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Abstract

In this paper we present an axiomatic analysis of several ranking methods for gen-
eral tournaments. We find that the ranking method obtained by applying maximum
likelihood to the (Zermelo-)Bradley-Terry model, the most common method in statis-
tics and psychology, is one of the ranking methods that perform best with respect
to the set of properties under consideration. A less known ranking method, gener-
alised row sum, performs well too. We also study, among others, the fair bets ranking
method, widely studied in social choice, and the least squares method.

1 Introduction

In a world full of choices and alternatives, rankings are becoming an increasingly important
tool to help individuals and institutions make decisions. In this paper we study, from an
axiomatic point of view, the classic problem of ranking a series of alternatives when we have
information about paired comparisons between them. The set of alternatives and a matrix
containing this information are referred to as a ranking problem or general tournament.
Ranking problems appear in a wide variety of situations such as sports, product testing,
evaluation of political candidates and policies to be chosen. Because of this, the issue of
defining rankings has been studied in various fields and ranking methods based on different
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motivations have been defined. Sport events and in particular chess motivated the seminal
work on rankings by Zermelo (1929). Later on, sparked by Arrow’s Impossibility Theorem
(Arrow 1963), this topic emerged in the context of social choice and voting theory. The
theory of rankings has also attracted statisticians and psychologists, who have studied it
under the name of paired comparisons analysis. It is worth noting that the literature on
rankings and tournaments is somehow split depending on whether the goal is to identify
the winner (set of winners) or, as in this paper, to define a more detailed ranking of the
alternatives. The recent book by Langville and Meyer (2012) provides an up to date review
of different fields where rankings are important, ranging from relatively classic fields of
application such as college sports in the United States to human development indexes and
more recent applications like rankings of websites (Google PageRank) or movies (Netflix
and IMDb).

To be more specific, suppose that we want to rank several alternatives and that we have
at our disposal a series of nonnegative matrices R1, R2, . . . , Rp, where each matrix contains
information about some pairwise comparisons between the different alternatives. Each of
these matrices may represent the opinion of a given expert/judge, the outcome of a certain
poll or voting procedure, the results of a certain round of a competition, the outcomes of
the comparisons in different regions/competitions. . . The entries of each of these matrices
are such that R`ij + R`ji = 1 if i and j have been compared at stage ` and R`ij + R`ji = 0

otherwise. The definition of a ranking of the alternatives based on this information can be
seen as a problem of adding “pairwise” preferences. To accomplish this, here we suppose that
the information of the R` matrices has already been aggregated into a single nonnegative
matrix A (possibly putting different weights on different rounds/judges/experts/regions. . . ).
It is probably because of the different interpretations mentioned above of the R` matrices
that the theory of paired comparisons has developed simultaneously in a wide variety of
fields and has an important potential for applications.

In this paper a ranking problem is represented by a set N consisting of n alternatives
and a nonnegative n × n matrix A with zeros on the diagonal, where Aij is the total
score of alternative i against alternative j after their (possibly many) pairwise comparisons.
This approach is the usual one in fields such as statistics, psychology and applications to
sports. On the other hand, in voting theory, a field that has devoted considerable attention
to this topic, a tournament is typically defined through weakly complete and asymmetric
binary relations, i.e., for each pair of alternatives we know which is the preferred one (and
nothing else); there is no measure of intensity of preference. These binary tournaments are a
particular case of our more general setting, which is able to accommodate the following extra
features:1 i) incomplete tournaments, in which we may not have information about direct
confrontations between pairs of alternatives (Aij+Aji may be zero), ii) tournaments in which
alternatives may have been compared with each other more than once (Aij + Aji > 1),2

1In matrix form, a binary tournament corresponds to a binary matrix A ∈ {0, 1}n×n such that for each
pair of different alternatives i and j, Aij + Aji = 1.

2This is specially important, for instance, in testing objects, where each pair of objects may be tested
by several experts.
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iii) tournaments with ties (Aij = Aji) and iv) tournaments in which intensities of preference
are present (captured, for instance, by (Aij −Aji)/(Aij +Aji)).

Although ideally we would like to work with ranking problems in which there is informa-
tion about all possible pairwise comparisons, there are many situations where it is unfeasible
to obtain direct information about each pair of alternatives. This may be because there is a
high number of alternatives to be ranked or just because it is costly to undergo each pairwise
comparison and it is preferable to base the ranking on an incomplete set of comparisons.
From a conceptual point of view, whether or not tournaments are restricted to be binary
has important implications in defining ranking methods. In a binary tournament all the
alternatives have “faced” each other exactly once and simple rules that look at the number
of “victories” of each alternative may have good properties; these rules would include, for
instance, the well known Borda count and the Copeland methods (Copeland 1951). How-
ever, in general tournaments it does not suffice to know how well an alternative has scored.
We need to take into account the quality of the “opponents”.

Our goal in this paper is to take some of the most relevant ranking methods considered
in the different fields and compare them by looking at their performance with respect to
a set of (mostly standard) properties. Axiomatic approaches to ranking theory have been
taken before in the literature, especially in social choice and voting theory (see, for instance,
Chebotarev and Shamis (1998) for a survey). However, most of these contributions mainly
deal with binary tournaments. Laslier (1997) presents a thorough analysis of different
ranking methods and properties defined for binary tournaments.3 Another characteristic
of the voting theory approach is that it is common to focus on the set of winners (thus,
allowing for ties) and the spirit of many of the properties revolves around this possibility.
Also within the axiomatic approach, Bouyssou (2004) revisits the main ranking methods
in Laslier (1997) and studies their monotonicity properties (responsiveness to the beating
relation).4

Because of the large amount of ranking methods and properties that have been discussed
in the different fields, some selection is needed. Our analysis mainly concentrates on the
ranking methods listed below.

• Scores: A natural choice for binary tournaments (see Rubinstein (1980) for an ax-
iomatic characterisation).

• Maximum likelihood: The most common choice in statistics and psychology (see,
for instance, Zermelo (1929) and Bradley and Terry (1952)).

3Dutta and Laslier (1999) consider a setting where this last restriction is generalised to allow for inten-
sities, but completeness is still a requirement.

4In recent years, the related issue of ranking scientific journals has received a lot of attention in economics
(see, for instance, Liebowitz and Palmer (1984) and Palacios-Huerta and Volij (2004)). In this setting, the
rankings are defined on the basis of citation matrices, which contain information regarding the number of
times each journal has been cited by any other journal. There is a fundamental difference between the two
settings. In our setting, a victory of i over j should be seen as something good for i and bad for j. However,
when looking at scientific journals, a citation from journal j to journal i should be good for journal i, but
not necessarily bad for journal j. Clearly, this cannot be ignored when defining properties of a ranking
method and, therefore, it would be inappropriate to include in our axiomatic analysis ranking methods that
are based on citation matrices.
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• Fair bets: A ranking widely studied in social choice and economics (see, for instance,
Daniels (1969), Moon and Pullman (1970), Slutzki and Volij (2005) and Slutzki and
Volij (2006)).

• Least squares: Another common choice in statistics and psychology (see, for in-
stance, Horst (1932), Mosteller (1951), Gulliksen (1956) and Kaiser and Serlin (1978)).

• Recursive performance and recursive Buchholz: These ranking methods are
the result of a new approach developed in Brozos-Vázquez et al. (2008).

• Generalised row sum: A parametric family of ranking methods that on one end
generalise the scores and on the other end generalise least squares (see Chebotarev
(1994)).5

The main contribution of this paper is to study how the above ranking methods per-
form with respect to a set of properties. This analysis is important not only to get a
better understanding of the different ranking methods, but also to learn about the strength
and implications of the different properties. Interestingly, maximum likelihood is one of
the rankings that perform best with respect to the chosen properties. This is somewhat
surprising since, because of its nature, one would expect maximum likelihood to have good
statistical properties (and it does, for instance, in terms of asymptotic behaviour), but there
is no reason to expect good behaviour with respect to some of the properties we work with.
The other method that stands up from our approach is the generalised row sum method.

The rest of the paper is structured as follows. In Section 2 we present the main definitions
and ranking methods. In Section 3 we give some background on their origins. Then, in
Sections 4-6 we define and discuss several families of properties. Finally, in Section 7 we
discuss the results, which are summarized in a table that allows to visually compare the
performance of the different ranking methods.

2 Ranking problems and ranking methods

A ranking problem is a pair (N,A), where N is a finite set of n ≥ 2 players and A ∈ Rn×n is
the results matrix. Each Aij represents the aggregate score of player i against j. We assume
Aij ≥ 0 for all i, j ∈ N and Aii = 0 for all i ∈ N .6 We say that i has scored against j
if Aij > 0 and that i has beaten j if Aij > Aji. When no confusion arises, we denote a
ranking problem (N,A) by A.

We make the standard assumption that the matrix A is irreducible.7 This means that
for every pair of players i, j ∈ N , i 6= j, there is a sequence of players (i = k0, k1, . . . , kn = j)

such that, for each ` ∈ {0, . . . , n−1}, k` has scored against k`+1. In Slutzki and Volij (2005),
the authors show that, under a natural set of axioms, this restriction can be circumvented

5More precisely, they generalise the aggregate net scores, which we define in Section 2.
6We do not restrict the non-zero entries in A to be natural numbers as in, e.g., Slutzki and Volij (2005).

This choice of domain has no impact on the analysis, but allows for simpler definitions of the properties
under study.

7This ensures that all the rankings methods we discuss in this paper are well defined.
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by partitioning the set of players into maximal irreducible components, which they call
leagues, analysing each league separately and then recombining the leagues’ rankings to get
a ranking on the whole set of players.8

To each ranking problem (N,A) we associate a (symmetric) matches matrix M(A) =

A+A>, where Mij(A) is interpreted as the number of matches between i and j.9 When no
confusion can arise, we denote M(A) by M . For each player i ∈ N , define mi =

∑
j∈N Mij

to be the total number of matches played by i, so m = Me, where e ∈ Rn is the vector
e = (1, . . . , 1)>. For i, j ∈ N , define M̄ij = Mij/mi to be the proportion of player i’s
matches that he plays against j. A ranking problem is called round-robin if Mij = 1 for all
i, j ∈ N, i 6= j; in a round-robin ranking problem each player has played once against any
other player.10

A ranking method ϕ assigns to each ranking problem (N,A) a weak order ϕ(A) on N
(transitive and complete). Given a ranking problem (N,A), a vector r ∈ Rn is a rating
vector, where each ri is a measure of the performance of player i ∈ N in the ranking
problem.11 The ranking methods considered in this paper are all induced by rating vectors:
for each ranking method ϕ there is an underlying rating vector rϕ such that the players are
ranked according to it, i.e., ϕ ranks i weakly above j if and only if rϕi ≥ rϕj . A ranking ϕ
is called flat on A if ϕ(A) ranks all players equally. Abusing terminology slightly, we also
refer to the underlying rating vector rϕ(A) as flat. Below, we present the definitions of the
ranking methods studied in this paper. We defer their interpretation and motivation until
next section.

Scores: The vector of average scores, s, is defined by si =
∑
j∈N Aij/mi for all i ∈ N . It

follows from the assumption that A is irreducible that si ∈ (0, 1) for all i ∈ N .

Maximum likelihood: The rating of player i is given by rml
i = log(πi), where π ∈ Rn

is the unique and positive solution of the system of non-linear equations given by
π>e = 1 and, for each i ∈ N ,

πi =
misi∑

j∈N\{i}
Mij

πi+πj

. (2.1)

To facilitate the comparison with other ranking methods, when presenting the maxi-
mum likelihood ratings in the examples (and only in the examples), we re-normalise
them so that they add up to 0 (just by adding the same constant to each component).

8It is worth noting that, although the approach developed by Slutzki and Volij is quite appealing norma-
tively, there may be settings where one might desire to define rankings directly on reducible tournaments.
In particular, consider the following situation (we thank P. Chebotarev for suggesting this example). There
are n + 1 players, with player i having beaten player j whenever i < j < n + 1. Further, player n + 1 has
beaten player n. According to the approach in Slutzki and Volij (2005), players 1 and n+1 are incomparable
(both of them have a perfect score). However, it might be argued that player 1, who has beaten n− 1 other
players, should be regarded as stronger than player n + 1, who has only beaten the weakest player.

9Note that, although in our setting the number of matches Mij(A) may not be an integer number, we
always have in mind situations in which as many (possibly non-integer) points are divided between two
players as matches they play. This extra generality could be useful in settings where partial comparisons
are possible or, as we mentioned in the Introduction, different matches have different weights.

10Despite being very special, round-robin ranking problems are still more general than binary tourna-
ments, since they allow for intensities (Aij needs not be 0 or 1) and ties (Aij may equal Aji).

11Sometimes we use the notation r(A) to indicate that the rating vector is derived from matrix A.
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Neustadtl: Let Â be defined, for each pair i, j ∈ N , by Âij = Aij/mi. Then, the Neustadtl
rating vector is given by rn = Âs.

Fair bets: Let LA = diag(A>e). So, for every i ∈ N , (LA)i represents how much other
players have scored against player i, i.e., i’s total number of “losses”. Consider the
system of linear equations given by L−1

A Ax = x or, equivalently,
∑
j∈N Aijxj =∑

j∈N Ajixi for all i ∈ N . The rating vector rfb is defined to be the unique posi-
tive solution of the above system such that (rfb)>e = 1.

Least squares: Let D be defined, for each pair i, j ∈ N by Dij =
Aij−Aji
Mij

. The ratings
are then obtained via least squared errors estimation:

min
x∈Rn

Q(x) = min
x∈Rn

∑
i,j∈N

Mij(Dij − (xi − xj))2.

The rating vector rls is defined to be the unique minimiser of the above problem such
that x>e = 0.

Buchholz: The Buchholz rating vector is given by rb = M̄s+ s.

Recursive performance: Define c ∈ Rn by ci = F−1
L (si) for all i ∈ N , where FL is the

(standard) logistic distribution FL(x) = 1/(1 + exp(−x)). Next, define ĉ = c− m>c
m>e

e.
Then the recursive performance rating vector, rrp, is the unique solution of the system
of linear equations given by x>e = 0 and M̄x+ ĉ = x.

Recursive Buchholz: The recursive Buchholz rating vector, rrb, is the unique solution of
the system of linear equations given by x>e = 0 and M̄x+ ŝ = x, where ŝ = s− e

2 .

Generalised row sum: This is a parametric family of ranking methods. First, define
m̂ = maxi,j∈N Mij , A∗ = A − A> and C = diag(m) − M . Define the vector of
aggregate net scores s∗ ∈ Rn so that, for each i ∈ N , s∗i =

∑
j∈N A

∗
ij . Then, given

ε > 0, the generalised row sum ratings are defined as the unique solution of the linear
system of equations (I+εC)x = (1+m̂nε)s∗. To facilitate the comparison with other
ranking methods we present the above ratings divided by m(n − 1) and, further, we
take ε = 1

m̂(n−2) and denote the corresponding ratings by rgrs.12

As we explain in Section 3, the (rather naive) Neustadtl and Buchholz methods find their
origins in practice: they are methods commonly used, for instance, in chess tournaments.
Their role in this paper is twofold. On one hand, we use them to motivate theoretically
more sophisticated ranking methods: fair bets and recursive performance/Buchholz. On
the other hand, the axiomatic analysis shows that this sophistication pays off.

The ranking methods defined above are illustrated in the following example.
12We postpone a discussion on the role of ε and this particular choice for this parameter to Section 3.

Yet, it is worth noting that ε = 1
m̂(n−2)

is not well defined for the (trivial) class of two-player ranking
problems. Thus, n > 2 is implicitly assumed when the generalised row sum method is discussed.
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Example 2.1. Consider the following three-player ranking problem. Player 1 has beaten
player 2 four matches to one and player 3 five matches to none. On the other hand, player 2
has beaten player 3 quite consistently over a larger set of matches, twenty five to one. In
our setting, this ranking problem would be represented through matrix A below:

A 0 4 5
1 0 25
0 1 0


scores max-lik Neus f-bets least-sq Buch r-perf r-Buch GRS s∗

0.9 2.051 0.352 0.801 0.533 1.335 1.764 0.267 0.39 8
0.839 0.608 0.055 0.192 0.172 1.011 0.491 0.086 0.407 21
0.032 −2.659 0.027 0.006 −0.705 0.881 −2.255 −0.353 −0.798 −29

We see that all the ranking methods defined above except for generalised row sum (and
s∗) agree in the chosen ranking, with player 1 being ranked on top.

The above example can already be used to make some observations about the different
ranking methods. First, we note that the least squares ratings are twice the recursive
Buchholz ratings (the discrepancy comes from the rounding). In Proposition 3.1 below we
show that this is indeed a general result: least squares and recursive Buchholz are the same
ranking method. Second, we observe that, apparently, the generalised row sum method
puts relatively more weight on the fact that player 2 has an excellent aggregate net score
s∗2 than on the average quality of his opponents. In this parametric family this weight is
controlled by the choice of ε, which we discuss a bit more in Section 3.

We finish this section with three basic properties for a ranking method ϕ that all methods
presented above satisfy.

Anonymity (ano): Let i, j ∈ N and let A′ be the ranking problem obtained from A by
permuting columns i and j and rows i and j. Then, the rankings ϕ(A) and ϕ(A′) are
the same but with players i and j interchanged. This standard property just requires
that the rankings should be independent on the player’s “names”.

Homogeneity (hom): For all k > 0, ϕ(kA) = ϕ(A). Note that homogeneity is an ordinal
property. It relates to the ordering of the players and not necessarily to the underlying
rating vector. The rankings should be invariant to rescaling; in particular, if we get
a ranking problem by adding a number of identical subproblems, the rankings for the
big problem should coincide with those for the subproblems.

Symmetry (sym): ϕ is flat on any symmetric ranking problem (A = A>). So if everyone
has a 50% score against all opponents, not necessarily with the same number of
matches, all players end up equally ranked.

3 Background on ranking methods

In this section we elaborate on the origins and motivations of the different ranking methods.
In a nutshell, maximum likelihood and fair bets are probably the most outstanding repre-
sentatives of the statistical and social choice approaches, respectively. We show below that
recursive Buchholz is just a reinterpretation of least squares, which is another popular rank-
ing method in statistics. Recursive performance is a relatively new ranking method which
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borrows from both maximum likelihood and least squares approaches and that has not been
studied axiomatically. The generalised row sum approach also has statistical interpretations
in terms of ridge estimation. Neustadtl and Buchholz are merely instrumental.13

Maximum likelihood is a classic ranking method whose origins can be traced as far
back as Zermelo (1929). It has been studied in several fields, but it is specially popular
in statistics (see, for instance, Bradley and Terry (1952), Moon and Pullman (1970) and
David (1988)). The starting point is to view determining players’ ratings as an estimation
question in which the result matrix A is used as statistical evidence. Maximum likelihood
looks for the ratings vector that maximises the probability of the matrix A being realised
when all the matches given in matrix M take place.

Formally, this ranking method assumes that each player i ∈ N has a rating ri and
that, given two players i, j ∈ N , i 6= j, the probability that player i beats player j is
given by F (ri, rj). Although there are several possible choices for the function F , here we
follow a classic approach used in Zermelo (1929) and rediscovered by Bradley and Terry
(1952). Under this approach, F is based on the (standard) logistic distribution FL(x) =

1/(1 + exp(−x)), so that F (ri, rj) = FL(ri − rj) = exp(ri)/(exp(ri) + exp(rj)). Given this
assumption on the beating probabilities, matrix A gives rise to a likelihood function (as
function of r). The first order conditions for maximising this likelihood function can be
rewritten as Eq. (2.1).14

Horst (1932) and, more recently, Mosteller (1951) also viewed ranking the players as an
estimation question with A as statistical evidence. Their approach was extended beyond
round-robin ranking problems by Gulliksen (1956) and revisited in Kaiser and Serlin (1978).
Rather than explicitly modeling probabilities, they identified Dij , the “realised difference”
between players i and j in matrix A, as an estimate for ri − rj , the rating difference
between them. The exact definition of Dij is left as a degree of freedom in the model, but
one common choice is Dij =

Aij−Aji

Mij
. Ideally, one would like to choose the vector r ∈ Rn

such that Dij − (ri− rj) = 0 for all pairs (i, j). This results in a system of n2−n equations
with n variables. To get around this issue, this approach proposes to estimate the ri ratings
via least squared errors minimization:

min
r∈Rn

Q(r) = min
r∈Rn

∑
i,j∈N

Mij(Dij − (ri − rj))2.

From the minimization problem above, it may seem that we actually have a weighted least
squares problem. However, this problem can be equivalently stated without theMij weights
by taking the sum over all matches, instead of taking it over all pairs of players.

The Neustadtl ranking method (Neustadtl 1882) is widely used as a tie-breaker in round-
robin ranking problems. It computes a weighted average of the individual scores of each
player i, where the weight of his score against player j is proportional to the score of

13The reader interested in a deeper discussion of these and other ranking methods for this and other
settings may refer to David (1988), Laslier (1997), Chebotarev and Shamis (1998), Chebotarev and Shamis
(1999) and Brozos-Vázquez et al. (2008).

14Refer, for instance, to Ford (1957) or David (1988).
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player j.15 Thus, the idea behind Neustadtl is to reward a win against a player with a high
score more than a win against a player with a lower score.

The scientific literature offers several ranking methods that build upon the idea above
of rewarding wins without punishing losses. Two early contributions in this field are Wei
(1952) and Kendall (1955). The most widely studied method within this stream of literature
is the fair bets ranking method (Daniels 1969). Fair bets is a ranking method that was
originally defined for round-robin ranking problems and that has been studied in social
choice and voting theory under different names and interpretations: from the classic papers
by Daniels (1969) and Moon and Pullman (1970), to more recent references such as Slutzki
and Volij (2005) and Slutzki and Volij (2006).16 In Laslier (1992) this ranking method
is called the “ping-pong winners” because of the following interpretation in round-robin
ranking problems. Suppose several players are waiting to play table tennis. The first two
players i and j are randomly chosen and play. Player i wins with probability Aij/Mij and
player j with probability Aji/Mij . The winner stays, a new opponent is randomly chosen,
and the likelihood of each of them being the winner is derived again from matrix A. If we
rank the players according to the amount of time they would play under the above rules,
we would get the fair bets rankings.

Finally, with respect to the Neustadtl ranking, fair bets adds depth to the idea of
rewarding results against good players. It is not only important to have beaten players who
have high scores, but also that they have achieved these high scores beating players with
high scores. In the table tennis example, given two players with the same average score,
it is better to have beaten the one who has beaten stronger players. This reasoning can
be given further levels of depth and the system of equations defining the fair bets ranking
method captures them.

Whereas the Neustadtl ranking method rewards victories against strong players, the
Buchholz17 method takes one step back and takes the average strength of all your opponents
into consideration (M̄s), in addition to your own score (s).18

The recursive performance ranking method, defined in Brozos-Vázquez et al. (2008),
combines ideas present in maximum likelihood and Buchholz. Instead of finding the ratings
for which the likelihood of the observed results is maximised, as maximum likelihood does,
recursive performance finds the rating that explains the “average” result of each player,
giving it a Buchholz flavour. Given a ranking problem (N,A), a rating vector r ∈ Rn, and a
player i, the average opponent of i in the ranking problem is (M̄r)i, i.e., the average rating
of the opponents of i (weighted by the number of matches played against each of them).

15This (tie-breaking) rule, which originally was only defined for round-robin ranking problems, is com-
monly referred to as Sonneborn-Berger. In fact, Sonneborn and Berger criticised Neustadtl’s method by
arguing that the players’s scores should be added to the Neustadtl ranking vector.

16Similar ideas have been also used in slightly different settings in papers such as Borm et al. (2002),
Herings et al. (2005) and Slikker et al. (2010).

17Although Bruno Buchholz is widely recognised to have developed the method named after him (see
World Chess Federation (2012)) in 1932, we were unfortunately not able to find a document on this by the
inventor himself.

18Actually, Buchholz is commonly used as a tie-breaker in non round-robin chess tournaments and is
computed as the average of the scores of the opponents of each player, i.e., M̄s. For players with an equal
score, this definition results in the same relative ranking as the definition we present here.
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Recursive performance looks for a rating such that for each player i ∈ N , F (ri, (M̄r)i) =∑
j∈N Aij/mi = si, where F is based on the logistic distribution function FL. Hence, for

each player i, rrpi takes into account the average strength of i’s opponents M̄rrp and his
own score in the ranking problem (ĉi is increasing in si).

Recursive Buchholz is a ranking method that combines the ideas of Buchholz and re-
cursive performance by adding to the Buchholz ranking method the same kind of depth
that the fair bets adds to Neustadtl.19 Not only the average score of your opponents (M̄s)
should be important, but also whether your opponents have achieved this average score
against weak or strong opponents. All else equal, having faced opponents with a high score
who have themselves played against strong opponents should be better than having faced
opponents with a high score who have played against weak opponents. Again, further depth
can be given to this argument and recursive Buchholz captures this idea.

Interestingly, the next proposition shows that recursive Buchholz coincides with the least
squared errors approach.20

Proposition 3.1. The recursive Buchholz ranking and the least squares ranking coincide.

Proof. Recall that the least squares ratings, rls, were defined as the unique solution of
the minimisation problem minr∈Rn Q(r) = minr∈Rn

∑
i,j∈N Mij(Dij − (ri − rj))2 such that∑

i∈N ri = 0, where Dij =
Aij−Aji

Mij
.

We show that rrb solves the least squares problem with distances D′ij =
Aij−Aji

2Mij
. It

is readily verified from the first order conditions that this implies that 2rrb solves original
problem, so rrb provides the same ranking on the players.

Let i ∈ N . From the first order conditions we obtain:

0 =
∑
j∈N

Mij(D
′
ij − ri + rj)

=
∑
j∈N

MijD
′
ij −

∑
j∈N

Mijri +
∑
j∈N

Mijrj

=
∑
j∈N

Mij
Aij −Aji

2Mij
−miri +

∑
j∈N

Mijrj

=
∑
j∈N

Aij −
1

2

∑
j∈N

(Aji +Aij)−miri +
∑
j∈N

Mijrj .

Division by mi yields

0 = si −
1

2mi

∑
j∈N

Mij − ri +
∑
j∈N

M̄ijrj

= ŝi − ri +
∑
j∈N

M̄ijrj .

Hence, rls solves x = M̄x+ ŝ and therefore rls and rrb deliver the same rankings.
19Although recursive Buchholz was not defined in Brozos-Vázquez et al. (2008), it can be seen as a

variation of recursive performance where FL is taken to be the identity. Thus, the existence and uniqueness
of rrb follows from Theorem 2 in that paper.

20We thank P. Chebotarev for pointing this out.
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In the light of the previous result, hereafter we use the well established name of least
squares rankings to refer to the rankings associated with rls and rrb. Yet, in all the proofs
in the paper it is more convenient to work with the vector rrb.21

Finally, we have the generalised row sum method. It was first considered in Chebotarev
(1989) and its properties were thoroughly analysed in Chebotarev (1994). This is actually
a parametric family of ranking methods that range from the aggregate net scores s∗ when
ε = 0 to least squares when ε→∞; in general, this parameter measures how much “weight”
the method puts on the opponents of the players with respect to s∗. In particular, based
on some reasonableness condition, the upper bound ε = 1

m̂(n−2) is identified, and this is
the value we use throughout this paper. In Chebotarev (1994) this parametric family is
obtained as the set of ranking methods satisfying certain conditions on how the pairwise
results or the players are to be aggregated. Further, some statistical interpretations of the
methods in this family are also discussed.

4 Response to victories and losses

In this section we consider two types of properties for a ranking method ϕ. The first
type deals with preserving a ranking when two ranking problems (N,A) and (N,A′) are
combined. The second type deals with the (a)symmetric role victories and losses play in a
ranking method.

Flatness preservation (fp): If ϕ(A) and ϕ(A′) are both flat, then so is ϕ(A+A′). This
property just says that if all players are regarded as equal in two ranking problems,
this should not change when we add up the ranking problems.

Order preservation (op): Let i, j ∈ N . If both ϕ(A) and ϕ(A′) rank i strictly above j
and mi

mj
=

m′i
m′j

, then ϕ(A+A′) ranks i strictly above j as well. If i is better than j in
two ranking problems, this should not change when we add them up. The condition
on m and m′ imposes some balance between the number of matches played in ranking
problems A and A′. In Example 4.3 below we show that op without this condition is
not even satisfied by the score method.

Inversion (inv): Let i, j ∈ N . Then ϕ(A) ranks i weakly above j if and only if ϕ(A>)

ranks j weakly above i. If we reverse all the results in a ranking problem, then the
ranking should be reversed as well (Chebotarev and Shamis 1998). The spirit of this
natural property, which trivially implies sym, is to require a symmetric treatment
between victories and losses.22

21Given the similarity in the definitions of recursive Buchholz and recursive performance, one may wonder
whether the latter can also be rewritten as a least squares method for some adequately chosen Dij . For
recursive Buchholz, one of the key elements in the proof of Proposition 3.1 is that the Dij entries can be seen
as a disaggregation of the scores of the players, which are then recovered through the sums

∑
j∈N MijDij .

In the recursive performance, the role of the scores vector is played by the vector ĉ. Yet, this vector
aggregates the pairwise results of each player via the nonlinear function FL, which makes it impossible to
disaggregate in a natural way the components ĉ to obtain the Dij values.

22In Chebotarev (1994) this property is referred to as transposability.
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Negative response to losses (nrl): Let λ ∈ Rn, λ > 0 and define Λ = diag((λi)i∈N ).
If ϕ(A) is flat, then ϕ(AΛ) ranks i weakly above j if and only if λi ≤ λj . This
property is introduced in Slutzki and Volij (2005) and is the key ingredient of the
characterisation they obtain for the fair bets ranking method. In words of the authors:
“Negative responsiveness to losses concerns situations in which all players are equally
ranked and the problem is irreducible. If a new problem is obtained by multiplying
each player’s losses by some positive constant (which may be different for each player),
then the players should be ranked in the new problem in a way that is inversely related
to these constants”.

It is rather straightforward that the score ranking method satisfies fp. The following
proposition relates flatness of recursive performance to flatness of scores.

Proposition 4.1. Let A be a ranking problem. Then rrp(A) is flat if and only if s(A) is
flat.

Proof. “⇒”: Assume that rrp(A) is flat, so there is k ∈ R such that rrp(A) = ke. Recall
that rrp(A) is a solution of (I − M̄)rrp = ĉ, where ĉi is strictly increasing in si. Then,
(I − M̄)rrp = ke− kM̄e = 0. Hence, ĉ = 0 and therefore, s(A) is flat.
“⇐”: Assume that s(A) is flat, so s = 1

2e. Then, c = 0 and ĉ = 0. So, a particular solution
of (I − M̄)x = ĉ is 0 and the solution set is span{e}. Hence, rrp(A) is flat.

In a similar way as in Proposition 4.1 one can show that both least squares and maximum
likelihood are flat if and only if scores are flat. Yet, since the definition of generalised row
sum builds upon the aggregate net scores s∗ instead of the scores s, it is necessary to provide
a separate result.

Proposition 4.2. Let A be a ranking problem. Then rgrs(A) is flat if and only if s(A) is
flat.

Proof. “⇒”: Assume that s(A) is flat. Recall that, for each i ∈ N , si =
∑
j∈N Aij/mi and

s∗i =
∑
j∈N (Aij − Aji). Since we always have that

∑
i∈N si = n/2, s is flat if and only

if, for each i ∈ N , si = 1/2. In such a case, since mi =
∑
j∈N Aij +

∑
j∈N Aji we have∑

j∈N Aji =
∑
j∈N Aij . Thus, if s is flat we have that s∗ is the zero vector. Now, the zero

vector is a solution of the system (I + εC)x = (1 + m̂nε)s∗ and so rgrs(A) is flat.
“⇐”: Assume that rgrs(A) is flat. By the centering property of generalised row sums, it

is always true that
∑
i∈N r

grs
i = 0 (see Chebotarev (1994)). Thus, if rgrs(A) is flat it must be

the zero vector which, in turn, implies that also s∗ is the zero vector. Now, for each i ∈ N ,∑
j∈N Aji =

∑
j∈N Aij and si =

∑
j∈N Aij/mi =

∑
j∈N Aij/(2

∑
j∈N Aij) = 1/2.

By fp of the score ranking method we obtain the following corollary.

Corollary 4.3. Maximum likelihood, least squares, recursive performance and generalised
row sum satisfy fp.
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Slutzki and Volij (2005) show that fair bets satisfies fp. The following example shows
that Neustadtl and Buchholz do not.

Example 4.1. Consider the ranking problems A and A′ described below:
A

0 0 2 2
0 0 2 2
1 1 0 0
1 1 0 0


scores max-lik Neus f-bets least-sq Buch r-perf GRS
0.667 0.347 0.222 0.333 0 1 0 0.222
0.667 0.347 0.222 0.333 0 1 0 0.222
0.333 −0.347 0.222 0.167 0 1 0 −0.222
0.333 −0.347 0.222 0.167 0 1 0 −0.222

A′
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0


scores max-lik Neus f-bets least-sq Buch r-perf GRS

0.5 0 0.25 0.25 0 1 0 0
0.5 0 0.25 0.25 0 1 0 0
0.5 0 0.25 0.25 0 1 0 0
0.5 0 0.25 0.25 0 1 0 0

A + A′
0 1 3 3
1 0 3 3
2 2 0 1
2 2 1 0


scores max-lik Neus f-bets least-sq Buch r-perf GRS
0.583 0.203 0.257 0.3 0.1 1.028 0.202 0.133
0.583 0.203 0.257 0.3 0.1 1.028 0.202 0.133
0.417 −0.203 0.229 0.2 −0.1 0.972 −0.202 −0.133
0.417 −0.203 0.229 0.2 −0.1 0.972 −0.202 −0.133

Then rn(A), rn(A′), rb(A) and rb(A′) are all flat, but rn(A+A′) and rb(A+A′) are not.

Proposition 4.4. The score ranking method satisfies op.

Proof. Let (N,A), (N,A′) and i, j ∈ N be such that si > sj , s′i > s′j and mi

mj
=

m′i
m′j

. Note

that mi+m
′
i

mi
=

mj+m′j
mj

. Hence, mi

mi+m′i
=

mj

mj+m′j
and, clearly, m′i

mi+m′i
=

m′j
mj+m′j

as well. It is
straightforward to check that the score of player i in the combined ranking problem A+A′

equals mi

mi+m′i
si +

m′i
mi+m′i

s′i. Then,

mi

mi +m′i
si +

m′i
mi +m′i

s′i =
mj

mj +m′j
si +

m′j
mj +m′j

s′i >
mj

mj +m′j
sj +

m′j
mj +m′j

s′j ,

which coincides with the score of player j in the combined ranking problem, so we have
established op.

The following example shows that the other ranking methods do not satisfy op.

Example 4.2. Consider the ranking problems A and A′ described below:
A

0 5 15 5
5 0 5 15
5 5 0 7
5 5 3 0


scores max-lik Neus f-bets least-sq Buch r-perf GRS
0.625 0.383 0.278 0.344 0.183 1.075 0.378 0.21
0.625 0.315 0.253 0.322 0.15 1.05 0.307 0.19
0.425 −0.17 0.213 0.189 −0.083 0.975 −0.164 −0.11
0.325 −0.528 0.188 0.144 −0.25 0.9 −0.521 −0.29

A′
0 10 9 7
10 0 9 6
1 1 0 1
3 4 19 0


scores max-lik Neus f-bets least-sq Buch r-perf GRS

0.65 0.839 0.287 0.388 0.292 1.144 0.792 0.295
0.625 0.762 0.277 0.363 0.258 1.131 0.72 0.255
0.075 −1.956 0.048 0.026 −0.658 0.719 −1.8 −0.735
0.65 0.354 0.147 0.223 0.108 1.006 0.288 0.185

A + A′
0 15 24 12
15 0 14 21
6 6 0 8
8 9 22 0


scores max-lik Neus f-bets least-sq Buch r-perf GRS
0.637 0.452 0.265 0.347 0.203 1.088 0.43 0.261
0.625 0.475 0.291 0.358 0.217 1.109 0.46 0.264
0.25 −0.854 0.143 0.097 −0.383 0.828 −0.827 −0.486

0.488 −0.073 0.203 0.198 −0.037 0.975 −0.062 −0.039
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Except for the score rankings, all other ranking methods rank player 1 strictly above player 2
in both A and A′. However, they rank player 2 on top of player 1 in ranking problem A+A′.
Hence, none of these ranking methods satisfies op. Moreover, note that all players have
played the same number of matches in A, A′ and A′′, whereas this was not required in the
definition of op. Hence, a weakening of op in this direction would also be violated by all
these ranking methods.

The following example shows that a stronger version of op without requiring the balance
between m and m′ is not even satisfied by the scores.

Example 4.3. Consider the ranking problems A and A′ described below:
A 0 0 1

0 0 99
0.01 1 0


scores

0.9901
0.9900
0.0100

A′ 0 0 1
0 0 0.01
99 1 0


scores

0.0100
0.0099
0.9900

A + A′ 0 0 2
0 0 99.01

99.01 2 0


scores

0.0198
0.9802
0.5000

Then, according to the score method, player 1 is ranked strictly above player 2 in both A
and A′ and yet, when adding them up, player 2 has a higher score.

The score ranking method trivially satisfies inv. For various other ranking methods,
inv can be shown by explicitly transforming the rating vector.

Proposition 4.5. The maximum likelihood ranking method satisfies inv.

Proof. Recall that maximum likelihood orders the players according to rml where, for each
i ∈ N , rml

i = log(πi) and vector π is such that π>e = 1 and, for each i ∈ N ,

πi =
misi∑

j∈N\{i}
Mij

πi+πj

.

Let x̄ be defined, for each i ∈ N , by x̄i = rml
i − 1

n

∑
j∈N r

ml
j . Then,

∑
i∈N x̄i = 0 and, for

each i ∈ N , πi = α exp(x̄i) with α = (
∏
j∈N πj)

1/n. Hence, for each i ∈ N , we have

exp(x̄i) =
misi∑

j∈N\{i}Mij
1

exp(x̄i)+exp(x̄j)

. (4.1)

Now consider the following system of equations in y ∈ Rn:
∑
i∈N yi = 0 and, for each i ∈ N ,

exp(yi) =
mi(1− si)∑

j∈N\{i}Mij
1

exp(yi)+exp(yj)

. (4.2)

If we show that y = −x̄ solves this system, then (because the transformation from π to x̄
is monotonic) we are done since player i’s score in A> is 1− si and M is the same in both
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ranking problems. Filling in y = −x̄ in the right hand side of Eq. (4.2) yields

mi(1− si)∑
j∈N\{i}Mij

1
exp(−x̄i)+exp(−x̄j)

=
mi(1− si)∑

j∈N\{i}Mij
exp(x̄i) exp(x̄j)

exp(x̄i)+exp(x̄j)

=
1

exp(x̄i)

mi(1− si)∑
j∈N\{i}Mij

exp(x̄j)
exp(x̄i)+exp(x̄j)

=
1

exp(x̄i)

mi(1− si)∑
j∈N\{i}Mij(1− exp(x̄i)

exp(x̄i)+exp(x̄j) )

=
1

exp(x̄i)

mi(1− si)
mi − exp(x̄i)

∑
j∈N\{i}

Mij

exp(x̄i)+exp(x̄j)

,

which, by Eq. (4.1), reduces to

1

exp(x̄i)

mi(1− si)
mi − exp(x̄i)

misi
exp(x̄i)

=
1

exp(x̄i)
= exp(yi).

So y = −x̄ solves the system for A> and therefore, maximum likelihood satisfies inv.

Proposition 4.6. Recursive performance, least squares, Buchholz and generalised row sum
satisfy inv.

Proof. To show that recursive performance satisfies inv, observe that if rrp solves M̄x+ ĉ =

x, then −rrp solves the corresponding equation for A>, because M̄ = M̄> and ĉ(A>) =

−ĉ(A) as a result of F−1 being symmetric around 1
2 . The argument for least squares and

generalised row sum is analogous. For Buchholz, observe that s(A>) = e−s(A), from which
it readily follows that rb(A>) = 2e − (M̄s(A) + s(A)) = 2e − rb(A) and so the Buchholz
ranking method satisfies inv as well.

Not all ranking methods satisfy inv, as is shown in the following example.

Example 4.4. Consider the following ranking problems:

A
0 0.5 0.2 1

0.5 0 0.3 0.8
0.8 0.7 0 0.9
0 0.2 0.1 0


Neus f-bets
0.176 0.195
0.201 0.210
0.306 0.559
0.062 0.036

and

A>
0 0.5 0.8 0

0.5 0 0.7 0.2
0.2 0.3 0 0.1
1 0.8 0.9 0


Neus f-bets
0.131 0.065
0.179 0.137
0.106 0.054
0.329 0.744

Since player 2 is ranked strictly above player 1 in both A and A> and for both Neustadtl and
fair bets, these ranking methods do not satisfy inv. Note that A is a round-robin ranking
problem. Hence, Neustadtl and fair bets do not satisfy inv even if we restrict to round-robin
ranking problems.

Our analysis of nrl builds upon Slutzki and Volij (2005), though some care is needed.
On the one hand, they develop their characterisation of the fair bets ranking method for a
larger class that allows for reducible ranking problems. On the other hand, they restrict to
results matrices with integer entries.
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A ranking problem A is called balanced if Ae = A>e, i.e., if each player has the same
number of victories and losses. It is strongly balanced if, moreover, there is a constant k
such that Ae = ke, so the number of victories (and losses) is equal across all players. The
next result is an adaptation of Lemmas 3 and 4 in Slutzki and Volij (2005).

Lemma 4.7. Let ϕ be a ranking method satisfying ano, hom, sym and fp. Then ϕ is flat
on balanced ranking problems.

Proof. First, suppose that A is strongly balanced with Ae = ke. Then by Birkhoff’s theorem
(Birkhoff 1946), matrix A can be written as k times a convex combination of permutation
matrices. By ano, ϕ is flat on permutation matrices. By hom, ϕ is also flat on the
ranking problems that result after the multiplication of the permutation matrices by positive
numbers. Finally, by fp and hom again, ϕ is flat also on matrix A.

If A is not strongly balanced, then A can be decomposed as the sum of a strongly
balanced ranking problem, in which we have just seen that ϕ is flat, and a symmetric
ranking problem (see the proof of Lemma 4 in Slutzki and Volij (2005)). By sym, ϕ is flat
on the symmetric ranking problem as well, and by fp it is then flat on the original ranking
problem A.

Most of the ranking methods we consider in this paper satisfy ano, hom, sym and fp,
and, therefore, all of them coincide (and are flat) for balanced ranking problems. The next
result, which is the adaptation of the main result in Slutzki and Volij (2005) to our setting,
illustrates the strength of the nrl property.

Proposition 4.8. The fair bets ranking method is the unique ranking method satisfying
ano, hom, sym, fp and nrl.

Proof. Fair bets has already been shown to satisfy ano, hom, sym and fp. nrl follows
from Slutzki and Volij (2005).

To show the converse, let ϕ be a ranking method satisfying ano, hom, sym, fp and
nrl. Given an irreducible ranking problem A and corresponding fair bets rating vector, rfb,
the ranking problem A′ = Adiag((rfbi )i∈N ) is a balanced (and irreducible) ranking problem
because, by definition, for all i ∈ N ,∑

j∈N
Aijr

fb
j =

∑
j∈N

Ajir
fb
i .

Then, A = A′(diag((rfbi )i∈N ))−1. Since ϕ satisfies ano, hom, sym and fp, by Lemma 4.7,
ϕ(A′) is flat. Then, by nrl, ϕ(A) ranks i weakly above j if and only if 1/rfbi ≤ 1/rfbj .
Hence, ϕ is the fair bets ranking method.

As a result of Proposition 4.8, scores, maximum likelihood, least squares, recursive per-
formance and generalised row sum do not satisfy nrl because, being all of them different
from fair bets, they satisfy all other properties in the characterisation. The following ex-
ample shows that Neustadtl and Buchholz do not satisfy nrl either.
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Example 4.5. Let λ = (0.99, 2, 1, 1) and Λ = diag((λi)i∈N ). Let A and AΛ be as follows:

A
0 2 1 1
2 0 1 1
1 1 0 2
1 1 2 0


Neus Buch
0.25 1
0.25 1
0.25 1
0.25 1

and

AΛ
0 4 1 1

1.98 0 1 1
0.99 2 0 2
0.99 2 2 0


Neus Buch
0.245 1.024
0.192 0.911
0.264 1.046
0.264 1.046

Note that rn(A) and rb(A) are both flat. Despite λ1 ≤ λ3, we have rn3 (AΛ) > rn1 (AΛ) and
rb3 (AΛ) > rb1 (AΛ).

5 Score consistency

In this section we investigate to what extent a ranking method ϕ preserves some of the
features of the score ranking method, making it appealing for round-robin ranking problems.

Score consistency (scc): A ranking method ϕ satisfies this property if it coincides with
the score ranking method on the class of round-robin ranking problems.

Homogeneous treatment of victories (htv): Let i, j ∈ N . If Mik = Mjk for all k ∈
N\{i, j}, then ϕ(A) ranks i above j if and only if si(A) ≥ sj(A). Roughly speaking, if
i and j play the same number of matches against the other players, then they should
be ranked according to their aggregate scores. Note that htv trivially implies scc.

Note that both scc and htv relate to the ranking of the players, not necessarily to
the underlying rating vectors. It follows from the ranking problem A in Example 4.4 that
Neustadtl and fair bets do not satisfy scc.

The remaining ranking methods all satisfy htv, and hence scc.23

Proposition 5.1. The maximum likelihood ranking method satisfies htv.

Proof. Let (N,A) and i, j ∈ N be such that Mik = Mjk for all k ∈ N\{i, j}. Rewriting the
equations used to define rml we have

si =
1

mi

∑
k∈N\{i}

Mik
πi

πi + πk
.

Since πi

πi+πk
is increasing in πi, the right hand side of the equation is increasing in πi. Then,

because Mik = Mjk for all k 6= i, j and therefore mi = mj , we have that si ≥ sj if and only
if πi ≥ πj . Hence, maximum likelihood satisfies htv.

If |N | = 2 we have that Ms+ s = (s1 + s2, s1 + s2)>, so Buchholz is flat in two-player
tournaments and therefore satisfies neither htv nor scc.

Proposition 5.2. If n > 2, then Buchholz satisfies htv.
23It is worth noting that the coincidence of the rankings proposed by maximum likelihood and the scores

was already established in Zermelo (1929).
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Proof. Let (N,A) and i, j ∈ N be such thatMik = Mjk for all k ∈ N\{i, j}. Given i, j ∈ N ,
since Mik = Mjk for all k 6= i, j, we have that mi = mj and, hence, M̄ij = M̄ji. Then,

rbi − rbj = (M̄s+ s)i − (M̄s+ s)j = (1− M̄ij)(si − sj).

Since A is irreducible and n > 2, it cannot be the case that M̄ij = 1. Then, (1− M̄ij) > 0

and the Buchholz ranking method coincides with the scores.

Proposition 5.3. Least squares and recursive performance satisfy htv.

Proof. Recall that rrb solves (I − M̄)x = ŝ. So, in particular

xi − M̄ijxj −
∑

k∈N\{i,j}

M̄ikxk = ŝi and − M̄jixi + xj −
∑

k∈N\{i,j}

M̄jkxk = ŝj .

Subtracting the two equations and using that M̄ij = M̄ji and M̄ik = M̄jk for all other k
yields

(1 + M̄ij)(xi − xj) = ŝi − ŝj .

Therefore, xi−xj and ŝi− ŝj have the same sign. Hence, the least squares ranking method
satisfies htv.

The proof for recursive performance is analogous, but with ĉ on the right hand side.
Since ĉ and ŝ induce the same ranking, the same argument works.

Proposition 5.4. Generalised row sum satisfies htv.

Proof. Let (N,A) and i, j ∈ N be such that Mik = Mjk for all k ∈ N\{i, j}. Thus,
mi = mj . Recall that rgrs solves (I + εC)x = (1 + m̂nε)s∗. Thus, we have

xi + εmixi −
∑

k∈N,k 6=j

εMikxk − εMijxj = s∗i (1 + εm̂n) and

xj + εmjxj −
∑

k∈N,k 6=i

εMjkxk − εMjixi = s∗j (1 + εm̂n).

Subtracting the above two equations we get xi − xj = (s∗i − s∗j ) 1+εm̂n
1+ε(mi+Mij) . Thus, we just

have to show that s∗i − s∗j and si − sj have the same sign. Let m0 = mi = mj . Then,∑
k∈N Aki = m0 −

∑
k∈N Aik and we get

s∗i =
∑
k∈N

Aik −
∑
k∈N

Aki = 2
∑
k∈N

Aik −m0 = 2m0si −m0.

Similarly, s∗j = 2m0sj −m0, so s∗i − s∗j = 2m0(si − sj).

6 Monotonicity

In this section we present several properties that deal with changes in the results matrix.
If an existing result is changed or a new one is added, how should the rankings change?
Because of the logical relationships existing between some of the properties we study in
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this section, we separate a bit from the rest of the analysis in this paper and present and
discuss each property in turn, instead of defining all of them at the beginning of the section.
In total we discuss five properties. We start by analyzing the implications in our general
setting of the classic property of independence of irrelevant matches, iim. We continue with
two standard properties, prb and nnrb that state that winning a match should always
be beneficial to your ranking. Then we present a new property, which we call bpi, that
illustrates the strength of prb and why it might not always be desirable. Finally, we
conclude by analyzing scm, a natural monotonicity property introduced in Chebotarev and
Shamis (1997) and thoroughly discussed in Chebotarev and Shamis (1999).

The iim property deals with the responsiveness of the relative ranking of players i and j
to matches not involving either of them.

Independence of irrelevant matches (iim): We follow the definition introduced in Ru-
binstein (1980): take four different players i, j, k, ` ∈ N . Suppose that A and A′ are
identical, except for the results between k and `. Then the relative ranking between
i and j in both ϕ(A) and ϕ(A′) is the same.

Rubinstein (1980) uses ano, iim and prb below to characterise the score ranking method
on the class of binary ranking problems. Clearly, in our wider class of ranking problems the
scores also satisfy iim. We show below that none of the other ranking methods does.

Example 6.1. Consider the ranking problems A and A′ described below:
A

0 1 1 1
2 0 1 1
1 1 0 2
1 1 1 0


scores max-lik Neus f-bets least-sq Buch r-perf GRS
0.429 −0.203 0.224 0.2 −0.1 0.959 −0.201 −0.125
0.571 0.203 0.265 0.3 0.1 1.041 0.201 0.125
0.571 0.203 0.265 0.3 0.1 1.041 0.201 0.125
0.429 −0.203 0.224 0.2 −0.1 0.959 −0.201 −0.125

A′
0 1 1 2
2 0 1 1
1 1 0 2
1 1 1 0


scores max-lik Neus f-bets least-sq Buch r-perf GRS

0.5 −0.016 0.237 0.233 −0.008 0.998 −0.015 −0.007
0.571 0.225 0.278 0.308 0.11 1.056 0.224 0.133
0.571 0.184 0.26 0.292 0.09 1.038 0.182 0.117
0.375 −0.393 0.205 0.167 −0.192 0.92 −0.39 −0.243

In ranking problem A, all ranking methods rank players 2 and 3 equally. In ranking problem
A′, except for the scores, all ranking methods rank player 2 on top of player 3, violating
iim.

Note that whereas iim is a very natural property in round-robin ranking problems, it is
questionable in our more general setting. Indeed, we argue in Section 7 that when players
face different opponents, iim is a property not to be desired.

Positive responsiveness to the beating relation (prb): Let A be a ranking problem
such that ϕ(A) ranks i weakly above j. Let A′ be a ranking problem identical to A,
except that there is k ∈ N\{i} such thatM ′ik = Mik and A′ik > Aik (thus, A′ki < Aki).
Then, ϕ(A′) ranks i strictly above j. Note that this should hold in particular for k = j.

The score ranking method obviously satisfies prb. In fact, among the ranking methods
under study, generalised row sum is the only other method satisfying prb. This follows from
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the fact that generalised row sum satisfies a stronger property introduced in Chebotarev
(1994) and called monotonicity.

Example 6.2. Consider the ranking problems A and A′ described below:
A

0 1 20 20
1 0 20 0
20 20 0 0
20 0 0 0


scores max-lik Neus f-bets least-sq Buch r-perf GRS

0.5 0 0.25 0.25 0 1 0 0
0.5 0 0.25 0.25 0 1 0 0
0.5 0 0.25 0.25 0 1 0 0
0.5 0 0.25 0.25 0 1 0 0

A′
0 1 20 39
1 0 20 0
20 20 0 0
1 0 0 0


scores max-lik Neus f-bets least-sq Buch r-perf GRS
0.732 0.916 0.14 0.331 0.238 1 0.416 0.369

0.5 0.916 0.256 0.331 0.238 1.011 1.398 0.04
0.5 0.916 0.308 0.331 0.238 1.116 1.17 0.102

0.025 −2.748 0.018 0.008 −0.713 0.757 −2.984 −0.51

According to all methods under consideration, players 1, 2 and 3 are equally ranked in
A. In A′, player 1 has a better result against player 4 than in A, but only the score ranking
method and generalised row sum rank him above players 2 and 3. Hence, all other methods
violate prb.

A crucial aspect in Example 6.2 is that player 1 is what we call a bridge player, which
in general is defined as follows. Given a ranking problem (N,A), a player b ∈ N is a
bridge player if there exist N1, N2 ⊆ N with cardinalities n1 ≥ 2 and n2 ≥ 2 such that
N1 ∪ N2 = N , N1 ∩ N2 = {b} and Mij = 0 for all i ∈ N1\{b}, j ∈ N2\{b}. Since no
player of N1\{b} has played against any player in N2\{b}, the connectedness of irreducible
ranking problems with bridge players depends crucially on them, in the sense that the
ranking problem obtained after removing a bridge player would not be connected. We
denote by (N1, A1) and (N2, A2) the subproblems obtained from (N,A) by reducing A to
the player sets N1 and N2, respectively. Further, note that the irreducibility of A implies
that a bridge player has scored against at least one player in each of the subproblems, and
that at least one player in each of the subproblems has scored against him.

One might argue that when a ranking problem consists of two subproblems connected
by a bridge player, the relative rankings within each subproblem should not be influenced
by the results in the other subproblem. This is formalised in the property bpi.

Bridge player independence (bpi): Let b be a bridge player with corresponding sub-
problems (N1, A1) and (N2, A2). Then for all i, j ∈ N1, ϕ(A) ranks i weakly above j
if and only if ϕ(A1) ranks i weakly above j.

The main motivation to require bpi lies in the following example. Consider a ranking
problem (N1, A1) with Aij = 1

2 for all i 6= j. Obviously, any symmetric ranking method
ranks all players equally in A1. Now suppose player i finds some (not very strong) friends
outside N1 who are willing to play against him and, subsequently, player i (who is now
a bridge player between N1 and N2) has good results in A2. bpi implies that player i,
with respect to the players in N1, should not benefit from having played the extra matches
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against the players in N2; actually, these extra matches should have no bearing at all on
the relative ranking of i within N1.24

It immediately follows from Proposition 6.2 below that generalised row sum does not
satisfy bpi. For the rest of the ranking methods, just consider again the ranking problems A
and A′ in Example 6.2. Player 1 is a bridge player in both A and A′, with N1 = {1, 4} and
N2 = {1, 2, 3}. In ranking problem A, all players are tied according to all ranking methods.
Yet, in A′, players 1 and 3 are not tied anymore according to the scores, Neustadtl, recursive
performance and Buchholz. Since the only difference between A and A′ is in the subproblem
(N1, A1), these rules do not satisfy bpi.

Proposition 6.1. Fair bets, least squares and maximum likelihood satisfy bpi.

Proof. Let b be a bridge player with respect to the subproblems (N1, A1) and (N2, A2). We
start with the proof for fair bets.

Take x1 = rfb(N1, A1) and x2 = rfb(N2, A2) and define, for all i ∈ N ,

yi =

{
x2
b

x1
b
x1
i if i ∈ N1,

x2
i if i ∈ N2.

Since the fair bets rating vector associated with an irreducible ranking problem is positive,
the vector y is well defined. Then, for i ∈ N1\{b} we have that, for all j ∈ N2, Aij = Aji = 0

and hence ∑
j∈N

Aijyj =
∑
j∈N1

A1
ij

x2
b

x1
b

x1
j =

x2
b

x1
b

∑
j∈N1

A1
jix

1
i =

∑
j∈N

Ajiyi.

Similarly, for i ∈ N2\{b} we have∑
j∈N

Aijyj =
∑
j∈N2

A2
ijx

2
j =

∑
j∈N2

A2
jix

2
i =

∑
j∈N

Ajiyi.

Finally,∑
j∈N

Abjyj =
∑
j∈N1

A1
bj

x2
b

x1
b

x1
j +

∑
j∈N2

A2
bjx

2
j =

x2
b

x1
b

∑
j∈N1

A1
jbx

1
b +

∑
j∈N2

A2
jbx

2
b =

∑
j∈N

Ajbyb.

Since the system given by the
∑
j∈N Ajiyj =

∑
j∈N Aijyi equations has a unique solution

up to a positive scalar multiplication, rfb(N,A) and y induce the same rankings. From this,
bpi follows.

The proof for maximum likelihood is analogous, but we use the vector π that solves
the system of non-linear equations that are used to compute rml. Since rml is a strictly
monotonic transformation of π, they induce the same ranking.

Finally, the proof for least squares goes along similar lines, but the vector y is defined,

for all i ∈ N , by yi =

{
x1
i + x2

b if i ∈ N1,

x1
b + x2

i if i ∈ N2.

24To what extent it is important to work with ranking methods that satisfy this property depends on
how the matches matrix is constructed; for instance, on whether or not the players can choose their own
opponents.
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From Example 6.2 and our discussion on the merits of bpi, it is apparent that prb and
bpi are essentially incompatible. More precisely, the strictness on the rankings imposed by
prb is incompatible with bpi. The next result formalises this statement.

Proposition 6.2. If a ranking method satisfies sym, then it cannot satisfy both prb and
bpi.

Proof. Let ϕ be a ranking satisfying sym and consider the ranking problems A and A′ in
Example 6.2. Since A is a symmetric ranking problem, sym implies that ϕ is flat on A. Now,
by prb player 1 should be ranked on top of any other player in ranking problem A′. Also,
note that Player 1 is a bridge player in both A and A′, with N1 = {1, 4} and N2 = {1, 2, 3}.
Thus, by bpi, the relative ranking of player 1 with respect to players 2 and 3 should not
change from A to A′. Thus, the requirements of prb and bpi are incompatible.

A natural solution to the above incompatibility is to relax the strict inequality in prb,
which gives nnrb below.

Nonnegative responsiveness to the beating relation (nnrb): Let A be a ranking
problem such that ϕ(A) ranks i weakly above j. Let A′ be a ranking problem identical
to A, except that there is k ∈ N\{i} such that M ′ik = Mik, A′ik > Aik and A′ki < Aki.
Then, ϕ(A′) ranks i weakly above j.

Of course, prb trivially implies nnrb. It follows from Example 6.2 that Neustadtl,
recursive performance and Buchholz do not even satisfy this weaker responsiveness property,
because all three methods rank player 1 lower than 2 and 3 in A′, whereas in A they were
ranked equal.

Next, we show that maximum likelihood, least squares and fair bets satisfy nnrb.

Proposition 6.3. Maximum likelihood satisfies nnrb.

Proof. For each i ∈ N , let Ai =
∑
j∈N Aij . We defined maximum likelihood as the unique

positive solution of the system of non-linear equations given by π>e = 1 and, for each i ∈ N ,

πi =
misi∑

`∈N\{i}
Mi`

πi+π`

, or, equivalently, Ai =
∑
`∈N

Mi`
πi

πi + π`
.

Let A and A′ be two matrices as in the definition of nnrb:

• There are i and j in N such that πi ≥ πj .

• M = M ′ and A and A′ are equal except that there is k ∈ N\{i} such that A′ik > Aik

and A′ki < Aki.

We want to show that π′i ≥ π′j . First, note the following. Given t and ` in N ,

π′t
π′t + π′`

(≥)

>
πt

πt + π`
⇐⇒ πt + π`

πt

(≥)

>
π′t + π′`
π′t

⇐⇒ 1 +
π`
πt

(≥)

> 1 +
π′`
π′t

⇐⇒ π`
πt

(≥)

>
π′`
π′t
⇐⇒ π′t

πt

(≥)

>
π′`
π`
. (6.1)
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Suppose now that π′j > π′i. We want to reach a contradiction. Let V = {t ∈ N :
π′t
πt

=

max`∈N
π′`
π`
}. Note that, π

′
j

π′i
> 1 ≥ πj

πi
and, hence, π

′
j

πj
>

π′i
πi
. Thus, i /∈ V . By Eq (6.1), for

each t ∈ V and each ` ∈ N , π′t
π′t+π

′
`
≥ πt

πt+π`
and, if ` /∈ V , π′t

π′t+π
′
`
> πt

πt+π`
. Moreover, by

irreducibility, there are t ∈ V and ` /∈ V such that Mt` > 0. Since t 6= i, At ≥ A′t, but

A′t =
∑
`∈N

Mt`
π′t

π′t + π′`
>

∑
`∈N

Mt`
πt

πt + π`
= At,

and we have a contradiction. Therefore, π′i ≥ π′j .

The two results below establish that both least squares and fair bets satisfy nnrb. The
result for fair bets extends the result in Levchenkov (1992) and Laslier (1997) for binary
tournaments. In our proofs we build upon the arguments in the later reference and, for the
sake of exposition, we relegate them to the Appendix.

Proposition 6.4. Let ranking problem A be such that rrbi (A) ≥ rrbj (A). Let A′ be a ranking
problem identical to A, except that there is k ∈ N\{i} such that M ′ik = Mik and A′ik > Aik.
Then, rrbi (A′) ≥ rrbj (A′) and, if k = j, then rrbi (A′) > rrbj (A′). In particular, least squares
satisfies nnrb.

Proof. See Appendix.

Proposition 6.5. Let ranking problem A be such that rfbi (A) ≥ rfbj (A). Let A′ be a ranking
problem identical to A, except that there is k ∈ N\{i} such that M ′ik = Mik and A′ik > Aik.
Then, rfbi (A′) ≥ rfbj (A′) and, if k = j, rfbi (A′) > rfbj (A′). In particular, fair bets satisfies
nnrb.

Proof. See Appendix.

We present now one last monotonicity property, introduced in Chebotarev and Shamis
(1997) and deeply analized in Chebotarev and Shamis (1999) under the name of self-
consistent monotonicity.25 Informally, it says that if the results of two players i and j

can be compared in such a way that it is clear that player i has performed better than
player j, then player i should be ranked above player j. More precisely, given a ranking
method ϕ, if we can decompose a ranking problem A in a series of subproblems such that,
based on ϕ(A), player i has obtained unquestionably better results than player j in each of
them, then ϕ has to rank player i above player j in ranking problem A. This property was
originally defined in a domain like the one described in the Introduction, where all the R`

matrices are available; this is why need to artificially “decompose” ranking problem A into
subproblems.

Self-consistent monotonicity (scm): Let A be a ranking problem and ϕ a ranking
method. Suppose there are two players i and j for which there is p ∈ N such that
A can be decomposed as A =

∑p
t=0A

t, where the (possibly reducible) At matrices
satisfy:

25Two very similar properties are discussed in Chebotarev and Shamis (1998) and Conner and Grant
(2009).
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(i)
∑
k∈N A

0
ki = 0 and

∑
k∈N A

0
jk = 0, i.e., player i has a perfect score in A0

(provided that he has played some match in A0) and player j has a zero score.

(ii) For each t ∈ {1, . . . , p}, the matches matrix M t is a 0− 1 matrix. Let Oti = {k ∈
N : Mik = 1} denote the set of players against whom player i has played in At;
similarly, define Otj = {k ∈ N : Mjk = 1}. Then, there is a one-to-one mapping
gt : Oti → Otj such that, if gt(k) = `, then Atik ≥ Atj` and ϕ(A) ranks k weakly
above `.

Then, ϕ(A) ranks i weakly above j. Further, if
∑
k∈N A

0
ik is different from zero, or∑

k∈N A
0
kj is different from zero, or at least one weak inequality/comparison in (ii) is

strict, then ϕ(A) ranks i strictly above j.

Proposition 6.6. Maximum likelihood and generalised row sum satisfy scm.

Proof. This result is an immediate consequence of Theorem 12 in Chebotarev and Shamis
(1999); regarding generalised row sum, the result holds as long as ε > 0.

Example 6.3. Consider the ranking problem A described below:
A

0 0 0.9 1
0 0 0.9 0

0.1 0.1 0 0.9
0 0 0.1 0


Neus least-sq r-perf Buch
0.19 0.2 1.361 1.158
0.33 0.3 1.665 1.267

0.077 −0.1 −0.462 1
0.018 −0.4 −2.565 0.708

In this ranking problem, players 1 and 2 have the same results, with the difference that
player 1 has an extra match against player 4 in which he has achieved a perfect score.
Thus, any ranking method satisfying scm should rank player 1 on top of player 2. Therefore,
Neustadtl, least squares, recursive performance and Buchholz do not satisfy scm.

We consider that Example 6.3 illustrates a fairly undesirable behaviour of these four
methods. First, note that the situation is completely different from what we had with prb.
Here, even if we had defined a weaker version of scm without the strictness requirement
included in the last part of the definition, the same example would work to show that the
four methods still violate this property. It is interesting to interpret what is happening
with least squares. Because of his extra victory compared to player 2, player 1 has a higher
score. Yet, this comes at the price of lowering his “average opponent”. When these two
things come into play through the equation M̄x+ ŝ = x, it turns out that the latter effect
dominates. From the point of view of the least squares minimisation, as Chebotarev and
Shamis (1999) put it, this method punishes player 1 for the win over player 4 because, given
that player 1 beats player 3 by a large margin and that player 3 beats player 4 also by a
large margin, player 1 should beat player 4 with a greater intensity, which is not possible.

Example 6.4. Consider the following ranking problems:

A
0 0 0.9 0
0 0 0 0.9
0.1 0 0 0.9
0 0.1 0.1 0


scores

0.9
0.9
0.5
0.1

and

A′
0 0.6 0.5 1 0
0.4 0 0.5 0 1
0.5 0.5 0 0.5 0.5
0 0 0.5 0 0
0 0 0.5 0 0


f-bets
0.378
0.289

0.2
0.067
0.067
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In ranking problem A, players 1 and 2 have beaten, respectively, players 3 and 4 with an
identical result. They have not played more matches and, hence, since player 3 has a higher
score than player 4, scm requires that player 1 has a strictly greater rating than player 2;
i.e., according to scm player 1 should be rewarded for having beaten a stronger opponent
than player 2. Therefore, the score ranking method does not satisfy scm.

In ranking problem A′, players 4 and 5 have lost, respectively, against players 1 and 2

with an identical result. Further, they have achieved the same result against player 3, playing
no more matches. In this case, since according to the fair bets ranking player 1 is strictly
better than player 2, scm requires that player 4 has a strictly greater rating than player 5;
i.e., according to scm player 4 should be rewarded for having lost against a stronger opponent
than player 5. Therefore, the fair bets ranking method does not satisfy scm

7 Discussion

Table 1 summarises the results of the ranking methods we have studied with respect to the
different properties (with the addition of one extra property that we discuss below). From
our point of view, maximum likelihood is the ranking method that looks most appealing,
with generalised row sum also exhibiting a very good behaviour. Essentially, the main
difference between maximum likelihood and generalised row sum hinges on prb and bpi,
two properties that we have shown to be essentially incompatible. Thus, to decide between
these two ranking methods one may want to think of the desirability of prb and bpi in the
setting under study.

The main weakness of least squares is that it does not satisfy scm and Example 6.3
shows a ranking problem where violating this property seems completely inappropriate.
Concerning fair bets, although it also violates scm, the behavior in the corresponding
example does not seem as inappropriate as the example for least squares. Yet, we consider
that its major weakness is that it violates inv, which imposes the natural requirement that
if we reverse all the results in the ranking problem, then the corresponding ranking should
be obtained by reversing the original ranking as well.

It is worth noting that one potential weakness of maximum likelihood is that it requires
to solve a system of non-linear equations. Thus, it may be hard to compute in settings
where there is a high number of players to be ranked. The difficulties to compute rml were
already studied in Dykstra (1956), but it would definitely be interesting to reassess these
difficulties in the light of all advances that computer science has experienced since then.
All other methods under consideration are easy to calculate, since they are based on rating
vectors that can be computed by solving some linear system of equations (indicated by the
l-sol property in Table 1).

The score ranking method satisfies most of the properties we have studied. However,
although this ranking method is very natural when looking at round-robin ranking problems,
in our more general setting it has the important drawback that it just looks at the aggregate
score of each player, ignoring the opponents he has faced to obtain this score. All the other
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Scores Maximum
likelihood Neustadtl Fair

bets
Least
squares Buchholz Recursive

performance

Generalised
row sum

(ε = 1
m̂(n−2)

)

ano X X X X X X X X
hom X X X X X X X X
sym X X X X X X X X
fp X X X X X X X X
op X X X X X X X X
inv X X X X X X X X
nrl X X X X X X X X
scc X X X X X X* X X
htv X X X X X X* X X
iim X X X X X X X X
prb X X X X X X X X
nnrb X X X X X X X X
bpi X X X X X X X X
scm X X X X X X X X
l-sol X X X X X X X X
*Requires |N | > 2.

Table 1: Ranking methods and properties.

ranking methods we have considered use this information. That is, in one way or another,
they are responsive to the strength of the opponents of each player. This is captured
by the fact that the score ranking method is the only one satisfying iim also outside the
subdomain of round-robin ranking problems. So when players have different opponents (or
face opponents with different intensities), iim is a property one would rather not have.
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A Proofs of Propositions 6.4 and 6.5

We start with an auxiliary result that is crucial in the proof for both fair bets and least
squares.

Lemma A.1. Let B ∈ Rn×n be such that

(i) B is invertible,

(ii) for all i 6= j, Bij ≤ 0, and

(iii)
∑n
j=1Bji ≥ 0 for all i ∈ {1, . . . , n}.

If γ, λ ∈ Rn are two vectors such that λ is nonnegative and Bγ = λ, then γ is nonnegative.

Proof. It follows from the assumptions that B is an M-matrix (see, for instance, Berman
and Plemmons (1994)). As a result, B−1 is non-negative, from which the result follows
immediately.

Proof of Proposition 6.4. Let i, j, k ∈ N be as in the statement. Below we explicitly char-
acterise how the recursive Buchholz ratings vary as a function of Aik and Aki, provided
that Mik stays constant. Recall that rrb is the unique solution of M̄x + ŝ = x such that
(rrb)>e = 0. Hence, (I − M̄)rrb = ŝ. Define B = I − M̄ and N̆ = N\{i, k}. Then,
equation ` of the system Brrb = ŝ can be written as∑

h∈N̆

B`hr
rb
h = ŝ` −B`irrbi −B`krrbk . (A.1)

with ` ∈ N̆ . Define B̆ ∈ R(n−2)×(n−2) to be the matrix obtained from B by deleting the
rows and columns corresponding to players i and k.

We prove now that B̆ is invertible. Suppose, on the contrary, that there is an y ∈ Rn−2,
y 6= 0, such that y>B̆> = 0. Let ` ∈ N̆ be such that y` = maxh∈N̆ yh. We assume, without
loss of generality, that y` > 0. For each h 6= `, B>h` ≤ 0 and, hence, −yhB>h` ≤ −y`B>h`, with
equality only if yh = y` or B>h` = 0. Since y>B̆> = 0,

∑
h∈N̆\{`}−yhB>h` = y`B

>
``. Further,

since
∑
h∈N B

>
h` = 0, we have

∑
h∈N̆\{`}−B>h` = B>`` +B>i` +B>k` ≤ B>``, with equality only

if B>i` = B>k` = 0. Then, we have

y`B
>
`` =

∑
h∈N̆\{`}

−yhB>h` ≤ y`
∑

h∈N̆\{`}

−B>h` ≤ y`B>``

and, hence, all the inequalities are indeed equalities. Therefore, B>i` = B>k` = 0 and, for each
h ∈ N̆\{`}, yh = y` or B>h` = 0. Define N̄ = {m ∈ N̆ | ym = maxh∈N̆ yh}. Now, for each
m ∈ N̄ , we have B>im = B>km = 0 and, further, for each h ∈ N̆\N̄ , B>hm = 0. That is, no
player outside N̄ has played against players inside N̄ , which contradicts the irreducibility
of A.
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Define C = (B̆)−1, r̆rb = (rrbh )h∈N̆ , Bi = (Bhi)h∈N̆ and Bk = (Bhk)h∈N̆ . Then, using
(A.1) we have B̆r̆rb = s̆−Birrbi −Bkrrbk and hence, r̆rb = C(s̆−Birrbi −Bkrrbk ). So, for all
` ∈ N̆ ,

rrb` = r̆rb` =
∑
h∈N̆

C`h(s̆h −Bhirrbi −Bhkrrbk ).

Define γs` =
∑
h∈N̆ C`hs̆h, γ

i
` = −

∑
h∈N̆ C`hBhi and γ

k
` = −

∑
h∈N̆ C`hBhk. Then, for each

` ∈ N̆ ,
rrb` = γs` + γi`r

rb
i + γk` r

rb
k . (A.2)

Furthermore, equation i in Brrb = ŝ is

Biir
rb
i +Bikr

rb
k +

∑
`∈N̆

Bi`r
rb
` = ŝi. (A.3)

Define Γi,i = −
∑
`∈N̆ Bi`γ

i
` and Γi,k = −

∑
`∈N̆ Bi`γ

k
` . Then, plugging in the expression of

each rrb` (A.2) into (A.3) we get

(Bii − Γi,i)rrbi + (Bik − Γi,k)rrbk = ŝi −
∑
`∈N̆

γs` . (A.4)

Now, adding up (A.2) over all ` ∈ N̆ and using that
∑
h∈N r

rb
h = 0,

(1 +
∑
`∈N̆

γi`)r
rb
i + (1 +

∑
`∈N̆

γk` )rrbk = −
∑
`∈N̆

γs` . (A.5)

Define σi =
∑
`∈N̆ γ

i
` and σk =

∑
`∈N̆ γ

k
` . Then, solving equations (A.4) and (A.5), we get

rrbi =
ŝi − (1− Bik−Γi,k

1+σk
)
∑
`∈N̆ γ

s
`

(Bii − Γi,i)− (Bik − Γi,k) 1+σk

1+σi

and rrbk =
−
∑
`∈N̆ γ

s
`

1 + σk
− 1 + σi

1 + σk
rrbi . (A.6)

To understand how rrbi and rrbk vary with ŝi, it is convenient to know the signs of γi and
γk. We claim that both γi and γk are nonnegative vectors. By definition, γi = −CBi

and, since C−1 = B̆, B̆γ = −Bi. Furthermore, −Bi ≥ 0. Since matrix B̆ and vectors γi

and −Bi satisfy the conditions of Lemma A.1, γi is nonnegative. The argument for γk is
analogous using −Bk instead of −Bi. The nonnegativity of γi and γk implies that σi and
σk are also nonnegative. Since γk is nonnegative, also Γi,k is nonnegative and Bik − Γi,k is
negative. Furthermore,

Bii − Γi,i = Bii +
∑
`∈N̆

Bi`γ
i
` ≥ Bii +

∑
`∈N̆

Bi` ≥ 0.

We reexamine now equation (A.6). Note that γs, γi, γk, Γi,i, Γi,k, Bii and Bik only depend
on B̆. Then, the denominator of the expression for rrbi is positive and so rrbi is strictly
increasing in ŝi. Further, since rrbk is strictly decreasing in rrbi , it is strictly decreasing in ŝi.

Now, because of (A.2), rrb` is weakly increasing in rrbi and rrbk . Yet, since rrbi and rrbk
are strictly increasing and decreasing, respectively, in ŝi, some extra work is needed to
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understand how rrb` varies with ŝi. To do so, we first show that all the components of γi

and γk are no larger than 1. We prove it for γi, the proof for γk being analogous.

B̆(e− γi) = B̆e− B̆γi = B̆e−Bi,

and, for each ` ∈ N̆ ,

(B̆e−Bi)` =
∑
h∈N̆

B`h +B`i ≥
∑
h∈N̆

B`h +B`i +Bki = 0.

Then, since B̆e−Bi is a nonnegative vector, matrix B̆ and vectors e− γi and B̆e−Bi are
in the conditions of Lemma A.1 and, hence, e− γi is nonnegative.

Therefore, we know that all the components of γi and γk are no larger than 1. Looking
again at equation (A.2), we have that rrb` cannot increase with ŝi faster than rrbi so rrb` /r

rb
i

is weakly decreasing in ŝi. Similarly, rrb` /r
rb
k is weakly increasing in ŝi. From this, the

statement follows.

Proof of Proposition 6.5. The proof of is analogous to the proof of Proposition 6.4, with
B = LA −A instead of B = I − M̄ .
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