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Abstract

I describe a new coalitional value from a non-cooperative point

of view, assuming coalitions are formed for the purpose of bargaining.

The idea is that all the players have the same chances to make propos-

als. This means that players maintain their own “right to talk” when

joining a coalition. The resulting value coincides with the weighted

Shapley value in the game between coalitions, with weights given by

the size of the coalitions. I apply this value to an intriguing example

presented by Krasa, Temimi and Yannelis (Journal of Mathematical

Economics, 2003) and show that the Harsanyi paradox (forming a

coalition may be disadvantageous) disappears. These results throw

certain doubts on the reasonability of the Carrier axiom as presented

by Hart and Kurz (Econometrica, 1983).
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1 Introduction

Many economic situations can be modelled as a set of agents or players with

independent interests who may benefit from cooperation. Moreover, it is not

infrequent that these agents have partitioned themselves into coalitions (such

as unions, cartels, or syndicates) for the purpose of bargaining.

Assuming that cooperation is carried out, the question is how to share the

benefit between the coalitions and between the members inside each coalition,

i.e. which “value” best represents the expectation of each individual. The

economic theory has addressed this problem from two different points of view.

One of them is axiomatic. The other is non-cooperative.

The axiomatic point of view focuses on finding allocations which satisfy

“fair” (or at least “reasonable”) properties, such as efficiency (the final out-

come must be efficient), symmetry (players with the same characteristics

must receive the same), etc. The non-cooperative point of view leads to the

study of the allocations which arise in a given non-cooperative environment.

In this paper, I follow a non-cooperative approach.

Taking an axiomatic point of view, Owen (1977) presented a value for

transfer utility games with coalition structure. Another axiomatic character-

ization was provided by Hart and Kurz (1983).

Owen assumed that this structure was exogenously given. Hart and Kurz

(1983) reinterpreted the Owen value assuming that players form coalitions

in order to improve their bargaining power.

Under both approaches, the main idea is that the coalitions play among

themselves as individual agents in a game between coalitions, and the surplus

obtained by each coalition is distributed among its members.

Recently, the Owen value has been non-cooperatively supported by Vidal-

Puga and Bergantiños (2003) and Vidal-Puga (2005). In these papers, the
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players play a non-cooperative mechanism1 in two stages: in the first stage,

the players inside a coalition bargain among themselves the strategy to follow

in the second stage, where bargaining takes place among coalitions.

In Vidal-Puga (2005) I generalize a previous mechanism of Hart and Mas-

Colell (1996). In Hart and Mas-Colell’s model, a player is randomly chosen

in order to propose a payoff. If this proposal is not accepted by all the

other players, the mechanism is played again under the same conditions with

probability ρ ∈ [0, 1). With probability 1− ρ, the proposer leaves the game

and the mechanism is repeated with the rest of the players.

In Vidal-Puga (2005), this procedure is played in two stages. First, agree-

ments are negotiated within coalitions and then through delegates among

coalitions. In the first stage, a player is randomly chosen out of each coali-

tion and proposes a payoff. Each proposal is voted by the rest of the members

of its own coalition. If one of them rejects the proposal, the mechanism is

either played again under the same conditions (probability ρ), or the pro-

poser leaves the game and the mechanism is repeated with the rest of the

players (probability 1 − ρ). If there is no rejection, the proposal of one of

the coalitions is randomly chosen. If this proposal is not accepted by all

other coalitions, the mechanism is played again under the same conditions

(probability ρ), or the entire proposing coalition leaves the game and the

mechanism is repeated with the rest of the players (probability 1− ρ).

This mechanism in two stages implements the Owen value in a non-

restrictive class of games (Vidal-Puga (2005)). Notice that each coalition

is acting as a single unit in the second stage. The entire proposing coalition

leaves the game when the proposal made by one of its members is rejected

by the other players.

Frequently, it is interpreted that players form coalition structures in order

to improve their bargaining strength (Hart and Kurz (1983)). However, as

Harsanyi (1977, p. 203) points out, the bargaining strength does not improve

1To avoid ambiguities with cooperative games, I use the term non-cooperative mecha-

nism, or simply mechanism, rather than non-cooperative game.
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in general. An individual can be worse off bargaining as a member of a

coalition than bargaining alone. Formally stated, the Harsanyi paradox2 is

as follows: Consider a simple n-person unanimity game in which n players

can share a pie of size 1 as long as all of them agree on the division. Under a

symmetric assumption, each player will typically expect to get a share of the

pie of size 1/n. Assume now two players decide to join forces and act as one

single player. Harsanyi claims that this situation is equivalent to a symmetric

(n− 1)-person unanimity game and thus each player’s expectation should be
a pie of size 1/ (n− 1). Hence, by joining forces, the two players have moved
from a joint expectation of 2/n to an expectation of just 1/ (n− 1). Of
course the same result holds if more than two players decide to act as one

player (except in the trivial case in which all n players participate in this

agreement).

This paradox seems somehow problematic. It implies that cooperation

can be harmful in bargaining environments. Chae and Heidhues (2004, p.

47) provide the following explanation: By merging in a coalition structure,

players reduce their multiple “rights to talk” to a single right in the game

between coalitions, hence improving the position of the outsiders.

The meaning of “rights to talk” is not clear from an axiomatic viewpoint

(see for example Chae and Moulin (2004)). However, it has a clear meaning

in the mechanism in Vidal-Puga (2005). The right to talk is simply the

right to make a proposal. This right is dispelled as the size of the coalition

increases. For example in the n-person unanimity game where two players

act as one unit, the proposal comes from one of the members of the joined

coalition with a probability 1/ (n− 1), whereas when no coalition is formed
the proposal would come from one of them with probability 2/n.

In this paper, I study the effect that provides to maintain the “rights to

talk” of the players inside a coalition. I modify the mechanism in Vidal-Puga

(2005) so that players maintain their “rights to talk”. Hence, the coalitions

with more members have more chances to make proposals. In the previous

2Harsanyi calls it the joint-bargaining paradox.
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example, this means that the proposal from a member of the joined coalition

will come with a probability 1/n, as if he were acting alone. However, the

coalitions still bargain as single units: The entire proposing coalition leaves

the game when its proposal is rejected.

As a consequence of this modification, the resulting equilibrium payoff

coincides with the weighted Shapley value (Shapley, 1953a) in the game be-

tween coalitions, with weights given by the size of the coalition.

Moreover, the final outcome in unanimity games is not affected: The

equilibrium payoffs would be the same irrespective of the coalition structure

(see Proposition 4.5). However, this is not true in general games. Krasa,

Temimi and Yannelis (2003) recently presented an intriguing example with

three players in which the benefit of joining a coalition critically depend on

informational asymmetries. More specifically, when information is complete,

players 1 and 2 find it advantageous to bargain as one unit. However, when

players 1 and 2 lack certain information that is only available to the outside

party, they are better off bargaining separately (even though in either case

they are in a weaker position than before). With the proposed modifica-

tion, the final outcome seems much more intuitive: Players 1 and 2 are still

in a weaker position when information is not complete; however, bargain-

ing as one unit is always advantageous, and the benefit of joining forces in

the differential information case is exactly the same as when information is

complete.

The new proposed mechanism is still a generalization of the mechanism

of Hart and Mas-Colell (1996), in the sense that they coincide when the

coalition structure is trivial (i.e. all the coalitions are singletons, or there

exists a unique coalition).

The notation used throughout the paper and some previous results are

presented in Section 2. The new coalitional value is presented in Section 3.

The formal mechanism and the main result are presented in Section 4. In

Section 5 the example presented by Krasa, Temimi and Yannelis (2003) is

analyzed. Finally, Section 6 is devoted to a brief discussion.
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2 Preliminaries

Let U = {1, 2, ...} be a (may be infinite) set of potential players. A non-

transferable utility game, or NTU game, is a pair (N,V ) where N ⊆ U

is finite and V is a correspondence which assigns to each S ⊆ N , S 6= ∅ a
nonempty, closed, convex and bounded-above subset V (S) ⊂ RS representing

all the possible payoffs that the members of S can obtain for themselves when

playing cooperatively. For S ⊂ N , I maintain the notation V when referring

to the application V restricted to S as player set. For simplicity, I denote

V (i) instead of V ({i}), S ∪ i instead of S ∪ {i} and N\i instead of N\{i}.
I denote the set of NTU games as NTU .

For each i ∈ N , let ri := max {x : x ∈ V (i)}.
When

V (S) =

(
x ∈ RS :

X
i∈S

xi ≤ v(S)

)
for some v : 2N → R with v (∅) = 0, I say that (N,V ) is a transferable utility

game (or TU game) and I represent it as (N, v). As before, I maintain the

notation v when referring to the application v restricted to 2S.

A TU game is superadditive if it satisfies v (S) + v (T ) ≤ v (S ∪ T ) for
all S, T ⊂ N with S, T 6= ∅, S ∩ T = ∅. A TU game is convex if it satisfies
v (T ∪ i) − v (T ) ≤ v (S ∪ i) − v (S) for all i ∈ N and T ⊂ S ⊆ N\i. If
the previous inequalities are strict, the TU game is strictly superadditive and

strictly convex, respectively. All (strictly) convex TU games are (strictly)

superadditive. A unanimity game is a TU game satisfying v (N) = 1 and

v (S) = 0 otherwise. All unanimity games are convex.

When V (S) =
©
rS
ª
for all S Ã N , where rSi = ri for all i ∈ S, and

rN ∈ V (N), I say that (N, V ) is a pure bargaining problem.

Unanimity games are both TU games and pure bargaining problems.

Given N ⊆ U finite, I call coalition structure over N a partition of the

player set, i.e. C = {C1, C2, ..., Cm} ⊂ 2N is a coalition structure if it satisfiesS
Cq∈C Cq = N and Cq ∩ Cr = ∅ when q 6= r. I also assume Cq 6= ∅ for all q.

A coalition structure C over N is trivial if either C = {{i}}i∈N or C = {N}.
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For any S ⊂ N , I denote the restriction of C to the players in S as CS (notice
that this implies that CS may have less or the same number of coalitions as
C). Given a TU game (N, v) and a coalition structure C = {C1, C2, ..., Cm}
over N , the game between coalitions is the TU game (M,v/C) where M =

{1, 2, ...,m} and v/C (Q) = v
³S

q∈QCq

´
for all Q ⊆M .

I denote an NTU game (N,V )with coalition structure C overN as (N,V, C).
I denote the set of NTU games with coalition structure as CNTU .

Given G is a subset of NTU or CNTU , a value in G is a correspondence

ψ which assigns to each (N,V ) ∈ G or (N,V, C) ∈ G a vector ψN (V ) ∈ RN .

With a slight abuse of notation, I say that ψN (V ) is the value of (N,V ),

and each ψN
i (V ) is the value of i. A value ψ is efficient if ψ

N (V ) belongs to

the upper boundary of V (N) for all (N,V ). For any TU game (N, v), this

condition is equivalent to say
P

i∈N ψN
i (v) = v (N).

Two well-known efficient values in TU games and in bargaining problems

are respectively the Shapley value (Shapley (1953b)) and the Nash solution

(Nash (1950)). I denote the Shapley value of the TU game (N, v) as ϕN (v) ∈
RN . A simple inductive method to compute the Shapley value of (N, v) is

as follows: ϕ{i}i (v) = ri for all i ∈ N . Assume we know ϕT (v) ∈ RT for all

T Ã S. Then,

ϕS
i (v) =

1

|S|

v (S)− v (S\i) +
X
j∈S\i

ϕ
S\j
i (v)


or equivalently, by efficiency,

ϕS
i (v) =

1

|S|

v (S) + X
j∈S\i

³
ϕ
S\j
i (v)− ϕ

S\i
j (v)

´ (1)

for all i ∈ S.

In NTU games that are both TU games and pure bargaining problems,

the Shapley value and the Nash solution coincide. In unanimity games,

ϕN
i (v) = 1/ |N | for all i ∈ N .

A non symmetric generalization of ϕN (v) is the weighted Shapley value

(Shapley (1953a), Kalai and Samet (1987, 1988)). I denote the weighted
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Shapley value of the TU game (N, v) as ϕωN (v) ∈ RN , where ω ∈ RN
++ is

a vector of weights. Pérez-Castrillo and Wettstein (2001, Lemma 1) proved

that the weighted Shapley value can be inductively computed as follows:

ϕ
ω{i}
i (v) = ri for all i ∈ N . Assume we know ϕωT (v) ∈ RT for all T Ã S.

Then,

ϕωS
i (v) =

1P
j∈S ωj

ωiv (S)− ωiv (S\i) +
X
j∈S\i

ωjϕ
ωS\j
i (v)

 (2)

or equivalently, by efficiency,

ϕωS
i (v) =

1P
j∈S ωj

ωiv (S) +
X
j∈S\i

³
ωjϕ

ωS\j
i (v)− ωiϕ

ωS\i
j (v)

´ (3)

for all i ∈ N .

As it becomes clear from the previous formulas, when ωi = ωj for all

i, j, the weighted Shapley value coincides with the Shapley value. Moreover,

when ω, ω0 ∈ RN
++ are two weight vectors such that there exists α > 0 with

ωi = αω0i for all i ∈ N , then ϕωN (v) = ϕω0N (v).

The weight vector breaks the symmetric treatment of players in a TU

game, but they should not be interpreted as a measure of bargaining power.

In particular, Owen (1968) presented a simple example in which one of the

players was worse-off when his weight increased. See, for example, Haeringer

(2000, Section 4).

However, for convex games, a higher weight never implies a lower weighted

Shapley value (Haeringer (2000, Section 4)).

I now focus on TU games with coalition structure. Fix C = {C1, ..., Cm}
and M = {1, ...,m}. Owen (1977) proposed an efficient value based on

Shapley’s which takes into account the coalition structure. I call this value

the Owen coalitional value, or simply the Owen value. The Owen value is

defined as follows: Given Cq ∈ C, the reduced TU game (Cq, vq) is defined as

vq (T ) := ϕM
q

¡
v/CN\(Cq\T )

¢
for all T ⊆ Cq. Thus, each vq (T ) is the Shapley

value of the coalition T in the game between coalitions assuming that the
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members of Cq\T are out. The Owen value is then defined as

φNi (v) := ϕ
Cq
i (vq)

for all i ∈ Cq.

The interpretation of this definition is as follows: Players in Cq should

divide ϕM
q (v/C), which is their value in the game between coalitions. In

order to compute the contribution of each player, a new game is defined,

where the worth of a (sub)coalition T ⊆ Cq is the value that T would get

should the other players in Cq are not present and T plays the role of q ∈M

in the game between coalitions.

Obviously, when the coalition structure is trivial, the Owen value coin-

cides with the Shapley value.

Levy and McLean (1989) studied the weighted coalitional value with in-

tracoalitional symmetry. This value is defined as follows (Levy and LcLean

(1989, Proposition C(2))). Given a vector of weights ω ∈ RM
++ for the coali-

tions and Cq ∈ C, the weighted reduced TU game
¡
Cq, v

ω
q

¢
is defined as

vωq (T ) := ϕωM
q

¡
v/CN\(Cq\T )

¢
for all T ⊆ Cq. The weighted coalitional value

with intracoalitional symmetry, with weights given by ω, is defined as

φωNi (v) := ϕ
Cq
i

¡
vωq
¢

for all i ∈ N .

The interpretation of this definition is as before. However, in this case

the coalitions are not treated symmetrically in the game between coalitions.

When C = {{i}}i∈N , this value coincides with the weighted Shapley value.
When C = {N}, it coincides with the Shapley value. When ωq = ωr for all

q, r, it coincides with the Owen value.

When there is no ambiguity, I write ϕN , φN , ϕωN , φωN instead of ϕN (v),

φN (v), ϕωN (v), φωN (v).

I now define formally the Harsanyi paradox. Given Cq, Cr ∈ C, I define
the coalition structure Cq+r as (C\ {Cq, Cr}) ∪ {Cq ∪ Cr}. This means that
the coalition structure Cq+r arises from C when coalitions Cq, Cr join forces
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and act as a single coalition Cq∪Cr. Let ψ be a value defined onG ⊆ CNTU .

Just in this case, I write ψN (C) and ψN (Cq+r) when the coalition structure
is given by C and Cq+r, respectively. I say that ψ is joint-monotonic in G ifX

i∈Cq∪Cr
ψN
i (C) ≤

X
i∈Cq∪Cr

ψN
i

¡Cq+r¢
for all (N, V, C) ∈ G and all Cq, Cr ∈ C. I say that a value yields the

Harsanyi paradox if it is not joint-monotonic in unanimity games. It is well-

known that the Owen value is not joint-monotonic in unanimity games. The

Shapley value is joint-monotonic in all TU games, but this is because ϕ does

not take into account the coalition structure3.

When a value is not joint-monotonic, the members of a coalition can be

better off acting alone than acting as a single unit that tries to improve its

members’ aggregate payoff (cf. the explanation given by Harsanyi (1977, p.

204-205)).

3 A new coalitional value

One feature of the Owen value is that the aggregate value received by each

coalition depends only on the game between coalitions v/C. In fact, this
is one of the properties that Owen (1977, Axiom A3) uses to characterize

φ. Hart and Kurz (1983, p.1051) consider that this property “is the most

difficult to accept”, and propose an alternative characterization without it.

An important consequence of this property, together with symmetry, is

that two coalitions that affect the game between coalitions in a symmetric

way will receive the same aggregate payoff. Levy and McLean (1989, p.235)

claim that this intercoalitional symmetry may not be a reasonable require-

ment for a value. A classical example (Kalai and Samet (1987)) is the case

where coalitions represent groups of different size. In these cases it seems

reasonable to assign a size-depending weight to each coalition. A natural

way to proceed is to give each coalition a weight proportional to its size (see

3For the same reason, the Nash solution is joint-monotonic in pure bargaining problems.
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Kalai and Samet (1987, Section 7) for additional arguments supporting this

particular choice).

An obvious candidate is the Levy-McLean value φωN with weights ω given

by ωq = |Cq| for each Cq ∈ C. However, we should be cautious with the
definition of the weighted reduced TU game

¡
Cq, v

ω
q

¢
. Remark that vωq (T ) =

ϕωM
q

¡
v/CN\(Cq\T )

¢
is interpreted as the value that T would get should Cq\T

be not present and T play the role of q ∈ M . However, coalition T has

size |T | ≤ |Cq| in CN\(Cq\T ). Under the above interpretation, if players in
Cq\T are not present, there is no reason to assume that the weight of q ∈M

remains unchanged.

In order to take into account the real size of the subcoalitions, let λ ∈ RM
++

be the weight system given by λq = |T | and λr = |Cr| otherwise. A new

reduced TU game
¡
Cq, v

∗N
q

¢
is defined as

v∗Nq (T ) := ϕλM
q

¡
v/CN\(Cq\T )

¢
for all T ⊆ Cq. Thus, each v∗Nq (T ) is the weighted Shapley value, with

weights given by the size of each coalition, of coalition T in the game between

coalitions assuming that the members of Cq\T are out.

Remark 3.1 Another possible interpretation of the worth of T is that players

in Cq\T are present, but they do not take part in the negotiation with the

other coalitions. Hence, coalition T maintains its weight in the game between

coalitions. In this case, the weighted reduced TU game
¡
Cq, v

ω
q

¢
makes sense.

I denote the resulting coalitional value as ζ. The formal definition is as

follows:

Definition 3.1 Given a TU game with coalition structure (N, v, C), the value
ζ is defined as

ζNi (v) := ϕ
Cq
i

¡
v∗Nq

¢
for all i ∈ Cq ∈ C.
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As usual, I write ζN instead of ζN (v).

Remark that the TU game
¡
Cq, v

∗N
q

¢
is not a weighted reduced TU game¡

C, vωq
¢
, and the value ζ is not a weighted coalitional value with intracoali-

tional symmetry. The weights λ that appear in the definition of v∗Nq (T )

depend on T , whereas in the definition of vq the weights are the same for

each possible T .

From now on, I consider the normalized version of λ for each S ⊆ N , that

is

λSq =

¯̄
C 0
q

¯̄
|S|

for all S ⊆ N and all C 0
q ∈ CS.

In the next proposition I describe an inductive formula to compute ζ.

Proposition 3.1 Let (N, v, C) be a TU game with coalition structure. Then,
ζ can be defined inductively as follows: ζ{i}i = ri for all i ∈ N . Assume we

know ζT ∈ RT for all T Ã S. Then, ζSi =

1¯̄
C 0
q

¯̄
λSq v (S) + X

j∈C0q\i

³
ζ
S\j
i − ζ

S\i
j

´
+

X
C0r∈CS\C0q

λSr
X
j∈C0q

ζ
S\C0r
j − λSq

X
j∈C0r

ζ
S\C0q
j


for all i ∈ C 0

q ∈ CS.

Proof. The result is clear for ζ{i}. I prove the result for (S, v, CS). Let
M 0 =

©
q : C 0

q ∈ CS
ª
and m0 = |M 0|.

Claim 3.1 Given i, j ∈ C 0
q ∈ CS, ϕC0q\j

i

¡
v∗Sq
¢
= ϕ

C0q\j
i

³
v
∗S\j
q

´
.

It is enough to prove that v∗Sq (T ) = v
∗S\j
q (T ) for all T ⊆ C 0

q\j. Given
T ⊆ C 0

q\j,

v∗Sq (T ) = ϕλ
S\(C0q\T)M 0

q

³
v/CS\(C0q\T)

´
= ϕλ

(S\j)\((C0q\j)\T)M 0
q

³
v/C(S\j)\((C0q\j)\T)

´
= v∗S\jq (T ) .

Claim 3.2 Given q, r ∈M 0, ϕλSM 0\r
q (v/CS) = v

∗S\C0r
q

¡
C 0
q

¢
.
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The weights λSq are proportional to the weights λ
S\C0r
q for all q ∈ M 0\r.

Hence,

ϕλSM 0\r
q (v/CS) = ϕλS\C

0
rM 0\r

q (v/CS) .
Moreover, v/CS (Q) = v/CS\C0r (Q) for all Q ⊆M 0\r. Hence,

ϕλS\C
0
rM 0\r

q (v/CS) = ϕλS\C
0
rM 0\r

q

¡
v/CS\C0r

¢
= v∗S\C

0
r

q

¡
C 0
q

¢
.

Claim 3.3 Given q, r ∈M 0, v∗S\C
0
r

q

¡
C 0
q

¢
=
P

j∈C0q ζ
S\C0r
j .

By definition,X
j∈C0q

ζ
S\C0r
j =

X
j∈C0q

ϕ
C0q
j

³
v∗S\C

0
r

q

´
= v∗S\C

0
r

q

¡
C 0
q

¢
.

I now use the claims to prove the result. Given i ∈ C 0
q ∈ CS,

ζSi = ϕ
C0q
i

¡
v∗Sq
¢ (1)
=

1¯̄
C 0
q

¯̄
v∗Sq ¡

C 0
q

¢
+
X

j∈C0q\i

³
ϕ
C0q\j
i

¡
v∗Sq
¢− ϕ

C0q\i
j

¡
v∗Sq
¢´

(Claim 3.1)
=

1¯̄
C 0
q

¯̄
v∗Sq ¡

C 0
q

¢
+
X

j∈C0q\i

³
ζ
S\j
i − ζ

S\i
j

´ . (4)

Taking into account that
P

r∈M 0 λ
S
r = 1, v

∗S
q

¡
C 0
q

¢
=

ϕλSM 0
q (v/CS) (3)= λSq v/CS (M 0) +

X
r∈M 0\q

³
λSrϕ

λSM 0\r
q (v/CS)− λSqϕ

λSM 0\q
r (v/CS)

´
(Claim 3.2)
= λSq v (S) +

X
r∈M 0\q

³
λSr v

∗S\C0r
q

¡
C 0
q

¢− λSq v
∗S\C0q
r (C 0

r)
´

(Claim 3.3)
= λSq v (S) +

X
C0r∈CS\C0q

λSr
X
j∈C0q

ζ
S\C0r
j − λSq

X
j∈C0r

ζ
S\C0q
j

 . (5)

The result comes from combining (4) and (5).

From now on, fix (N, v, C).

Corollary 3.1 For any S ⊆ N and C 0
q ∈ CS,

X
i∈C0q

ζSi = λSq v (S) +
X

C0r∈CS\C0q

λSr
X
j∈C0q

ζ
S\C0r
j − λSq

X
j∈C0r

ζ
S\C0q
j

 .

13



Proof. Under Proposition 3.1,X
i∈C0q

ζSi = λSq v (S) +
1¯̄
C 0
q

¯̄ X
i∈C0q

X
j∈C0q\i

³
ζ
S\j
i − ζ

S\i
j

´

+
X

C0r∈CS\C0q

λSr
X
j∈C0q

ζ
S\C0r
j − λSq

X
j∈C0r

ζ
S\C0q
j


butX
i∈C0q

X
j∈C0q\i

³
ζ
S\j
i − ζ

S\i
j

´
=
X
i,j∈C0q

³
ζ
S\j
i − ζ

S\i
j

´
=
X
i,j∈C0q

ζ
S\j
i −

X
i,j∈C0q

ζ
S\i
j = 0

and hence the result holds.

The next corollary states that each coalition gets its weighted Shapley

value of the game between coalitions, with weights given by their size.

Corollary 3.2 For any S ⊆ N and C 0
q ∈ CS,X

i∈C0q
ζSi = ϕλSM 0

q (v/CS)

where M 0 = {r : C 0
r ∈ CS}.

Proof. I proceed by induction on m0 = |M 0|, the number of coalitions in
CS. For m0 = 1, the efficiency of ζ and ϕλS makes the result. Assume the

result is true for coalition structures of size less than m0. Under Claim 3.2

and Claim 3.3,
P

i∈C0q ζ
S\C0r
i = ϕ

λSM 0\r
q (v/CS). Under Corollary 3.1,X

i∈C0q
ζSi = λSq v/C (M 0) +

X
r∈M 0\q

³
λSrϕ

λSM 0\r
q (v/CS)− λSqϕ

λSM 0\q
r (v/CS)

´
(3)
= ϕλSM 0

q (v/CS) .

I now prove that with this new value the Harsanyi paradox disappears.

Proposition 3.2 The value ζ is joint-monotonic in convex games.

14



Proof. I proceed by induction on m, the size of C. For m = 2, the result is

trivial. Assume the result is true for coalition structures of size m− 1. Let
Cq, Cr ∈ C. I assume wlog q = m−1 and r = m. Let C∗ = ©C∗1 , C∗2 , ...., C∗m−1ª
where C∗p = Cp for all p < m − 1 and C∗m−1 = Cm−1 ∪ Cm. Let M∗ =

{1, 2, ...,m− 1}, and let ω ∈ RM , ω∗ ∈ RM∗
be defined as ωp = ω∗p =

|Cp|
|N | for

all p < m − 1, ωm−1 =
|Cm−1|
|N | , ωm = |Cm|

|N | and ω∗m−1 = ωm−1 + ωm. Under

Corollary 3.2, it is enough to prove that

ϕωM
m−1 (v/C) + ϕωM

m (v/C) ?≤ ϕω∗M∗
m−1 (v/C∗) .

For simplicity, I denote u = v/C and u∗ = v/C∗.
Under (2),

ϕωM
m−1 (u) + ϕωM

m (u) = ωm−1u (M)− ωm−1u (M\ (m− 1))
+

X
p∈M\(m−1)

ωpϕ
ωM\p
m−1 (u)

+ωmu (M)− ωmu (M\m) +
X

p∈M\m
ωpϕ

ωM\p
m (u)

= ωm−1u (M)− ωm−1u (M\ (m− 1))
+ωmu (M)− ωmu (M\m)
+ωmϕ

ωM\m
m−1 (u) + ωm−1ϕωM\(m−1)

m (u)

+
X

p<m−1
ωp

³
ϕ
ωM\p
m−1 (u) + ϕωM\p

m (u)
´

and

ϕω∗M∗
m−1 (u

∗) = ω∗m−1u
∗ (M∗)− ω∗m−1u

∗ (M∗\ (m− 1)) +
X

p<m−1
ω∗pϕ

ω∗M∗\p
m−1 (u∗)

= (ωm−1 + ωm)u (M)− (ωm−1 + ωm)u (M\ {m− 1,m})
+
X

p<m−1
ω∗pϕ

ω∗M∗\p
m−1 (u∗) .

Under the induction hypothesis, we have ϕωM\p
m−1 (u)+ϕ

ωM\p
m (u) ≤ ϕ

ωM∗\p
m−1 (u∗)

15



for all p < m− 1. Hence, it is enough to prove,
ωm−1u (M)− ωm−1u (M\ (m− 1)) + ωmu (M)

−ωmu (M\m) + ωmϕ
ωM\m
m−1 (u) + ωm−1ϕωM\(m−1)

m (u)
?≤ (ωm−1 + ωm)u (M)− (ωm−1 + ωm)u (M\ {m− 1,m}) .

Simplifying and rearranging terms,

ωm−1
£
u (M\ (m− 1))− u (M\ {m− 1,m})− ϕωM\(m−1)

m (u)
¤

+ωm

h
u (M\m)− u (M\ {m− 1,m})− ϕ

ωM\m
m−1 (u)

i
must be nonnegative. In fact, both terms are. We check it for the second

one (the first is analogous):

ϕ
ωM\m
m−1 (u)

?≤ u (M\m)− u (M\ {m− 1,m}) .
It is well-known (Kalai and Samet (1987, Theorem 1)) that the weighted

Shapley value is a weighted average of marginal contributions. Since (N, v) is

convex, the TU game (M\m,u) is convex too. This implies that the maximal

marginal contribution ofm−1 in (M\m,u) is u (M\m)−u (M\ {m− 1,m}).
Hence we conclude the result.

Proposition 3.2 does not hold in general for nonconvex games, as the next

example shows:

Example 3.1 Let N = {1, 2, 3, 4, 5} and v be defined as v ({1}) = v ({2}) =
v (T ) = 0, v ({1, 2}) = v ({1, 2} ∪ T ) = 360 and v ({1} ∪ T ) = v ({2} ∪ T ) =
180 for all T ⊆ {3, 4, 5}, T 6= ∅. This TU game is superadditive but not

convex. Consider the coalition structure C = {{1} , {2} , {3, 4} , {5}}, i.e.
players 3 and 4 form coalition. Then,

ζN = (147, 147, 12, 12, 42) .

Consider now the coalition structure C∗ = {{1} , {2} , {3, 4, 5}}, i.e. player 5
joins forces with coalition {3, 4}. Then,

ζN = (153, 153, 18, 18, 18) .

16



I now present a technical property that will be used in the next section.

This property has the flavor of the balanced contributions property of My-

erson’s (1980), and it is also satisfied by the Owen value (Calvo, Lasaga and

Winter (1996), Bergantiños and Vidal-Puga (2005)):

Proposition 3.3 For all S ⊆ N and i ∈ C 0
q ∈ CS,X

j∈C0q\i

³
ζSi − ζ

S\j
i

´
=
X

j∈C0q\i

³
ζSj − ζ

S\i
j

´
.

Proof. Under Proposition 3.1 and Corollary 3.1,

ζSi =
1¯̄
C 0
q

¯̄
X
j∈C0q

ζSj +
X

j∈C0q\i

³
ζ
S\j
i − ζ

S\i
j

´ .
We have then¯̄

C 0
q

¯̄
ζSi =

X
j∈C0q

ζSj +
X

j∈C0q\i

³
ζ
S\j
i − ζ

S\i
j

´
=

X
j∈C0q\i

ζSj + ζSi +
X

j∈C0q\i

³
ζ
S\j
i − ζ

S\i
j

´
=

X
j∈C0q\i

¡
ζSj − ζSi

¢
+
¯̄
C 0
q

¯̄
ζSi +

X
j∈C0q\i

³
ζ
S\j
i − ζ

S\i
j

´
and hence X

j∈C0q\i

¡
ζSi − ζSj

¢
=
X

j∈C0q\i

³
ζ
S\j
i − ζ

S\i
j

´
from where the result is easily deduced.

The next proposition states that, in strictly convex TU games, the aggre-

gate payoff in a coalition is higher than when one of its members leaves and

gets his autarky payoff.

Proposition 3.4 For strictly convex TU games,X
j∈C0q\i

ζ
S\i
j + ri <

X
j∈C0q

ζSj

for all i ∈ C 0
q ∈ CS, S 6= {i}.

17



Proof. LetM 0 = {r : C 0
r ∈ CS}. Since the game is strictly convex, (M 0, v/CS)

is also strictly convex and thus strictly superadditive. Assume first C 0
q =

{i} (hence Pj∈C0q\i ζ
S\i
j = 0). Under Corollary 3.2, it is enough to prove

ri < ϕλSM 0
q (v/CS), which is straightforward given the strict superadditiv-

ity of (M 0, v/CS) and the fact that ϕλS

q is a weighted average of marginal

contributions.

Assume now C 0
q 6= {i}. Under Corollary 3.2, it is enough to prove

ϕλS\iM 0
q

¡
v/CS\i

¢
+ ri

?
< ϕλSM 0

q (v/CS) .

It is straightforward to check that λS\ir = |S|
|S|−1λ

S
r for all r ∈M 0\q, whereas

λS\iq =
|C0q|−1
|C0q|

|S|
|S|−1λ

S
q . Hence, when weights change from λS to λS\i, coalition q

reduces its relative weight in the game between coalitions. Since
¡
M 0, v/CS\i

¢
is strictly convex, ϕλS\iM 0

q

¡
v/CS\i

¢ ≤ ϕλSM 0
q

¡
v/CS\i

¢
.

Hence, it is enough to prove

ϕλSM 0
q

¡
v/CS\i

¢
+ ri

?
< ϕλSM 0

q (v/CS) .

Consider the following TU games on M 0:

uq (Q) =

(
0 if q /∈ Q

ri if q ∈ Q

and v0 (Q) = v/CS\i (Q) + uq (Q) for all Q ⊆M 0.

Under strict superadditivity, v0 (Q) = v/CS (Q) if q /∈ Q and v0 (Q) <

v/CS (Q) if q ∈ Q. It is well-known from Kalai and Samet (1985) that the

weighted Shapley value is monotonic. Thus ϕλSM 0
q (v0) < ϕλSM 0

q (v/CS).
Since the weighted Shapley value satisfies additivity ϕλSM 0

q

¡
v/CS\i

¢
+

ϕλSM 0
q (uq) = ϕλSM 0

q (v0). Moreover, ϕλSM 0
q (uq) = ri. Hence,

ϕλSM 0
q

¡
v/CS\i

¢
+ ri = ϕλSM 0

q (v0) < ϕλSM 0
q (v/CS) .
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4 The noncooperative mechanism

In this section I describe the non-cooperative mechanism. This mechanism

arises as a modification of the mechanism presented in Vidal-Puga (2005).

Even though the model is defined for NTU games, I focus on TU games

and bargaining problems.

Fix (N, V, C) ∈ CNTU . For each S ⊆ N , I denote by ΓS the set of

applications γ : CS → S satisfying γ
¡
C 0
q

¢ ∈ C 0
q for each C 0

q ∈ CS. For
simplicity, I denote γq := γ

¡
C 0
q

¢
.

The coalitional non-cooperative mechanism associated with (N, V, C) and
ρ ∈ [0, 1) is defined as follows:

In each round there is a set S ⊆ N of active players. In the

first round, S = N . Each round has one or two stages. In the

first stage, a proposer is randomly chosen from each coalition.

Namely, a function γ ∈ ΓS is randomly chosen, being each γ

equally likely to be chosen. The coalitions play sequentially (say,

for example, in the order (C 0
1, C

0
2, ..., C

0
m0)) in the following way:

γ1 proposes a feasible payoff, i.e. a vector in V (S). The members

of C 0
1\γ1 are then asked in some prespecified order to accept or

reject the proposal. If one of them rejects the proposal, then

we move to the next round where the set of active players is S

with probability ρ and S\γ1 with probability 1− ρ. In the latter

case, player γ1 gets rγ1 . If all the players accept the proposal, we

move on to the next coalition, C 0
2. Then, players of C

0
2 proceed

to repeat the process under the same conditions, and so on. If

all the proposals are accepted in each coalition, the proposers are

called representatives. We denote the proposal of γq as a
¡
S, γq

¢ ∈
V (S).

In the second stage, a proposal is randomly chosen. The prob-

ability of a (S, γr) being chosen is λSr , i.e. proportional to the

size of the coalition that supports it. Assume a
¡
S, γq

¢
is chosen.
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We call player γq the representative-proposer, or simply RP. If all

the members of S\C 0
q accept a

¡
S, γq

¢
— they are asked in some

prespecified order — then the game ends with these payoffs. If it

is rejected by at least one member of S\C 0
q, then we move to the

next round where, with probability ρ, the set of active players is

again S and, with probability 1− ρ, the entire coalition C 0
q drops

out and the set of active players becomes S\C 0
q. In the latter case

each i ∈ C 0
q gets ri.

Clearly, given any set of strategies, this mechanism finishes in a finite

number of rounds with probability 1.

This mechanism coincides with the mechanism in Vidal-Puga (2005) ex-

cept that the probability of a coalition to be chosen is proportional of its

size4. With this modification, when there is no rejection each player has the

same probability to be chosen RP. Hence, players do not loose their “right to

talk” when joining a coalition.

The mechanism also generalizes Hart and Mas-Colell’s (1996) for trivial

coalition structures. For C = {N}, the second stage is trivial, since there
is a single representative and a single proposal. Moreover, the first stage

coincides with Hart and Mas-Colell’s mechanism. For C = {{i}}i∈N , the first
stage is trivial. Each player states a proposal, and in the second stage a

proposal is randomly selected with equal probability and voted by the rest

of the players/coalitions.

As usual, I consider stationary subgame perfect equilibria. In this context,

an equilibrium is stationary if the players’ strategies depend only on the set

of active players. They do not depend, however, on the previous history or

the number of played rounds.

Before studying the general stationary subgame perfect equilibria, it is

worthy to analyze a particular example.

4In Vidal-Puga (2005) each coalition is chosen with the same probability.
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Example 4.1 Let N = {1, 2, 3} and v be defined as v ({1, 2}) = v (N) = 1

and v (S) = 0 otherwise. Consider the coalition structure C = {{1} , {2, 3}},
i.e. players 2 and 3 form coalition.

When there are two active players, the mechanism coincides with the

mechanism given by Hart and Mas-Colell, and thus the expected final payoffs

are ζ{1,2} =
¡
1
2
, 1
2

¢
and ζ{1,3} = ζ{2,3} = (0, 0).

Assume now the set of active players is N . For simplicity, assume ρ = 0.

Then, player 1 would propose a (N, 1) = (1, 0, 0), i.e. he offers the other

players their respective continuation payoff after rejection in the second stage.

The proposals given by player 2 and player 3 are subtler, because they would

not propose to each other their continuation payoff after rejection in the first

stage. Instead, they propose to each other a value that, averaging with player

1’s proposal, results in their respective continuation payoffs after rejection.

In particular, player 3 would propose a (N, 3) =
¡
0, 3

4
, 1
4

¢
, because (taking into

account that player 1 would be the RP in the second stage with probability 1
3
)

player 2’s expected final payoff after rejection is 1
3
0 + 2

3
3
4
= 1

2
. Analogously,

player 2 would propose a (N, 2) = (0, 1, 0).

Once these proposals are accepted in the first stage, in the second stage

the proposals are either a (N, 1) and a (N, 2) (probability 1
2
), or a (N, 1) and

a (N, 3) (probability 1
2
). In the second stage, the final proposal will be a (N, 1)

with probability 1
3
, and either a (N, 2) or a (N, 3) with probability 2

3
. On

average, the expected final payoff is:

1

3
a (N, 1) +

2

3

µ
1

2
a (N, 2) +

1

2
a (N, 3)

¶
=

µ
1

3
,
7

12
,
1

12

¶
= ζN .

I now analyze the general stationary subgame perfect equilibria. Let S

denote the set of active players. Given a set of stationary strategies, I denote

by a(S, i)γ ∈ V (S) the payoff proposed by i ∈ C 0
q ∈ CS when the set of

proposers is determined by some γ ∈ ΓS with γq = i. Thus, for a given

γ ∈ ΓS,

a(S)γ :=
X
C0q∈CS

λSq a
¡
S, γq

¢γ ∈ V (S) (6)
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is the expected final payoff when all the proposals are accepted and γ deter-

mines the set of proposers (or representatives).

I denote

a(S) :=
X
γ∈ΓS

1

|ΓS|a (S)
γ ∈ V (S) (7)

as the expected final payoff when all the proposals are accepted.

Given i ∈ C 0
q ∈ CS, let ΓS,i be the subset of functions γ ∈ ΓS such that

γq = i. Notice that |ΓS| = |ΓS,i|
¯̄
C 0
q

¯̄
for all i ∈ C 0

q ∈ CS.
Let

a (S, i) :=
X
γ∈ΓS,i

1

|ΓS,i|a (S, i)
γ (8)

be the expected payoff proposed by i ∈ C 0
q ∈ CS when he is a proposer.

The next proposition states that the probability that the final proposal

comes from a particular player (when all the proposals are accepted) is equal

for all the players, i.e. they maintain their respective “rights to talk”.

Proposition 4.1 for all S ⊆ N ,

a (S) =
X
i∈S

1

|S|a (S, i) .

Proof. Given S ⊆ N ,

a (S)
(7)
=
X
γ∈ΓS

1

|ΓS|a (S)
γ (6)
=
X
γ∈ΓS

1

|ΓS|
X
C0q∈CS

λSq a
¡
S, γq

¢γ
=

X
C0q∈CS

λSq
X
γ∈ΓS

1

|ΓS|a
¡
S, γq

¢γ
=
X
C0q∈CS

λSq
X
i∈C0q

1¯̄
C 0
q

¯̄ X
γ∈ΓS,i

1

|ΓS,i|a
¡
S, γq

¢γ
.

Since a
¡
S, γq

¢γ
= a (S, i)γ for all i ∈ C 0

q, γ ∈ ΓS,i,

a (S) =
X
C0q∈CS

λSq
X
i∈C0q

1¯̄
C 0
q

¯̄ X
γ∈ΓS,i

1

|ΓS,i|a (S, i)
γ .

Under (8),

a (S) =
X
C0q∈CS

λSq
X
i∈C0q

1¯̄
C 0
q

¯̄a (S, i) = X
C0q∈CS

1

|S|
X
i∈C0q

a (S, i) =
X
i∈S

1

|S|a (S, i) .
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Proposition 4.2 Assume a set proposals
³
a (S, i)γi∈S,γ∈ΓS,i

´
S⊆N

satisfies the

following three conditions for all S ⊆ N :

P-1 aj (S, i)
γ = ρaj (S)+ (1− ρ) aj

¡
S\C 0

q

¢
for all i ∈ C 0

q ∈ CS, γ ∈ ΓS,i and

j ∈ S\C 0
q ;

P-2 aj (S)
γ = ρaj (S) + (1− ρ) aj (S\i) for all i ∈ C 0

q ∈ CS, γ ∈ ΓS,i and

j ∈ C 0
q\i ;

P-3
P

j∈S aj (S, i)
γ = v (S) for all i ∈ S and γ ∈ ΓS,i.

Then, a (S) = ζS for all S ⊆ N .

Proof. By P-3, X
i∈S

ai (S) = v (S) . (9)

Fix i ∈ C 0
q ∈ CS. From (6) it is readily checked that, for any j ∈ C 0

q\i,
γ ∈ ΓS,i:

aj (S, i)
γ =

1

λSq
aj (S)

γ −
X

C0r∈CS\C0q

λSr
λSq

aj (S, γr)
γ .

Under P-1 and P-2, aj (S, i)
γ =

1

λSq
[ρaj(S) + (1− ρ)aj(S\i)]−

X
C0r∈CS\C0q

λSr
λSq
[ρaj(S) + (1− ρ)aj(S\C 0

r)]

= ρaj(S) + (1− ρ)

 1
λSq

aj(S\i)−
X

C0r∈CS\C0q

λSr
λSq

aj(S\C 0
r)

 . (10)

Under Proposition 4.1 and (8),

|S| ai (S) (Proposition 4.1)=
X
j∈S

ai (S, j)
(8)
=
X
j∈S

X
γ∈ΓS,j

1

|ΓS,j|ai (S, j)
γ

=
X
γ∈ΓS,i

1

|ΓS,i|ai (S, i)
γ +

X
j∈C0q\i

X
γ∈ΓS,j

1

|ΓS,j|ai (S, j)
γ +

X
j∈S\C0q

X
γ∈ΓS,j

1

|ΓS,j|ai (S, j)
γ .
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I study the three terms one by one. For the first term:X
γ∈ΓS,i

1

|ΓS,i|ai (S, i)
γ (P-3)= v (S)−

X
γ∈ΓS,i

1

|ΓS,i|
X
j∈S\i

aj (S, i)
γ

= v (S)−
X
γ∈ΓS,i

1

|ΓS,i|
X

C0r∈CS\C0q

X
j∈C0r

aj (S, i)
γ −

X
γ∈ΓS,i

1

|ΓS,i|
X

j∈C0q\i
aj (S, i)

γ

(P-1)-(10)
= v (S)−

X
C0r∈CS\C0q

X
j∈C0r

£
ρaj (S) + (1− ρ) aj

¡
S\C 0

q

¢¤

−
X

j∈C0q\i

ρaj (S) + (1− ρ)

 1
λSq

aj (S\i)−
X

C0r∈CS\C0q

λSr
λSq

aj (S\C 0
r)


under (9),

P
j∈S\i ρaj (S) = ρ (v (S)− ai (S)) and thus

= v (S)− ρ (v (S)− ai (S))− (1− ρ)
X

C0r∈CS\C0q

X
j∈C0r

aj
¡
S\C 0

q

¢

− (1− ρ)
X

j∈C0q\i

 1
λSq

aj (S\i)−
X

C0r∈CS\C0q

λSr
λSq

aj (S\C 0
r)

 .
For the second term:X

j∈C0q\i

X
γ∈ΓS,j

1

|ΓS,j|ai (S, j)
γ (10)
=

X
j∈C0q\i

ρai (S) + (1− ρ)

 1
λSq

ai (S\j)−
X

C0r∈CS\C0q

λSr
λSq

ai (S\C 0
r)


= ρ

¡¯̄
C 0
q

¯̄− 1¢ ai (S)
+ (1− ρ)

 X
j∈C0q\i

1

λSq
ai (S\j)−

¡¯̄
C 0
q

¯̄− 1¢ X
C0r∈CS\C0q

λSr
λSq

ai (S\C 0
r)

 .
For the third term:X

j∈S\C0q

X
γ∈ΓS,j

1

|ΓS,j|ai (S, j)
γ (P-1)=

X
C0r∈CS\C0q

X
j∈C0r

[ρai (S) + (1− ρ) ai (S\C 0
r)]

= ρ
¡|S|− ¯̄C 0

q

¯̄¢
ai (S) + (1− ρ)

X
C0r∈CS\C0q

|C 0
r| ai (S\C 0

r) .
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Hence, adding terms, |S| ai (S) =

v (S)− ρv (S)− (1− ρ)
X

C0r∈CS\C0q

X
j∈C0r

aj
¡
S\C 0

q

¢

−
X

j∈C0q\i
(1− ρ)

 1
λSq

aj (S\i)−
X

C0r∈CS\C0q

λSr
λSq

aj (S\C 0
r)


+(1− ρ)

 X
j∈C0q\i

1

λSq
ai (S\j) +

X
C0r∈CS\C0q

λSr
λSq

ai (S\C 0
r)


+ρ |S| ai (S) .

Rearranging terms and dividing by 1− ρ, |S| ai (S) =

= v (S) +
X

j∈C0q\i

1

λSq
(ai (S\j)− aj (S\i))

+
X

C0r∈CS\C0q

λSr
λSq

X
j∈C0q

aj (S\C 0
r)−

X
j∈C0r

aj
¡
S\C 0

q

¢ .

Hence,

ai (S) =
λSq¯̄
C 0
q

¯̄v (S) + X
j∈C0q\i

1¯̄
C 0
q

¯̄ (ai (S\j)− aj (S\i))

+
X

C0r∈CS\C0q

X
j∈C0q

λSr¯̄
C 0
q

¯̄aj (S\C 0
r)−

X
j∈C0r

λSq¯̄
C 0
q

¯̄aj ¡S\C 0
q

¢ .

Under Proposition 3.1, a (S) = ζS is easily deduced following a standard

induction argument.

Proposition 4.3 A set of proposals
³
a (S, i)γi∈S,γ∈ΓS,i

´
S⊆N

can be supported

as a stationary subgame perfect equilibrium for strictly convex games if and

only if they satisfy P-1, P-2 and P-3.

Proof. The only nonstraightforward step is to verify that proposers cannot

prefer being rejected, i.e. ρai (S) + (1− ρ) ri < ai (S)
γ for all i ∈ S and
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γ ∈ ΓS,i. Under Proposition 4.2, a (S) = ζS for all S. Hence,

ai (S, i)
γ (P-3)= v (S)−

X
C0r∈CS\C0q

X
j∈C0r

aj (S, i)
γ −

X
j∈C0q\i

aj (S, i)
γ

(P-1)-(10)
= v (S)−

X
C0r∈CS\C0q

X
j∈C0r

h
ρζSj + (1− ρ) ζ

S\C0q
j

i

−
X

j∈C0q\i

ρζSj + (1− ρ)

 1
λSq

ζ
S\i
j −

X
C0r∈CS\C0q

λSr
λSq

ζ
S\C0r
j


= v (S)− ρ

X
j∈S\i

ζSj − (1− ρ) v (S) + (1− ρ)v (S)−
X

C0r∈CS\C0q

X
j∈C0r

ζ
S\C0q
j −

X
j∈C0q\i

1

λSq
ζ
S\i
j +

X
j∈C0q\i

X
C0r∈CS\C0q

λSr
λSq

ζ
S\C0r
j


= ρζSi + (1− ρ)v (S) +

X
C0r∈CS\C0q

X
j∈C0q

λSr
λSq

ζ
S\C0r
j −

X
j∈C0r

ζ
S\C0q
j

− X
C0r∈CS\C0q

λSr
λSq

ζ
S\C0r
i −

X
j∈C0q\i

1

λSq
ζ
S\i
j


(Proposition 3.1)

= ρζSi + (1− ρ)

 ¯̄C 0
q

¯̄
λSq

ζSi −
1

λSq

X
j∈C0q\i

ζ
S\j
i −

X
C0r∈CS\C0q

λSr
λSq

ζ
S\C0r
i

 . (11)

Hence

ai (S)
γ (6)= λSq ai (S, i)

γ +
X

C0r∈CS\C0q
λSr ai (S, γr)

γ

(P-1)
= λSq ai (S, i)

γ +
X

C0r∈CS\C0q
λSr

³
ρζSi + (1− ρ) ζ

S\C0r
i

´
(11)
= ρζSi + (1− ρ)

¯̄C 0
q

¯̄
ζSi −

X
j∈C0q\i

ζ
S\j
i

 .

Thus, it is enough to prove

ri
?
<
¯̄
C 0
q

¯̄
ζSi −

X
j∈C0q\i

ζ
S\j
i .
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Under Proposition 3.3 and Proposition 3.4, I have

ri
(Proposition 3.4)

<
X
j∈C0q

ζSj −
X

j∈C0q\i
ζ
S\i
j

(Proposition 3.3)
=

¯̄
C 0
q

¯̄
ζSi −

X
j∈C0q\i

ζ
S\j
i .

Proposition 4.4 There always exists a stationary subgame perfect equilib-

rium for strictly convex games.

Proof. Under Proposition 4.3, it is enough to prove that there exits a set of

proposals satisfying P-1, P-2 and P-3. I define ai ({i} , i) = ri for all i ∈ S.

Assume I have defined a (T, i) for all i ∈ T Ã S. I define:

aj (S, i)
γ = ρaj (S) + (1− ρ) aj

¡
S\C 0

q

¢
for all i ∈ C 0

q ∈ CS, γ ∈ ΓS,i and j ∈ S\C 0
q ;

aj (S, i)
γ = ρaj(S) + (1− ρ)

 1
λSq

aj(S\i)−
X

C0r∈CS\C0q

λSr
λSq

aj(S\C 0
r)


for all i ∈ C 0

q ∈ CS, γ ∈ ΓS,i and j ∈ C 0
q\i ; and

ai (S, i)
γ = v (S)−

X
j∈S\i

aj (S, i)

for all i ∈ S and γ ∈ ΓS,i.

It is straightforward to check that these proposals satisfy P-1, P-2 and

P-3.

Theorem 4.1 There exists a unique stationary subgame perfect equilibrium

payoff in strictly convex games, which equals ζN .

Proof. It is an immediate consequence of Propositions 4.2, 4.3 and 4.4.

In general, the mechanism does not implement ζ for nonconvex games.

Take ρ = 0. Take the TU game given in Example 3.1 with coalition structure
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{{1} , {2} , {3, 4, 5}}. Assume the only equilibrium payoff is ζS for all S Ã N .

Some of these values are given in the following table:

S ζS

{1, 2} (180, 180)

{1, 2, 4, 5} (150, 150, 30, 30)

{1, 3, 4, 5} (45, 45, 45, 45)

{2, 3, 4, 5} (45, 45, 45, 45)

I compute the equilibrium payoff when S = N . In the second stage

of the mechanism, coalitions {1} and {2} would offer 45 to each player in
{3, 4, 5} (this is their continuation payoff after either coalition {1} or coalition
{2} leaves the game). Assume that player 3 is the proposer of coalition
{3, 4, 5} in the first stage. Then, any acceptable proposal should satisfy

ai (N, 3)γ = 180 for all i ∈ {1, 2} and aj (N, 3)γ = 20 for all j ∈ {4, 5} (so that
1
5
aj (N, 1)γ + 1

5
aj (N, 2)γ + 3

5
aj (N, 3)γ = 30, that is, player j’s continuation

payoff after rejection). Hence a3 (N, 3)γ ≤ −40. This leaves player 3 with a
negative final expected payoff 5. Hence, it is optimal for player 3 to make an

unacceptable proposal and receive zero. The final equilibrium payoffwould be

(150, 150, 20, 20, 20) in expected terms, whereas ζN = (153, 153, 18, 18, 18).

In equilibrium, making acceptable proposals is profitable if the conditions

given in Proposition 3.4 hold. These conditions state that the aggregate

payoff of the members of a coalition is higher than their aggregate payoff

when one of its members (the proposer) leaves the game and receives ri.

This generates sufficient surplus to be profitable for the proposer to make an

acceptable offer.

It is still possible to implement ζ for general TU games by imposing an

additional feature to the mechanism: Assume that each excluded player i

is charged with a penalty pi > 0. Hence, the final payoff after exclusion is

ri− pi. Under these circumstances, all the offers are accepted in equilibrium

5This payoff is at most −6, not −40, since with probabitity 2
5 the offer in the second

stage comes from coalition {1} or coalition {2}.
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as long as
P

j∈C0q ζ
S >

P
j∈C0q\i ζ

S\i + ri − pi for all S ⊆ N and i ∈ C 0
q ∈ CS.

Hence, for p high enough6 the result in Theorem 4.1 holds for any TU game.

This penalty may have a justification in the model. As Hart and Mas-

Colell (1996, Section 7) point out, ri = v ({i}) may represent the total worth
of player i assuming that he is the only member of the society and control

a common resource, whereas ri − pi (a lower amount) is what he would get

if he leaves the society. However, I will not move in that direction, because

the mechanism works well without penalty in both the example proposed by

Krasa, Temimi and Yannelis (see next section) and unanimity games (see

Proposition 4.5 below), where the Harsanyi paradox is defined.

The last result of this Section deals with pure bargaining problems:

Proposition 4.5 There exists at least one stationary subgame perfect equi-

librium in pure bargaining problems. Moreover, as ρ approaches 1, any sta-

tionary subgame perfect equilibrium payoffs a (ρ) converge to the Nash solu-

tion.

In particular, for unanimity games, the unique stationary subgame perfect

equilibrium payoff is xi = 1/ |N | for all i ∈ N and any coalition structure.

Proof. Clearly, when the set of active players is S Ã N , there exists a unique

subgame perfect equilibrium payoff which equals rS. Assume S = N . It is

straightforward to check that the proposals corresponding to a stationary

subgame perfect equilibrium are characterized by:

Q-1 aj (N, i) = ρaj (N) + (1− ρ) rj for all i, j ∈ N , i 6= j; and

Q-2 a (N, i) ∈ ∂V (N) for all i ∈ N .

Moreover, a (N) = 1
|N |
P

i∈N a (N, i) (Proposition 4.1). These are the

conditions in Proposition 1 in Hart and Mas-Colell (1996), and the result

follows from Theorem 3 in Hart and Mas-Colell (1996).

6In the previous example, any pi > 6 would suffice.
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5 An eloquent example

Krasa, Temimi and Yannelis (2003) propose a three-person economy with

differential information where two players bargain as one unit against the

third one. When there is complete information, the economy can be expressed

as a TU game (N, v) where N = {1, 2, 3} and v is given by

v ({1}) = v ({2}) = 1
v ({3}) =

43

16

v ({1, 2}) =
5

2

v ({1, 3}) = v ({2, 3}) = 31

8

v (N) =
83

16
.

When there is differential information, due to incentive incompatibility,

1 and 2 are only able to achieve v ({1, 2}) = 2 by themselves. For any other
S ⊆ N , v (S) is the same as under complete information.

Krasa, Temimi and Yannelis take the Owen value φN as a measure of

players’ expectations when 1 and 2 join forces. Their result is that bargaining

as one unit is advantageous if and only if information is complete, as the next

table shows:

φN complete information differential information

C = {{1} , {2} , {3}} ¡
39
32
, 39
32
, 88
32

¢ ¡
109
96
, 109
96
, 280
96

¢
C = {{1, 2} , {3}} ¡

40
32
, 40
32
, 86
32

¢ ¡
108
96
, 108
96
, 282
96

¢
.

Consider now that we take ζN as a measure of players’ expectations when

1 and 2 join forces. Then, bargaining as one unit is advantageous in any case,

as the next table shows:

ζN complete information differential information

C = {{1} , {2} , {3}} ¡
39
32
, 39
32
, 88
32

¢ ¡
109
96
, 109
96
, 280
96

¢
C = {{1, 2} , {3}} ¡

40
32
, 40
32
, 86
32

¢ ¡
112
96
, 112
96
, 274
96

¢
.
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This last situation corresponds to the assumption that players, by joining,

do not loose their respective “rights to talk”. Note also that the benefit from

cooperation is 1
32
for each player in both cases.

It may be argued that the noncooperative approach that supports ζ is

not acceptable here. Certainly, this game is not strictly convex, and thus the

condition of Theorem 4.1 does not hold. However, the condition of strictly

convexity is only used in the proof of Proposition 3.4, whose result still holds

for this game: For (say) player 1, ζ{1,3}1 = 35
32
. Hence

ζ
{1,3}
1 + r2 =

35

32
+ 1 <

39

16
=
X

i∈{1,2}
ζNi

under complete information, and

ζ
{1,3}
1 + r2 =

35

32
+ 1 <

109

48
=
X

i∈{1,2}
ζNi

under differential information.

Hence the result stated in Theorem 4.1 still holds for this game.

6 Discussion

The Owen value seems to be a good measure of players’ expectations when

the coalition structure is exogenously given. For example, wage bargaining

between firms and labor unions, tariff bargaining between countries, bar-

gaining between the member states of a federated country, etc. In these

situations, players do not have to wonder whether they would do it better

bargaining as a unit, because it is something out of their control.

On the other hand, Hart and Kurz (1983) followed the idea that players

form coalition structures in order to improve their bargaining strength. They

studied four reasonable properties, or axioms, that determine uniquely the

Owen value. The only property that is not satisfied by ζ is Carrier (Hart

and Kurz (1983, p. 1051)). The Carrier axiom in Hart and Kurz has two

parts. The first part (i) can also be split into two properties: efficiency (the
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value is efficient for all coalition structures) and dummy (null players7 get

zero). ζ satisfies efficiency, but not dummy. The second part (ii) states that

moving null players8 does not affect the outcome of the rest of the agents. I

will contest this property.

In bargaining problems, asymmetries in the final outcome may be due to

the players’ different bargaining powers. As Binmore (1998, p. 80) points out:

“Bargaining powers are determined by the strategic advantages conferred on

players by the circumstances under which they bargain.” In this case, the

coalition structure. Assume for example a game in which all the players are

mutually substitutes9. Since no asymmetries are introduced in the model,

the expectation a priori should be the same for substitute players, i.e. all

players are supposed to have equal bargaining powers. In general games,

however, nothing is said about the bargaining power of the null players! If we

admit that null players do have bargaining power, then this fact can somehow

affect the aggregate power of the coalition they join.

Take for example the unanimity game (N 0, v0) where N 0 = {1, 2} and
v0 (N) = 1, v0 ({1}) = v0 ({2}) = 0. By a symmetry argument, the value

of each player should be 1
2
, i.e. the expectation of each player before any

implementation of the game is the same.

Assume nowwe add a null player 3 (Example 4.1). We get the game (N, v)

withN = {1, 2, 3} and v (S) = 1 if {1, 2} ⊆ S and v (S) = 0 otherwise. What

would the players’ expectation be in this new game?

It can be argued that the situation does not change with the presence

of a player that does not contribute anything to any coalition. Hence, the

value of (N, v) should be
¡
1
2
, 1
2
, 0
¢
. However, the situation may significantly

change if we assume that player 3 joins forces with player 2. In this case,

the symmetry argument used to assign the value
¡
1
2
, 1
2

¢
in the previous game

7A null player is a player i with v (S ∪ i) = v (S) for all S.
8The name null players is not very accurate in this context. Even though their marginal

contributions are zero, actually they are not null players, because their sole presence

changes the weight of their coalition. I thank Inés Macho-Stadler for pointing this out.
9Two players i, j are substitutes if v (S ∪ i) = v (S ∪ j) for all S with i, j /∈ S.
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(N 0, v0) vanishes. Player 1 and coalition {2, 3} are substitutes in the game
between coalitions, but not completely symmetric. The fact that {2, 3} has
two members introduces an endogenous asymmetry. Hart and Kurz (p. 1048)

describe this situation as follows:

As an everyday example of such a situation, “I will have to

check this with my wife/husband” may (but not necessarily) lead

to a better bargaining position, due to the fact that the other

party has to convince both the player and the spouse.

If we accept that player 2 may benefit from the support of player 3, one

may wonder how to quantify this benefit. The value ζ provides a possible

answer, by assigning an allocation ζN =
¡
4
12
, 7
12
, 1
12

¢
when the coalition struc-

ture is C = {{1} , {2, 3}}. Notice that, in the game between coalitions, the
allocation is 1

3
for coalition {1} and 2

3
for coalition {2, 3}. Hence, payoffs

are proportional to coalition size (Corollary 3.2). Without player 3, player 2

can only expect to get 1
2
, whereas coalition {2, 3} would get 2

3
. Allocation ζ

simply suggests to split the benefit of cooperation (2
3
− 1
2
= 1

6
) equally between

player 2 and player 3.
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