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Abstract

The airport problems (Littlechild and Owen, 1973) are a well known class of cost allocation problems.
The game-theoretic approach consists of transforming these problems into coalitional games, finding a payoff
vector that solves the game and studying the corresponding rule. Since the core of the game is nonempty and
it has many allocations at which agents’ payoffs differ, we study the payoff that is the average expectation
of all the stable allocations: the core-center (González-Dı́az and Sánchez-Rodŕıguez, 2007). The structure of
the core is exploited to derive insights on the core-center and its properties. The results in this paper build
upon explicit integral formulae for the core-center of the airport game. A thorough analysis of these integrals
allows not only to study the monotonicity properties of the core-center, and many other axioms discussed
in the survey by Thomson (2007), but also to compute in a relatively easy way the core-center of an airport
game.

Keywords: cooperative TU games, monotonicity, core, core-center, airport games.

1 Introduction

The airport problem, introduced by Littlechild and Owen (1973), is a classic cost allocation problem that has
been widely studied. To get a better idea of the attention it has generated one can refer to the survey by
Thomson (2007). One standard approach to study this problem consists of associating a cooperative game with
it and take advantage of all the machinery developed for cooperative games to gain insights in the original
problem. The core, introduced by Gillies (1953), stands as one of the most studied solution concepts in the
theory of cooperative games. Its properties have been thoroughly analyzed and, when a new class of games is
studied, one of the first questions to ask is whether or not the games in that class have an nonempty core. This
is because of the desirable stability requirements that underly core allocations.

Importantly, the cooperative game associated with an airport problem has a special structure that can be
exploited to facilitate the analysis of different solutions. In particular, 2n − 1 parameters are needed to define
a general n-player cooperative game, whereas for an airport game one just needs n. This special structure
simplifies the geometry of the core of such games, since they turn to be defined by 2n− 1 inequality constraints
instead of the usual 2n − 2. A related property of airport games is that their Shapley value can be computed in
polynomial time, whereas in general the worth of all 2n − 1 coalitions must be used to calculate it.

∗Corresponding author: esanchez@uvigo.es
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When the core of a game is nonempty, there is a set of alternatives at which agents’ payoffs differ that are
coalitionally stable. Studying the center of gravity of such set may be interesting in some cases. The core-center
(González-Dı́az and Sánchez-Rodŕıguez, 2007) selects the mathematical expectation of the uniform distribution
over the core of the game. The intuition provided by its definition is a good reason to be interested in it and to
justify the study of its properties.

In this paper we try to exploit the aforementioned structure of the core of an airport game to gain insights
in the monotonicity properties of its core-center.

The formal definition of the core-center is given in terms of integrals over the core of the game. Therefore, in
order to study the core and its center of gravity we must extensively employ tools of integral calculus. In fact,
our main results build upon particular integral formulae obtained for the core-center of an airport game.

Apart from the results on the standard monotonicity properties, our approach also leads to some findings
that may be of independent interest and that we enumerate below.

First, we show that, to each player i, we can associate a face of the core of an airport game in such a way
that the derivative of the volume of the core with respect to the cost associated with player i is proportional to
the volume of his associated face. This result, which is crucial to study the core-center, may be of independent
interest.

Second, we establish that each component of the core-center of an airport game is the ratio of the volumes
of the cores of two airport games: the core of the original game and the core of the airport game obtained by
replicating agent j. This unexpected result allows to use volume computation algorithms for convex polytopes
to develop a method to compute the core-center.

Third, the machinery we develop to study the monotonicity properties of the core-center facilitates the
study of other axioms. To illustrate, we have studied the behavior of the core-center not only with respect to
monotonicity properties, but also with respect to all the axioms listed in the survey by Thomson (2007). It
turns out that the core-center satisfies, among others, those properties which are, arguably, the most important
ones.

Finally, as a byproduct of our analysis we get two new natural monotonicity properties that impose conditions
on how a change on a cost parameter of a given agent affects the payoffs of the other agents. They are called
higher cost decreasing monotonicity and lower cost increasing monotonicity. The first one says that if a cost ci
increases while the others are held constant, then the payoff decreases for all the players with costs higher than
ci. The second property is a kind of reciprocal, the payoff increases for all the players with costs lower than ci.

The paper is structured as follows. In Section 2 we present the basic concepts and notations. Then, in
Section 3 we obtain an integral representation of the core-center that exploits the special structure of airport
games. In Section 4 we develop our main mathematical results, that build upon thorough exploration of the
derivatives of the volumes of the core of an airport game. In sections 5 and 6 we study the properties of the
core-center and in Section 7 we present a summary of this analysis, comparing the behavior of the core-center
with the behavior of the Shapley value and the nucleolus. We have relegated the most technical results to the
Appendix.

2 Preliminaries

We assume that there is an infinite set of potential players, indexed by the natural numbers. Then, in each given
problem only a finite number of them are present. Let N be the set of all finite subsets of N = {1, 2, . . . }.

A cost game with transferable utility is a pair (N, c), where N ∈ N and c : 2N → R is a function assigning,
to each coalition S, its cost c(S). By convention c(∅) = 0. Given a coalition of players S, |S| denotes its
cardinality. Given N ∈ N and S ⊆ N , a vector x ∈ RN is referred to as an allocation and x(S) =

∑
i∈S xi;

also, eS ∈ {0, 1}N is defined as eiS = 1 if i ∈ S and eiS = 0 otherwise. An allocation is efficient for (N, c) if
x(N) = c(N). A cost game (N, c) is concave if, for each i ∈ N and each S and T such that S ⊆ T ⊆ N\{i},
c(S ∪ {i})− c(S) ≥ c(T ∪ {i})− c(T ).
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For most of the discussion and results, we have a fixed n-player set N = {1, 2, . . . , n}. A solution is a
correspondence ψ defined on some subdomain of cost games that associates to each game (N, c) in the subdomain
a subset ψ(N, c) of efficient allocations. If a solution is single-valued then it is referred to as an allocation rule.

Given a cost game (N, c), the imputation set, I(N, c), consists of the individually rational and efficient
allocations, i.e., I(N, c) = {x ∈ RN : x(N) = c(N) and, for each i ∈ N, xi ≤ c({i})}. The core (Gillies, 1953),
is defined as C(N, c) = {x ∈ I(N, c) : for each S ⊂ N, x(S) ≤ c(S)}.

An airport problem (Littlechild and Owen, 1973) with set of agents N is a positive vector c ∈ RN , with ci ≥ 0
for each i ∈ N . Throughout the paper, given an airport problem c ∈ RN , we make the standard assumption
that for each pair of agents i and j, if i < j, then ci ≤ cj . An allocation for an airport problem is given by
a non-negative vector x ∈ RN such that x(N) = cn. An allocation rule selects an allocation for each airport
problem in a given subdomain. A complete survey on airport problems is Thomson (2007).

Given an allocation x, the difference ci − xi between agent i’s cost parameter and her contribution can be
seen as her profit at x. A basic requirement is that at an allocation x no group N ′ ⊂ N of agents should
contribute more that what it would have to pay on its own, max{ci, i ∈ N ′}. Otherwise, the group would
unfairly ”subsidize” the other agents. The constraints

∑
j≤i xj ≤ ci are called the no-subsidy constraints.

To each airport problem c ∈ RN one can associate a cost game (N, c) defined, for each S ⊆ N , by setting
c(S) = maxi∈S{ci}; such a game is called an airport game. Airport games are concave and their core coincides
with the set of allocations satisfying the no-subsidy constraints. We slightly abuse notation and use C(N, c) to
refer to both the core of the airport problem c ∈ RN , hereafter called airport core, and the core of the associated
airport game, (N, c),

C(N, c) =
{
x ∈ Rn : x ≥ 0, x(N) = cn, and, for each i < n,

∑
j≤i

xj ≤ ci
}
.

The core of the airport game is contained in the efficient hyperplane x(N) = cn and it is defined by, at most,
2n − 2 inequality constraints, instead of the maximum number of 2n − 2 inequality constraints of an arbitrary
coalitional game. This makes the structure of the core of an airport game more tractable. In particular, whenever
c1 > 0, the core of an airport game is a (n−1)-dimensional convex polytope. Further, because of the no-subsidy
constraints, any core payoff for the highest cost agent (agent n) can be obtained by adding the incremental
cost cn − cn−1 to any core allocation of the airport game where agents n − 1 and n have the same cost cn−1.
Therefore,

C(N, c) = (cn − cn−1)e{n} + C(N, c− (cn − cn−1)e{n}).

Now, suppose that the agent with the lowest cost leaves the game paying x1, with 0 ≤ x1 ≤ c1. Since 0 ≤
c2−x1 ≤ c3−x1 ≤ · · · ≤ cn−x1, we have a new airport problem c1,x1 = (c2−x1, . . . , cn−x1) = cN\{1}−x1eN\{1}
with an associated reduced cost game (N\{1}, c1,x1). The problem c1,x1 is known as the downstream-substraction
reduced problem of c with respect to N\{1} and x1 (Thomson, 2007). In general, given i ∈ N , and 0 ≤ xi ≤ ci,
the downstream-substraction reduced problem of c with respect to N\{i} and xi, c

i,xi , is defined by

ci,xi

k =

{
ck − xi k > i

min{ci − xi, ck} k < i.

Similarly, the uniform-substraction reduced problem of c with respect to N\{i} and xi is defined by:

uci,xi

k =

{
ck − xi k > i

max{ck − xi, 0} k < i.

The next proposition, whose proof is straightforward, relates the core of the airport game (N, c) and the core of
the (N\{1}, c1,x1) reduced games.
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Proposition 1. Let (N, c) be an airport game. Then,

C(N, c) =
{

(x1, xN\{1}) ∈ Rn : 0 ≤ x1 ≤ c1, xN\{1} ∈ C(N\{1}, c1,x1)
}

=
⋃

0≤x1≤c1

{x1} × C(N\{1}, c1,x1).

Now, if we repeatedly apply the above decomposition, the core of the airport game can be covered with the
cores of reduced games of s agents, 1 ≤ s ≤ n− 1. In particular, we have the following result for s = n− 1.

Corollary 1. Given an airport game (N, c), the allocation (x1, . . . , xn) belongs to C(N, c) if and only if, for
each j ∈ N\{n}, 0 ≤ xj ≤ cj −

∑
i<j xi, and xn = cn −

∑
i<n xi.

González-Dı́az and Sánchez-Rodŕıguez (2008) associate a face game with each face of the core and show that
these games have interesting properties for the class of (strictly) convex games. In terms of cost games, given
a coalition T ⊂ N , the face FT of the core contains the allocations that are worst for T and best for N\T .
Geometrically, when 0 < x1 < c1, the core C(N\{1}, c1,x1) is a cross-section of the airport core, which is also
the core of a (reduced) airport game. The reduced games for the cases x1 = c1 and x1 = 0 are the face games
for agent 1 and coalition N\{1}, respectively.

Remark 1. In general, the core of an airport game (N, c) can be described using reduced airport games with
respect to other players. Let i ∈ N . Then,

C(N, c) =
⋃

0≤xi≤ci

{xi} × C
(
N\{i}, ci,xi

)
.

3 The core-center and its integral representation

As we said in the Introduction, one of the main goals of this paper is to gain insights on the monotonicity of the
core of an airport problem using its center of gravity as a proxy. Given a cooperative game (N, c), its core-center,
µ(N, c), is defined as the center of gravity of the core (González-Dı́az and Sánchez-Rodŕıguez, 2007). In this
section and the next we develop some analytic tools that exploit the structure of the core of an airport game
to facilitate the study of the properties of the core-center. Given a convex set A we sometimes use the notation
µ(A) to denote its center of gravity.

In the case of an airport game (N, c) with c1 > 0, the core is an (n − 1)-manifold contained in the efficient
hyperplane, x(N) = cn. The latter is, therefore, the tangent space at each point of the manifold. The vector
(1, 1, . . . , 1) ∈ Rn is normal to the manifold at each point and it has length

√
n. The transformation g : Rn−1 →

Rn, g(x1, . . . , xn−1) = (x1, . . . , xn−1, cn − x1 − · · · − xn−1) defines a coordinate system for C(N, c), so that
g−1(C(N, c)) is the projection of the core onto Rn−1 that simply “drops” the n-th coordinate. Let Ĉ(N, c) =
g−1(C(N, c)) ⊂ Rn−1. This transformation is illustrated in Figure 1.

Given 1 ≤ r ≤ n, let mr be the r-dimensional Lebesgue measure. Then, the (n− 1)-dimensional measure of
the core is given by

mn−1(C(N, c)) =

∫
C(N,c)

dmn−1 =

∫
g−1(C(N,c))

√
n dmn−1 =

√
n mn−1(Ĉ(N, c)).

Hence, the volume of the core as a subset of Rn is
√
n times the volume of its projection onto Rn−1. Analogously,

for each i ∈ N , the corresponding component of the core-center, µi(N, c), is given by

1

mn−1(C(N, c))

∫
C(N,c)

xi dmn−1 =
1

mn−1(C(N, c))

∫
Ĉ(N,c)

√
nxi dmn−1 =

1

mn−1(Ĉ(N, c))

∫
Ĉ(N,c)

xi dmn−1.

Example 1. Consider the airport problem with N = {1, 2} and 0 < c1 ≤ c2. Clearly, the core of the airport

game is the segment [(0, c2), (c1, c2 − c1)] ⊂ R2, then µ1(N, c) =
∫ c1
0 x1dx1∫ c1
0 dx1

= c1
2 and µ2(N, c) = c2 − c1

2 .
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I(N, c)

C(N, c)

Ĉ(N, c)
0

c3

c2

c1
c2

0

c1

Figure 1: (left) C(N, c) and Ĉ(N, c) for a 3-player airport game. (right) Ĉ(N, c) for a 4-player airport game.

The above integral expression for the core-center can be written in terms of iterated integrals. First, we
introduce some notation. Given 0 < c1 ≤ c2 ≤ · · · ≤ cn−1 ≤ cn and j ∈ {1, . . . , n− 1}, we define

U jn−1(c1, . . . , cn−1) =

∫ c1

0

∫ c2−x1

0

. . .

∫ cn−1−
n−2∑
k=1

xk

0

xj dxn−1 . . . dx2dx1,

Vn−1(c1, . . . , cn−1) =

∫ c1

0

∫ c2−x1

0

. . .

∫ cn−1−
n−2∑
k=1

xk

0

dxn−1 . . . dx2dx1, and

µ̂j(c1, . . . , cn−1) =
U jn−1(c1, . . . , cn−1)

Vn−1(c1, . . . , cn−1)
,

with the convention that V0 = 1. Clearly, U jn−1 is a homogeneous function of degree n, Vn−1 is a homogeneous
function of degree n− 1, and µ̂j is a homogeneous function of degree 1. Now, applying Corollary 1, it is easy to
derive the following result.

Theorem 1. Let (N, c) be an airport game such that 0 < c1 ≤ c2 ≤ · · · ≤ cn. Then, mn−1(Ĉ(N, c)) =
Vn−1(c1, . . . , cn−1). Moreover, for each j ∈ {1, . . . , n− 1},

µj(N, c) = µ̂j(c1, . . . , cn−1) and µn(N, c) = µ̂n−1(c1, . . . , cn−1) + (cn − cn−1).

Note that all the coordinates of the core-center, except the last one, are independent of cn. In addition, all
the coordinates µj are homogeneous functions of degree 1.

Remark 2. The decompositions in Remark 1 give rise to alternative integral expressions for the core-center.

4 On the differentiability of the core-center

Suppose that 0 < c1 ≤ c2 ≤ · · · ≤ cn. From the integral expressions derived in the previous section it is
clear that the functions Vn−1 and U jn−1, j ∈ N\{n}, can be differentiated with respect to the ci costs, with
i ∈ N\{n}. As a first consequence, we obtain a result that is fundamental for the analysis in this paper, namely,
a representation of the core-center as a ratio of volumes of airport cores. We relegate its proof to the Appendix.

Theorem 2. Let (N, c) be an airport game such that 0 < c1 ≤ c2 ≤ · · · ≤ cn and fix j ∈ N \ {n}. Then:
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1. U jn−1(c1, . . . , cn−1) = Vn(c1, . . . , cj , cj , . . . , cn−1)

2. µ̂j(c1, . . . , cn−1) =
Vn(c1, . . . , cj , cj , . . . cn−1)

Vn−1(c1, . . . , cn−1)

Remark 3. Apart from being a key tool for the ensuing analysis, Theorem 2 is interesting on its own. There
are no known efficient deterministic algorithms for computing the centroid of a convex body. Therefore, the issue
of computing the core-center of a general balanced game is very complex. The second statement in Theorem 2
says that the center of gravity of the core of an airport game can be computed just by using the volume of its
core and the volume of the core of the airport game obtained by replicating agent j. Then, Theorem 2 opens the
door to implementing volume computation algoritms for convex polytopes to compute, in a relatively easy way,
the core-center of an airport game.

Now, we turn our attention the derivatives of the functions Vn−1 and U jn−1 with respect to the costs ci.

Proposition 2. For all i ∈ N\{n},

∂Vn−1
∂ci

(c1, . . . , cn−1) = Vi−1(c1, . . . , ci−1)Vn−1−i(ci+1 − ci, . . . , cn−1 − ci).

Proof. A direct computation using Leibnitz’s rule shows that

∂Vn−1
∂ci

(c1, . . . , cn−1) =

∫ c1

0

. . .

∫ ci−1−
i−2∑
k=1

xk

0

∫ ci+1−ci

0

. . .

∫ cn−1−ci−
n−2∑

k=i+1

xk

0

dxn−1 . . . dxi+1dxi−1 . . . dx1.

This iterated integral can be split as the product of the following two integrals,

∫ c1

0

. . .

∫ ci−1−
i−2∑
k=1

xk

0

dxi−1 . . . dx1 and

∫ ci+1−ci

0

. . .

∫ cn−1−ci−
n−2∑

k=i+1

xk

0

dxn−1 . . . dxi+1.

The first one coincides with Vi−1(c1, . . . , ci−1) while the second is equal to Vn−1−i(ci+1 − ci, . . . , cn−1 − ci).

Proposition 3. Let i, j ∈ N\{n}. Then,

∂U jn−1
∂ci

(c1, . . . , cn−1) =


Vi−1(c1, . . . , ci−1)U j−in−1−i(ci+1 − ci, . . . , cn−1 − ci) i < j

U ji−1(c1, . . . , ci−1)Vn−1−i(ci+1 − ci, . . . , cn−1 − ci) i > j

Vi(c1, . . . , ci)Vn−1−i(ci+1, . . . , cn−1)) i = j.

Moreover, Vi(c1, . . . , ci)Vn−1−i(ci+1, . . . , cn−1) can be equivalently written as

(
ciVi−1(c1, . . . , ci−1)−

i−1∑
k=1

Uki−1(c1, . . . , ci−1)
)
Vn−1−i(ci+1 − ci, . . . , cn−1 − ci)

.

Proof. The computations when either i 6= j are straightforward from the chain rule, Theorem 2 and Proposition 2.
The same applies to the first equality in the case j = i. The alternative expression is obtained by directly applying
Leibnitz’s rule to the integral formulation of U jn−1.
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Next, we present a series of results that relate the partial derivatives of the functions Vn−1 and U jn−1 to the

faces of Ĉ(N, c) and its centroids. In particular, the derivative of Vn−1 with respect to a cost ci is proportional to
the volume of the corresponding face of the core. Let (N, c) be an airport game such that 0 < c1 ≤ c2 ≤ · · · ≤ cn.
Denote by Fi, i ∈ N\{n}, the i-th face of Ĉ(N, c), i.e.,

Fi = Ĉ(N, c) ∩ {x ∈ Rn−1 : x1 + · · ·+ xi = ci} ⊂ Rn−1.

Let V (Fi) be its (n− 2)-measure and µ(Fi) be its centroid. The next decomposition of Fi is easily derived.

Proposition 4. For all i ∈ N\{n}, we have that

Fi = C({1, . . . , i}, (c1, . . . , ci))× Ĉ({i+ 1, . . . , n}, (ci+1 − ci, . . . , cn − ci)).

The coordinates of the centroid µ(Fi) are

µj(Fi) =

{
µj({1, . . . , i}, (c1, . . . , ci)) if i ≥ j
µ̂j−i(ci+1 − ci, . . . , cn−1 − ci) if i < j ≤ n− 1

.

We now show that, whenever the (n−2)-measure of the face Fi is positive, its centroid can be obtained using
the partial derivatives computed above.

Proposition 5. Let (N, c) be an airport game with 0 < c1 ≤ c2 ≤ · · · ≤ cn. For all i, j ∈ N\{n} such that
V (Fi) > 0,

1.
∂Vn−1
∂ci

(c1, . . . , cn−1) = 1√
i
V (Fi).

2. µj(Fi) =

∂Uj
n−1

∂ci
(c1, . . . , cn−1)

∂Vn−1

∂ci
(c1, . . . , cn−1)

.

Proof. Assume that V (Fi) > 0. Recall that C({1, . . . , i}, (c1, . . . , ci)) is an (i−1)-dimensional polytope contained
in the hyperplane x1 + · · ·+ xi = ci, so

mi−1(C({1, . . . , i}, (c1, . . . , ci)) =
√
i mi−1(Ĉ({1, . . . , i}, (c1, . . . , ci)))

=
√
i Vi−1(c1, . . . , ci−1).

On the other hand, the measure of Ĉ({i+1, . . . , n}, (ci+1−ci, . . . , cn−ci)) as a subset of Rn−1−i is Vn−1−i(ci+1−
ci, . . . , cn−1 − ci). Therefore, the first assertion follows immediately from Proposition 2 and the decomposition
of Proposition 4.

The proof of the second property is divided in three cases. First, assume that i < j. Then, by Proposition 4,

µj(Fi) = µ̂j−i(ci+1 − ci, . . . , cn−1 − ci) =
U j−in−1−i(ci+1 − ci, . . . , cn−1 − ci)
Vn−1−i(ci+1 − ci, . . . , cn−1 − ci)

=

∂Uj
n−1

∂ci
(c1, . . . , cn−1)

∂Vn−1

∂ci
(c1, . . . , cn−1)

,

where the last equality follows from Propositions 2 and 3.
If i > j, then, as above, by Propositions 2, 3 and 4, we have

µj(Fi) = µj({1, . . . , i}, (c1, . . . , ci))

= µ̂j(c1, . . . , ci−1) =
U ji−1(c1, . . . , ci−1)

Vi−1(c1, . . . , ci−1)
=

∂Uj
n−1

∂ci
(c1, . . . , cn−1)

∂Vn−1

∂ci
(c1, . . . , cn−1)

.
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Finally, when j = i, by Proposition 4

µi(Fi) = µi({1, . . . , i}, (c1, . . . , ci)) = ci −
i−1∑
k=1

µk({1, . . . , i}, (c1, . . . , ci))

= ci −
i−1∑
k=1

µ̂k(c1, . . . , ci−1) = ci −
i−1∑
k=1

Uki−1(c1, . . . , ci−1)

Vi−1(c1, . . . , ci−1)

Therefore,

µi(Fi)Vi−1(c1, . . . , ci−1) = ciVi−1(c1, . . . , ci−1)−
i−1∑
k=1

Uki−1(c1, . . . , ci−1).

Substituting this expression in Proposition 3 and using Proposition 2, the result follows.

Remark 4. The first equality of Proposition 5 admits a generalization for any convex polyhedron (Lasserre,
1983).

5 Properties of the core-center

Following Thomson (2007), we recall a list of properties of allocation rules for airport problems. We distinguish
between fixed-population axioms and variable-population ones.

Fixed population

Let ψ be a rule and (N, c) an airport game. We say that ψ satisfies:

• Non-negativity if, for each i ∈ N , ψi(N, c) ≥ 0.

• Cost boundedness if, for each i ∈ N , ψi(N, c) ≤ ci.

• Efficiency if
∑
i∈N ψi(N, c) = cn.

• No-subsidy if, for each S ⊂ N ,
∑
i∈S ψi(N, c) ≤ maxi∈S ci.

• Anonymity if, for each permutation π of N and each i ∈ N , ψi(π(N, c)) = ψπ−1
i

(N, c).

• Equal treatment of equals if, for each i, j ∈ N with ci = cj , then ψi(N, c) = ψj(N, c).

• Order preservation for contributions if, for each pair i, j ∈ N with ci ≤ cj , then ψi(N, c) ≤ ψj(N, c).

• Order preservation for benefits if, for each pair i, j ∈ N with ci ≤ cj , then ci − ψi(N, c) ≤ cj − ψj(N, c).

We now turn to relational requirements on rules. Let ψ be a rule and (N, c), (N, c′) and (N, c′′) airport
games. We say that ψ satisfies:

• Homogeneity if, for each α > 0, ψ(N,αc) = αψ(N, c).

• Continuity if, for each sequence {(N, cν)}ν∈N of airport problems such that cν → c, then ψ(N, cν) →
ψ(N, c).

• Independence of at-least-as-large costs if for each i ∈ N such that

◦ c′i = ci,

◦ c′j = cj , for each j ∈ N\{i} such that cj < ci and
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◦ c′j ≥ ci, for each j ∈ N\{i} such that cj ≥ ci,

then ψi(N, c
′) = ψi(N, c).

• Last-agent cost additivity if for each i ∈ N such that ci = maxj∈N cj whenever c′N\{i} = cN\{i} and

c′i = ci + γ, then ψN\{i}(N, c
′) = ψN\{i}(N, c) and ψi(N, c

′) = ψi(N, c) + γ.

• weak last-agent cost additivity is property weaker than last-agent cost additivity, that demands that the
payment required to the last agent should increase by an amount equal to the increase in her cost parameter,
nothing being said about the payments required of the others.

• Conditional cost additivity if ψ(N, c+ c′) = ψ(N, c) + ψ(N, c′) whenever the agents of both airport games
are ordered in the same way, .

• Individual cost monotonicity if for each i ∈ N such that c′i ≥ ci and, for all j ∈ N\{i}, c′j = cj , then
ψi(N, c

′) ≥ ψi(N, c).

• Downstream cost monotonicity if for each i ∈ N such that for each j ∈ N with cj < ci, c
′
j = cj and for

each j ∈ N with cj ≥ ci, c′j − cj = c′i− ci ≥ 0, then for each j ∈ N such that cj ≥ ci, ψj(N, c′) ≥ ψj(N, c).

• Marginalism if, under the hypotheses of downstream cost monotonicity, for each j ∈ N such that cj < ci,
ψj(N, c

′) = ψj(N, c).

• Strong cost monotonicity if, for each pair (N, c) and (N, c′) with c ≤ c′, then ψ(N, c) ≤ ψ(N, c′).

• Weak cost monotonicity if c′ = c+ c′′, then ψ(N, c′) ≥ ψ(N, c).

• Incremental no subsidy if c = c′ + c′′ then, for each i ∈ N ,
∑
cj≤ci(ψj(N, c

′)− ψj(N, c)) ≤ c′i − ci.

• Reciprocity if for each i ∈ N such that

◦
∑
j≤i ψi(N, c) = ci,

◦ there is an airport problem c′′ such that c′ = c+ c′′, and

◦ ci −
∑
j≤i ψi(N, c) ≥ c′n − c′i − (cn − ci),

then there is a pair {j, k} ⊂ N such that cj ≤ ci < ck and ψj(N, c
′)− ψj(N, c) ≥ ψk(N, c′)− ψk(N, c).

• Others-oriented cost monotonicity if, under the assumptions of individual cost monotonicity, for each
j ∈ N\{i}, ψj(N, c′) ≤ ψj(N, c).

Variable population

Let ψ be a rule and (N, c) an airport game. We say that ψ satisfies:

• Population monotonicity if, for each N and N ′ with N ′ ⊂ N , ψN ′(N, c) ≤ ψ(N ′, cN ′).

• First-agent consistency if, for each (N, c) and j ∈ N with j > 1, then ψj(N, c) = ψj(N\{1}, c1,ψ1(N,c)).

• Downstream-subtraction consistency if, for each (N, c), each i ∈ N and each j 6= i, then ψj(N, c) =
ψj(N\{i}, ci,ψi(N,c)).

• Last-agent consistency if, for each (N, c) and each j < n, ψj(N, c) = ψj(N\{n}, cn,ψn(N,c)).

• Uniform-substraction consistency if, for each (N, c) with cn−1 = cn, each i ∈ N with ci = cn and each
j 6= i, then ψj(N, c) = ψj(N\{i}, uci,ψi(N,c)).
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Let us begin our analysis of which properties the core-center rule satisfies. A complete recapitulation of our
findings will be presented in Section 7.

Proposition 6. The core-center satisfies non-negativity, cost-boundedness, efficiency, no-subsidy, anonymity,
homogeneity, equal treatment of equals and continuity.

Proof. The first six properties follow from the fact that any core allocation satisfies them. A couple of comments
on the last two properties are needed. I González-Dı́az and Sánchez-Rodŕıguez (2007) prove that the core-center
treats symmetric players equally and that it is a continuous function of the values of the characteristic function.
In our context, equal treatment of equals holds because agents with the same cost parameter are symmetric
players in the associated airport game. Similarly, continuity holds because the values of the characteristic
function are continuous with respect to the cost parameters. Then, the core-center satisfies continuity since it
is a composition of continuous functions.

Proposition 7. The core-center satisfies order preservation for contributions.

Proof. Trivially, by Theorem 1, µn−1(N, c) ≤ µn(N, c). Now, take two consecutive agents i and i + 1 where
i < n− 1. Then, by Theorem 2, µi(N, c) ≤ µi+1(N, c) if and only if

Vn(c1, . . . , ci, ci, ci+1, . . . , cn−1) ≤ Vn(c1, . . . , ci, ci+1, ci+1, . . . , cn−1),

which is immediate since ci ≤ ci+1.

Proposition 8. The core-center satisfies order preservations for benefits.

Proof. Recall that µn−1(N, c)−µn(N, c) = cn−1−cn. Let i < n−1. We have to prove that µi+1(N, c)−µi(N, c) ≤
ci+1 − ci. Applying Theorem 2, the difference µi+1(N, c)− µi(N, c) can be written as follows:

µi+1(N, c)− µi(N, c) =

∫ c1

0

∫ c2−x1

0

. . .

∫ ci−
i−1∑
j=1

xj

0

∫ ci+1−
i∑

j=1
xj

ci−
i∑

j=1
xj

. . .

∫ cn−1−
n−1∑
j=1

xj

0

dxn . . . dx2dx1

Vn−1(c1, . . . , cn−1)

=

∫ c1

0

∫ c2−x1

0

. . .

∫ ci+1−
i∑

j=1
xj

ci−
i∑

j=1
xj

Vn−1−i
(
ci+1 −

i+1∑
j=1

xj , . . . , cn−1 −
i+1∑
j=1

xj
)
dxi+1dxi . . . dx1

Vn−1(c1, . . . , cn−1)

Now, by the mean-value theorem for integrals, there exists a point ξ ∈ (ci −
i∑

j=1

xj , ci+1 −
i∑

j=1

xj) such that

∫ ci+1−
i∑

j=1
xj

ci−
i∑

j=1
xj

Vn−1−i
(
ci+1 −

i+1∑
j=1

xj , . . . , cn−1 −
i+1∑
j=1

xj
)
dxi+1 =

(ci+1 − ci)Vn−1−i
(
ci+1 −

i∑
j=1

xj − ξ, . . . , cn−1 −
i∑

j=1

xj − ξ
)
.

But, since cs −
i∑

j=1

xj − ξ ≤ cs − ci for all i+ 1 ≤ s ≤ n− 1, we have that

Vn−1−i
(
ci+1 −

i∑
j=1

xj − ξ, . . . , cn−1 −
i∑

j=1

xj − ξ
)
≤ Vn−1−i(ci+1 − ci, . . . , cn−1 − ci).
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Therefore,

µi+1(N, c)− µi(N, c) ≤ (ci+1 − ci)

∫ c1

0

. . .

∫ ci−
i−1∑
j=1

xj

0

Vn−1−i(ci+1 − ci, . . . , cn−1 − ci)dxi . . . dx1

Vn−1(c1, . . . , cn−1)

= (ci+1 − ci)

∫ c1

0

. . .

∫ ci−
i−1∑
j=1

xj

0

Vn−1−i(ci+1 − ci, . . . , cn−1 − ci)dxi . . . dx1

∫ c1

0

. . .

∫ ci−
i−1∑
j=1

xj

0

Vn−1−i(ci+1 −
i∑

j=1

xj , . . . , cn−1 −
i∑

j=1

xj)dxi . . . dx1

≤ ci+1 − ci

where the last inequality holds because,

i∑
j=1

xi ≤ ci implies that cs − ci ≤ cs −
i∑

j=1

xi for i+ 1 ≤ s ≤ n− 1.

Example 2. The core-center does not satisfy independence of at least-as-large costs. Consider the airport

problem with N = {1, 2, 3} and 0 < c1 ≤ c2 ≤ c3. A simple computation shows that µ1(N, c) =
∫ c1
0

∫ c2−x
0 xdydx∫ c1

0

∫ c2−x
0 dydx

=

c1
3

3c2−2c1
2c2−c1 . Let c = (1, 2, 3) and c′ = (1, 3, 3). Then, µ1(N, c) = 4

9 < µ1(N, c′) = 7
15 .

Proposition 9. The core-center satisfies last-agent cost additivity.

Proof. Let (N, c) and (N, c′) be airport games satisfying the hypothesis of last-agent cost additivity. Then,

(x1, . . . , xn−1, cn −
n−1∑
i=1

xi) ∈ C(N, c)⇔ (x1, . . . , xn−1, c
′
n −

n−1∑
i=1

xi) ∈ C(N, c′).

Hence, Ĉ(N, c) = Ĉ(N, c′) and µN\{n}(N, c
′) = µN\{n}(N, c). By Theorem 1, µn(N, c′) = µn−1(N, c′) + (c′n −

c′n−1) = µn−1(N, c) + (cn + γ − cn−1) = µn(N, c) + γ.

Remark 5. If an allocation rule ψ satisfies efficiency and last-agent cost additivity, then

ψn−1(N, c) =
1

2

(
cn−1 −

n−2∑
i=1

ψi(N, c)
)
.

Example 3. The core-center does not satisfy conditional cost additivity. From Example 2, we know that for
an airport problem with N = {1, 2, 3} and 0 < c1 ≤ c2 ≤ c3, µ1(N, c) = c1

3
3c2−2c1
2c2−c1 . Again, let c = (1, 2, 3) and

c′ = (1, 3, 3). Then, c+ c′ = (2, 5, 6) and µ1(N, c) + µ1(N, c′) = 4
7 + 7

15 = 41
45 6= µ1(N, c+ c′) = 11

12 .

Proposition 10. The core-center satisfies neither last-agent consistency, nor uniform substraction consistency,
nor downstream substraction consistency.

Proof. The result follows from the following characterizations and the fact that the core-center satisfies equal
treatment of equals, homogeneity and last-agent cost additivity:

• The slack maximizer rule is the only rule satisfying equal treatment of equals, weak last-agent cost addi-
tivity and last-agent consistency (Yeh, 2003).

• The constrained equal benefits rule is the only rule satisfying equal treatment of equals, homogeneity,
last-agent cost additivity and uniform-subtraction consistency (Potters and Sudhölter, 2005).
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• The slack maximizer rule is the only rule satisfying equal treatment of equals, homogeneity, last-agent cost
additivity and downstream-subtraction consistency (Potters and Sudhölter, 2005).

Example 4. The core-center does not satisfy first-agent consistency. Let N = {1, 2, 3, 4} and c = (1, 2, 3, 4).
Then µ1(N, c) = 27

64 , µ2(N, c) = 43
64 and

c1,µ1(c) = (c2 − µ1(c), c3 − µ1(c), c4 − µ1(c)) = (101
64 ,

165
64 ,

229
64 ).

An easy computation shows that µ2(N \ {1}, c1,µ1(c)) = 667
991 6= µ2(N, c).

Nevertheless, the core-center satisfies first-agent consistency for 3-player airport games. Indeed, if (N, c) =
({1, 2, 3}, (c1, c2, c3)), c1 ≤ c2 ≤ c3, then

µ2(N, c) =
c2 − µ1(N, c)

2
= µ2

(
{2, 3}, (c2 − µ1(N, c), c3 − µ1(N, c))

)
µ3(N, c) = c3 − c2 + µ2(N, (c1, c2, c2)) = c3 − c2 + µ2(N, (c1, c2, c3))

= c3 − c2 +
c2 − µ1(N, c)

2
= µ3

(
{2, 3}, (c2 − µ1(N, c), c3 − µ1(N, c))

)
.

Example 5. The core-center does not satisfy strong cost monotonicity. Indeed, let N = {1, 2, 3} and c = (1, 2, 4).
Then µ(N, c) = ( 4

9 ,
7
9 ,

25
9 ). Now, for the airport problem with costs c′ = (1, 3, 4), µ(N, c′) = ( 7

15 ,
19
15 ,

34
15 ). Thus,

c ≤ c′ but µ3(N, c′) < µ3(N, c).

Example 6. The core-center does not satisfy marginalism. Consider the airport problems with players N =
{1, 2, 3} and costs c = (1, 2, 3) and c′ = (1, 3, 4) that satisfy the hypothesis of downstream cost monotonicity
(with i = 2). Their respective core-centers are µ(N, c) = ( 4

9 ,
7
9 ,

16
9 ) and µ(N, c′) = ( 7

15 ,
19
15 ,

34
15 ) so, in particular,

µ1(N, c) 6= µ1(N, c′).

6 On the monotonicity of the core-center

In this section we discuss the behavior of the core-center with respect to well known monotonicity properties.
Moreover, we also introduce two natural monotonicity properties that have not been studied before in the
literature, higher cost decreasing monotonicity and lower cost increasing monotonicity. Throughout this section,
when no confusion arises we often use notations such as µj(c1, . . . , cp) instead of µj({1, . . . , p}, (c1, . . . , cp)).
Some of the forthcoming results rely on the following connection between the monotonicity of the core-center
components and the centroid of the Fi faces.

Proposition 11. Let (N, c) be an airport game with 0 < c1 and i, j ∈ N\{n}. Then, µj(N, c) is increasing with
respect to ci if and only if µj(N, c) ≤ µj(Fi). Analogously, it is decreasing if and only if µj(N, c) ≥ µj(Fi).

Proof. Recall that µj(N, c) = µ̂j(c1, . . . , cn−1) and, by Theorem 2,

∂µ̂j
∂ci

(c1, . . . , cn−1) =

∂Uj
n−1

∂ci
(c1, . . . , cn−1)Vn−1(c1, . . . , cn−1)− U jn−1(c1, . . . , cn−1)∂Vn−1

∂ci
(c1, . . . , cn−1)

(Vn−1(c1, . . . , cn−1))2
.

Thus, µj(N, c) is increasing with respect to ci if and only if the numerator is positive. Now, by Proposition 5
the latter is equivalent to

µj(Fi) =

∂Uj
n−1

∂ci
(c1, . . . , cn−1)

∂Vn−1

∂ci
(c1, . . . , cn−1)

≥
U jn−1(c1, . . . , cn−1)

Vn−1(c1, . . . , cn−1)
= µj(N, c).
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We now present two new monotonicity properties for a rule. The first one states that if one single cost ci
increases while the others are held constant, then the rule decreases its value for all the players with costs higher
than ci. The second property is a kind of reciprocal, the allocation rule increases its value for all the players
with costs lower than ci.

Definition 1. Let ψ be a rule. Suppose that we have two airport games (N, c) and (N, c′), and i ∈ N such that
c′i ≥ ci and for all j ∈ N\{i}, c′j = cj. Then,

• ψ satisfies higher cost decreasing monotonicity if ψj(N, c
′) ≤ ψj(N, c) whenever cj > ci.

• ψ satisfies lower cost increasing monotonicity if ψj(N, c
′) ≥ ψj(N, c) whenever cj ≤ ci.

Proposition 12. Let (N, c) be an airport game with 0 < c1 and i, j ∈ N\{n}, i < j. The component µj(N, c)
is decreasing with respect to ci if and only if µ̂j(c1, . . . , cn−1) ≥ µ̂j−i(ci+1 − ci, . . . , cn−1 − ci).

Proof. According to Proposition 11, µj(N, c) is decreasing with respect to ci if and only if µj(N, c) ≥ µj(Fi).
Now, the result is a direct application of Proposition 4 when i < j.

The HCDM property for the core-center is a consequence of Theorem 4, which is a particular case of Theo-
rem 3 below, whose proof is relegated to the Appendix.

Theorem 3. For all p, k ∈ N such that k ≥ p, and all 0 < δ ≤ d1 · · · ≤ dp ≤ · · · ≤ dk, we have that

µ̂p(d1 − δ, . . . , dp − δ, . . . , dk − δ) ≤ µ̂p+1(δ, d1, . . . , dp, . . . , dk).

Theorem 4. Given j ∈ {2, . . . , n− 1} and costs 0 < c1 ≤ · · · ≤ cn−1, we have that

µ̂j(c1, . . . , cn−1) ≥ µ̂j−1(c2 − c1, . . . , cn−1 − c1) ≥ · · · ≥ µ̂1(cj − cj−1, . . . , cn−1 − cj−1).

Proof. This is a particular case of Theorem 3. Given j ∈ {2, . . . , n− 1} and r ∈ {0, . . . , j − 2}, the inequality

µ̂j−r(cr+1 − cr, . . . , cn−1 − cr) ≥ µ̂j−r−1(cr+2 − cr+1, . . . , cn−1 − cr+1)

follows by taking k = n− r − 2, p = j − r − 1 and (δ, d1, . . . , dk) = (cr+1 − cr, cr+2 − cr, . . . , cn−1 − cr).

Proposition 13. The core-center satisfies higher cost decreasing monotonicity.

Proof. As a corollary of Proposition 12 and Theorem 4 we have that if i, j ∈ N\{n}, i < j, then µj(N, c) is
decreasing with respect to ci.

We now move to LCIM. First, note that it implies individual monotonicity. The LCIM property for the
core-center is a consequence of Theorem 5 below, whose proof is relegated to the Appendix.

Theorem 5. Given p, s ∈ N and costs 0 < c1 ≤ · · · ≤ cp ≤ cp+1 ≤ · · · ≤ cp+s, we have that

µp(c1, . . . , cp) ≥ µp(c1, . . . , cp, cp+1) ≥ · · · ≥ µp(c1, . . . , cp, cp+1, . . . , cp+s)

Proposition 14. The core-center satisfies lower cost increasing monotonicity.

Proof. Let (N, c) be an airport game such that 0 < c1 ≤ c2 ≤ · · · ≤ cn. Then the core-center satisfies LCIM
if and only if µj(N, c) is increasing with respect to ci for all j ≤ i ≤ n. First, assume that j ≤ i < n. By
Proposition 4, µj(Fi) = µj({1, . . . , i}, (c1, . . . , ci)). Now, according to Theorem 5,

µj(c1, . . . , cj) ≥ µj(c1, . . . , cj , . . . , ci) ≥ µj(c1, . . . , cn) = µj(N, c),

and LCIM is now a direct consequence of Proposition 11. As for the case j ≤ i = n, we already know that
µj(N, c), j = 1, . . . , n− 1, is independent of cn, and that ∂µn

∂cn
(N, c) = 1.
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Corollary 2. The core-center satisfies individual cost monotonicity.

Example 7. The core-center does not satisfy others-oriented cost monotonicity. To see this one can consider, for
instance, the two problems in Example 2, where an increase in the cost of player 2 results in a lower core-center
payoff for player 1.

The next monotonicity property, downstream cost monotonicity, is a consequence of Theorem 6 below, whose
proof is relegated to the Appendix.

Theorem 6. Given indices i, j ∈ N, j ≥ i, a value γ > 0 and costs 0 < c1 ≤ · · · ≤ ck, we have that

µj(c1, c2, . . . , ci + γ, . . . , ck + γ) ≥ µj(c1, c2, . . . , ck).

Proposition 15. The core-center satisfies downstream cost monotonicity.

Proof. Let (N, c) be an airport game such that 0 < c1 ≤ c2 ≤ · · · ≤ cn. Observe that downstream cost
monotonicity can be rewritten as follows. If for each pair (N, c) and (N, c′) and each i ∈ N , if for each j ∈ N
such that cj < ci, c

′
j = cj and each j ∈ N such that cj ≥ ci, c′j = cj + γ ( γ ≥ 0), then for each j ∈ N such that

cj ≥ ci, ψj(N, c′) ≥ ψj(N, c). Thus,

(N, c) : c1 c2 . . . ci−1 ci . . . cn
(N, c′) : c1 c2 . . . ci−1 ci + γ . . . cn + γ,

and the result is a direct consequence of Theorem 6.

Proposition 16. Let ψ a rule satisfying downstream cost monotonicity and LCIM. Then, ψ satisfies weak cost
monotonicity.

Proof. We have to prove that, for each pair (N, c) and (N, c′), if there exists (N, c′′) such that c′ = c+ c′′, then
ψ(N, c′) ≥ ψ(N, c). Consider the following airport problems:

Problem Costs
c0 = c c1 c2 . . . ci . . . cn
c1 c1 + c′′1 c2 + c′′1 . . . ci + c′′1 . . . cn + c′′1
c2 c1 + c′′1 c2 + c′′1 + c′′2 − c′′1 . . . ci + c′′1 + c′′2 − c′′1 . . . cn + c′′1 + c′′2 − c′′1

...
...

ci c1 + c′′1 c2 + c′′2 . . . ci + c′′i . . . cn + c′′i
...

...
cn = c′ c1 + c′′1 c2 + c′′2 . . . ci + c′′i . . . cn + c′′n

Now, noting that c′ = cn and combining downstream cost monotonicity and LCIM we have

ψ1(N, cn) ≥ LCIM . . . ≥ LCIM ψ1(N, ci) ≥ LCIM . . . ≥ LCIM ψ1(N, c1) ≥ DOWN ψ1(N, c)
ψ2(N, cn) ≥ LCIM . . . ≥ LCIM ψ2(N, ci) ≥ LCIM . . . ≥ DOWN ψ2(N, c1) ≥ DOWN ψ2(N, c)

...
ψi(N, c

n) ≥ LCIM . . . ≥ LCIM ψi(N, c
i) ≥ DOWN . . . ≥ DOWN ψi(N, c

1) ≥ DOWN ψi(N, c)
...

ψn(N, cn) ≥ DOWN . . . ≥ DOWN ψn(N, ci) ≥ DOWN . . . ≥ DOWN ψn(N, c1) ≥ DOWN ψn(N, c).

Corollary 3. The core-center satisfies weak cost monotonicity.

Proposition 17. The core-center satisfies neither reciprocity nor incremental no subsidy.
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Proof. The result follows from the following characterizations in Aadland and Kolpin (1998) and the fact that
the core-center satisfies no-subsidy, order preservation for contributions and weak cost monotonicity:

• The constrained equal contribution rule is the only selection from the no-subsidy correspondence satisfying
order preservation for contributions, weak cost monotonicity, and reciprocity.

• The sequential equal contributions rule is the only rule satisfying order preservation for contributions,
weak cost monotonicity, and incremental no subsidy.

Proposition 18. The core-center satisfies population monotonicity.

Proof. We prove the result for the case in which there is k ∈ N such that N = N ′ ∪ {k}. The general case
follows from repeated application of that property.

Thus, given N ′ = N\{k}, we prove that µN ′(N, c) ≤ µ(N ′, cN ′). We distinguish three cases.

Case 1: ck = cn. So, for each i ∈ N ′, ci ≤ ck = cn. By Theorem 5, for each i ∈ N ′,

µi(N
′, cN ′) = µi(c1, . . . , cn−1) ≥ µi(c1, . . . , cn−1, cn) = µi(N, c).

Case 2: ck = c1. So, for each i ∈ N ′, ci ≥ ck = c1. Now, for each ε ≥ 0, let cε = (ε, c2, . . . , cn). Clearly,
µ(N ′, cN ′) = µN ′(N, c

0). By HCDM, for each ε ∈ (0, c1], µN ′(N, c) ≤ µN ′(N, cε) and, by continuity, µN ′(N, c) ≤
µN ′(N, c

0). Therefore,
µN ′(N, c) ≤ µN ′(N, c0) = µ(N ′, cN ′).

Case 3: c1 < ck < cn. Let i ∈ N ′. We distinguish two subcases.

ci > ck: Consider the airport problems (N, cε), with cε = (ε, c1, . . . , ck−1, ck+1, ck+2, . . . , cn) and ε ∈ (0, c1].
Similarly to Case 2, HCDM and continuity ensure that µi(N

′, cN ′) = µi(N, c
0) ≥ µi(N, c

ε). Combining
this with a repeated application of HCDM, we have

µi(N
′, cN ′) = µi(N, c

0)

≥ µi(c1, c1, c2, . . . , ck−1, ck+1, ck+2, . . . , cn)

≥ µi(c1, c2, c2, . . . , ck−1, ck+1, ck+2, . . . , cn)

...

≥ µi(c1, c2, c3, . . . , ck−1, ck, ck+1, . . . , cn) = µi(N, c).

ci ≤ ck: In the case in which ci = ck we assume, without loss of generality, that i < k. Now, applying LCIM
repeatedly,

µi(N
′, cN ′) = µi(c1, . . . , ck−1, ck+1, ck+2, . . . , cn) ≥ µi(c1, . . . , ck−1, ck, ck+1, . . . , cn−1),

and, by Case 1,

µi(c1, . . . , ck−1, ck, ck+1, . . . , cn−1) ≥ µi(c1, . . . , ck−1, ck, ck+1, . . . , cn−1, cn) = µi(N, c).

Combining the inequalities in both equations we get that µi(N
′, cN ′) ≥ µi(N, c).

7 Summary of properties

To conclude, we present a table that summarizes the behavior of the core-center with respect to the properties
we have studied.
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Rules
Properties Shapley Nucleolus Core-center

Fixed population
Non negativity X X X

Cost boundedness X X X
Efficiency X X X

No-subsidy X X X
Anonymity X X X

Equal treatment of equals X X X
Order preservation for contributions X X X

Order preservation for benefits X X X
Homogeneity X X X
Continuity X X X

Independence at-least-as-large costs X - -
Last-agent cost additivity X X X

Weak last-agent cost additivity X X X
Conditional cost additivity X - -

Individual cost monotonicity X X X
Downstream cost monotonicity X X X

Marginalism X - -
Strong cost monotonicity - - -
Weak cost monotonicity X X X
Incremental no-subsidy X X -

Reciprocity - - -
Others-oriented cost monotonicity X - -

Variable population
Population monotonicity X X X
First agent consistency X X -

Downstream substraction consistency - X -
Last-agent consistency - X -

Uniform substraction consistency - - -
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Appendix

In the first part of this Appendix we present the proof of Theorem 2. This result is then crucial to prove also
Theorems 3, 5, and 6, which establish the main monotonicity properties satisfied by the core center.

Theorem 2. Let (N, c) be an airport game such that 0 < c1 ≤ c2 ≤ · · · ≤ cn and fix j ∈ N \ {n}. Then:

1. U jn−1(c1, . . . , cn−1) = Vn(c1, . . . , cj , cj , . . . , cn−1)

2. µ̂j(c1, . . . , cn−1) =
Vn(c1, . . . , cj , cj , . . . cn−1)

Vn−1(c1, . . . , cn−1)

Before engaging in the proof of Theorem 2 we need some preliminary results. Recall the convention V0 = 1.

Lemma 1. Given 0 < c1 ≤ · · · ≤ ck, k ∈ N, we have that V1(c1) = c1, V2(c1, c2) =
c22
2 −

(c2−c1)2
2 , and, if k ≥ 3,

Vk(c1, . . . , ck) =
ckk
k!
− (ck − c1)k

k!
−
k−1∑
i=2

(ck − ci)k−i+1

(k − i+ 1)!
Vi−1(c1, . . . , ci−1).

Proof. The expressions for V1(c1) and V2(c1, c2) are straightforward. The result also holds for k = 3, since

V3(c1, c2, c3) =
∫ c1
0
V2(c2 − x1, c3 − x1)dx1 =

∫ c1
0

(
(c3−x1)

2

2 − (c3−c2)2
2

)
dx1 =

c33
3! −

(c3−c1)3
3! − (c3−c2)2

2 c1. We

proceed by induction. Let k ∈ N, k > 3, and assume that the result holds for k − 1. Then,

Vk(c1, . . . , ck) =

∫ c1

0

Vk−1(c2 − x1, . . . , ck − x1)dx1

=

∫ c1

0

( (ck − x1)k−1

(k − 1)!
− (ck − c2)k−1

(k − 1)!
−
k−2∑
i=2

(ck − ci+1)k−i

(k − i)!
Vi−1(c2 − x1, . . . , ci − x1)

)
dx1.

We compute separately the integral of each addend:∫ c1

0

(ck − x1)k−1

(k − 1)!
dx1 =

ckk
k!
− (ck − c1)k

k!
,

∫ c1

0

(ck − c2)k−1

(k − 1)!
dx1 =

(ck − c2)k−1

(k − 1)!
V1(c1), and∫ c1

0

Vi−1(c2 − x1, . . . , ci − x1)dx1 = Vi(c1, . . . , ci)
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By the linearity of the integral,

Vk(c1, . . . , ck) =
ckk
k!
− (ck − c1)k

k!
− (ck − c2)k−1

(k − 1)!
V1(c1)−

k−2∑
i=2

(ck − ci+1)k−i

(k − i)!
Vi(c1, . . . , ci)

=
ckk
k!
− (ck − c1)k

k!
−
k−2∑
i=1

(ck − ci+1)k−i

(k − i)!
Vi(c1, . . . , ci),

which, after a simple rearrangement of the indices, coincides with the desired expression.

Lemma 2. Let 0 < c1 ≤ · · · ≤ ck, k ∈ N, x1 ≤ c1, and denote uk(x1) = Vk(c1 − x1, . . . , ck − x1). Then,

duk
dx1

(x1) = −Vk−1(c2 − x1, . . . , ck − x1).

Proof. The proof is by induction. The property holds for k = 1, since u1(x1) = V1(c1 − x1) = c1 − x1 and
du1

dx1
(x1) = −1. It also holds for k = 2, because u2(x1) = (c2−x1)

2

2 − (c2−c1)2
2 and du2

dx1
(x1) = −(c2 − x1). Now, let

k ≥ 3 and suppose that the property is true for ui, 1 ≤ i ≤ k − 1. Then, according to Lemma 1,

uk(x1) = Vk(c1 − x1, . . . , ck − x1) =
(ck − x1)k

k!
− (ck − c1)k

k!
−
k−1∑
i=2

(ck − ci)k−i+1

(k − i+ 1)!
ui−1(x1).

Differentiating with respect to x1,

duk
dx1

(x1) = − (ck − x1)k−1

(k − 1)!
−
k−1∑
i=2

(ck − ci)k−i+1

(k − i+ 1)!

dui−1
dx1

(x1).

By the induction hypothesis, if i ≥ 2, dui−1

dx1
(x1) = −Vi−2(c2 − x1, . . . , ci−1 − x1). Therefore,

duk
dx1

(x1) = − (ck − x1)k−1

(k − 1)!
+

(ck − c2)k−1

(k − 1)!
+

k−1∑
i=3

(ck − ci)k−i+1

(k − i+ 1)!
Vi−2(c2 − x1, . . . , ci−1 − x1).

Renumbering the terms,

duk
dx1

(x1) = −
(

(ck − x1)k−1

(k − 1)!
− (ck − c2)k−1

(k − 1)!
−
k−2∑
i=2

(ck − ci+1)k−i

(k − i)!
Vi−1(c2 − x1, . . . , ci − x1)

)
= −Vk−1(c2 − x1, . . . , ck − x1).

where the last equality follows directly from Lemma 1.

Proof of Theorem 2. First observe that

Vn(c1, . . . , cj , cj , . . . cn−1) =

∫ c1

0

. . .

∫ cj−
j−1∑
k=1

xk

0

Vn−j
(
cj −

j∑
k=1

xk, . . . , cn−1 −
j∑

k=1

xk
)
dxj . . . dx1.

If un−j(xj) = Vn−j

(
cj −

j∑
k=1

xk, . . . , cn−1 −
j∑

k=1

xk

)
then, by Lemma 2,

dun−j
dxj

(xj) = −Vn−j−1
(
cj+1 −

j∑
k=1

xk, . . . , cn−1 −
j∑

k=1

xk

)
.
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Integrating by parts,

∫ cj−
j−1∑
k=1

xk

0

Vn−j
(
cj −

j∑
k=1

xk, . . . , cn−1 −
j∑

k=1

xk
)
dxj =

[
xjVn−j

(
cj−

j∑
k=1

xk, . . . , cn−1−
j∑

k=1

xk
)]cj−j−1∑

k=1

xk

0

+

∫ cj−
j−1∑
k=1

xk

0

xjVn−j−1
(
cj+1−

j∑
k=1

xk, . . . , cn−1−
j∑

k=1

xk
)
dxj .

The bracketed expression vanishes, since Vn−j(0, cj+1 − cj , . . . , cn−1 − cj) = 0. Consequently,

∫ cj−
j−1∑
k=1

xk

0

Vn−j

(
cj −

j∑
k=1

xk, . . . , cn−1 −
j∑

k=1

xk

)
dxj =

∫ cj−
j−1∑
k=1

xk

0

xjVn−j−1

(
cj+1 −

j∑
k=1

xk, . . . , cn−1 −
j∑

k=1

xk

)
dxj . (1)

Finally,

Vn(c1, . . . , cj , cj , . . . cn−1) =

∫ c1

0

. . .

∫ cj−
j−1∑
k=1

xk

0

xjVn−j−1

(
cj+1 −

j∑
k=1

xk, . . . , cn−1 −
j∑

k=1

xk

)
dxj . . . dx1

= U jn−1(c1, . . . , cn−1).

This last result follows from the previous property and the definition of µ̂.

The proofs of the remaining theorems in this Appendix follow the same basic structure. We know, by Proposi-
tion 11, that the monotonicity of the core-center with respect to costs can be established by checking the relative
position of the core-center of the game and the centroid of the faces of the core. So, we have to prove inequalities
of the type µ̂p(c1, . . . , ck) ≤ µ̂p+1(d1, . . . , dk+1). But, by Theorem 2, that is equivalent to proving an inequality
such as ∆ = Vk+1(c1, . . . , cp, cp, . . . , ck)Vk+1(d1, . . . , dk+1)−Vk(c1, . . . , ck)Vk+2(d1, . . . , dp+1, dp+1, . . . , dk+1) ≤ 0.
Then, we try to decompose each of the four volumes in ∆ in terms of volumes of certain “manageable” types.
Finally, we rearrange ∆ as a sum of expressions involving these types of volumes and study, by induction, their
sign. It turns out that the “manageable” volumes for Theorem 3 and Theorem 6 are of the same type (see Propo-
sition 21) while for Theorem 5 different volumes are needed (see Proposition 24). Therefore, we develop the
proof of Theorem 3 in full detail and just sketch the one for Theorem 6. We finish with the proof of Theorem 5.

An expression like Vp+s−1(c1, . . . , cp, s. . ., cp) means that cost cp is repeated s times. When all the costs are
the same we write Vk(c1, . . . , c1) instead of Vk(c1, k. . ., c1). In order to prove Theorem 3, our first step is to derive
some results involving volumes of this type.

Lemma 3. For all k ∈ N and α ≥ 0, Vk(α, . . . , α) = αk

k! .

Proof. Clearly, the property holds for k = 1. Assume that the result is true for k− 1 and proceed by induction.
Then,

Vk(α, . . . , α) =

∫ α

0

Vk−1(α− x1, . . . , α− x1)dx1 =

∫ α

0

(α− x1)k−1

(k − 1)!
dx1 =

αk

k!
.

Lemma 4. Given k ∈ N and 0 < α ≤ β ≤ c1 ≤ · · · ≤ ck, we have that∫ β

α

Vk(c1 − x1, . . . , ck − x1)dx1 = Vk+1(β − α, c1 − α, . . . , ck − α).
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Proof. The result is true for k = 1 since
∫ β
α

(c1 − x1)dx1 = (c1−α)2
2 − (c1−β)2

2 . Assume that the equality holds
for all i < k. Then,∫ β

α

Vk(c1 − x1, . . . , ck − x1)dx1

=

∫ β

α

(ck − x1)k

k!
dx1 −

∫ β

α

(ck − c1)k

k!
dx1 −

k−1∑
i=2

(ck − ci)k−i+1

(k − i+ 1)!

∫ β

α

Vi−1(c1 − x1, . . . , ci−1 − x1)dx1

=
(ck − α)k+1

(k + 1)!
− (ck − β)k+1

(k + 1)!
− (ck − c1)k

k!
(β − α)−

k−1∑
i=2

(ck − ci)k−i+1

(k − i+ 1)!
Vi(β − α, c1 − α . . . , ci−1 − α),

where the first equality holds by Lemma 1 and the second by the induction hypothesis. Again by Lemma 1, the
last expression equals Vk+1(β − α, c1 − α, . . . , ck − α).

The following result allows to decompose any given volume in terms of volumes with repeated costs.

Proposition 19. If 0 < α ≤ c1 ≤ · · · ≤ ck, k ∈ N, then

1. Vk(c1, . . . , ck) =

k∑
i=0

Vi(α, . . . , α)Vk−i(ci+1 − α, . . . , ck − α),

2. Vk(c1 − α, . . . , ck − α) =

k∑
i=1

Vi(c1 − α, . . . , c1 − α)Vk−i(ci+1 − c1, . . . , ck − c1), and

3. Vk(c1 − α, . . . , ck − α) =

k∑
i=2

Vi(c1 − α, c2 − α, i−1. . ., c2 − α)Vk−i(ci+1 − c2, . . . , ck − c2).

Proof. 1. Let s ∈ N such that 1 ≤ s ≤ k − 2 and denote

Is =

∫ cs+1−
s∑

j=1
xj

0

. . .

∫ ck−
k−1∑
j=1

xj

0

dxk . . . dxs+1 = Vk−s

(
cs+1 −

s∑
j=1

xj , . . . , ck −
s∑
j=1

xj

)
.

We claim that∫ α

0

. . .

∫ α−
s−1∑
j=1

xj

0

Is dxs . . . dx1 =

Vs(α, . . . , α)Vk−s(cs+1 − α, . . . , ck − α) +

∫ α

0

. . .

∫ α−
s∑

j=1
xj

0

Is+1 dxs+1 . . . dx1 (2)

Indeed,∫ α

0

. . .

∫ α−
s−1∑
j=1

xj

0

Is dxs . . . dx1 =

∫ α

0

. . .

∫ α−
s∑

j=1
xj

0

Is+1 dxs+1 . . . dx1 +

∫ α

0

. . .

∫ cs+1−
s∑

j=1
xj

α−
s∑

j=1
xj

Is+1 dxs+1 . . . dx1.

Then, in order to prove the claim, we just have to decompose the second addend of the last expression. But,

since Is+1 = Vk−s−1

(
cs+2 −

s+1∑
j=1

xj , . . . , ck −
s+1∑
j=1

xj

)
, we have, by Lemma 4,

∫ cs+1−
s∑

j=1
xj

α−
s∑

j=1
xj

Is+1 dxs+1 . . . dx1 = Vk−s
(
cs+1 − α, cs+2 − α. . . . , ck − α

)
dxs . . . dx1.
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Consequently,

∫ α

0

. . .

∫ cs+1−
s∑

j=1
xj

α−
s∑

j=1
xj

Is+1 dxs+1 . . . dx1 =

∫ α

0

. . .

∫ α−
s−1∑
j=1

xj

0

Vk−s
(
cs+1 − α, . . . , ck − α

)
dxs . . . dx1

= Vk−s
(
cs+1 − α, . . . , ck − α

) ∫ α

0

. . .

∫ α−
s−1∑
j=1

xj

0

dxs . . . dx1

= Vk−s(cs+1 − α, . . . , ck − α)Vs(α, . . . , α).

Then, Equation (2) holds. Now, we make repeated use of Equation (2) to obtain the first equality of the result.
Observe that

Vk(c1, . . . , ck) =

∫ c1

0

I1dx1 =

∫ α

0

I1dx1 +

∫ c1

α

Isdx1

=

∫ α

0

I1dx1 +

∫ c1

α

Vk−1(c2 − x1, . . . , ck − x1)dx1 =

∫ α

0

I1dx1 + Vk(c1 − α, . . . , ck − α),

where the last equality holds by Lemma 4. But, now, according to Equation (2),∫ α

0

I1dx1 =

∫ α

0

∫ α−x1

0

I2dx2dx1 + Vk−1(c2 − α, . . . , ck − α)V1(α).

Then,

Vk(c1, . . . , ck) = Vk(c1 − α, . . . , ck − α) + V1(α)Vk−1(c2 − α, . . . , ck − α) +

∫ α

0

∫ α−x1

0

I2dx2dx1.

Next, decompose

∫ α

0

∫ α−x1

0

I2dx2dx1 by applying Equation (2), and repeat the process until the intended

equality is reached.

2. To prove the second equality, just take A = c1 − α, so that (ci − α)−A = ci − c1, and apply statement 1.

Vk(c1 − α, . . . , ck − α) =

k∑
i=0

Vi(c1 − α, . . . , c1 − α)Vk−i(ci+1 − c1, . . . , ck − c1).

Now, simply observe that, for i = 0, Vk(c1 − c1, c2 − c1, . . . , ck − c1) = 0.

3. From Lemma 4 and statement 1.

Vk(c1 − α, . . . , ck − α) =

∫ c1

α

Vk−1(c2 − x1, . . . , ck − x1)dx1

=

k∑
i=2

Vk−i(ci+1 − c2, . . . , ck − c2)

∫ c1

α

Vi−1(c2 − x1, . . . , c2 − x1)dx1.

But, by Lemma 4, ∫ c1

α

Vi−1(c2 − x1, . . . , c2 − x1)dx1 = Vi(c1 − α, c2 − α, i−1. . ., c2 − α).
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Now we need some extra notation. Given k ∈ N and 0 < c1 ≤ · · · ≤ ck, let Z0 = 1 and

Zαs = Vs(ck−s+1 − α, . . . , ck − α), s = 1, . . . , k, α < ck−s+1.

When no confusion arises, we write Zs instead of Zαs .

Remark 6. Let q, k ∈ N, q < k, 0 < c1 ≤ · · · ≤ ck, and fix α < ck−q. Clearly, Zα1 = V1(ck −α) = ck −α. Now,
let A0 = 1 and

Ar = Z
ck−q+1
r = Vr(ck−r+1 − ck−q+1, . . . , ck − ck−q+1), r = 1, . . . , q − 1.

Then, by statement 2 of Proposition 19,

Zαq =

q∑
i=1

ViAq−i, with Vi = Vi(ck−q+1 − α, . . . , ck−q+1 − α), i = 1, . . . , q,

and by statement 3 of Proposition 19,

Zαq+1 =

q+1∑
i=2

V̄iAq+1−i, with V̄j = Vj(ck−q − α, ck−q+1 − α, j−1. . . , ck−q+1 − α), j = 2, . . . , q + 1.

Lemma 5. For all q, k ∈ N, q < k, and 0 < c1 ≤ · · · ≤ ck, fix α < ck−q. Then, Zα1 Z
α
q − Zαq+1 ≥ 0.

Proof. We use the notation and decompositions of Remark 6. Clearly, by Lemma 3,

Vi =
(ck−q+1 − α)i

i!
, i = 1, . . . , q. (3)

Besides, applying the definition of V̄i and Lemma 3,

V̄i =

∫ ck−q

0

(ck−q−1 − α− x1)i−1

(i− 1)!
dx1 =

1

i!

(
(ck−q+1 − α)i − (ck−q+1 − ck−q)i

)
= Vi −Xi, where Xi =

1

i!
(ck−q+1 − ck−q)i, i = 2, . . . , q + 1. (4)

In order to prove that

Z1Zq − Zq+1 =

q−1∑
i=0

(
(ck − α)Vq−i − V̄q−i+1

)
Ai ≥ 0,

we check that, for all i = 0, . . . , q − 1, (ck − α)Vq−i − V̄q−i+1 ≥ 0. Certainly,

(ck − α)Vq−i − V̄q−i+1 =
(ck − α)(ck−q+1 − α)q−i

(q − i)!
− (ck−q+1 − α)q−i+1

(q − i+ 1)!
+

(ck−q+1 − ck−q)q−i+1

(q − i+ 1)!
≥ 0,

since (ck − α) ≥ (ck−q+1 − α) and (q − i+ 1)! ≥ (q − i)!.

Proposition 20. Let t, q, k ∈ N be such that t ≤ q < k and c1 ≤ · · · ≤ ck. Fix α < ck−q. Then, Zαt Z
α
q −

Zαt−1Z
α
q+1 ≥ 0.
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Proof. We proceed by induction on t ∈ N. The case t = 1 has been proved in Lemma 5. Now, assume that the
result holds for any i ≤ t− 1, i.e.,

Zβi Z
β
j − Z

β
i−1Z

β
j+1 ≥ 0, i ≤ j < k, β < ck−j , (5)

and then, we prove that it also holds for t < k. According to the notation and decompositions of Remark 6,

ZtZq − Zt−1Zq+1 =
( t∑
i=0

ViAt−i
)( q∑

i=1

ViAq−i
)
−
(t−1∑
i=0

ViAt−1−i
)(q+1∑

i=2

V̄iAq+1−i

)
=

t−1∑
s=0

q−1∑
r=0

AsAr
(
Vt−sVq−r − Vt−1−sV̄q+1−r

)
+At

q∑
r=1

Aq−rVr.

Certainly, At

q∑
r=1

Aq−rVr ≥ 0. Then, it suffices to prove that

S =

t−1∑
s=0

q−1∑
r=0

AsAr∆s,r ≥ 0, where ∆s,r = Vt−sVq−r − Vt−s−1V̄q−r+1. (6)

First, we claim that
ViVj − Vi−1V̄j+1 ≥ 0, if i ≤ j + 1. (7)

Indeed, applying Equality (4) in Lemma 5, we have that ViVj −Vi−1Vj+1 +Vi−1Xj+1 and Vi−1Xj+1 ≥ 0. Then,
it suffices to prove that ViVj −Vi−1Vj+1 ≥ 0 whenever i ≤ j + 1. Let B = (ck−q+1 −α) and apply Equation (3)
in Lemma 5,

ViVj − Vi−1Vj+1 =
Bi

i!

Bj

j!
− Bi−1

(i− 1)!

Bj+1

(j + 1)!
=
( 1

i!j!
− 1

(i− 1)!(j + 1)!

)
Bi+j .

Now Equation (7) is straightforward, since 1
i!j! −

1
(i−1)!(j+1)! ≥ 0 if and only if i ≤ j + 1.

0 1 . . . t − 2 s

r = s + b

q − t + 1

.

.

.

q − 1

r

�
�
�
�

�
�

�
�
�

�
�

�
�
��

Figure 2: The straight line r = s+ b, with b = q − t+ 1.
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Let b = q− t+ 1 > 0 and T = {(s, r) ∈ [0, t− 2]× [0, q− 1] : r > s+ b} ⊂ N2 be the set depicted in Figure 2.
According to Equation (7), if (s, r) ∈ [0, t−1]× [0, q−1] but (s, r) 6∈ T then AsAr∆s,r ≥ 0. Now, take (r, s) ∈ T
such that AsAr∆s,r ≤ 0, then h = (r − s) − b > 0 and (s + h, r − h) 6∈ T , because (r − h) ≤ (s + h) + b. In
addition, t − s − h = q − r + 1 and q − r + h = t − s − 1. Therefore, each negative addend AsAr∆s,r ≤ 0 in
Equation (6) can be paired with the corresponding As+hAr−h∆s+h,r−h ≥ 0 in the following way

AsAr∆s,r +As+hAr−h∆s+h,r−h =

AsAr

(
Vt−sVq−r − Vt−s−1V̄q−r+1

)
+As+hAr−h

(
Vt−s−hVq−r+h − Vt−s−h−1V̄q−r+h+1

)
=

AsAr

(
Vt−sVq−r − Vt−s−1

(
Vq−r+1 −Xq−r+1

))
+As+hAr−h

(
Vq−r+1Vt−s−1 − Vq−r

(
Vt−s −Xt−s

))
=

AsAr
(
Vt−sVq−r − Vt−s−1Vq−r+1

)
+As+hAr−h

(
Vq−r+1Vt−s−1 − Vq−rVt−s

)
+

AsArVt−s−1Xq−r+1 +As+hAr−hVq−rXt−s =(
As+hAr−h −AsAr

)(
Vt−s−1Vq−r+1 − Vq−rVt−s

)
+AsArVt−s−1Xq−r+1 +As+hAr−hVq−rXt−s.

Therefore, if we prove that the last expression is positive whenever (s, r) ∈ T , then S ≥ 0. Clearly, the
last two terms are positive. Since (q − r + 1) < (t − s − 1) + 1 then, applying Equation (7), we get that
Vt−s−1Vq−r+1 − Vq−rVt−s ≥ 0. It remains to show that for all (s, r) ∈ T , As+hAr−h − AsAr ≥ 0. Now, if
(s, r) ∈ T , then

1. s ≤ r−h ≤ s+h ≤ r, since s ≤ s+h = r− b ≤ r, s ≤ s+ b = r−h ≤ r and (r−h) < (s+h) + b ≤ (s+h).

2. s+ h ≤ t− 2, since s+ h = r − b ≤ q − 1− b = t− 2.

Thus,

Ar−hAs+h −AsAr =(
Ar−hAs+h −Ar−h−1As+h+1

)
+
(
Ar−h−1As+h+1 −Ar−h−2As+h+2

)
+ · · ·+

(
As+1Ar−1 −AsAr

)
.

All the expressions in parentheses are of the form AiAj − Ai−1Aj+1 = Zβi Z
β
j − Z

β
i−1Z

β
j+1, with i ≤ t− 2, i ≤ j

and β = ck−q+1. Therefore, we can apply Equation (5), the induction hypotheses, and conclude that all the
addends AiAj −Ai−1Aj+1 ≥ 0 are positive and then As+hAr−h −AsAr ≥ 0 as well.

The next step consists of providing a way to decompose any given volume in terms of volumes involving only
the costs up to a fixed cp.

Proposition 21. Let p, k ∈ N be such that p < k and 0 < c1 ≤ · · · ≤ ck. Then,

Vk(c1, . . . , ck) =

k−p∑
i=0

Vk−p−i(cp+1+i − cp, . . . , ck − cp)Vp+i(c1, . . . , cp, i+1. . ., cp).

Proof. First we prove that

Vk(c1, . . . , ck) = Vk−p(cp+1 − cp, . . . , ck − cp)Vp(c1, . . . , cp) + Vk(c1, . . . , cp, cp, cp+2, . . . , ck). (8)

Indeed, we know that

Vk(c1, . . . , ck) =

∫ c1

0

. . .

∫ cp−
p−1∑
j=1

xj

0

Vk−p

(
cp+1 −

p∑
j=1

xj , . . . , ck −
p∑
j=1

xj

)
dxp . . . dx1. (9)
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If uk−p(xp) = Vk−p

(
cp+1 −

p∑
j=1

xj , . . . , ck −
p∑
j=1

xj

)
then, applying Lemma 2, we have that

du(xp)

dxp
= −Vk−p−1

(
cp+2 −

p∑
j=1

xj , . . . , ck −
p∑
j=1

xj

)
.

Integrating by parts,

∫ cp−
p−1∑
j=1

xj

0

Vk−p

(
cp+1 −

p∑
j=1

xj , . . . , ck −
p∑
j=1

xj

)
dxp =

Vk−p(cp+1 − cp, . . . , ck − cp)
(
cp −

p−1∑
j=1

xj

)
+

∫ cp−
p−1∑
j=1

xj

0

xpVk−p−1

(
cp+2 −

p∑
j=1

xj , . . . , ck −
p∑
j=1

xj

)
dxp. (10)

Now, applying equality in Equation (1) in Theorem 2, the integral in the last addend can be written as

∫ cp−
p−1∑
j=1

xj

0

Vk−p

(
cp −

p∑
j=1

xj , cp+2 −
p∑
j=1

xj , . . . , ck −
p∑
j=1

xj

)
dxp. (11)

Then, combining equations (9), (10), and (11),

Vk(c1, . . . , ck) = Vk−p(cp+1 − cp, . . . , ck − cp)
∫ c1

0

. . .

∫ cp−1−
p−2∑
j=1

xj

0

(
cp −

p−1∑
j=1

xj

)
dxp−1 . . . dx1

+

∫ c1

0

. . .

∫ cp−
p−1∑
j=1

xj

0

Vk−p

(
cp −

p∑
j=1

xj , cp+2 −
p∑
j=1

xj , . . . , ck −
p∑
j=1

xj

)
dxp . . . dx1

= Vk−p(cp+1 − cp, . . . , ck − cp)Vp(c1, . . . , cp) + Vk(c1, . . . , cp, cp, cp+2, . . . , ck).

Therefore, Equation (8) holds. Now, applying Equation (8) to Vk(c1, . . . , cp, cp, cp+2, . . . , ck), we find that

Vk(c1, . . . , cp, cp, cp+2, . . . , ck) =

Vk−p+1(cp+2 − cp, . . . , ck − cp)Vp+1(c1, . . . , cp, cp) + Vk(c1, . . . , cp, cp, cp, cp+3, . . . , ck).

Repeating this process, the result eventually follows.

Lemma 6. For all s ∈ N and 0 < δ ≤ d1, iwe have µ̂1(d1 − δ, s. . ., d1 − δ) ≤ µ̂2(δ, d1, s. . ., d1).

Proof. According to Lemma 3, µ̂1(d1 − δ, s. . ., d1 − δ) = d1−δ
s+1 . We have to prove that,

Λ = (d1−δ)
s+1 Vs+1(δ, d1, s. . ., d1)− Vs+2(δ, d1, s+1. . . , d1) ≤ 0.

Now, by Proposition 21 with p = 1 and k = s+ 1, and Lemma 3,

(d1−δ)
s+1 Vs+1(δ, d1, s. . ., d1) = (d1−δ)

s+1

s∑
i=0

(d1 − δ)s−i

(s− i)!
δi+1

(i+ 1)!
=

s∑
i=0

(d1 − δ)s−i+1

(s+ 1)(s− i)!
δi+1

(i+ 1)!
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and

Vs+2(δ, d1, s+1. . . , d1) =

s+1∑
i=0

(d1 − δ)s−i+1

(s− i+ 1)!

δi+1

(i+ 1)!
.

Then, since (s− i+ 1)! = (s− i+ 1)(s− i)! and s+ 1 ≥ s+ 1− i, for all 0 ≤ i ≤ s,

Λ =

s∑
i=0

(d1 − δ)s−i+1δi+1

(i+ 1)!

( 1

(s+ 1)(s− i)!
− 1

(s− i+ 1)!

)
− δs+2

(s+ 2)!
≤ 0.

Lemma 7. Let m ∈ N. Given real numbers Hj , Gj, j = 1, . . . ,m+ 2, and Zi, i = 1, . . . ,m+ 1, then

(m+1∑
i=0

Gi+1Zm+1−i

)( m∑
i=0

Hi+1Zm−i

)
−
( m∑
i=0

Gi+1Zm−i

)(m+1∑
i=0

Hi+1Zm+1−i

)
=

=

m∑
i=0

m∑
j=i

(
Gm+2−iHm+1−j −Gm+1−jHm+2−i)(ZiZj − Zi−1Zj+1

)
.

where Gr = Hr = 0 for all r 6= 1, . . . ,m+ 2, Z0 = 1 and Zr = 0 for all r 6= 0, . . . ,m+ 1.

Proof. Let

D =
(m+1∑
i=0

Gi+1Zm+1−i

)( m∑
i=0

Hi+1Zm−i

)
−
( m∑
i=0

Gi+1Zm−i

)(m+1∑
i=0

Hi+1Zm+1−i

)
.

Straightforward computations show that

D =

m∑
i=0

(
Gm+2−iHm+1−i −Gm+1−i Hm+2−i)ZiZi +

m∑
i=0

(
G1Hm+1−i −Gm+1−i H1

)
ZiZm+1

+

m−1∑
i=0

m∑
j=i+1

(
Gm+2−iHm+1−j +Gm+2−jHm+1−i −Gm+1−iHm+2−j −Gm+1−jHm+2−i)ZiZj .

Next, we group all terms of the type ∆(q, t) = GqHt−GtHq, with t < q. Let A(i, j), i ≤ j, be the coefficient of
ZiZj in the last expression and let A+(i, j) = ∆(m+ 2− i,m+ 1− j) and A−(i, j) = ∆(m+ 1− i,m+ 2− j).
For all i = 0, . . . ,m, A−(i, i+ 1) = 0, so, in particular, A(m,m+ 1) = A−(m,m+ 1) = 0. Then,

A(i, j) =


A+(i, i) if i = j ∈ {0, . . . ,m}
A+(i, i+ 1) if j = i+ 1 ∈ {1, . . . ,m}
−A−(i,m+ 1) if j = m+ 1, i ∈ {0, . . . ,m− 1}
A+(i, j)−A−(i, j) if i ∈ {0, . . . ,m− 2}, i+ 2 ≤ j ≤ m.

Observe that m + 2 − i ≥ m + 1 − j whenever i ≤ j and also m + 1 − i ≥ m + 2 − j whenever j ≥ i + 2.
All the coefficients A+(i, j) and A−(i, j) involved are of the type ∆(q, t) with t < q. But, clearly, A−(i, j) =
A+(i+ 1, j − 1). TheN,

D =

m∑
i=0

A+(0, i)Zi +

m−1∑
i=0

m+1∑
j=i+2

A+(i+ 1, j − 1)(Zi+1Zj−1 − ZiZj).

Rearranging the indices and setting, if necessary, Gr = Hr = 0 for all r 6= 1, . . . ,m + 2 and Zr = 0 for all
r 6= 0, . . . ,m+ 1, we obtain the expression of the statement of the theorem.
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We need some extra notation. Given p, s ∈ N and 0 < δ ≤ d1 ≤ · · · ≤ dp, we write:

gsp = (d1 − δ, . . . , dp − δ, s. . ., dp − δ), Gsp = Vp+s−1(gsp)

hsp = (δ, d1, . . . , dp, s. . ., dp), Hs
p = Vp+s(h

s
p)

Next, we establish a particular case of Theorem 3.

Proposition 22. For all p, s ∈ N and 0 < δ ≤ d1 ≤ · · · ≤ dp it holds that

µ̂p(d1 − δ, . . . , dp − δ, s. . ., dp − δ) ≤ µ̂p+1(δ, d1, . . . , dp, s. . ., dp).

Proof. We proceed by induction on p ∈ N. Lemma 6 solves the case p = 1. Next, fix p > 1, and assume that for
all s ∈ N, µ̂p−1(d1 − δ, . . . , dp−1 − δ, s. . ., dp−1 − δ) ≤ µ̂p(δ, d1, . . . , dp−1, s. . ., dp−1), or, equivalently, for all s ∈ N,
Gs+1

p−1

Gs
p−1
≤ Hs+1

p−1

Hs
p−1

. We claim that

Gqp−1H
t
p−1 −Gtp−1H

q
p−1 ≤ 0, for all t < q. (12)

Indeed
Gq

p−1

Gt
p−1
≤ Hq

p−1

Ht
p−1

because of the induction hypothesis and the fact that

Gqp−1
Gtp−1

=
Gqp−1

Gq−1p−1

Gq−1p−1

Gq−2p−1
. . .

Gt+1
p−1

Gtp−1
and

Hq
p−1

Ht
p−1

=
Hq
p−1

Hq−1
p−1

Hq−1
p−1

Hq−2
p−1

. . .
Ht+1
p−1

Ht
p−1

.

In order to establish the result for p > 1, we have to prove that for all s ∈ N, Gs+1
p Hs

p −GspHs+1
p ≤ 0. From

Proposition 21,

Gs+1
p =

s+1∑
i=0

Gi+1
p−1Zs+1−i, Hs

p =

s∑
i=0

Hi+1
p−1Zs−i,

Gsp =

s∑
i=0

Gi+1
p−1Zs−i, Hs+1

p =

s+1∑
i=0

Hi+1
p−1Zs+1−i,

where Z0 = 1 and Zr = Vr(dp − dp−1, . . . , dp − dp−1), for all r = 1, . . . , s+ 1. Applying Lemma 7,

Gs+1
p Hs

p −GspHs+1
p =

s∑
i=0

s∑
j=i

(
Gs+2−i
p−1 Hs+1−j

p−1 −Gs+1−j
p−1 Hs+2−i

p−1
)(
ZiZj − Zi−1Zj+1

)
.

where Zr = 0 for all r 6= 0, . . . , s+ 1 and Grp−1 = Hr
p−1 = 0 for all r 6= 1, . . . , s+ 2. Applying Equation (12), the

induction hypothesis, and Proposition 20, we obtain that indeed, Gs+1
p Hs

p −GspHs+1
p ≤ 0.

We can easily generalize the property stated in Proposition 22.

Proposition 23. Given p, t, q ∈ N such that t < q, we have that GqpH
t
p −GtpHq

p ≤ 0.

Proof. In Proposition 22 we proved that for all s ∈ N, Gs+1
p Hs

p − GspHs+1
p ≤ 0 or, equivalently,

Gs+1
p

Gs
p
≤ Hs+1

p

Hs
p

.

Now, given t < q, we have that GqpH
t
p−GtpHq

p ≤ 0 if and only if
Gq

p

Gt
p
≤ Hq

p

Ht
p
. Again, this inequality follows directly

from the hypothesis and the decomposition

Gqp
Gtp

=
Gqp

Gq−1p

Gq−1p

Gq−2p

. . .
Gt+1
p

Gtp
,

Hq
p

Ht
p

=
Hq
p

Hq−1
p

Hq−1
p

Hq−2
p

. . .
Ht+1
p

Ht
p

.

Finally, we can proceed with the proof of Theorem 3.
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Theorem 3. For all p, k ∈ N such that k ≥ p, and all 0 < δ ≤ d1 ≤ · · · ≤ dp ≤ · · · ≤ dk,

µ̂p(d1 − δ, . . . , dp − δ, . . . , dk − δ) ≤ µ̂p+1(δ, d1, . . . , dp, . . . , dk).

Proof. According to Theorem 2,

µ̂p(d1 − δ, . . . , dp − δ, . . . , dk − δ) =
Vk+1(d1 − δ, . . . , dp − δ, dp − δ, . . . , dk − δ)

Vk(d1 − δ, . . . , dp − δ, . . . , dk − δ)

and

µ̂p+1(δ, d1, . . . , dp, . . . , dk) =
Vk+2(δ, d1, . . . , dp, dp . . . , dk)

Vk+1(δ, d1, . . . , dp, . . . , dk)
.

Therefore, µ̂p(d1 − δ, . . . , dp − δ, . . . , dk − δ) ≤ µ̂p+1(δ, d1, . . . , dp, . . . , dk) if and only if

∆ = Vk+1(d1 − δ, . . . , dp − δ, dp − δ, . . . , dk − δ)Vk+1(δ, d1, . . . , dp, . . . , dk)

− Vk(d1 − δ, . . . , dp − δ, . . . , dk − δ)Vk+2(δ, d1, . . . , dp, dp, . . . , dk) ≤ 0. (13)

Now, applying Proposition 21, we decompose each of the four factors in the last inequality as sums involving
volumes of the types Gsp and Hs

p . Then,

Vk(d1 − δ, . . . , dk − δ) =

k−p∑
i=0

Gi+1
p Zk−p−i, Vk+1(d1 − δ, . . . , dp − δ, dp − δ, . . . , dk − δ) =

k−p∑
i=0

Gi+2
p Zk−p−i,

Vk+1(δ, d1, . . . , dk) =

k−p∑
i=0

Hi+1
p Zk−p−i, Vk+2(δ, d1, . . . , dp, dp, . . . , dk) =

k−p∑
i=0

Hi+2
p Zk−p−i,

where Z0 = 1 and Zt = Vt(dk−t+1 − δ, . . . , dk − δ), t = 1, . . . , k − p. Therefore, applying Lemma 7,

∆ =

k−p∑
i=0

k−p∑
j=i

(
Gk−p+2−i
p Hk−p+1−j

p −Gk−p+1−j
p Hk−p+2−i

p

)(
ZiZj − Zi−1Zj+1

)
.

where Zr = 0 for all r 6= 0, . . . , k − p and Grp = Hr
p = 0 for all r 6= 1, . . . , k − p + 2. Therefore, for ∆ ≤ 0 it

is sufficient to establish that ∆(q, t) ≤ 0 whenever t < q and that ZtZq − Zt−1Zq+1 ≥ 0 if t ≤ q. These two
properties were already proved in Propositions 23 and 20, respectively.

As already pointed out, the proof of Theorem 6 has the same structure as that of Theorem 3. Hence we just
provide an outline.

Theorem 6. Let k, i, j ∈ N, i ≤ j ≤ k, a value γ > 0 and costs 0 < c1 ≤ · · · ≤ ck. Then

µj(c1, c2, . . . , ci + γ, . . . , ck + γ) ≥ µj(c1, c2, . . . , ck).

Proof. Let us examine some simple situations. If i = j = k, then µk(c1, . . . , ck−1, ck + γ) = γ + µk(c1, . . . , ck) ≥
µk(c1, . . . , ck). If i < k and j = k then

µk(c1, . . . , ci + γ, . . . , ck + γ) = (ck − ck−1) + µ̂k−1(c1, . . . , ci + γ, . . . , ck−1 + γ)

and

µk(c1, . . . , ck) = (ck − ck−1) + µ̂k−1(c1, . . . , ck−1).
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Then, µk(c1, . . . , ci+γ, . . . , ck+γ) ≥ µk(c1, . . . , ck) if and only if µ̂k−1(c1, . . . , ci+γ, . . . , ck−1+γ) ≥ µ̂k−1(c1, . . . , ck−1).
Ovbiously, if i ≤ j < k then µj(c1, c2, . . . , ci+γ, . . . , ck+γ) = µ̂j(c1, . . . , ci+γ, . . . , ck−1+γ) and µj(c1, . . . , ck) =
µ̂j(c1, . . . , ck−1). It suffices to prove that for all i ≤ j ≤ k,

µ̂j(c1, . . . , ci−1, ci + γ, . . . , cj + γ, . . . , ck + γ) ≥ µ̂j(c1, . . . , ck).

According to Theorem 2, this is equivalent to establishing that

∆ = Vk+1(c1, . . . , ci−1, ci + γ, . . . , cj + γ, cj + γ, . . . , ck + γ)Vk(c1, . . . , ck)

− Vk(c1, . . . , ci−1, ci + γ, . . . , cj + γ, . . . , ck + γ)Vk+1(c1, . . . , cj , cj , . . . , ck) ≥ 0.

Denote Z0 = 1 and

Gsj = Vj+s−1(c1, . . . , ci−1, ci + γ, . . . , cj + γ, s. . ., cj + γ), s = 1, . . . , k − j + 2

Hs
j = Vj+s−1(c1, . . . , cj , s. . ., cj), s = 1, . . . , k − j + 2

Zt = Vt(ck−t+1 − cj , . . . , ck − cj), t = 1, . . . , k − j.

Applying Proposition 21, Vk(c1, . . . , ck) =

k−j∑
r=0

Hr+1
j Zk−j−r, Vk+1(c1, . . . , cj , cj , . . . , ck) =

k−j∑
r=0

Hr+2
j Zk−j−r, and

Vk+1(c1, . . . , ci + γ, . . . , cj + γ, cj + γ, . . . , ck + γ) =

k−j∑
r=0

Gr+2
j Zk−j−r

Vk(c1, . . . , ci + γ, . . . , cj + γ, . . . , ck + γ) =

k−j∑
r=0

Gr+1
j Zk−j−r

Therefore, applying Lemma 7,

∆ =

k−j∑
r=0

k−j∑
t=r

(
Gk−j+2−r
j Hk−j+1−t

j −Gk−j+1−t
j Hk−j+2−r

j

)(
ZrZt − Zr−1Zt+1

)
.

where Zr = 0 for all r 6= 0, . . . , k − j and Grj = Hr
j = 0 for all r 6= 1, . . . , k − j + 2. Then, in order to prove

that ∆ ≥ 0 it is sufficient to establish that ∆(q, t) ≥ 0 whenever t < q and that ZrZt − Zr−1Zt+1 ≥ 0 if r ≤ t.
The first property can be established, with very few adjustments, as in Proposition 23, and the second holds by
Proposition 20.

The proof of Theorem 5 follows a similar technique but with a significant difference: the decomposition of a
given volume provided by Proposition 21 has to be changed by the one given in Proposition 24. We need some
final notations. Given p, k, s, t, q ∈ N such that k ≥ p and 0 < c1 ≤ · · · ≤ cp ≤ · · · ≤ ck, define

Apk,s = Vk+s−1(c1, . . . , cp, . . . , ck, s. . ., ck)

Âpk,s = Vk+s(c1, . . . , cp, cp . . . , ck, s. . ., ck)

∆p
k(t, q) = Âpk,tA

p
k,q −A

p
k,tÂ

p
k,q

The superscript in Apk,s, though somehow unnecessary or ambiguous in cases like Âpp,s = App,s+1, is helpful to

refer to a particular coordinate of the core-center. It is also worth noting that ∆p
k(t, t) = 0.

Proposition 24. Given p, k, s ∈ N such that k ≥ p > 1 and 0 < c1 ≤ · · · ≤ cp ≤ · · · ≤ ck, let δ(p, k) = p− 1 if
p = k and δ(p, k) = p if p < k. Then,

Apk,s =

s∑
i=0

1

i!
A
δ(p,k)
k−1,s+1−i (ck − ck−1)i, Âpk,s =

s∑
i=0

1

i!
Â
δ(p,k)
k−1,s+1−i (ck − ck−1)i.
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Proof. Let p, k, s ∈ N with k > p > 1. Then

Apk,s = Vk+s−1(c1, . . . , cp, . . . , ck, s. . ., ck)

=

∫ c1

0

. . .

∫ ck−1−
k−2∑
j=1

xj

0

Vs
(
ck −

k−1∑
j=1

xj , . . . , ck −
k−1∑
j=1

xj
)
dxk−1 . . . dx1

=

∫ c1

0

. . .

∫ ck−1−
k−2∑
j=1

xj

0

1

s!

(
ck −

k−1∑
j=1

xj
)s
dxk−1 . . . dx1

where the last equality is obtained applying Lemma 3. Now, we expand the integrand by the binomial theorem,

setting Xk = ck − ck−1 and Yk−1 = ck−1 −
k−1∑
j=1

xj . Then,

1

s!

(
ck −

k−1∑
j=1

xj
)s

=
1

s!
(Xk + Yk−1)s =

1

s!

s∑
i=0

(
s

i

)
Xi
kY

s−i
k−1 =

s∑
i=0

1

i!(s− i)!
Xi
kY

s−i
k−1 .

Therefore,

Apk,s =

s∑
i=0

1

i!

(∫ c1

0

. . .

∫ ck−1−
k−2∑
j=1

xj

0

1

(s− i)!
Y s−ik−1dxk−1 . . . dx1

)
Xi
k.

Again, by Lemma 3, 1
(s−i)!Y

s−i
k−1 = Vs−i(Yk−1, . . . , Yk−1) and, consequently,

∫ c1

0

. . .

∫ ck−1−
k−2∑
j=1

xj

0

1

(s− i)!
Y s−ik−1dxk−1 . . . dx1 =

∫ c1

0

. . .

∫ ck−1−
k−2∑
j=1

xj

0

Vs−i(Yk−1, . . . , Yk−1)dxk−1 . . . dx1

=

∫ c1

0

. . .

∫ ck−2−
k−3∑
j=1

xj

0

Vs+1−i

(
ck−1 −

k−2∑
j=1

xj , . . . , ck−1 −
k−2∑
j=1

xj

)
dxk−2 . . . dx1 = Apk−1,s+1−i.

The above equality leads to Apk,s =

s∑
i=0

1

i!
Apk−1,s+1−i X

i
k.

The case k = p and the second part of the proof can be easily adapted from the previous one.

Lemma 8. Given p, k, s ∈ N such that k ≥ p > 1 and 0 < c1 ≤ · · · ≤ cp ≤ · · · ≤ ck, let Xk = ck − ck−1. Then,

∆p
k(s, s+ 1) =

2s∑
i=0

( ri∑
r=0

B(i, r)∆
δ(p,k)
k−1 (t(i, r), q(i, r))

)
Xi
k.

where, ri ∈ N for all i ∈ {0, . . . , 2s}. Besides, for all r ∈ {0, . . . , ri}, it holds that B(i, r) ≥ 0 and t(i, r) < q(i, r).

Proof. Using the decomposition of Proposition 24, one can derive that

∆p
k(s, s+ 1) =

s∑
i=0

( i∑
r=0

1

r!(i− r)!
∆
δ(p,k)
k−1 (t1(i, r), q1(i, r))

)
Xi
k

+

2s+1∑
i=s+1

(2s+1−i∑
r=0

1
(s+1−r)!(i−(s+1−r))!∆

δ(p,k)
k−1 (t2(i, r), q2(i, r))

)
Xi
k.
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where, t1(i, r) = s+ 1− r, q1(i, r) = s+ 2− (i− r), t2(i, r) = 2s+ 2− i− r and q2(i, r) = r + 1.
First, we examine the coefficients of the powers Xi

k, i = 0, . . . , s, in the sum above. Observe that the

coefficient of X0
k , that corresponds to i = 0, r = 0, is just ∆

δ(p,k)
k−1 (s + 1, s + 2). Next, fix i ∈ {1, . . . , s} and

denote r∗i = i−1
2 . Clearly, if i is an odd number, r∗i ∈ N and the term corresponding to the index r = r∗i is zero,

because t1(i, r∗i ) = q1(i, r∗i ). As a consequence, the coefficient of Xi
k has an odd number of addends, in fact, i

when i is odd and i + 1 when i is even. In any case, the term corresponding to the index r = i (the last one)

is, B(i, i)∆
δ(p,k)
k−1 (t(i, i), q(i, i)) where B(i, i) = 1

i! ≥ 0, t(i, i) = s+ 1− i and q(i, i) = s+ 2. Since i ∈ {0, . . . , s},
t(i, i) < q(i, i). Therefore, we are left with an even number of remaining terms.

Now, consider the terms corresponding to indices r1, r2 ∈ {0, . . . , i − 1} such that r1 < r2 and r1 +
r2 = i − 1. We have that, r1 < r∗i < r2, t1(i, r1) = q1(i, r2) and q1(i, r1) = t1(i, r2). Subsequently,

∆
δ(p,k)
k−1 (t1(i, r1), q1(i, r1)) = −∆

δ(p,k)
k−1 (t1(i, r2), q1(i, r2)), so we can add up both terms and write

1

r1!(i− r1)!
∆
δ(p,k)
k−1 (t1(i, r1), q1(i, r1)) +

1

r2!(i− r2)!
∆
δ(p,k)
k−1 (t1(i, r2), q1(i, r2))

=
( 1

r2!(i− r2)!
− 1

r1!(i− r1)!

)
∆
δ(p,k)
k−1 (t1(i, r2), q1(i, r2)).

Therefore each pair of indices r1, r2, with the properties listed above, produces a single term of the form

B(i, r)∆
δ(p,k)
k−1 (t(i, r), q(i, r)) satisfying:

1. B(i, r) ≥ 0.

Indeed, 1
r2!(i−r2)! −

1
r1!(i−r1)! ≥ 0 if and only if (i−r1)!

r2!
≥ (i−r2)!

r1!
. But, r1 + r2 = i − 1 implies that

i− r1 = r2 + 1, i− r2 = r1 + 1. Then, (i−r1)!
r2!

= r2 + 1 > (i−r2)!
r1!

= r1 + 1.

2. t(i, r) < q(i, r).
Certainly, t(i, r) = t1(i, r2) = s+ 1− r2 < q(i, r) = q1(i, r2) = s+ 2− (i− r2) if and only if r2 >

i−1
2 = r∗i .

A similar analysis can be done for the coefficients of the powers Xi
k, i = s+ 1, . . . , 2s+ 1.

Lemma 9. For all p, s ∈ N, µp(c1, . . . , cp, s. . ., cp) ≥ µp(c1, . . . , cp, s+1. . . , cp).

Proof. We proceed by induction on p. The case p = 1, that is, µ1(c1, s. . ., c1) ≥ µ1(c1, s+1. . . , c1) for all s ∈ N, is a
simple consequence of the fact that µ1(c1, s. . ., c1) = c1

s . Next, assume that the result holds for p− 1, that is, for
all s ∈ N,

µp−1(c1, . . . , cp−1, s. . ., cp−1) ≥ µp−1(c1, . . . , cp−1, s+1. . . , cp−1).

Then, directly from Theorem 2, ∆p−1
p−1(s, s+ 1) ≥ 0 for all s ∈ N, or equivalently, ∆p−1

p−1(t, q) ≥ 0 whenever t < q.
We have to prove that the result holds for p. But, again, that is equivalent to prove that ∆p

p(s, s + 1) ≥ 0, for
all s ∈ N, which is a direct consequence of Lemma 8 and the induction hypothesis.

Lemma 10. For all p, k, s ∈ N such that k ≥ p,

µp(c1, . . . , cp, . . . , ck, s. . ., ck) ≥ µp(c1, . . . , cp, . . . , ck, s+1. . . , ck).

Proof. We proceed by induction on k. The case k = p was proven in Lemma 9. Next, assume that the result
holds for k − 1 ≥ p, that is, for all s ∈ N,

µp(c1, . . . , cp, . . . , ck−1, s. . ., ck−1) ≥ µp(c1, . . . , cp, . . . , ck−1, s+1. . . , ck−1).

Then, ∆p
k−1(s, s + 1) ≥ 0 for all s ∈ N, or equivalently, ∆p

k−1(t, q) ≥ 0 whenever t < q. We have to prove that
the result holds for k > p. But, again, that is equivalent to prove that ∆p

k(s, s+ 1) ≥ 0, for all s ∈ N. But this
inequality follows immediately from Lemma 8 and the induction hypothesis.
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Theorem 5. Given p, s ∈ N and costs 0 < c1 ≤ · · · ≤ cp ≤ cp+1 ≤ · · · ≤ cp+s, we have that

µp(c1, . . . , cp) ≥ µp(c1, . . . , cp, cp+1) ≥ · · · ≥ µp(c1, . . . , cp, cp+1, . . . , cp+s)

Proof. Observe that µp(c1, . . . , cp) = (cp − cp−1) + µ̂p−1(c1, . . . , cp−1) and µp(c1, . . . , cp, cp+1) = µ̂p(c1, . . . , cp).

Then, µp(c1, . . . , cp) ≥ µp(c1, . . . , cp, cp+1) if and only if ∆p = (cp−cp−1)Ap−1p−1,1A
p
p,1+Ap−1p−1,2A

p
p,1−A

p
p,2A

p−1
p−1,1 ≥

0. Note that ∆p does not depend on the cost cp+1, therefore, using Lemma 9, it is easy to see that the first
inequality of the chain is satisfied.

Now, whenever k > p, µp(c1, . . . , ck) ≥ µp(c1, . . . , ck, ck+1) if and only if µ̂p(c1, . . . , ck−1) ≥ µ̂p(c1, . . . , ck).
Using Theorem 2, the last inequality is equivalent to

Âpk−1,1A
p
k,1 − Â

p
k,1A

p
k−1,1 ≥ 0.

Consider the left hand expression as a function of the cost ck, that is, f(ck) = Âpk−1,1A
p
k,1 − Âpk,1A

p
k−1,1,

ck ∈ [ck−1, ck+1]. A straightforward computation shows that f ′(ck) = 0. Henceforth, f is constant in the
interval [ck−1, ck+1]. Consequently, f(ck) ≥ 0 if and only if f(ck−1) ≥ 0. Since f(ck−1) = ∆p

k−1(1, 2) then
f(ck−1) ≥ 0 if and only if µ̂p(c1, . . . , cp, . . . , ck−1) ≥ µ̂p(c1, . . . , cp, . . . , ck−1, ck−1). Finally, the last inequality
has already been established in Lemma 10.
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