3). Then, µ1(c) = 4

9 < µ1(c′) = 7
15 . Observe that an increase in the cost of player 2 results in a lower

core-center payoff for player 1. Then, the core-center violates others-oriented cost monotonicity.

The analysis of the downstream cost monotonicity property for the core-center follows a similar structure as
that of Theorem 1. Hence we just provide an outline.
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Theorem 3. Given indices i, j ∈ N, j ≥ i, a value γ > 0 and costs 0 < c1 ≤ · · · ≤ ck, we have that

µj(c1, c2, . . . , ci + γ, . . . , ck + γ) ≥ µj(c1, c2, . . . , ck).

Proof. Let us examine some simple situations. If i = j = k, then µk(c1, . . . , ck−1, ck + γ) = γ + µk(c1, . . . , ck) ≥
µk(c1, . . . , ck). If i < k and j = k then µk(c1, . . . , ci+γ, . . . , ck+γ) = (ck−ck−1)+µ̂k−1(c1, . . . , ci+γ, . . . , ck−1+γ)
and µk(c1, . . . , ck) = (ck− ck−1) + µ̂k−1(c1, . . . , ck−1). Therefore, µk(c1, . . . , ci+γ, . . . , ck +γ) ≥ µk(c1, . . . , ck) if
and only if µ̂k−1(c1, . . . , ci+γ, . . . , ck−1+γ) ≥ µ̂k−1(c1, . . . , ck−1). Obviously, if i ≤ j < k then µj(c1, c2, . . . , ci+
γ, . . . , ck + γ) = µ̂j(c1, . . . , ci + γ, . . . , ck−1 + γ) and µj(c1, . . . , ck) = µ̂j(c1, . . . , ck−1). It suffices to prove that
for all i ≤ j ≤ k, µ̂j(c1, . . . , ci−1, ci + γ, . . . , cj + γ, . . . , ck + γ) ≥ µ̂j(c1, . . . , ck). This is equivalent to

∆ = Vk+1(c1, . . . , ci−1, ci + γ, . . . , cj + γ, cj + γ, . . . , ck + γ)Vk(c1, . . . , ck)

− Vk(c1, . . . , ci−1, ci + γ, . . . , cj + γ, . . . , ck + γ)Vk+1(c1, . . . , cj , cj , . . . , ck) ≥ 0.

Denote Z0 = 1 and

Gsj = Vj+s−1(c1, . . . , ci−1, ci + γ, . . . , cj + γ, s. . ., cj + γ), s = 1, . . . , k − j + 2

Hs
j = Vj+s−1(c1, . . . , cj , s. . ., cj), s = 1, . . . , k − j + 2

Zt = Vt(ck−t+1 − cj , . . . , ck − cj), t = 1, . . . , k − j.

Applying Proposition 3, Vk(c1, . . . , ck) =

k−j∑
r=0

Hr+1
j Zk−j−r, Vk+1(c1, . . . , cj , cj , . . . , ck) =

k−j∑
r=0

Hr+2
j Zk−j−r, and

Vk+1(c1, . . . , ci + γ, . . . , cj + γ, cj + γ, . . . , ck + γ) =

k−j∑
r=0

Gr+2
j Zk−j−r

Vk(c1, . . . , ci + γ, . . . , cj + γ, . . . , ck + γ) =

k−j∑
r=0

Gr+1
j Zk−j−r

Therefore, applying Lemma 4,

∆ =

k−j∑
r=0

k−j∑
t=r

(
Gk−j+2−r
j Hk−j+1−t

j −Gk−j+1−t
j Hk−j+2−r

j

)(
ZrZt − Zr−1Zt+1

)
,

where Zr = 0 for all r 6= 0, . . . , k − j and Grj = Hr
j = 0 for all r 6= 1, . . . , k − j + 2. Then, in order to prove

that ∆ ≥ 0 it is sufficient to establish that ∆(q, t) ≥ 0 whenever t < q and that ZrZt − Zr−1Zt+1 ≥ 0 if r ≤ t.
The first property can be established, with very few adjustments, as in Proposition 5, and the second holds by
Proposition 4.

Proposition 11. The core-center satisfies downstream cost monotonicity.

Proof. Let c ∈ CN be an airport problem. Observe that downstream cost monotonicity can be rewritten as
follows. If for each pair c, c′ ∈ CN and each i ∈ N , if for each j ∈ N such that cj < ci, c

′
j = cj and each j ∈ N

such that cj ≥ ci, c′j = cj + γ ( γ ≥ 0), then for each j ∈ N such that cj ≥ ci, ψj(c′) ≥ ψj(c). Therefore the cost
vectors c and c′ can be written as c = (c1, c2, . . . , ci−1, ci, . . . , cn) and c′ = (c1, c2, . . . , ci−1, ci + γ, . . . , cn + γ).
Now, the result is a direct consequence of Theorem 3.

By applying Propositions 8, 9 and 11 we derive the following result.

Proposition 12. The core-center satisfies weak cost monotonicity.
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Example 2. The core-center does not satisfy strong cost monotonicity. Indeed, let N = {1, 2, 3} and c =
(1, 2, 4) ∈ CN . Then µ(c) = ( 4

9 ,
7
9 ,

25
9 ). Now, for the airport problem c′ = (1, 3, 4) ∈ CN , µ(c′) = ( 7

15 ,
19
15 ,

34
15 ).

Thus, c ≤ c′ but µ3(c′) < µ3(c).

Proposition 13. The core-center satisfies population monotonicity.

Proof. We prove the result for the case in which there is k ∈ N such that N = N ′ ∪ {k}. The general case
follows from repeated application of that property. Thus, given N ′ = N\{k}, we prove that µN ′(c) ≤ µ(cN ′).
We distinguish three cases.

Case 1: ck = cn. Then, for each i ∈ N ′, ci ≤ ck = cn. But, by Theorem 2, µi(cN ′) = µi(c1, . . . , cn−1) ≥
µi(c1, . . . , cn−1, cn) = µi(c), for each i ∈ N ′.

Case 2: ck = c1. Then ci ≥ ck = c1 for all i ∈ N ′. Now, for each ε ≥ 0, let cε = (ε, c2, . . . , cn). Clearly,
µ(cN ′) = µN ′(c

0). By higher-cost decreasing monotonicity, for each ε ∈ (0, c1], µN ′(c) ≤ µN ′(c
ε) and, by

continuity, µN ′(c) ≤ µN ′(c0). Therefore, µN ′(c) ≤ µN ′(c0) = µ(cN ′).

Case 3: c1 < ck < cn. Let i ∈ N ′. We distinguish two subcases.
ci > ck: Consider the airport problems cε ∈ CN , with cε = (ε, c1, . . . , ck−1, ck+1, ck+2, . . . , cn) and ε ∈

(0, c1]. As in Case 2, higher-cost decreasing monotonicity and continuity ensure that µi(cN ′) = µi(c
0) ≥ µi(cε).

Combining this with a repeated application of higher-cost decreasing monotonicity, we have

µi(cN ′) = µi(c
0) ≥ µi(c1, c1, c2, . . . , ck−1, ck+1, ck+2, . . . , cn) ≥ µi(c1, c2, c2, . . . , ck−1, ck+1, ck+2, . . . , cn)

≥ · · · ≥ µi(c1, c2, c3, . . . , ck−1, ck, ck+1, . . . , cn) = µi(c).

ci ≤ ck: If ci = ck, we assume, without loss of generality, that i < k. Now, applying lower-cost increas-
ing monotonicity repeatedly, µi(cN ′) = µi(c1, . . . , ck−1, ck+1, ck+2, . . . , cn) ≥ µi(c1, . . . , ck−1, ck, ck+1, . . . , cn−1).
Now, by Case 1, we also have that µi(c1, . . . , ck−1, ck, ck+1, . . . , cn−1) ≥ µi(c1, . . . , ck−1, ck, ck+1, . . . , cn−1, cn) =
µi(c). Combining the inequalities in both equations we get that µi(cN ′) ≥ µi(c).

Example 3. The core-center does not satisfy marginalism. Consider the airport problems with player set
N = {1, 2, 3} and costs c = (1, 2, 3) and c′ = (1, 3, 4) that satisfy the hypothesis of downstream cost monotonicity
(with i = 2). Their respective core-centers are µ(c) = ( 4

9 ,
7
9 ,

16
9 ) and µ(c′) = ( 7

15 ,
19
15 ,

34
15 ) so, in particular,

µ1(c) 6= µ1(c′).

Remark 2. The core-center is an intuitive but quite complex solution concept defined for the class of balanced
games. What we show up in this paper is a well established model, the class of airport problems, for which the
core-center has good monotonicity properties. The task of proving the results of the paper requires a deep analysis
of the geometric structure of the core.

Besides, two new monotonicity properties, higher-cost decreasing monotonicity and lower-cost increasing
monotonicity, are the key to check if the core-center satisfies the usual monotonicity properties. The relation of
these two properties with the usual properties for airport problems and their implications for the ranking of rules
has been studied in Mirás-Calvo et al. (2014).

As a summary, of the monotonicity properties listed in Section 2, the core-center violates others-oriented
cost monotonicity, strong cost monotonicity, and marginalism, but it satisfies individual cost monotonicity,
downstream cost monotonicity, weak cost monotonicity, and population monotonicity.
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