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Abstract

In this paper, we characterise the compromise value of a game as the
barycentre of the edges of its core cover. For this, we introduce the τ∗ value,
which extends the adjusted proportional rule for bankruptcy situations and
coincides with the compromise value on a large class of games.

1 Introduction

Most game-theoretic solution concepts that have been proposed in the literature are
defined on the basis of or characterised by properties. These properties are usually
formulated in terms of individual payoffs and reflect notions like monotonicity and
rationality. For some values, there exist additional characterisations in terms of
geometry. The best-known example is the Shapley value (cf. Shapley (1953)), which
is the barycentre of the extreme points of the Weber set (taking multiplicities into
account).

For some classes of games, there exist nice geometric expressions for the com-
promise or τ value (cf. Tijs (1981)). In particular, the compromise value is the
barycentre of the core cover in big boss games (cf. Muto et al. (1988)) and 1-convex
games (cf. Driessen (1988)).

In this paper, we extend the APROP rule for bankruptcy situations (cf. Curiel
et al. (1987)) to the whole class of compromise admissible (or quasi-balanced)
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games (cf. Tijs (1981))1. This extended rule, which we call τ ∗, turns out to be the
barycentre of the edges of the core cover (taking multiplicities into account), which
is our main result. Since this rule coincides with the compromise value if, after
normalising such that each player’s minimal right equals zero, each player’s utopia
payoff is at most the value of the grand coalition, our main result immediately
provides a characterisation of the compromise value on this class of games.

This paper is organised as follows. In section 2, we extend the APROP rule and
define the barycentre ζ of the edges of the core cover. In section 3, we state our main
result and give an overview of the proof, which consists of six main steps. Finally,
in section 4, we prove our main result.

2 The τ ∗ value

A transferable utility or TU game is a pair (N, v), where N = {1, . . . , n} is a set of
players and v : 2N → R is a function assigning to every coalition S ⊂ N a payoff
v(S). By convention, v(∅) = 0.

Following Tijs and Lipperts (1982), the utopia vector of a game (N, v), M(v) ∈
RN , is defined by

Mi(v) = v(N) − v(N\{i})
for all i ∈ N . The minimum right vector mi(v) ∈ RN is defined by

mi(v) = max
S⊂N,i∈S

{v(S) −
∑

j∈S\{i}

Mj(v)}

for all i ∈ N .
The core cover of a game (N, v) consists of those allocations of v(N) according

to which every player receives at most his utopia payoff and at least his minimal
right:

CC(v) = {x ∈ RN |
∑

i∈N

xi = v(N), m(v) ≤ x ≤ M(v)}.

A game is called compromise admissible if it has a nonempty core cover. We denote
the class of compromise admissible games with player set N by CAN . A rule on a
subclass A ⊂ CAN is a function f : A → RN assigning to each v ∈ A a payoff vector
f(v) ∈ RN such that

∑

i∈N fi(v) = v(N).
The compromise or τ value (cf. Tijs (1981)) is the rule on CAN defined as the

point on the line segment between m(v) and M(v) that is efficient with respect to
v(N):

1The extension of the Talmud rule is discussed in Quant et al. (2003), while in Quant et al.
(2004) a more general framework is considered, including the run-to-the-bank rule, the constrained
equal award rule and the constrained equal loss rule.
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τ(v) = λm(v) + (1 − λ)M(v),

where λ ∈ [0, 1] is such that
∑

i∈N τi = v(N).
A bankruptcy situation is a triple (N, E, c), where E ≥ 0 is the estate to be

divided and c ∈ RN
+ with

∑

i∈N ci ≥ E is the vector of claims. The corresponding
bankruptcy game (N, vE,c) is defined by vE,c(S) = max{E − ∑

i∈N\S ci, 0} for all

S ⊂ N . We denote the class of bankruptcy situations with player set N by BRN .
The class of corresponding games is a proper subclass of CAN . A bankruptcy rule is
a function f : BRN → RN assigning to every bankruptcy situation (N, E, c) ∈ BRN

a payoff vector f(E, c) ∈ RN
+ such that

∑

i∈N fi(E, c) = E.
The literature offers many different bankruptcy rules, and hence, indirectly, rules

for bankruptcy games. One interesting question is how these can be extended in a
natural way to the whole class of compromise admissible games. In this paper, we
consider the proportional rule and the adjusted proportional rule (cf. Curiel et al.
(1987)). The proportional rule PROP simply divides the estate proportional to the
claims:

PROPi(E, c) =
ci

∑

j∈N cj

E

for all (N, E, c) ∈ BRN and i ∈ N . The adjusted proportional rule APROP first
gives each player i ∈ N his minimal right mi(E, c) = max{E − ∑

j∈N\{i} cj , 0} and
the remainder is divided using the proportional rule, where each player’s claim is
truncated to the estate left:

APROP (E, c) = m(E, c) + PROP (E ′, c′),

where E ′ = E − ∑

i∈N mi(E, c) and for all i ∈ N , c′i = min{ci − mi(E, c), E ′}.
The compromise value can be seen as an extension of the PROP rule:

τ(v) = m(v) + PROP (v(N) −
∑

i∈N

mi(v), M(v) − m(v)).

Note that it follows from the definition of compromise admissibility that the argu-
ment of PROP is indeed a bankruptcy situation.

Similarly, we can extend the APROP rule:

τ ∗(v) = m(v) + APROP (v(N)−
∑

i∈N

mi(v), M(v) − m(v)).

To simplify the expression for τ ∗, we show that the minimum rights in the associated
bankruptcy situation equal 0. Let v ∈ CAN , E = v(N) − ∑

i∈N mi(v), c = M(v) −
m(v) and let i ∈ N . Then

E −
∑

j∈N\{i}

cj = v(N) −
∑

i∈N

mi(v) −
∑

j∈N\{i}

(Mj(v) − mj(v))

= v(N) −
∑

j∈N\{i}

Mj(v) − mi(v)

≤ 0,
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since mi(v) ≥ v(N)−∑

j∈N\{i} Mj(v). Hence, mi(E, c) = max{E−∑

j∈N\{i} cj, 0} =
0. As a result, we have

τ ∗(v) = m(v) + PROP (E ′, c′) (2.1)

with E ′ = v(N) − ∑

i∈N mi(v) and c′i = min{Mi(v) − mi(v), E ′} for all i ∈ N .
It follows that only for a game v ∈ CAN with Mi(v)−mi(v) ≤ v(N)−∑

j∈N mj(v)
for all i ∈ N , τ ∗ coincides with the compromise value τ .

Example 2.1 Consider the game v ∈ CAN with N = {1, 2, 3}:
S {1} {2} {3} {1, 2} {1, 3} {2, 3} N

v(S) 0 0 0 4 2 −2 5

For this game, we have M(v) = (7, 3, 1) and m(v) = (1, 0, 0). Hence, τ(v) =
(1, 0, 0) + 4

10
(6, 3, 1) = (17

5
, 6

5
, 2

5
) and τ ∗(v) = (1, 0, 0) + APROP (4, (6, 3, 1)) =

(1, 0, 0) + PROP (4, (4, 3, 1)) = (3, 3
2
, 1

2
). ⊳

The extended rule τ ∗ turns out to be a kind of barycentre of the core cover, which is
the main result of our paper. To define this barycentre rule ζ , we need to introduce
some more concepts. A permutation on N is a bijection σ : {1, . . . , n} → N , where
σ(p) denotes the player at position p, and consequently, σ−1(i) denotes the position
of player i. The set of all permutations on N is denoted by Π(N). σi,j denotes the
permutation obtained from σ by switching players i and j. Two permutations σ and
σσ(p),σ(p+1) are called permutation neighbours. The set of permutation neighbours of
σ is denoted by Πσ(N).

The core cover is a polytope whose extreme points are called larginal vectors or
larginals. The larginal ℓσ ∈ RN corresponding to order σ ∈ Π(N) (cf. Quant et al.
(2003)) is the efficient payoff vector giving the first players in σ their utopia demands
as long as it is still possible to satisfy the remaining players’ minimal rights:

ℓσ
σ(p)(v) =







Mσ(p)(v) if
∑p

k=1 Mσ(k)(v) +
∑n

k=p+1 mσ(k)(v) ≤ v(N),

mσ(p)(v) if
∑p−1

k=1 Mσ(k)(v) +
∑n

k=p mσ(k)(v) > v(N),

v(N) − ∑p−1
k=1 Mσ(k)(v) − ∑n

k=p+1 mσ(k)(v) otherwise

for all p ∈ {1, . . . , n}.
Note that two permutations that are neighbours yield larginals which are adjacent

extreme points of the core cover (possibly coinciding), which we subsequently also
call permutation neighbours.

We define the ζ rule as a weighted average of the larginal vectors:2

2In the degenerate case where M = m, the core cover consists of a single point, in which case we
define ζ to be this point. Otherwise, there are at least two different larginals and the denominator
is positive.
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ζ(v) =

∑

σ∈Π(N) wσ(v)ℓσ(v)
∑

σ∈Π(N) wσ(v)
, (2.2)

where

wσ(v) =
1√
2

∑

τ∈Πσ(N)

d(ℓσ(v), ℓτ(v))

equals the sum of the Euclidean distances between ℓσ(v) and all its permutation
neighbours, divided by the common factor

√
2 to simplify later expressions. The

ζ value can be viewed as the barycentre of the edges of the core cover, taking
multiplicities into account.

To simplify the proofs later on by getting rid of the minimum rights and capping
the utopia payoffs, we first show that both τ ∗ and ζ satisfy the properties (SEQ) and
(RTRUNC). Two games v and v̂ are called strategically equivalent if there exists a
real number k > 0 and a vector a ∈ RN such that for all S ⊂ N ,

v̂(S) = kv(S) + a(S), (2.3)

with a(S) =
∑

i∈S ai. A function f : CAN → RN is relatively invariant with respect
to strategic equivalence (SEQ) if for all v, v̂ ∈ CAN such that (2.3) holds for some
k > 0, a ∈ RN , we have

f(v̂) = kf(v) + a.

It is well-known that the utopia vector M and the minimum right vector m both
satisfy (SEQ).

Proposition 2.1 The τ ∗ rule and the ζ rule satisfy (SEQ).

Proof: The proof for τ ∗ is straightforward and therefore omitted.
It readily follows from (SEQ) of m and M that ℓσ also satisfies (SEQ) for all σ ∈
Π(N). Let v, v̂ ∈ CAN , let k > 0, a ∈ RN be such that (2.3) holds and let σ ∈ Π(N).
Then it follows from the properties of Euclidean distance that wσ(v̂) = kwσ(v).
Hence,

ζ(v̂) =

∑

σ∈Π(N) wσ(v̂)ℓσ(v̂)
∑

σ∈Π(N) wσ(v̂)
=

k
∑

σ∈Π(N) wσ(v)[kℓσ(v) + a]

k
∑

σ∈Π(N) wσ(v)
= kζ(v) + a.

And so, ζ satisfies (SEQ). �

A rule f : CAN → RN satisfies the restricted truncation property (RTRUNC) if for
all v ∈ CAN with m(v) = 0 it holds that for all v̂ ∈ CAN with v̂(N) = v(N),
m(v̂) = 0 and Mi(v̂) = min{Mi(v), v(N)} we have f(v̂) = f(v). The idea behind
(RTRUNC) is that if a player’s utopia value (or, in bankruptcy terms, his claim) is
higher than the value of the grand coalition (the estate), his payoff according to f

should not by influenced by truncating this claim.
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Proposition 2.2 The τ ∗ rule and the ζ rule satisfy (RTRUNC).

Proof: Let v ∈ CAN with m(v) = 0. Then (2.1) reduces to

τ ∗(v) = PROP (v(N), (min{Mi(v), v(N)})i∈N).

From this it immediately follows that τ ∗ satisfies (RTRUNC).
For the ζ rule, it suffices to note that for two games v, v̂ ∈ CAN as described in the
definition of (RTRUNC), it follows from the construction of a larginal vector that
ℓσ(v) = ℓσ(v̂) for all σ ∈ Π(N) and hence, ζ(v) = ζ(v̂). �

3 Main result

In this section, we present our main result: equality between τ ∗ and ζ on CAN .
After dealing with some simple cases, we present a six step outline of the proof,
which we give in the next section.

Theorem 3.1 Let v ∈ CAN . Then

τ ∗(v) = ζ(v).

As a result of Proposition 2.1, it suffices to show equality for every game v ∈ CAN

with m(v) = 0. Next, we can use Proposition 2.2 and conclude that we have to show
that for all v ∈ CAN with m(v) = 0 and Mi(v) ≤ v(N)3 for all i ∈ N we have4

PROP (v(N), M(v)) =

∑

σ∈Π(N) wσ(v)ℓσ(v)
∑

σ∈Π(N) wσ(v)
.

In case there are only two players, equality between τ ∗ and ζ follows from M1(v) =
M2(v) = v(N).

If Mi(v) = 0 for a player i ∈ N , then we have τ ∗
i (v) = ζi(v) = 0. Fur-

thermore, for each σ ∈ Π(N), the payoff to the players in N\{i} according
to ℓσ(v) equals their payoff in the situation without player i5 according to the
larginal corresponding to the restricted permutation σN\{i} ∈ Π(N\{i}), defined
by σ−1

N\{i}(h) < σ−1
N\{i}(j) ⇔ σ−1(h) < σ−1(j) for all h, j ∈ N\{i}. It is readily veri-

fied that also the total weight of each larginal (taking multiplicities into account) is

3Note that the condition Mi(v) ≤ v(N) is necessary and sufficient to have Mi(v) =
maxσ∈Π(N) ℓσ

i (v). Only in this case, the utopia vector can be reconstructed from the core cover.
4The denominator is zero if and only if M(v) = 0(= m(v)). In this degenerate case equality

between τ∗ and ζ is trivial and we therefore assume M(v) 	 0.
5Ie, the situation with player set N\{i}, utopia vector MN\{i}(v) and the same amount v(N)

to be distributed.
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the same in the game with and without player i. Hence, we can omit player i from
the game and establish equality between τ ∗ and ζ for the remaining players.6

We establish equality between τ ∗ and ζ by combining the permutations in the
numerator and denominator in (2.2) into so-called chains. In the denominator,
these chains allow us to combine terms in such a way that the total weight can be
expressed as a simple function of M(v). In the numerator, we construct an iterative
procedure to find an expression for the weighted larginals, in which the chains allow
us to keep track of changes that occur from one iteration to the next.

The proof of Theorem 3.1 consists of six steps:

1. We first find an expression for the weight of each permutation. This is done
by introducing the concept of pivot and classifying each permutation in terms
of its pivot and its neighbours’ pivots.

2. Using the concept of pivot, we introduce chains, which constitute a partition
of the set of all permutations. The results of the previous step are then used
to compute the total weight of each chain.

3. We define a family of auxiliary functions f ij and gij, which are used to show
that each player “belongs” to the same number of chains. As a result, we use
our expression of the previous step to compute the total of all the weights, ie,
the denominator in (2.2).

4. In the numerator, we partition the set of chains on the basis of the first player
in each permutation. Within each part, we compute the total weighted payoff
to all the players. For the first player, this total weighted payoff can easily be
computed.

5. The expression for the payoffs to the other players is proved using an iterative
argument, varying the utopia vector while keeping v(N) constant. We start
with a utopia vector for which our expression is trivial and lower this vector
step by step until we reach M(v). In each step of the iteration, (generically)
only two chains change and using this, we show that the total weighted payoff
to each player who is not first does not change as function of the utopia vector.

6. Combining the previous three steps, we derive an expression for ζ and show
that this equals τ ∗.

6Geometrically, the core cover, which lies in the hyperplane Mi(v) = 0, is projected onto a
space which is one dimension lower.
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4 Proof of main result

Throughout this section, let v ∈ CAN be such that |N | ≥ 3, m(v) = 0, M(v) > 0,
and v(N) ≥ Mi(v) for all i ∈ N . For Theorem 3.1 is suffices to show that for this v

we have

PROP (v(N), M(v)) =

∑

σ∈Π(N) wσ(v)ℓσ(v)
∑

σ∈Π(N) wσ(v)
.

Since v is fixed for the remainder of this section, we suppress it as argument and
write M rather than M(v), etc. The weight wσ(v) is denoted by w(σ).

Step 1: pivots

Let σ ∈ Π(N). Player σ(p) with p ≥ 2 is called the pivot in ℓσ if ℓσ
σ(p−1) = Mσ(p−1),

ℓσ
σ(p) > 0 and ℓσ

σ(p+1) = 0. The pivot of a larginal is the player who gets a lower

amount according this larginal if the amount v(N) is decreased slightly. In the
boundary case where Mσ(1) = v(N), v(N) cannot be decreased without violating
the condition Mσ(1) ≤ v(N). In this case, player σ(2) is defined to be the pivot,
being the player who gets a higher amount if v(N) is increased slightly. Note that
m = 0 implies that

∑

j∈N\{i} Mj ≥ v(N) for all i ∈ N and hence, player σ(n) can
never be the pivot.

In the following example, we introduce a game which we use throughout this
section to illustrate the various concepts.

Example 4.1 Consider the game (N, v) with N = {1, . . . , 5}, v(N) = 10 and
M = (5, 7, 1, 3, 4). For this game, we have τ ∗ = ζ = 1

2
M . Take σ1 to be the identity

permutation. Then

ℓσ1 = (5, 5, 0, 0, 0)

and player 2 is the pivot. ⊳

For a permutation σ ∈ Π(N), we define pσ to be the position at which the pivot7

is located. We define σL = σσ(pσ−1),σ(pσ) to be the left neighbour of σ and σR =
σσ(pσ),σ(pσ+1) to be the right neighbour of σ. It follows from the definition of pivot
that the left and right neighbours of ℓσ are the only two permutation neighbours
that can give rise to a larginal different from ℓσ.

Recall that the weight of ℓσ, w(σ), equals the sum of the (Euclidean) distances
between ℓσ and all its permutation neighbours. In line with the previous paragraph,
we only have to take the left and right neighbours into account. So,

7As with neighbour, we use the term pivot as property of a permutation as well as the corre-
sponding larginal.
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w(σ) =
1√
2

[

d(ℓσ, ℓσL

) + d(ℓσ, ℓσR

)
]

.

We classify the larginals into four categories, depending on the pivot in the left and
right neighbours. Let σ = (. . . , h, i, j, . . .) be a permutation with pivot i. Then the
four types are given in the following table:

Type Pivot in σL Pivot in σ Pivot in σR

PPP i i i

−PP h i i

PP− i i j

−P− h i j

We can now determine the weight of each larginal, depending on its type. Take
σ ∈ Π(N) to be the identity permutation and assume that ℓσ is of type PP− and
has pivot i. Then

ℓσ = (M1, . . . , Mi−2, Mi−1, v(N) −
i−1
∑

j=1

Mj , 0, . . . , 0),

ℓσL

= (M1, . . . , Mi−2, 0, v(N) −
i−2
∑

j=1

Mj , 0, . . . , 0),

ℓσR

= (M1, . . . , Mi−2, Mi−1, 0, v(N) −
i−1
∑

j=1

Mj , 0, . . . , 0).

So,

d(ℓσ, ℓσL

) =
√

2M2
i−1 =

√
2Mi−1,

d(ℓσ, ℓσR

) =

√

√

√

√2(v(N) −
i−1
∑

j=1

Mj)2 =
√

2(v(N) −
i−1
∑

j=1

Mj),

w(σ) = (v(N) −
i−2
∑

j=1

Mj).

Doing these calculations for all types and arbitrary σ ∈ Π(N), we obtain the weights
given in the following proposition.

Proposition 4.1 Let σ ∈ Π(N). Then w(σ) is as listed in the following table,
depending on the type of ℓσ:

Type w(σ)
PPP Mσ(pσ−1) + Mσ(pσ+1)

−PP
∑pσ+1

k=1 Mσ(k) − v(N)

PP− v(N) − ∑pσ−2
k=1 Mσ(k)

−P− Mσ(pσ)
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Example 4.2 With σ1 the identity permutation, we have (the player with ˆ is the
pivot):

σ1 = (1, 2̂, 3, 4, 5) ℓσ1 = (5, 5, 0, 0, 0)

σL
1 = (2, 1̂, 3, 4, 5) ℓσL

1 = (3, 7, 0, 0, 0)

σR
1 = (1, 3, 2̂, 4, 5) ℓσR

1 = (5, 4, 1, 0, 0)

So, ℓσ1 is of type −PP . The weight of σ1 equals

w(σ1) =
1√
2

[

d(σ1, σ
L
1 ) + d(σ1, σ

R
1 )

]

= 2 + 1

= 3.

Indeed, we have that w(σ1) =
∑pσ1

+1

k=1 Mσ1(k) − v(N) = M1 + M2 + M3 − v(N) =
5 + 7 + 1 − 10 = 3, as the table shows. ⊳

Step 2: chains

A chain of length q and with pivot i is a set of q permutations Γ = {σ1, . . . , σq} such
that

• (σm)R = σm+1 for all m ∈ {1, . . . , q − 1},

• i is the pivot in σm for all m ∈ {1, . . . , q},

• i is not the pivot in σL
1 and σR

q .

If q = 1, then it follows from the definitions of the four types that σ1 is of type −P−.
If q > 1, then σ1 is of type −PP , σm is of type PPP for all m ∈ {2, . . . , q − 1} and
σq is of type PP−. Since each permutation has a unique left and right neighbour,
it belongs to exactly one chain and hence, the set of all chains, which we denote by
C, constitutes a partition of the set of permutations Π(N).

Denoting by σ∗ the permutation on the n−1 players obtained from σ by removing
the pivot, we characterise the chains in the following lemma.

Lemma 4.2 Two permutations σ1, σ2 ∈ Π(N) are in the same chain if and only if
σ∗

1 = σ∗
2.

Given the weights of the larginal vectors, depending on their type, we can easily
compute the weight of a chain Γ, which is simply defined as the total weight of its
elements, ie, w(Γ) =

∑

σ∈Γ w(σ).
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Lemma 4.3 Let Γ = {σ1, . . . , σq} ∈ C. Then

w(Γ) =

pσ1
+q−1

∑

k=pσ1

Mσ1(k).

Proof: Denoting p = pσ1
, we have (for q ≥ 5; for smaller chains the proof is

similar):

w(σ1) =
∑p−1

k=1 Mσ1(k) − v(N) + Mσ1(p) + Mσ1(p+1)

w(σ2) = + Mσ1(p+1) + Mσ1(p+2)

w(σ3) = + Mσ1(p+2) + Mσ1(p+3)
... =

...
...

w(σq−1) = + Mσ1(p+q−2) + Mσ1(p+q−1)

w(σq) = −∑p−1
k=1 Mσ1(k) + v(N) − ∑p+q−2

k=p+1 Mσ1(k) +

w(Γ) = Mσ1(p) +
∑p+q−1

k=p+1 Mσ1(k)

�

We say that player i ∈ N belongs to chain Γ = {σ1, . . . , σq} if i ∈
{σ1(pσ1

), . . . , σ1(pσ1
+ q − 1)}, ie, if his position is not constant throughout the

chain. Alternatively, a player is said to belong to a chain, if his utopia payoff
contributes to its weight. We define C(i) to be the set of chains to which i be-
longs. By P (i) ⊂ C(i) we denote the set of chains in which i is the pivot and by
P̄ (i) = C(i)\P (i) its complement. For each Λ ∈ P̄ (i), we denote the permutation
in Λ in which i is immediately before the pivot by λbi and the permutation in which
i is immediately after the pivot by λai.

Example 4.3 Since player 2 is not the pivot in σL
1 , σ1 is the first permutation of

a chain. This chain Γ consists of σ1, σ2 = σR
1 and σ3 = σR

2 , all having player 2 as
pivot. In line with Lemma 4.2, we have σ∗

1 = σ∗
2 = σ∗

3 = (1, 3, 4, 5). Players 2, 3 and
4 belong to Γ and w(Γ) = M2 + M3 + M4 = 11. ⊳

Step 3: denominator

In this step, we derive an expression for the denominator in (2.2). We do this by
showing that each player belongs to the same number of chains, ie,

|C(i)| = |C(j)| (4.1)

for all i, j ∈ N . If Mi = Mj , then this is trivial, so throughout this step, let i, j ∈ N

be such that Mi > Mj . We prove only one part of (4.1):

11



|P (j)| + |P̄ (j)| ≤ |P (i)| + |P̄ (i)|. (4.2)

The proof of the reverse inequality goes along similar lines, as will be indicated later
on.

An immediate consequence of Lemma 4.5 is that |P (i)| ≥ |P (j)| and |P̄ (j)| ≥
|P̄ (i)|. In Proposition 4.6 we partner all the chains in P (j) to some of the chains
in P (i) and we partner all the chains P̄ (i) to some of the chains in P̄ (j). We then
show that for every chain in P̄ (j) which has no partner in P̄ (i), we can find a chain
in P (i) which has no partner in P (j). From this, (4.2) follows.

To partner the various chains, we define two auxiliary functions. First, we define
f ij:

P (j)
f ij

→ P (i)

∆ 7→ f(∆) = Λ

where ∆ = {δ1, . . . , δq} and Λ is the chain containing δ
i,j
1 . Note that the function

f ij is well-defined: since Mi > Mj , player i is indeed the pivot in δ
i,j
1 and hence, in

Λ.
Similarly, we define the function gij:

P̄ (i)
gij

→ P̄ (j)

Λ 7→ g(Λ) = ∆

where for all Λ ∈ P̄ (i), ∆ is the chain containing λ
i,j
bi .8

In the following lemma, we show that gij is well-defined, ie, that the chain ∆
thus constructed is indeed an element of the range of gij, P̄ (j).

Lemma 4.4 The function gij is well-defined.

Proof: Denote the pivot player in λbi (and hence, λai) by h. Observe that as
a result of Mi > Mj , player h cannot coincide with j. Distinguish between the
following two cases:

• i is before j in λbi:

λai = (. . . , ĥ, i, . . . , j, . . .) λ
i,j
ai = (. . . , ĥ, j, . . . , i, . . .)

λbi = (. . . , i, ĥ, . . . , j, . . .) λ
i,j
bi = (. . . , j, ĥ, . . . , i, . . .)

Since h is the pivot in λai, it immediately follows that h is also the pivot in
λ

i,j
ai . Player j cannot be the pivot in λ

i,j
bi , because i is before the pivot in λbi

8By λ
i,j
bi we mean (λbi)

i,j , ie, the permutation which is obtained by switching i and j in the
permutation in Λ where i is immediately before the pivot.
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and Mi > Mj . Combining this with the fact that h is the pivot in λ
i,j
ai , h is

also the pivot in λ
i,j
bi . But then λ

i,j
ai belongs to the same chain ∆ as λ

i,j
bi . From

this, ∆ ∈ C(j), and because j is not the pivot in ∆, ∆ ∈ P̄ (j).

• j is before i in λbi:

λai = (. . . , j, . . . , ĥ, i, . . .) λ
i,j
ai = (. . . , i, . . . , ĥ, j, . . .)

λbi = (. . . , j, . . . , i, ĥ, . . .) λ
i,j
bi = (. . . , i, . . . , j, ĥ, . . .)

Since h is the pivot in λbi, we immediately have that h is the pivot in λ
i,j
bi .

Because of this, the pivot in λ
i,j
ai cannot be before h. It can also not be after

h, because h is the pivot in λai and Mi > Mj. By the same argument as in
the first case, ∆ ∈ P̄ (j).

From these two cases, we conclude that gij is well-defined. �

For our partnering argument to hold, we need that the functions f ij and gij are
injective. This is shown in the following lemma.

Lemma 4.5 The functions f ij and gij are injective.

Proof: To see that f ij is injective, let ∆, ∆̃ ∈ P (j) be such that f ij(∆) = f ij(∆̃).
By construction, i is the pivot in both f ij(∆) and f ij(∆̃), so i is the pivot in both
δ

i,j
1 and δ̃

i,j
1 . Since by assumption these permutations are in the same chain, by

Lemma 4.2 we have (δi,j
1 )∗ = (δ̃i,j

1 )∗. But since j is the pivot in both δ1 and δ̃1, it
follows that δ∗1 = δ̃∗1 . So, δ1 and δ̃1 are in the same chain and ∆ = ∆̃.
For injectivity of gij, let Λ, Λ̃ ∈ P̄ (i) be such that gij(Λ) = gij(Λ̃). Then λ

i,j
bi and

λ̃
i,j
bi are in the same chain. By the proof of Lemma 4.4, j is just before the pivot

in both permutations and hence, λ
i,j
bi = λ̃

i,j
bi . From this, we conclude λbi = λ̃bi and

Λ = Λ̃. �

From Lemma 4.5, we conclude

|P (j)| ≤ |P (i)|
and

|P̄ (i)| ≤ |P̄ (j)|.
With these inequalities, we can now apply our partnering argument to prove that
each player belongs to the same number of chains.

Proposition 4.6 Let i, j ∈ N . Then |C(i)| = |C(j)|.

13



Proof: If Mi = Mj , then the statement is trivial. Hence, assume without loss of
generality that Mi > Mj .
We only show (4.2). Let ∆ ∈ P̄ (j) be such that there exists no Λ ∈ P̄ (i) with
gij(Λ) = ∆. Denote the pivot in ∆ by h and distinguish between the following three
cases:

• h 6= i and i is after j in δbj :

δaj = (. . . , ĥ, j, . . . , i, . . .) δ
i,j
aj = (. . . , ĥ, i, . . . , j, . . .)

δbj = (. . . , j, ĥ, . . . , i, . . .) δ
i,j
bj = (. . . , î, h, . . . , j, . . .)

Of course, h is also the pivot in δ
i,j
aj . If h were the pivot in δ

i,j
bj , then δ

i,j
aj and

δ
i,j
bj would be element of the same chain Λ ∈ P̄ (i). But then gij(Λ) = ∆, which

is impossible by assumption. Since Mi > Mj , player i must be the pivot in
δ

i,j
bj . The chain to which δ

i,j
bj belongs cannot be an image under f ij, since it is

obtained by switching i and j in a permutation in which j is not the pivot.
Furthermore, two different starting chains ∆, ∆̃ ∈ P̄ (j) cannot give rise to one
single chain containing both δ

i,j
bj and δ̃

i,j
bj , because both permutations are of

type PP− or −P− and there can be only one such permutation in a chain.

• h 6= i and i is before j in δbj:

δaj = (. . . , i, . . . , ĥ, j, . . .) δ
i,j
aj = (. . . , j, . . . , h, î, . . .)

δbj = (. . . , i, . . . , j, ĥ, . . .) δ
i,j
bj = (. . . , j, . . . , i, ĥ, . . .)

Again, it easily follows that h is pivot in δ
i,j
bj and by the same argument as

in the first case, i must be pivot in δ
i,j
aj . Also, the chain to which δ

i,j
aj belongs

cannot be an image under f ij and two different starting chains ∆, ∆̃ ∈ P̄ (j)
cannot give rise to one single chain containing both δ

i,j
aj and δ̃

i,j
aj , because both

permutations are of type −PP or −P−. Moreover, the chains constructed in
this second case, containing δ

i,j
aj , must differ from the chains constructed in the

first case, containing δ
i,j
bj , as a result of the relative positions of h and j.

• h = i:

δaj = (. . . , î, j, . . .) δ
i,j
aj = (. . . , j, î, . . .)

δbj = (. . . , j, î, . . .) δ
i,j
bj = (. . . , î, j, . . .)

Obviously, i is the pivot in both δ
i,j
aj and δ

i,j
bj . So, these two permutations belong

to the same chain Λ ∈ P (i). Again Λ cannot be an image under f ij, and since

14



Λ = ∆, different starting chains give rise to different Λ’s. Finally, the chains
constructed in this case must differ from the chains in the first two cases,
because the new ones are elements of P̄ (j), whereas the chains constructed in
the first two cases are elements of C\C(j).

Combining the three cases, for every element of P̄ (j) that is not an image under
gij of any chain in P̄ (i), we have found a different element of P (i) that is not
an image under f ij of any chain in P (j). Together with Lemma 4.5, we have
|P (j)| + |P̄ (j)| ≤ |P (i)| + |P̄ (i)|.
Similarly, by taking Λ ∈ P (i) such that there exists no ∆ ∈ P (j) with Λ = f ij(∆),
one can prove the reverse inequality of (4.2). Combining the two inequalities, we
conclude |C(i)| = |C(j)|. �

Using the previous proposition, we can compute the total weight of all larginals.

Proposition 4.7
∑

σ∈Π(N) w(σ) = (n − 1)!
∑

i∈N Mi.

Proof: First note that for every chain Γ ∈ C, we have |Γ| = |{j ∈ N |Γ ∈ C(j)}|.
As a result of Proposition 4.6, we have

∑

Γ∈C |{j ∈ N |Γ ∈ C(j)}| = n|C(i)| for all
i ∈ N . But then, since

∑

Γ∈C |Γ| = n!, we conclude that |C(i)| = n!
n

= (n−1)! for all
i ∈ N , so each player belongs to (n − 1)! chains. Then the statement immediately
follows from Lemma 4.3. �

Step 4: numerator, first player

Now we turn our attention to the numerator of (2.2). For this, we partition the set
of chains into subsets with the same starting player:

Ck = {{σ1, . . . , σq} ∈ C | σ1(1) = k}.
Note that since player k is by definition never the pivot in σ1, he is also the first
player in σ2, . . . , σq. It is easily verified that {Ck}k∈N is indeed a partition of C.

For a chain Γ = {σ1, . . . , σq} ∈ C, we define LΓ to be the weighted sum of its
corresponding larginals:

LΓ =

q
∑

k=1

w(σk)ℓ
σk .

We compute the numerator in (2.2) by combining the permutations that belong to
the same Ck, k ∈ N , deriving an expression for

∑

Γ∈Ck
LΓ

i for each player i ∈ N .
In this step, we consider the special case where i = k, while in the next step we
compute the payoff to the other players.
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Lemma 4.8 For all i ∈ N ,
∑

Γ∈Ci
LΓ

i = (n − 2)!Mi

∑

j∈N\{i} Mj.

Proof: In a similar way as in Proposition 4.6, one can show that |Ci ∩ C(j)| =
|Ci ∩ C(k)| for all j, k ∈ N\{i}. Analogous to Proposition 4.7, we then have
∑

σ∈Π(N):σ(1)=i w(σ) = (n − 2)!
∑

j∈N\{i} Mj . Since player i always gets Mi at the
first position, the statement follows. �

Step 5: numerator, other players

In this step, we finish the expression for the numerator in (2.2) by computing
∑

Γ∈Ck
LΓ

i for all i ∈ N, i 6= k. First, in a similar way as in Lemma 4.3, one can
compute the total weighted larginal for each chain, as is done in the next lemma.

Lemma 4.9 Let Γ = {σ1, . . . , σq} ∈ P (i). Then for j = σ1(s) we have

LΓ
j =



















w(Γ)Mj if s < pσ1
,

(v(N) − ∑pσ1
−1

k=1 Mσ1(k))Mj if j = i,

(v(N) − ∑s−1
k=1,k 6=pσ1

Mσ1(k) +
∑pσ1

+q−1

k=s+1 Mσ1(k))Mj if Γ ∈ P̄ (j),

0 if s > pσ1
+ q − 1.

Example 4.4 Of course, LΓ
1 = w(Γ)M1 = 11 · 5 = 55 and LΓ

5 = 0. For player 2, the
pivot, we have

LΓ
2 = w(σ1)(v(N) − M1) + w(σ2)(v(N) − M1 − M3)

+w(σ3)(v(N) − M1 − M3 − M4)

= 3 · (10 − 5) + 4 · (10 − 5 − 1) + 4 · (10 − 5 − 1 − 3)

= 35.

Indeed, this equals (v(N)−∑pσ1
−1

k=1 Mσ1(k))M2 = (10−5) ·7, as stated in Lemma 4.9.
For player 3, who belongs to Γ but is not the pivot, we have

LΓ
3 = w(σ1) · 0 + w(σ2)M3 + w(σ3)M3

= 0 + 4 · 1 + 4 · 1
= 8,

which equals the expression in Lemma 4.9. For player 4, the computation is similar.
⊳
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Lemma 4.10 For all i, k ∈ N, i 6= k, we have
∑

Γ∈Ck
LΓ

i = (n− 2)!(v(N)−Mk)Mi.

Proof: We prove the assertion using an iterative procedure, varying the utopia
payoffs while keeping v(N) constant. We denote the utopia vector in iteration t by
M t and throughout the procedure, this vector satisfies all our assumptions. We first
show that the statement holds for M1 = (v(N), . . . , v(N)) ≥ M . Then we iteratively
reduce the components of the utopia vector one by one until we, after finitely many
steps, end up in M . For every M t, we show that for the corresponding (induced) set
of chains, the total weighted payoff to i,

∑

Γ∈Ck
L

Γ,t
i , equals (n−2)!(v(N)−M t

k)M
t
i . .

Step 1
Take M1 = (v(N), . . . , v(N)). Then all the chains consist of one permutation, in
which the second player is the pivot. Player i gets 0 if he is after the pivot and
v(N) − M1

k if he is the pivot. There are (n − 2)! chains in Ck in which the latter
occurs, each having weight M1

i . Hence,
∑

Γ∈Ck
L

Γ,1
i = (n − 2)!(v(N) − M1

k )M1
i .

Step t
Suppose the statement holds for utopia vector M t−1. If M t−1 = M , then we are
finished. Otherwise, there exists a j ∈ N such that M t−1

j > Mj. We now reduce j’s
utopia payoff until one of the chains changes, or until Mj is reached.
A chain changes if in one of its permutations, the pivot changes. Obviously, this
can only happen if player j is the pivot or before the pivot. Because in the first
permutation of each chain the gap between what the pivot gets and his utopia payoff
is smallest, this permutation is the first to change. Denoting this gap corresponding
to σ ∈ Π(N) by γ(σ), ie,

γ(σ) = M t−1
σ(pσ) − (v(N) −

pσ−1
∑

k=1

M t−1
σ(k)),

the first chain changes when j’s utopia payoff is decreased by

γ = min{γ(σ1) | {σ1, . . . , σq} ∈ Ck, σ
−1
1 (j) ≤ pσ1

}. (4.3)

Assume for the moment that the corresponding argument contains one element and
denote its first permutation by σ̂.
If γ ≥ M t−1

j − Mj , then decreasing j’s utopia payoff from M t−1
j to Mj does not

result in any change in the chains. In this case, the statement holds for M t
j defined

by M t
j = Mj , M

t
h = M t−1

h for all h ∈ N\{j} and we proceed to step t + 1.

Otherwise, take M t
h = M t−1

h for all h ∈ N\{j} and M t
j = M t−1

j − (γ + ε), where
ε > 0 is chosen small enough such that σ̂ is the only permutation in which the pivot
changes. In particular, the pivot remains the same in the second permutation of the
same chain and in the first permutations of all the other chains.
As mentioned before, σ̂ is the first in a chain, say Γ ∈ Ck. So, σ̂ must be either of
type −P− or −PP . Define s = σ̂−1(i) and distinguish between the two cases:
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• σ̂ is of type −P−:
σ̂R is part of another chain, say ∆ ∈ Ck with length q. Then the players
σ̂(pσ̂ − q + 1), . . . , σ̂(pσ̂ − 1) and σ̂(pσ̂ + 1) belong to ∆. When the pivot
changes in σ̂, this permutation joins ∆, as type PP−, forming chain ∆∪ {σ̂}.
Hence, chain Γ = {σ̂} disappears and the length of ∆ is increased by one, while
the other chains are not affected. So, it suffices to show that L

Γ,t−1
i + L

∆,t−1
i

as function of M t−1 equals L
∆∪{σ̂},t
i as function of M t. Using Lemma 4.9, we

have:

– 1 < s < pσ̂ − q + 1:

L
Γ,t−1
i = M t−1

σ̂(pσ̂)M
t−1
i (i is before Γ),

L
∆,t−1
i = (M t−1

σ̂(pσ̂+1) +

pσ̂−1
∑

ℓ=pσ̂−q+1

M t−1
σ̂(ℓ))M

t−1
i (i is before ∆),

L
∆∪{σ̂},t
i = (

pσ̂+1
∑

ℓ=pσ̂−q+1

M t
σ̂(ℓ))M

t
i (i is before ∆ ∪ {σ̂}).

– s = pσ̂:

L
Γ,t−1
i = (v(N) −

pσ̂−1
∑

ℓ=1

M t−1
σ̂(ℓ))M

t−1
i (Γ ∈ P (i)),

L
∆,t−1
i = 0 (i is after ∆),

L
∆∪{σ̂},t
i = (v(N) −

pσ̂−1
∑

ℓ=1

M t
σ̂(ℓ))M

t
i (i is “last” in ∆ ∪ {σ̂}).

– pσ̂ − q + 1 ≤ s < pσ̂:

L
Γ,t−1
i = M t−1

σ̂(pσ̂)M
t−1
i (i is before Γ),

L
∆,t−1
i = (v(N) −

s−1
∑

ℓ=1

M t−1
σ̂(ℓ) +

pσ̂−1
∑

ℓ=s+1

M t−1
σ̂(ℓ))M

t−1
i (∆ ∈ P̄ (i)),

L
∆∪{σ̂},t
i = (v(N) −

s−1
∑

ℓ=1

M t
σ̂(ℓ) +

pσ̂
∑

ℓ=s+1

M t
σ̂(ℓ))M

t
i (∆ ∪ {σ̂} ∈ P̄ (i)).
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– s = pσ̂ + 1:

L
Γ,t−1
i = 0 (i is after Γ),

L
∆,t−1
i = (v(N) −

pσ̂−q
∑

ℓ=1

M t−1
σ̂(ℓ))M

t−1
i (∆ ∈ P (i)),

L
∆∪{σ̂},t
i = (v(N) −

pσ̂−q
∑

ℓ=1

M t
σ̂(ℓ))M

t
i (∆ ∪ {σ̂} ∈ P (i)).

– s > pσ̂ + 1:

L
Γ,t−1
i = L

∆,t−1
i = L

∆∪{σ̂},t
i = 0 (i is after all three chains).

It is readily checked that in all cases, L
Γ,t−1
i +L

∆,t−1
i as function of M t−1 equals

L
∆∪{σ̂},t
i as function of M t.

• σ̂ is −PP :
σ̂R belongs to the same chain as σ̂. When the pivot changes in σ̂, this per-
mutation will form a new chain of length one. In the same manner as in the
previous case, we can show that the total weighted payoff to i as function of
the utopia vector in these two chains remains the same.

So, from these two cases, we conclude
∑

Γ∈Ck
L

Γ,t
i = (n−2)!(v(N)−M t

k)M
t
i . Proceed

to step t + 1.

We assumed that the minimal gap in (4.3) is obtained for a unique permutation,
σ̂. Suppose now that there exists another permutation, σ̃, with this minimal gap.
Because the utopia payoffs are assumed to be strictly positive, σ̃ cannot be in the
same chain (Γ) as σ̂, but must be the first permutation of another chain (Γ̃). It
readily follows from the construction that also the two corresponding “neighbouring”
chains ∆ and ∆̃ are different, and moreover, they differ from Γ and Γ̃. Hence, we
can consider the analysis in step t for σ̂ and σ̃ separately to prove the statement.
Finally, our procedure stops after finitely many steps, because in all the changes,
the pivot concerned moves towards the back of a permutation. �

Step 6: final

In this final step, we combine our previous results to prove the main theorem.

Proof of Theorem 3.1: Let i ∈ N . Then applying Lemmas 4.8 and 4.10 yields
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∑

σ∈Π(N)

w(σ)ℓσ
i =

∑

Γ∈C

LΓ
i

=
∑

k∈N\{i}

∑

Γ∈Ck

LΓ
i +

∑

Γ∈Ci

LΓ
i

=
∑

k∈N\{i}

(n − 2)!(v(N) − Mk)Mi + (n − 2)!Mi

∑

k∈N\{i}

Mk

= (n − 1)!v(N)Mi.

Then, using Proposition 4.7, we have

ζi =

∑

σ∈Π(N) w(σ)ℓσ
i

∑

σ∈Π(N) w(σ)

=
(n − 1)!v(N)Mi

(n − 1)!
∑

j∈N Mj

=
v(N)

∑

j∈N Mj

Mi.

Hence, τ ∗ = ζ . �

As stated in section 2, for the class of compromise admissible games in which,
after normalising such that the minimal rights vector equals zero, each player’s
utopia payoff is at most the value of the grand coalition, the τ ∗ value coincides with
the compromise value. As a result, Theorem 3.1 gives a geometric characterisation
of the latter on this class of games.
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