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1 Introduction

A bankruptcy problem describes a case in which a planner has to allocate a given amount of
a divisible good E among a set N of agents, when their claims (di)i∈N exceed the available
amount (that is,

∑

i∈N di > E). Most rationing situations can be given this form. Relevant
examples are the execution of a will with insufficient assets, the allocation of a commodity
with excess demand in a fixed price setting, the collection of a given amount of taxes,
and, of course, the liquidation of a bankrupt firm among its creditors. Rationing problems
encompass a wide range of distributive situations and are analytically very simple (indeed,
a bankruptcy problem can be summarized by a triple (N, E, d)).

The literature on bankruptcy problems is large and keeps growing. The main con-
tributions refer to the analysis of different solutions following an axiomatic approach or
translating to this context some of the standard solutions to coalitional games. The reader
is referred to the works of Moulin (2002) and Thomson (2003) for comprehensive surveys
of this literature and for a deeper discussion of the examples mentioned above.

There is also a number of contributions that study different strategic aspects of the prob-
lem (see Thomson (2003, # 7)). The first one already appears in O’Neill’s seminal paper
(see O’Neill (1982, # 5.2)), where the minimal overlap rule is analyzed as the Nash equilib-
rium of a non-cooperative game. Chun (1989) introduces a different strategic consideration
in the bankruptcy problem by allowing the agents involved to propose solution concepts,
rather than allocations. He devises a procedure that converges to the outcome associated
with the constrained equal awards rule. A dual formulation is presented in Herrero (2003);
in this case the procedure converges to the constrained equal losses rule. Sonn (1992) ob-
tains the constrained equal awards rule as the limit of a process in which each player makes
a proposal for someone else, who either accepts and leaves or rejects and takes the place
of the proposer. Dagan et al. (1997) define a sequential game whose unique subgame per-
fect equilibrium outcome corresponds to the allocation of a given resource monotonic and
consistent rule (an extension of the result in Serrano (1995)). The sequential game, which
depends on the consistency assumption, can be summarized as follows. The player with the
highest claim proposes a distribution of the amount available. The other agents can either
accept and leave, or else reject and leave, obtaining what the two-person rule recommends
for the problem made of him and the proposer, with a budget made of the amounts allotted
initially for them by the proposer. See also Dagan et al. (1999) for a further extension.

Along these lines, Corchón and Herrero (2004) discuss the implementation of bankruptcy
rules when the proposals made by the agents are bounded by their claims. Herrero et al.
(2003) provide an experimental analysis of the strategic behaviour in bankruptcy problems.

Somehow between the axiomatic and the strategic approaches there are those contribu-
tions on the manipulation of the rules via merging or splitting claims (see de Frutos (1999),
Ju (2003) and Moreno-Ternero (2004)).

In this paper we provide a non-cooperative support to the resolution of bankruptcy
problems. The basic idea is the following. Each agent is asked to declare what reward she
is ready to admit, given that there is not enough to satisfy all the demands. Of course
this is a strategic situation and each player will declare the amount that maximizes her
expected payoff. We propose here an elementary game form in which those who “demand
less” are given priority in the distribution, so that in a Nash equilibrium all players demand
“the same”. Interestingly enough the equilibrium payoff vector is unique and so is, in many
cases, the strategy profile. Moreover, the Nash equilibria of this game are all strong. By
specifying properly what we mean by “demanding less” and “getting the same” through the
rules of each particular game of this type, we obtain all the different solutions to bankruptcy
problems as Nash equilibria.
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We implicitly assume, as it is usual in this literature, that both the amount to divide
and the claims are known by all the agents. There are, however, two features that make this
game form much simpler than those in other contributions: (1) No sequential procedure
is involved (which, incidentally, makes the result independent on consistency). (2) Each
agent’s message only refers to her decision variable, in contrast with most of the results in
which each agent proposes a whole allocation. Moreover, our results apply to virtually all
acceptable bankruptcy rules (where “unacceptable” rules are those that allow some agent
to get her full claim and, at the same time, give zero to some else).

The paper is organized as follows. Section 2 presents the formal model and the main
results. Section 3 applies those results to the bankruptcy problem. It is shown that the
allocation proposed by any acceptable bankruptcy rule can be obtained as the Nash equi-
librium of a specific game within the family presented in Section 2. We conclude with a few
final comments in Section 4.

2 The model and the main results

A bankruptcy problem is a triple (N, E, d), where N = {1, 2, ..., n} is a collection of
agents, E > 0 is the amount to divide, and d ∈ R

n
++ is the vector of claims. The essence

of the problem under consideration implies that
∑

i∈N di > E > 0. A bankruptcy rule
R is defined as a function mapping each bankruptcy problem (N, E, d) into R

n
+, so that

Ri(N, E, d) ∈ [0, di] for all i ∈ N, and
∑

i∈N Ri(N, E, d) = E. The rule R represents a
sensible way of distributing the available amount E, with two natural restrictions. One is
that no agent gets more than she claims or less than zero. The other that the total amount
E is divided among the agents.

Our non-cooperative bankruptcy game for the bankruptcy problem (N, E, d) is a
strategic game with N as the set of players, who are endowed with strategy spaces (Di)i∈N ,
and payoff functions (πi)i∈N that describe what each agent gets as a function of the joint
strategy vector.

In our game, player i’s strategy space is a closed interval Di = [0, mi], for some scalar
mi > 0. A strategy for agent i will be denoted by αi, whereas α ∈ D =

∏

i∈N Di is
a strategy combination, and α−i is an (n − 1)-vector consisting of the strategies of all
agents other than agent i. We interpret αi as a message monotonically related to the total
payoff that she declares admissible, given the rationing situation. For instance, αi may
describe the share of di that agent i would be ready to accept. Or it may correspond to
the loss she is ready to admit. This is described through a function fi : Di → [0, di] that
specifies the relationship between the agent’s message and her intended reward. For instance
fi(αi) = αidi, when αi corresponds to agent i’s admissible share. A strategy profile α is
feasible if

∑

i∈N fi(αi) ≤ E.
Concerning those fi functions we assume:

Axiom 1. For all i ∈ N, fi is a monotone function that defines a bijection from [0, mi] to
[0, di].

Axiom 2. All fi’s are simultaneously increasing or decreasing.

Note that axiom 1 implies that every fi is also a continuous and strictly monotone
function. Because of this, functions fi will be referred to as increasing or decreasing meaning
strictly increasing or strictly decreasing, respectively. For simplicity we assume in axiom 2
that the orientation of the messages of the agents is uniform, which means that functions
fi are either all increasing or all decreasing. It follows from axioms 1 and 2 that fi(0) = 0
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and fi(mi) = di, when functions fi are increasing, and fi(0) = di, fi(mi) = 0 when they
are decreasing.

If the fi’s are increasing (decreasing) functions, we denote by [i] the agent whose message
occupies the ith position in the increasing (decreasing) ordering of messages. Although it
will not be important for the results of this paper, a tie-breaking rule must be considered
in order to have a well defined reordering of the agents. Here we consider the following: if
there is a tie between two or more players, the ranking will be made in increasing ordering
or their indices within N. So:

α[1] ≤ α[2] ≤ ... ≤ α[n] if the fi functions are increasing.
α[1] ≥ α[2] ≥ ... ≥ α[n] if the fi functions are decreasing.
Consider now the following procedure. Each agent j chooses her message αj . If the

corresponding profile α is feasible, then each agent j gets fj(αj). If α is not feasible, then
E is allocated among the players with lowest ranking. That is, let [h] denote the smallest
index for which

∑

[i]≤[h] f[i](α[i]) > E. Then:

π[j](α) =







f[j](α[j]) [j] < [h]
E −

∑

[i]≤[h−1] f[i](α[i]) [j] = [h]

0 [j] > [h]

This non-cooperative bankruptcy game will be denoted by 〈N, D, π〉. Note that, under
axioms 1 and 2, the strict monotonicity of the fi functions is translated to the functions
πi(α−i, ·) for every α−i, provided

∑

i∈N fi(αi) < E. By construction,
∑

i∈N πi(α) ≤ E, for
all α ∈ D.

We define a Nash equilibrium of the game 〈N, D, π〉, associated with a bankruptcy
problem (N, E, d), as a strategy profile α∗ ∈ D such that πi(α

∗) ≥ πi(α
∗
−i, αi), for all

αi ∈ Di, and all i ∈ N.

A strategy profile α∗ ∈ D is a strong equilibrium (Aumann (1959)) if there do not
exist T ⊂ N and αT ∈

∏

i∈T Di such that πi(α
∗) < πi(α

∗
N\T

, αT ), for all i ∈ T .

Lemma 1. Under axioms 1 and 2, if α∗ ∈ D is a Nash equilibrium of the bankruptcy game
〈N, D, π〉, then

∑

i∈N πi(α
∗) = E, i.e., all the Nash equilibria are efficient.

The proof is immediate and so it is omitted. The lemma is used in the following propo-
sition which shows two features of each non-cooperative bankruptcy game. First, that it
has, at least, one Nash equilibrium. Second, that it can have multiple Nash equilibra but,
in this case, the equilibrium payoff is unique.

Proposition 1. Given a bankruptcy problem (N, E, d) and an associated non-cooperative
bankruptcy game 〈N, D, π〉, the following statements are true under axioms 1 and 2:

(i) There exists a constant ρ such that the game has a Nash equilibrium in which α∗
i =

min{ρ, mi}, i.e., every player selects the strategy in [0, mi] which is closer to ρ.

(ii) The equilibrium payoff for this game is unique.

Proof. Case i) Functions fi are increasing. Let F : R+ −→ R+ be such that for each
x ∈ R+, F (x) =

∑

i∈N fi(xi), where xi = min{x, mi}. The continuity of all fi’s implies the
continuity of F. Hence, since i) F (0) = 0, ii) F (maxi∈N{mi}) =

∑

i∈N di > E, and (iii) F is
strictly increasing in the interval [0, maxi∈N{mi}], there is a unique ρ ∈ (0, maxi∈N{mi})
such that F (ρ) = E.

Suppose that the profile α∗ is a Nash equilibrium and that, for some fixed i, j, we have
α∗

j > α∗
i and mi > α∗

i . If πj(α
∗) = 0, then player j can ensure for herself a positive payoff

with the strategy ε, for ε small enough. Hence, πj(α
∗) must be positive. Now, for δ > 0
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small enough, agent i can switch to a strategy α∗
i + δ such that player i has still a lower

index than player j and ensuring himself a payoff πi(α
∗
i + δ) = f(α∗

i + δ) > f(α∗
i ) = πi(α

∗
i ).

Hence, if α∗ is a Nash equilibrium and α∗
j > α∗

i for some i, j ∈ N, we have α∗
i = mi.

Combining this with the fact that ρ is the unique positive real number for which F (ρ) = E,
we get that the strategies α∗

i = min{ρ, mi} define a Nash equilibrium.
Let ᾱ be a Nash equilibrium of 〈N, D, π〉. Suppose that π(ᾱ) 6= π(α∗). Then, by

Lemma 1, there are i, j ∈ N such that πi(ᾱ) > πi(α
∗) and πj(ᾱ) < πj(α

∗). Since for each
k ∈ N , πk(α∗) = fk(α∗), then ᾱi > α∗

i and ᾱj < α∗
j . Then, in ᾱ, j can deviate to strategy

α∗
j and get a higher profit.

Case ii) Functions fi are decreasing. Take again the function F, now we have i) F (0) =
∑

i∈N di > E and ii) F (maxi∈N{mi}) = 0. Define again ρ as the unique real number in
(0, maxi∈N{mi}) such that F (ρ) = E. The situation is similar to the case with increasing
functions: the profile α∗ with α∗

i = min{ρ, mi} is again a Nash equilibrium. The part for
the uniqueness of the equilibrium payoff is analogous.

Moreover, all the Nash equilibria in the Proposition above are in fact strong equilibria,
as the following Proposition shows.

Proposition 2. Given a bankruptcy problem (N, E, d), an associated non-cooperative bankruptcy
game 〈N, D, π〉 that satisfies axioms 1 and 2, and a strategy profile α∗, then α∗ is a Nash
equilibrium if and only if α∗ is a strong equilibrium.

Proof. Since a strong equilibrium is a Nash equilibrium only one implication has to be
proved. Assume that the functions fi are increasing. Let α∗ be the Nash equilibrium defined
in Proposition 1, i.e., there exists ρ such that α∗

i = min{ρ, mi} for all i ∈ N . Suppose that
ᾱ is a Nash equilibrium which is not strong. Then, there are a coalition T ⊂ N , with at
least two players, and αT ∈

∏

j∈T Dj such that, for each j ∈ T , πj(ᾱ) < πj(ᾱN\T , αT ).
Since ᾱ is a Nash equilibrium, for each i ∈ N , πi(ᾱ) = πi(α

∗) = fi(α
∗
i ). Now, for each

j ∈ T ,
fj(αj) ≥ πj(ᾱN\T , αT ) > πj(ᾱ) = fj(α

∗
j ).

Hence, αj > α∗
j . This means that α∗

j < mj . Thus, for each j ∈ T , α∗
j = ρ and αj > ρ.

Moreover, since for each j ∈ T , fj(ᾱj) ≥ πj(ᾱ) = fj(ρ), then ᾱj ≥ ρ.
Now, we distinguish two cases:
Case i) For each i ∈ T , ᾱi = ρ. Take now the player k ∈ T with the lowest priority for

(ᾱN\T , αT ). Then, since k’s priority does not get worse when moving from (ᾱN\T , αT ) to
(ᾱ−k, αk) and for each i ∈ N , fi((ᾱN\T , αT )i) ≥ fi((ᾱ−k, αk)i), we have that πk(ᾱ−k, αk) ≥
πk(ᾱN\T , αT ) > πk(ᾱ). Hence, ᾱ is not a Nash equilibrium.

Case ii) maxj∈T ᾱj > ρ. Let i ∈ argmaxj∈T ᾱj . Let k 6= i, k ∈ T . Now, ᾱk < ᾱi, since
otherwise we would have fi(ᾱi) > πi(ᾱ) = fi(ρ) and fk(ᾱk) > πk(ᾱ) = fk(ρ), and this is
not possible by the construction of payoff functions. Now, there is α′

k ∈ (ᾱk, ᾱi) such that
k can profitably deviate to α′

k in the profile ᾱ. Hence, ᾱ is not a Nash equilibrium.
In the decreasing case, a similar argument can be formulated.

3 Bankruptcy games and bankruptcy rules

Let us now illustrate how the results in Section 2 apply to some standard bankruptcy rules.
The proportional rule, P, which is probably the best known and most widely used so-

lution concept, distributes awards proportionally to claims. It is defined as follows: for all
(N, E, d), P (N, E, d) = λd, with λ = E

∑

i∈N
di

. It is easy to see that, if we take Di = [0, 1]
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and fi(αi) = αidi, for all i ∈ N, the unique Nash equilibrium of the game will produce the
proportional solution to the bankruptcy problem.

The constrained equal-awards rule, A, applies an egalitarian principle on the awards
received, provided no agent gets more than she claims. It is defined as follows: for all
(N, E, d) and all i ∈ N, Ai(N, E, d) = min{di, λ}, where λ solves

∑

i∈N min{di, λ} = E.

By letting Di = [0, di] and fi(αi) = αi, we get the constrained equal awards solution as the
unique Nash equilibrium payoff of the associated bankruptcy game.

The constrained equal-loss rule, L, is the dual of the former. It distributes equally the
difference between the amount available and the aggregate claims, with one proviso: no
agent ends up with a negative transfer. Namely, Li(N, E, d) = max{0, di − λ}, where λ

solves
∑

i∈N max{0, di − λ} = E. Taking Di = [0, di] and defining fi(αi) = di − αi, we
obtain the constrained equal-losses solution as the Nash equilibrium payoff of the game.

These results illustrate on the applicability of this procedure to provide a non-cooperative
support to some well-known bankruptcy rules. But these results can actually be extended
to virtually any meaningful rule. Consider now the following definition which introduces an
extremely mild requirement on bankruptcy rules:

Definition 1. A bankruptcy rule R is called acceptable if there are no bankruptcy problem
(N, E, d) and agents i, j ∈ N such that Ri(N, E, d) = 0 and Rj(N, E, d) = dj .

Acceptable rules are those which never concede an agent her claim in full whereas some
other agent gets nothing. Most of the rules which have been studied in the literature are
acceptable.

The following proposition provides a general result for acceptable bankruptcy rules.

Proposition 3. Given an acceptable bankruptcy rule R and a bankruptcy problem (N, E, d),
there exists a non-cooperative bankruptcy game 〈N, D, π〉, satisfying axioms 1 and 2, whose
unique equilibrium payoff coincides with R(N, E, d).

Proof. The proof consists of showing that we can define sets of strategies Di and functions
fi in such a way that the result is a consequence of Proposition 1.

Let (N, E, d). To simplify notation we write Ri instead of Ri(N, E, d). Since the rule is
acceptable, either Ri > 0 for all i ∈ N or Ri < di for all i ∈ N. Next, we define the sets of
strategies and the functions fi.

Case i) Ri > 0 for all i ∈ N . Let

mi =
R1

Ri

di and fi(αi) =
Ri

R1
αi.

It is clear that functions fi are monotone (in fact, increasing) and that, for all i ∈ N, fi

is a bijection mapping [0, mi] into [0, di].
From Proposition 1 we have that the non-cooperative bankruptcy game has a unique

equilibrium payoff. Clearly, in this case, ρ = R1. Hence, α∗ = (R1, . . . , R1) is a Nash
equilibrium (which is, moreover, strong according to Proposition 2); its associated payoff is
R(N, E, d).

Case ii) Ri < di for all i ∈ N. The reasoning is the same as before, except in that, now,
we define:

mi =
d1 − R1

di − Ri

di and fi(αi) = di −
di − Ri

d1 − R1
αi.

Proposition 1 gives again the desired result, taking into account that (d1−R1, ..., d1−R1)
is a Nash equilibrium of this game, and that its associated payoff vector is R(N, E, d).
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4 Final remarks

We have presented in this paper a simple and intuitive game form which supports virtually
all bankruptcy rules. The allocation proposed by each rule is obtained as the unique payoff
vector corresponding to the Nash equilibria of a specific game. In this respect, choosing the
rules of the game (and most particularly the strategy space of the agents) determines the
bankruptcy rule that will emerge.

Interestingly enough, the game form that allows to implement those bankruptcy rules is a
one-shot game in which every agent sends a message concerning her own awards exclusively.
Those messages refer to the cuts in their claims they might be ready to accept, given their
claims and the existing shortage. The game form induces an equilibrium in which all agents
choose “the same” message. Selecting the nature of those messages (e.g. awards, shares,
losses) amounts to deciding on the bankruptcy rule whose allocation will result (the equal
awards-rule, the proportional rule, the equal-losses rule).

The game form proposed here implicitly assumes that all the data of the problem are
public knowledge. In particular that the planner may know both the agents’ claims and the
amount to divide. This is a natural assumption in most of the bankruptcy situations, where
claims have to be eventually credited. The case of taxation problems may be an exception
in this respect. Dagan et al. (1999) show that those problems are implementable when all
agents other than the planner know all the data of the problem. Even though this is an
arguable assumption in this context, they also show an impossibility result when this is not
the case (see also Corchón and Herrero (2004) on this point).
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