
TI 2013-177/II 
Tinbergen Institute Discussion Paper 

 
Characterizing the Core via k-Core Covers  
 
 
 

Estela Sánchez-Rodríguez 1 

Peter Borm2  
Arantza Estévez-Fernández 3 

M. Gloria Fiestras-Janeiro1 

Manuel A. Mosquera1 

 
 

 
 
 
1  Vigo University, Spain; 
2  CentER, Tilburg University, The Netherlands; 
3  Faculty of Economics and Business Administration, VU University Amsterdam, and Tinbergen 
Institute, The Netherlands. 
 

 



 
Tinbergen Institute is the graduate school and research institute in economics of Erasmus University 
Rotterdam, the University of Amsterdam and VU University Amsterdam. 
 
More TI discussion papers can be downloaded at http://www.tinbergen.nl 
 
Tinbergen  Institute has two locations: 
 
Tinbergen Institute Amsterdam 
Gustav Mahlerplein 117 
1082 MS Amsterdam 
The Netherlands 
Tel.: +31(0)20 525 1600 
 
Tinbergen Institute Rotterdam 
Burg. Oudlaan 50 
3062 PA Rotterdam 
The Netherlands 
Tel.: +31(0)10 408 8900 
Fax: +31(0)10 408 9031 
 

Duisenberg school of finance is a collaboration of the Dutch financial sector and universities, with the 
ambition to support innovative research and offer top quality academic education in core areas of 
finance. 

DSF research papers can be downloaded at: http://www.dsf.nl/ 
 
Duisenberg school of finance 
Gustav Mahlerplein 117 
1082 MS Amsterdam 
The Netherlands 
Tel.: +31(0)20 525 8579 
 
 



Characterizing the core via k-core covers∗

E. Sánchez-Rodríguez1 P. Borm2 A. Estévez-Fernández3

M.G. Fiestras-Janeiro1 M.A. Mosquera1

1 Department of Statistics and Operations Research, Vigo University, Spain.
2 CentER and Department of Econometrics and Operations Research, Tilburg University, The Netherlands.

3 Tinbergen Institute and Department of Econometrics and Operations Research, VU University Amsterdam, The
Netherlands.

Abstract

This paper extends the notion of individual minimal rights for a transferable utility
game (TU-game) to coalitional minimal rights using minimal balanced families of a spe-
cific type, thus defining a corresponding minimal rights game. It is shown that the core of a
TU-game coincides with the core of the corresponding minimal rights game. Moreover, the
paper introduces the notion of the k-core cover as an extension of the core cover. The k-core
cover of a TU-game consists of all efficient payoff vectors for which the total joint payoff for
any coalition of size at most k is bounded from above by the value of this coalition in the
corresponding dual game, and from below by the value of this coalition in the correspond-
ing minimal rights game. It is shown that the core of a TU-game with player set N coincides
with the b |N|2 c-core cover. Furthermore, full characterizations of games for which a k-core
cover is nonempty and for which a k-core cover coincides with the core are provided.

Keywords: Core; Core cover; k-core cover; k-compromise admissibility; k-compromise sta-
bility; Assignment games

1 Introduction

The core of a transferable utility game (TU-game), as introduced by Gillies (1953), consists of all
efficient payoff vectors for the monetary value of the grand coalition from which no coalition
has an incentive to deviate. Some well-known core catchers are the dominance core (cf. Gillies,
1953, 1959), the Weber set (Weber, 1988) and the core cover (Tijs and Lipperts, 1982).

The literature shows that both convex games (Shapley, 1971), for which the core equals the
Weber set, and compromise stable games (Quant et al, 2005), which are balanced games for
which the core equals the core cover, have several interesting and helpful properties. Restrict-
ing attention to compromise stability, we want to mention that the nucleolus (Schmeidler, 1969)

∗Authors acknowledge the financial support of Ministerio de Ciencia, MTM2011-27731-C03. Corresponding
author: esanchez@uvigo.es
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of any compromise stable game can be directly computed by using the Aumann Maschler rule
(Aumann and Maschler, 1985) of an associated bankruptcy game (cf. O’Neill , 1982), thus uni-
fying seemingly unrelated results on the nucleolus for, e.g., bankruptcy games and clan games
(Potters et al, 1989).

The definition of the core cover of a TU-game is based on individual minimal rights and on
individual marginal contributions to the grand coalition N. This paper aims for an extension
of the core cover based on coalitional considerations. Individual marginal contributions can
readily be extended to coalitional marginal contributions using the corresponding dual game.
This paper proposes to extend individual minimal rights to coalitional ones by using for each
coalition S minimal balanced families on N \ S with the size of its elements restricted to at most
|S|. In this way, an associated minimal rights game is obtained. A first result shows that the
core of a TU-game coincides with the core of its corresponding minimal rights game.

Using the dual game and the minimal rights game, we define the k-core cover, with k ∈
{1, . . . , |N|}, of a TU-game with player set N as the set of all efficient payoff vectors for which
the total joint payoff to any coalition S of size at most k is bounded from above by the value
of S in the corresponding dual game, and from below by the value of S in the corresponding
minimal rights game. It is shown that the 1-core cover coincides with the core cover, that each
k-core cover is a core catcher and, interestingly, that the core is a k-core cover with1 k = b |N|2 c.

Defining a game to be k-compromise admissible if the k-core cover is nonempty, and k-
compromise stable if it is balanced and the k-core cover and core coincide, this paper character-
izes k-compromise admissible games and k-compromise stable games by means of conditions
on specific minimal balanced families in both the dual game and the minimal rights game.
Finally, we show that assignment games (Shapley and Shubik, 1972) are a specific case of 2-
compromise stable games.

The paper is structured as follows. Section 2 presents basic definitions and notations re-
garding TU-games and balanced families. Section 3 introduces and analyzes minimal right
games and the k-core cover, while Section 4 characterizes k-compromise admissible games and
k-compromise stable games. Section 5 shows that assignment games are 2-compromise stable.

2 Preliminaries

A transferable utility game (TU-game) is an ordered pair (N, v) where N is a finite set of players
and v : 2N → R satisfies v(∅) = 0. In general, v(S) represents the value of coalition S, that is,
the joint payoff that can be obtained by this coalition when its members decide to cooperate.
Let GN be the set of all TU-games with player set N. Given S ⊆ N, let |S| be the number of
players in S.

The main focus within a cooperative setting is on how to share the total joint payoff obtained
when all players decide to cooperate. Given a TU-game v ∈ GN , the core of v, Core(v), is defined
as the set of efficient allocations (for which exactly v(N) is allocated) that are stable, in the sense

1For each r ∈ R, brc denotes the largest integer below or equal to r.
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that no coalition has an incentive to deviate. Formally,

Core(v) =

{
x ∈ RN : ∑

i∈N
xi = v(N), ∑

i∈S
xi ≥ v(S) for all S ⊆ N

}
.

It is well known that the core of a game may be empty. In Tijs and Lipperts (1982), the core
cover is introduced as a core catcher. The core cover is the set of efficient allocations in which
every player gets an amount no lower than his minimal right and no higher than his utopia
value. Given a game v ∈ GN and a player i ∈ N, the utopia value of player i, Mi(v), is defined
by

Mi(v) = v(N)− v(N \ {i})

and the minimal right of player i, mi(v), is defined by

mi(v) = max
S⊆N : S3i

v(S)− ∑
j∈S\{i}

Mj(v)

 .

The core cover of v ∈ GN , CC(v), is defined by

CC(v) =
{

x ∈ RN : ∑
i∈N

xi = v(N) and m(v) ≤ x ≤ M(v)

}
.

A game v ∈ GN is compromise admissible if CC(v) is nonempty. Formally, if

m(v) ≤ M(v) and ∑
i∈N

mi(v) ≤ v(N) ≤ ∑
i∈N

Mi(v). (1)

A compromise admissible game is compromise stable if the core cover coincides with the core.

Theorem 2.1 (Tijs and Lipperts (1982)). Let v ∈ GN be compromise admissible. Then,

(i) Core(v) ⊆ CC(v).

(ii) If |N| = 3, then, Core(v) = CC(v).

Quant et al (2005) characterize the class of compromise stable games.

Theorem 2.2 (Quant et al (2005)). Let v ∈ GN be compromise admissible. Then, Core(v) = CC(v)
if, and only if, for every S ⊆ N,

v(S) ≤ max

{
∑
i∈S

mi(v), v(N)− ∑
i∈N\S

Mi(v)

}
.

Let ∅ 6= S ⊆ N. A family B of nonempty subcoalitions of S is called balanced on S if there
are positive weights δ = {δT}T∈B , δT > 0 for all T ∈ B, such that ∑

T∈B
δTeT = eS or, equivalently,

∑T∈B:T3i δT = 1 for all i ∈ S. Here, eS ∈ RN is the characteristic vector of S and is defined
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by eS
i = 1 if i ∈ S and eS

i = 0 if i /∈ S. Given a balanced family B, we denote by ∆(B)
the set of positive weights satisfying the balancedness condition. For each k = 1, . . . , |N|,
we denote by Fk(S) the collection of balanced families on S such that for all B ∈ Fk(S) and
R ∈ B, |R| ≤ k. A balanced family B ∈ Fk(S) is minimal if B′ ⊆ B and B′ ∈ Fk(S) implies
B′ = B. We denote by Fm

k (S) the collection of minimal balanced families on S. It is well known
that a minimal balanced family has a unique vector of balanced weights. Given B ∈ Fm

k (S),
we denote by {γBT}T∈B the corresponding vector of balanced weights. It is also known that
if B ∈ Fk(S) \ Fm

k (S) and δ ∈ ∆(B), then, there exist B1, . . . ,Br ∈ Fm
k (S) with r ≥ 2 and

t1, . . . , tr ∈ (0, 1) with ∑r
l=1 tl = 1 such that B = ∪r

l=1Bl and δR = ∑l∈{1,...,r}:Bl3R tlγ
Bl
R .

A game v ∈ GN is called balanced if for all balanced families B ∈ F|N|(N) and all {δS}S∈B ∈
∆(B), ∑

S∈B
δSv(S) ≤ v(N). Bondareva (1963) and Shapley (1967) established that a game v ∈

GN has a nonempty core if, and only if, it is balanced. In fact, they show that a game has a
nonempty core if, and only if, all balancedness inequalities are satisfied for minimal balanced
families on N.

3 A family of core catchers

3.1 Utopia and minimal rights games

In this subsection we introduce the notions of the utopia and minimal rights games associated
to a TU-game.

Definition 3.1. Let v ∈ GN . The dual or utopia game, vD, is defined by

vD(S) = v(N)− v(N \ S) for all S ⊆ N.

The minimal rights game, vm, is defined by

vm(S) = max
T⊆N:T⊇S

{
v(T)− max

B∈Fm
|S|(T\S)

∑
R∈B

γBRvD(R)

}
for all S ⊆ N.

Note that, for each S ⊆ N, vD(S) reflects the marginal contribution of coalition S to the
grand coalition N. Therefore, if coalition S asks for a higher share of v(N) than vD(S), it will be
profitable for coalition N \ S to avoid cooperation with the players of S. Accordingly, vD(S) can
be interpreted as a utopia value for coalition S. Once the values of the utopia game are known
to all players, the question is how to compute the minimal rights game. Following the general
idea of the minimal rights of a player, we first have to consider what is left from the value of
coalition T, with S ⊆ T, once the players in T \ S are paid using the utopia game; secondly,
coalition S will maximize its benefit over all potential partners T\S, with S ⊆ T. Clearly, the
difficulty encountered when defining the value of a coalition S in the minimal rights game
is how to determine the amount that S should concede to the players of T\S, with S ⊆ T,
according to the utopia game. Using a common pessimistic approach, we consider that this
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quantity is the maximum expected utopia value that coalition T \ S can achieve when only
coalitions of size at most |S| are considered. Note that, by only considering balanced families
of cardinality at most |S|, we are generalizing the concept of minimal right of a player. In fact,
given a player i and a coalition T with i ∈ T, player i concedes ∑j∈T\{i} Mj(v) to the players
in T \ {i}, where {{j} : j ∈ T \ {i}} is the only minimal balanced family in Fm

|{i}|(T \ {i}). To
conclude, note that if |T \ S| < |S|, then, Fm

|T\S|(T \ S) = Fm
|S|(T \ S) since all coalitions in any

minimal balanced family in Fm
|S|(T \ S) are contained in T \ S.

The following result states that the maximum expected utopia value for a coalition T over
all balanced families of elements with cardinality at most k and over all associated positive
weights is achieved in a minimal balanced family. Therefore, the definition of minimal rights
game coincides with our informal description.

Proposition 3.2. Let v ∈ GN , T ⊆ N, and k ∈ {1, . . . , |T|}. Then,

max
B∈Fk(T)

max
δ∈∆(B)

∑
R∈B

δRvD(R) = max
B∈Fm

k (T)
∑

R∈B
γBRvD(R).

Proof. LetB ∈ Fk(T) \Fm
k (T) and let {δR}R∈B ∈ ∆(B). LetB1, . . . ,Br ∈ Fm

k (T) and t1, . . . , tr ∈
(0, 1) with ∑r

l=1 tl = 1 satisfy B = ∪r
l=1Bl and δR = ∑l∈{1,...,r}:Bl3R tlγ

Bl
R . Then,

∑
R∈B

δRvD(R) = ∑
R∈B

(
∑

l∈{1,...,r}:
Bl3R

tlγ
Bl
R

)
vD(R) =

r

∑
l=1

tl ∑
R∈Bl

γBl
R vD(R)

≤
r

∑
l=1

tl max
B∈Fm

k (T)

{
∑

R∈B
γBRvD(R)

}
= max
B∈Fm

k (T)

{
∑

R∈B
γBRvD(R)

}
.

Therefore, maxB∈Fk(T) maxδ∈∆(B) ∑R∈B δRvD(R) = maxB∈Fm
k (T) ∑R∈B γBRvD(R).

Example 3.3. Consider the game v ∈ GN given in Table 1, where also the values of the utopia and
minimal rights games are provided. Next, we illustrate the computation of vm({1}), vm({1, 2}), and
vm({1, 2, 3}).
vm({1}) = maxT⊆N:T⊇{1}

{
v(T)−maxB∈Fm

1 (T\S) ∑R∈B γBRvD(R)
}

= max{v({1}), v({1, 2})− vD({2}), v({1, 3})− vD({3}), v({1, 4})− vD({4}),
v({1, 2, 3})− vD({2})− vD({3}), v({1, 2, 4})− vD({2})− vD({4}),
v({1, 3, 4})− vD({3})− vD({4}), v(N)− vD({2})− vD({3})− vD({4})}

= max{1, 2− 2, 3− 3, 5− 4, 6− 2− 3, 7− 2− 4, 8− 3− 4, 10− 2− 3− 4} = 1.

vm({1, 2}) = maxT⊆N:T⊇{1,2}

{
v(T)−maxB∈Fm

2 (T\S) ∑R∈B γBRvD(R)
}

= max{v({1, 2}), v({1, 2, 3})− vD({3}), v({1, 2, 4})− vD({4}),
v(N)−max{vD({3}) + vD({4}), vD({3, 4})}}

= max{2, 6− 3, 7− 4, 10−max{3 + 4, 8}} = 3.
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vm({1, 2, 3}) = maxT⊆N:T⊇{1,2,3}

{
v(T)−maxB∈Fm

3 (T\S) ∑R∈B γBRvD(R)
}

= max{v({1, 2, 3}), v(N)− vD({4})}
= max{6, 10− 4} = 6.

S {1} {2} {3} {4} {1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4}
v(S) 1 1 2 3 2 3 5 3 4 5

vD(S) 2 2 3 4 5 6 7 5 7 8
vm(S) 1 1 2 3 3 4 5 4 5 6

S {1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4} {1, 2, 3, 4}
v(S) 6 7 8 8 10

vD(S) 7 8 9 9 10
vm(S) 6 7 8 8 10

Table 1: Utopia and minimal rights games in Example 3.3.

The following proposition gives some straightforward implications of the definitions of
utopia and minimal rights games. In fact, statement (a) implies that utopia and minimal rights
games generalize the utopia values and minimal rights of players. We recall that a game v ∈ GN

is monotone if v(S) ≤ v(T) for every S ⊆ T ⊆ N. A game v ∈ GN is convex (see Shapley, 1971)
if v(S ∪ {i})− v(S) ≤ v(T ∪ {i})− v(T) for every i ∈ N and S ⊆ T ⊆ N \ {i}.

Proposition 3.4. Let v ∈ GN . Then,

a) vD({i}) = Mi(v) and vm({i}) = mi(v) for every i ∈ N.

b) vD(N) = vm(N) = v(N) and vm(N \ {i}) = v(N \ {i}) for all i ∈ N.

c) vm ≥ v.

d) If v ∈ GN is monotone, then, vD is non-negative and monotone.

e) If v ∈ GN is convex, then, vm = v.

Proof. The first three items are straightforward.

d) Let v be monotone. Then, vD(S) = v(N)− v(N\S) ≥ 0 for all S ⊆ N. If S ⊆ T, then,
N\S ⊇ N\T, and vD(S) = v(N)− v(N \ S) ≤ v(N)− v(N \ T) = vD(T); therefore, vD is
monotone.

e) Let v be convex. First, we show that for all S ⊆ R ⊆ N,

v(S) ≥ v(R)− ∑
i∈R\S

vD({i}) (2)

or, equivalently, that v(R)− v(S) ≤ ∑i∈R\S vD({i}). Let R \ S = {i1, . . . , ir}. Then,

v(R)− v(S) = v(S ∪ (R \ S))− v(S)
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= v(S ∪ {i1, . . . , ir})− v(S ∪ {i1, . . . , ir−1})

+ v(S ∪ {i1, . . . , ir−1})− v(S ∪ {i1, . . . , ir−2}) + . . .

+ v(S ∪ {i1})− v(S)

≤ v(N)− v(N \ {ir}) + v(N)− v(N \ {ir−1}) + . . .

+ v(N)− v(N \ {i1})

= ∑
i∈R\S

vD({i})

where the inequality follows from convexity of v.

Next, we show that for all S ⊆ R ⊆ N,

max
B∈Fm

|S|(R\S)
∑

U∈B
γBUvD(U) = ∑

i∈R\S
vD({i}). (3)

Consider B ∈ Fm
|S|(R \ S). Note that for all U ∈ B, vD(U) ≤ ∑i∈U vD({i}) as a conse-

quence of applying (2) to R = N and S = N \U. Then,

∑
U∈B

γBUvD(U) ≤ ∑
U∈B

γBU ∑
i∈U

vD({i}) = ∑
i∈R\S

vD({i}).

Clearly, with B = {{i} : i ∈ R \ S} ∈ Fm
|S|(R \ S) and γBU = 1 for every U ∈ B, we have

∑U∈B γBUvD(U) = ∑i∈R\S vD({i}) and (3) is proved.

Then,

vm(S) = max
T⊆N:T⊇S

{
v(T)− max

B∈Fm
|S|(T\S)

∑
R∈B

γBRvD(R)

}

= max
T⊆N:T⊇S

{
v(T)− ∑

i∈R\S
vD({i})

}
= v(S),

where the last equality follows from (2).

3.2 k-core covers

This subsection introduces the k-core cover of a TU-game v ∈ GN , where k is a natural number
between 0 and |N|. The k-core cover is the set of efficient allocations in which every coalition of
size less than or equal to k gets an amount no lower than its value of the minimal rights game
and no higher than its value of the utopia game. Formally, we have
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Definition 3.5. Let v ∈ GN and k ∈ {0, 1, 2, . . . , |N|}. The k-core cover of v, CCk(v), is defined by

CCk(v) =

{
x ∈ RN :

∑i∈N xi = v(N) and
vm(S) ≤ ∑i∈S xi ≤ vD(S) for every S ⊆ N with |S| ≤ k

}
.

Note that CC0(v) =
{

x ∈ RN : ∑i∈N xi = v(N)
}

, CC1(v) = CC(v), and CC |N|−1(v) =

CC |N|(v).

Remark 3.1. Equivalently, the k-core cover can be recursively defined as follows.

1. CC0(v) =
{

x ∈ RN : ∑i∈N xi = v(N)
}

.

2. For k = 1, . . . , |N|,

CCk(v) =

{
x ∈ CCk−1(v) : vm(S) ≤ ∑

i∈S
xi ≤ vD(S) for every S ⊆ N with |S| = k

}
.

The following result states that any k-core cover is a core catcher.

Theorem 3.6. Let v ∈ GN . Then,

∅ 6= CC0(v) ⊇ CC1(v) ⊇ CC2(v) ⊇ . . . ⊇ CC |N|−1(v) = CC |N|(v) = Core(v).

Proof. Clearly, we only have to show the last equality.
First, we show “⊆”. For this, let x ∈ CC |N|(v). We show that x ∈ Core(v). Note that

∑i∈N xi = v(N) and for every S ⊆ N, ∑i∈S xi ≥ vm(S) ≥ v(S) where the last inequality follows
from Proposition 3.4 c). Therefore, x ∈ Core(v).

Second, we show “⊇”. Let x ∈ Core(v). We show that x ∈ CC |N|(v). Note that ∑i∈N xi = v(N),
hence, we only have to show that vm(S) ≤ ∑i∈S xi ≤ vD(S) for every S ⊆ N. Let S ⊆ N. To see
that ∑i∈S xi ≤ vD(S), note that

∑
i∈S

xi = ∑
i∈N

xi − ∑
i∈N\S

xi = v(N)− ∑
i∈N\S

xi ≤ v(N)− v(N \ S) = vD(S). (4)

To show that ∑i∈S xi ≥ vm(S), let T ⊆ N with S ⊆ T. Then, for every B ∈ Fm
|S|(T \ S), we have

that

v(T) ≤ ∑
i∈T

xi = ∑
i∈S

xi + ∑
i∈T\S

xi = ∑
i∈S

xi + ∑
R∈B

γBR ∑
i∈R

xi ≤ ∑
i∈S

xi + ∑
R∈B

γBRvD(R),

where the second inequality follows from Equation (4). Hence,

∑
i∈S

xi ≥ v(T)− ∑
R∈B

γBRvD(R) for every B ∈ Fm
|S|(T \ S).
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Consequently, ∑i∈S xi ≥ maxT⊆N:T⊇S{v(T)−maxB∈Fm
|S|(T\S) ∑R∈B γBRvD(R)} = vm(S).

Using Theorem 3.6, it can be shown that the core of a game coincides with the core of its
minimal rights game.

Theorem 3.7. Let v ∈ GN and vm its minimal rights game. Then, Core(v) = Core(vm).

Proof. Note that Core(vm) ⊆ Core(v) since for all S ⊆ N, vm(S) ≥ v(S) while vm(N) = v(N).
Then, we only have to show that Core(vm) ⊇ Core(v). Let x ∈ Core(v). Then, Core(v) =

CC |N|(v) by Theorem 3.6 and ∑i∈S xi ≥ vm(S) for all S ⊆ N. Consequently, x ∈ Core(vm).

Moreover, it turns out that the core of a game with set of players N coincides with the b |N|2 c-
core cover. From this fact, one can easily derive the coincidence of the core and the 1-core cover
for arbitrary 3-player games (cf. Theorem 2.1 (ii)).

Theorem 3.8. Let v ∈ GN . Then, Core(v) = CCb
|N|
2 c(v).

Proof. Using Theorem 3.6, it is sufficient to show that Core(v) ⊇ CCb
|N|
2 c(v). Let x ∈ CCb

|N|
2 c(v).

Clearly, ∑i∈N xi = v(N). Let S ⊆ N with |S| ≤ b |N|2 c. Then,

∑
i∈S

xi ≥ vm(S) ≥ v(S),

where the first inequality is a direct consequence of the definition of b |N|2 c-core cover and the
second inequality follows from Proposition 3.4 c). Next, let S ⊆ N with |S| > b |N|2 c. Then,

∑
i∈S

xi = ∑
i∈N

xi − ∑
i∈N\S

xi = v(N)− ∑
i∈N\S

xi ≥ v(N)− vD(N \ S) = v(S)

where the first inequality is a direct consequence of x ∈ CCb
|N|
2 c(v) and 0 < |N\S| < b |N|2 c.

Consequently, x ∈ Core(v).

As an immediate consequence of Theorem 3.6 and Theorem 3.8, we have the following
result.

Corollary 3.9. Let v ∈ GN . Then, CCk(v) = Core(v) for all k ≥ b |N|2 c.

Since, by Theorem 3.6, the k-core cover is contained in the l-core cover for every l < k, it is
useful to define the smallest nonempty k-core cover of a game.

Definition 3.10. For v ∈ GN , the least core cover, LCC(v), is defined by LCC(v) = CCk∗(v) where
k∗ = max{k ∈ {0, 1, . . . , b |N|2 c} : CCk(v) 6= ∅}.

Note that the least core cover is a nonempty core catcher. Besides, if v is balanced, then,
LCC(v) = Core(v). The following example illustrates the least core cover of a game with an
empty core.

9



Example 3.11. Consider the 6-player game v ∈ GN where the characteristic function is given by

v(S) =



0 if |S| = 1,

2 if |S| = 2,

5 if |S| = 3,

4 if |S| = 4,

5 if |S| = 5,

8 if |S| = 6.

First, we show that this game has an empty core. For this, suppose that the core is nonempty and let
x ∈ Core(v). Then, x1 + x2 + x3 ≥ 5 and x4 + x5 + x6 ≥ 5. Adding both inequalities and taking
into account that ∑6

i=1 xi = v(N) = 8 since x ∈ Core(v), we obtain 8 = ∑6
i=1 xi ≥ 10, establishing

a contradiction. According to Theorem 3.8, CC3(v) = Core(v) = ∅. It turns out that the game has a
nonempty 2-core cover. We subsequently compute the 1- and 2-core covers.

Note that vD({i}) = v(N)− v(N \ {i}) = 3 for all i ∈ N and

vm({i}) = max{v({i}), max{v(S)− ∑
j∈S\{i}

vD({j}) : S ⊆ N, i ∈ S}} = 0

for all i ∈ N. Then, vm({i}) ≤ vD({i}) for all i ∈ N and ∑i∈N vm({i}) ≤ v(N) ≤ ∑i∈N vD({i}).
Therefore, CC1(v) 6= ∅ and it is given by2

CC1(v) = con({3e{i} + 3e{j} + 2e{k} : i, j, k ∈ N, |{i, j, k}| = 3}).

Next, we compute the 2-core cover. Note that vD({i, j}) = v(N)− v(N \ {i, j}) = 8− 4 = 4 for all
i, j ∈ N with i 6= j. Moreover, for all i, j ∈ N with i 6= j and all S ⊆ N with i, j ∈ S and |S| ≥ 4, we
have that v(S)−maxB∈Fm

2 (S\{i,j}) ∑R∈B γBRvD(R) ≤ 0. Thus, for all i, j ∈ N with i 6= j,

vm({i, j}) = max{v({i, j}), max{v({i, j, k})− vD({k}) : k ∈ N \ {i, j}}} = 2.

Then, for all i, j ∈ N with i 6= j, vm({i, j}) ≤ vD({i, j}) and

CC2(v) = con({eN + 2e{i} : i ∈ N}) = LCC(v).

4 k-compromise admissibility and k-compromise stability

4.1 k-compromise admissible games

Definition 4.1. For k ∈ {0, 1, . . . , |N|}, a game v ∈ GN is k-compromise admissible if CCk(v) is
nonempty.

2Given a finite set A ⊆ RN , con(A) denotes the convex hull of A.

10



Note that any game is 0-compromise admissible. Before characterizing k-compromise ad-
missibility, we introduce the concepts of k-core and k-anti core.

Definition 4.2. Let v ∈ GN and k ∈ {1, . . . , |N|}. The k-core of v, Corek(v), is the set of efficient
allocations that are stable for coalitions of size smaller than or equal to k. Formally,

Corek(v) =

{
x ∈ RN : ∑

i∈N
xi = v(N), ∑

i∈S
xi ≥ v(S) for all S ⊆ N with |S| ≤ k

}
.

Similarly, the k-anti core of vD, ACorek(vD), is defined by

ACorek(vD) =

{
x ∈ RN : ∑

i∈N
xi = vD(N), ∑

i∈S
xi ≤ vD(S) for all S ⊆ N with |S| ≤ k

}
.

The following result follows directly from the definitions of k-core and k-anti core.

Proposition 4.3. Let v ∈ GN . Then,

Core1(v) ⊇ Core2(v) ⊇ . . . ⊇ Core|N|(v) = Core(v) and
ACore1(vD) ⊇ ACore2(vD) ⊇ . . . ⊇ ACore|N|(vD) = Core(v).

As an immediate consequence, we have

Theorem 4.4. Let v ∈ GN and k ∈ {1, . . . , |N|}. Then, CCk(v) = Corek(vm) ∩ ACorek(vD) and
Core(v) = Coreb

|N|
2 c(vm) ∩ACoreb

|N|
2 c(vD).

Next, we introduce the concepts of k-balanced games and k-dual balanced games and show
that k-balancedness (k-dual balancedness) is a sufficient and necessary condition for non-empti-
ness of the k-core (k-anti core).

Definition 4.5. Let v ∈ GN and k ∈ {1, . . . , |N|}.

• v is k-balanced if for all balanced families B ∈ Fk(N) and all {δS}S∈B ∈ ∆(B),

∑
S∈B

δSv(S) ≤ v(N).

• v is k-dual balanced if for all balanced families B ∈ Fk(N) and all {δS}S∈B ∈ ∆(B),

∑
S∈B

δSv(S) ≥ v(N).

Just like for balanced games, one defines k-minimal balanced and k-minimal dual balanced
games based on k-minimal balanced families.

The following theorem extends the characterization of Bondareva-Shapley of nonempti-
ness of the core (Bondareva, 1963; Shapley, 1967) to the nonemptiness of the k-core and the
k-anti core. The proof follows the same lines as the proof in Shapley (1967) and the proof of
Theorem 4.8 below and is, therefore, omitted.
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Theorem 4.6. Let v ∈ GN and k ∈ {1, . . . , |N|}. Then,

a) Corek(v) 6= ∅ if, and only if, v is minimally k-balanced.

b) ACorek(vD) 6= ∅ if, and only if, vD is minimally k-dual balanced.

Example 4.7. Consider the 6-player game v ∈ GN where the characteristic function is given by

v(S) =



0 if |S| = 1,

3 if |S| = 2 and 1 ∈ S,

2 if |S| = 2, 1 6∈ S, and 2 ∈ S,

1 if |S| = 2, 1 6∈ S, and 2 6∈ S,

0 if |S| = 3,

4.75 if |S| = 4 and 1, 2 ∈ S,

3.75 if |S| = 4, 1 ∈ S, and 2 6∈ S,

2.75 if |S| = 4 and 1 6∈ S,

3.25 if |S| = 5,

6.25 if S = N.

It turns out that Core2(vm) 6= ∅, ACore2(vD) 6= ∅, and CC2(v) = Core2(vm) ∩ACore2(vD) = ∅.
To see this we give the values of the minimal rights game and the utopia game for coalitions of cardinality
at most 2. We have that vm(S) = v(S) for every S ⊆ N with |S| ≤ 2 and

vD(S) =


3 if |S| = 1,
3.5 if |S| = 2 and 1 ∈ S,
2.5 if |S| = 2, 1 6∈ S, and 2 ∈ S,
1.5 if |S| = 2 and 1, 2 6∈ S.

Note that (2.5, 1.5, 0.5, 0.5, 0.5, 0.75) ∈ Core2(vm) and (2.75, 0.75, 0.75, 0.75, 0.75, 0.5) ∈ ACore2(vD).
However, CC2(v) = Core2(vm) ∩ ACore2(vD) = ∅. To see this, suppose that the 2-core cover is
nonempty and let x ∈ CC2(v). Then, x1 + x3 ≥ 3, x1 + x4 ≥ 3, x2 + x5 ≥ 2, x2 + x6 ≥ 2 and
x1 + x2 ≤ 3.5. Adding the first four inequalities and subtracting the last one, and taking into account
that ∑6

i=1 xi = v(N) = 6.25, we obtain 6.25 = ∑6
i=1 xi ≥ 6.5.

Next, we characterize the class of k-compromise admissible games. Note that k-compromise
admissibility, for k ≥ b |N|2 c, is equivalent to balancedness by Theorem 3.8 which is equivalent to
balancedness of the minimal rights game by Theorem 3.7. Therefore, we restrict our attention to
k-compromise admissibility for k ∈ {1, . . . , b |N|2 c − 1}. The formal proof of Theorem 4.8 can be
found in the Appendix. Before giving the characterization, we introduce some notation. Let k ∈
{1, . . . , b |N|2 c − 1}. We denote by Fk,|N|−k(N) the set of balanced families on N whose elements
have cardinality at most k, or at least |N| − k. We denote by Fm

k,|N|−k(N) the corresponding set
of minimal balanced families.
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Theorem 4.8. Let v ∈ GN and k ∈ {1, . . . , b |N|2 c − 1}. Then, v is k-compromise admissible if, and
only if, the following condition is satisfied:

∑
R∈B

0<|R|≤k

γBRvm(R)− ∑
R∈B

|N|−k≤|R|<|N|

γBRvD(N \ R) ≤
(

1− ∑
R∈B

|N|−k≤|R|<|N|

γBR

)
v(N)

for every B ∈ Fm
k,|N|−k(N), B 6= {N}.

Remark 4.1. (i) Observe that Theorem 4.8 generalizes the characterization of 1-compromise
stability given in Equation (1). Recall that, by Proposition 3.4 a), mi(v) = vm({i}) and
Mi(v) = vD({i}) for every i ∈ N. Note thatFm

1,|N|−1 consists of the families: {{i} : i ∈ N},
{{i}, N \ {i}} for every i ∈ N, {N \ {i} : i ∈ N} and {N}.

If B = {{i}, N \ {i}} with i ∈ N, then, γB{i} = γBN\{i} = 1 and the condition in Theo-
rem 4.8 becomes mi(v) = vm({i}) ≤ vD({i}) = Mi(v).

If B = {{i} : i ∈ N}, then, γB{i} = 1 for every i ∈ N and the condition in Theorem 4.8
becomes ∑i∈N mi(v) = ∑i∈N vm({i}) ≤ v(N).

If B = {N \ {i} : i ∈ N}, then, γBN\{i} = 1
|N|−1 for every i ∈ N and the condition in

Theorem 4.8 becomes ∑i∈N Mi(v) = ∑i∈N vD({i}) ≥ v(N).

(ii) It can be easily seen that the conditions a) vm(S) ≤ vD(S) for all S ⊆ N such that |S| ≤ k
and b)∑S∈B γBS vm(S) ≤ v(N) ≤ ∑S∈B γBS vD(S) for all B ∈ Fm

k (N) are necessary for k-
compromise admissibility. They are however not sufficient for k > 1 as we see below.

Note that the game in Example 4.7 satisfies vm(S) ≤ vD(S) for all S ⊆ N such that |S| ≤ 2
and ∑S∈B γBS vm(S) ≤ v(N) ≤ ∑S∈B γBS vD(S) for all B ∈ Fm

2 (N). However, CC2(v) = ∅.
To see this, we take B = {{1, 3}, {1, 4}, {2, 5}, {2, 6}, {3, 4, 5, 6}} ∈ Fm

2,|N|−2 where γBS = 1
2

for every S ∈ B. Then,

∑
R∈B

0<|R|≤2

γBRvm(R)− ∑
R∈B

|N|−2≤|R|<|N|

γBRvD(N \ R)

=
1
2
(vm({1, 3}) + vm({1, 4}) + vm({2, 5}) + vm({2, 6})− vD(N \ {3, 4, 5, 6}))

=
1
2
(3 + 3 + 2 + 2− 3.5) =

6.5
2

>
6.25

2
= (1− 1

2
)6.25 =

(
1− ∑

R∈B
|N|−2≤|R|<|N|

γBR

)
v(N).

4.2 k-compromise stable games

Quant et al (2005) introduce and characterize the class of compromise stable games, which
are those games that are compromise admissible and for which the core and the core cover
coincide. Here, we perform a similar analysis for so called k-compromise stable games.
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Definition 4.9. A k-compromise admissible game v ∈ GN is called k-compromise stable if CCk(v) =
Core(v).

Note that a k-compromise stable game is k-compromise admissible and that, consequently,
the k-core cover, which coincides with the core, is nonempty and the game is balanced. The
game in Example 3.11 has an empty core and, therefore, it is not k-compromise stable for any k.

Example 4.10. Reconsider the game v ∈ GN in Example 3.3. It is readily checked that this game is
1-compromise stable since Core(v) = CC1(v) = con({(2, 2, 3, 3), (2, 2, 2, 4), (2, 1, 3, 4), (1, 2, 3, 4)}).

Note that for each balanced game, the game is b |N|2 c-compromise stable. Our main theorem
will provide necessary and sufficient conditions for a balanced game to be k-compromise sta-
ble with k ∈ {1, . . . , b |N|2 c}. The next lemma provides necessary and sufficient conditions for
Corek(vm) = Core(v) and ACorek(vD) = Core(v).

Lemma 4.11. Let v ∈ GN be a balanced game and k ∈ {1, . . . , b |N|2 c}. Then,

a) Corek(vm) = Core(v) if, and only if, v(S) ≤ max
B∈Fm

k (S)
∑

R∈B
γBRvm(R) for all S ⊆ N.

b) ACorek(vD) = Core(v) if, and only if, v(S) ≤ v(N)− min
B∈Fm

k (N\S)
∑

R∈B
γBRvD(R) for all S ⊆ N.

c) Corek(vm) = Core(v) = ACorek(vD) if, and only if,
v(S) ≤ min

{
max
B∈Fm

k (S)
∑

R∈B
γBRvm(R), v(N)− min

B∈Fm
k (N\S)

∑
R∈B

γBRvD(R)
}

for all S ⊆ N.

Proof. We prove a) in detail. The proof of b) can be done following similar arguments and c) is
an immediate consequence of a) and b) combined. First, we show the “if” part. Let

v(S) ≤ max
B∈Fm

k (S)
∑

R∈B
γBRvm(R) (5)

for all S ⊆ N. We show that Corek(vm) = Core(v). By Proposition 4.3 and Theorem 3.7, we
know that Corek(vm) ⊇ Core(vm) = Core(v). Therefore, we only have to prove that Corek(vm) ⊆
Core(v). Let x ∈ Corek(vm). Then, ∑i∈N xi = v(N). Let S ⊆ N be such that k < |S|. We show
that ∑i∈S xi ≥ v(S). Note that vm(R) ≤ ∑i∈R xi for every R ⊆ N with |R| ≤ k and for all
B ∈ Fm

k (S),

∑i∈S xi = ∑R∈B γBR ∑i∈R xi ≥ ∑R∈B γBRvm(R). (6)

Therefore, using (5), ∑i∈S xi ≥ maxB∈Fm
k (S) ∑R∈B γBRvm(R) ≥ v(S).

Next, we show the “only if” part. Let Corek(vm) = Core(v). First, note that Corek(vm) is
nonempty and can be obtained as the set of optimal solutions of the linear programming prob-
lem (P1):

(P1) min ∑
i∈N

xi
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∑
i∈R

xi ≥ vm(R) for every R ⊆ N, |R| ≤ k,

∑
i∈N

xi ≥ v(N).

Let S ⊆ N. If 1 ≤ |S| ≤ k, then, clearly,

v(S) ≤ vm(S) ≤ max
B∈Fm

k (S)
∑

R∈B
γBRvm(R)

where the second inequality follows from the fact that {S} ∈ Fm
k (S) with γ

{S}
S = 1. Take now

|S| ≥ k + 1. Since Corek(vm) = Core(v) = Core(vm), we know that ∑i∈S xi ≥ vm(S) for every
x ∈ Corek(vm). Therefore, we can now modify problem (P1) into problem (P2)

(P2) min ∑
i∈N

xi

∑
i∈R

xi ≥ vm(R) for every R ⊆ N, |R| ≤ k,

∑
i∈S

xi ≥ vm(S) for every S ⊆ N, |S| ≥ k + 1,

∑
i∈N

xi ≥ v(N)

where for each S ⊆ N with |S| ≥ k + 1, the inequality constraint ∑i∈S xi ≥ vm(S) is redun-
dant. As a consequence, for every S ⊆ N with |S| ≥ k + 1, there exists a non-negative linear
combination of the constraint inequalities in (P1) such that the linear combination makes the
inequality ∑i∈S xi ≥ vm(S) redundant. That is, there exists {δR}R⊆S, |R|≤k with δR ≥ 0 for each
R ⊆ S with |R| ≤ k and ∑R δR = 1, or equivalently, there is B ∈ Fk(S) and {δR}R∈B ∈ ∆(B)
such that

∑
i∈S

xi = ∑
R∈B

δR ∑
i∈R

xi ≥ ∑
R∈B

δRvm(R) ≥ vm(S).

Then, v(S) ≤ vm(S) ≤ maxB∈Fk(S) max{δR}R∈B∈∆(B) ∑R∈B δRvm(R) = maxB∈Fm
k (S) ∑R∈B γBRvm(R),

where the first inequality is a direct consequence of Proposition 3.4 c) and the last equality is
based on the same type of argument as in the proof of Proposition 3.2.

Note that Lemma 4.11 c) provides a sufficient condition for k-compromise admissibility.
The following result provides a full characterization of the class of k-compromise stable games.

Theorem 4.12. Let v ∈ GN be a balanced game and k ∈ {1, . . . , b |N|2 c}. Then, v is k-compromise
stable if, and only if, for every S ⊆ N,

v(S) ≤ max
{

max
B∈Fm

k (S)
∑

R∈B
γBRvm(R), v(N)− min

B∈Fm
k (N\S)

∑
R∈B

γBRvD(R)
}

. (7)

Proof. We start showing the “only if” part. Let k ∈ {1, . . . , b |N|2 c} and assume that CCk(v) =
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Core(v). We show that (7) is satisfied. Let S ⊆ N be such that |S| ≤ k. Then,

v(S) ≤ vm(S) ≤ max
B∈Fm

k (S)
∑

R∈B
γBRvm(R)

where the second inequality follows by considering B = {S} and γBS = 1. Therefore, (7)
follows.

Let S ⊆ N be such that |S| > k. If v(S) ≤ maxB∈Fm
k (S) ∑R∈B γBRvm(R), then (7) follows.

Therefore, assume that
v(S) > max

B∈Fm
k (S)

∑
R∈B

γBRvm(R). (8)

Note that Theorem 3.6 and the assumption CCk(v) = Core(v) imply CCk(v) = CC l(v) = Core(v)
for all l > k. Therefore, the inequalities ∑i∈R xi ≥ vm(R), with |R| > k, are redundant in the
description of CC l(v) for every l ≥ |R| and, in particular, ∑i∈S xi ≥ vm(S) is also redundant in
the description of CC l(v) for every l ≥ |S|. Now, suppose that we can derive ∑i∈S xi ≥ vm(S) as
a positive linear combination of inequalities of the form ∑i∈R xi ≥ vm(R) with R ⊆ N, |R| ≤ k.
Then, there exists B1 ∈ Fm

k (S) such that

∑
i∈S

xi = ∑
R∈B1

γB1
R ∑

i∈R
xi ≥ ∑

R∈B1

γB1
R vm(R) ≥ vm(S) ≥ v(S),

establishing a contradiction with (8). Therefore, there must exist a linear combination of in-
equalities of the form ∑i∈R xi ≤ vD(R) with R ⊆ N, |R| ≤ k, that makes ∑i∈S xi ≥ vm(S)
redundant. Then, there exists B2 ∈ Fm

k (N \ S) such that

∑
i∈S

xi = ∑
i∈N

xi − ∑
i∈N\S

xi = v(N)− ∑
R∈B2

γB2
R ∑

i∈R
xi ≥ v(N)− ∑

R∈B2

γB2
R vD(R) ≥ vm(S) ≥ v(S).

Hence, it follows that v(S) ≤ v(N)−minB∈Fm
k (N\S) ∑R∈B γBRvD(R) and (7) follows.

To conclude, we show the “if” part. Assume that

v(S) ≤ max
{

max
B∈Fm

k (S)
∑

R∈B
γBRvm(R), v(N)− min

B∈Fm
k (N\S)

∑
R∈B

γBRvD(R)
}

for every S ⊆ N. We have to show that CCk(v) = Core(v). By Theorem 3.6, it suffices to prove
that CCk(v) ⊆ Core(v). Let x ∈ CCk(v), then,

∑
i∈N

xi = v(N) (9)

and vm(R) ≤ ∑i∈R xi ≤ vD(R) for every R ⊆ N with |R| ≤ k. We have to show that ∑i∈S xi ≥
v(S) for every S ⊆ N.
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First, let S ⊆ N with |S| ≤ k, then,

∑
i∈S

xi ≥ vm(S) ≥ v(S). (10)

Second, let S ⊆ N with |S| ≥ |N| − k. Then, |N \ S| ≤ k and

∑
i∈S

xi = ∑
i∈N

xi − ∑
i∈N\S

xi = v(N)− ∑
i∈N\S

xi ≥ v(N)− vD(N \ S) = v(S) (11)

where the first inequality follows from the fact that ∑i∈R xi ≤ vD(R) for every R ⊆ N with
|R| ≤ k.

Third, let S ⊆ N with k < |S| < |N| − k. We distinguish between two situations:

1. max
B∈Fm

k (S)
∑

R∈B
γBRvm(R) ≥ v(N)− min

B∈Fm
k (N\S)

∑
R∈B

γBRvD(R).

By Condition (7), we have that v(S) ≤ maxB∈Fm
k (S) ∑R∈B γBRvm(R). Then, for

B̄ ∈ arg maxB∈Fm
k (S) ∑R∈B γBRvm(R), it follows that

∑
i∈S

xi = ∑
R∈B̄

γB̄R ∑
i∈R

xi ≥ ∑
R∈B̄

γB̄Rvm(R) = max
B∈Fm

k (S)
∑

R∈B
γBRvm(R) ≥ v(S), (12)

where the inequality follows from the fact that ∑i∈R xi ≥ vm(R) for every R ⊆ N with
|R| ≤ k.

2. v(N)− min
B∈Fm

k (N\S)
∑

R∈B
γBRvD(R) > max

B∈Fm
k (S)

∑
R∈B

γBRvm(R).

By Condition (7), we have that v(S) ≤ v(N) −minB∈Fm
k (N\S) ∑R∈B γBRvD(R). Then, for

B̄ ∈ arg minB∈Fm
k (N\S) ∑R∈B γBRvD(R), it follows that

∑
i∈S

xi = ∑
i∈N

xi − ∑
i∈N\S

xi = v(N)− ∑
R∈B̄

γB̄R ∑
i∈R

xi

≥ v(N)− ∑
R∈B̄

γB̄RvD(R) = v(N)− min
B∈Fm

k (N\S)
∑

R∈B
γBRvD(R) ≥ v(S),

(13)

where the inequality follows from the fact that ∑i∈R xi ≤ vD(R) for every R ⊆ N with
|R| ≤ k.

Note that, for the case k = 1, we have that the characterization in Theorem 4.12 boils down
to Theorem 2.2.
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Example 4.13. Consider the 6-player game v ∈ GN given by

v(S) =



0 if |S| = 1,
2 if |S| = 2,
2 if |S| = 3,
5 if |S| = 4,
15 if |S| = 5,
20 if |S| = 6.

It turns out that this game is 2-compromise stable, but not 1-compromise stable, that is, Core(v) 6=
CC1(v) while Core(v) = CC2(v) = Core2(vm) ∩ACore2(vD). In Table 2, we provide the values of v,
vD, vm, together with the values of maxB∈Fm

2 (S) ∑R∈B γBRvm(R) and v(N)−minB∈Fm
2 (N\S) ∑R∈B γBRvD(R)

for every S ⊆ N. It follows, by Theorem 4.12, that Core(v) = CC2(v). However, by Lemma 4.11 a) and
b), we have that Core2(vm) 6= Core(v) and ACore2(vD) 6= Core(v).

|S| 1 2 3 4 5 6
v(S) 0 2 2 5 15 20

vD(S) 5 15 18 18 20 20
vm(S) 0 2 2 10 15 20

maxB∈Fm
2 (S) ∑R∈B γBRvm(R) 0 2 3 4 5 8

v(N)−minB∈Fm
2 (N\S) ∑R∈B γBRvD(R) −5 0 5 10 15 20

Table 2: Game, utopia game, and minimal rights game in Example 4.13.

5 Assignment games and 2-compromise stability

This section shows that assignment games as introduced in Shapley (1967) are 2-compromise
stable. In an assignment situation there is a two sided market with finite and disjoint set of
buyers, M, and of sellers, M′. We denote m = |M|, m′ = |M′|, and |N| = m + m′. The worth
obtained when one buyer i ∈ M and one seller j ∈ M′ decide to cooperate is aij ≥ 0. These
values can be represented in an m×m′ matrix A. Following the notation in Núñez and Rafels
(2002), a matching between coalitions S ⊆ M and T ⊆ M′ is a subset µ of S× T such that each
player belongs to at most one pair in µ. Given two coalitions S ⊆ M and T ⊆ M′, we denote
the set of matchings between S and T by M(S, T); then, the maximum value that S ∪ T can
obtain from cooperation is maxµ∈M(S,T) ∑(i,j)∈µ aij.

Given an assignment situation ((M, M′), A), the associated assignment game (M ∪ M′, v)
is defined by

v(S ∪ T) = max
µ∈M(S,T)

∑
(i,j)∈µ

aij.

Given an optimal matching µ ∈ M(M, M′) for M and M′, Shapley and Shubik (1972) show
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that the nonempty core of the assignment game v is given by

Core(v) =

(x, y) ∈ RM×M′

∣∣∣∣∣∣∣∣∣∣
xi ≥ 0 for all i ∈ M, yj ≥ 0 for all j ∈ M′,
xi + yj = aij if (i, j) ∈ µ,
xi + yj ≥ aij if (i, j) 6∈ µ,
xi = 0 if i is not assigned by µ, yj = 0 if j is not assigned by µ


Theorem 5.1. Assignment games are 2-compromise stable.

Proof. Let ((M, M′), A) be an assignment situation and let (M ∪ M′, v) be the associated as-
signment game. It suffices to show that Core(v) = CC2(v). By Theorem 3.6, we know that
Core(v) ⊆ CC2(v). Therefore, we only need to show that Core(v) ⊇ CC2(v). Let µ ∈ M(M, M′)
be an optimal matching for M and M′, let (x, y) ∈ CC2(v), and let i ∈ M and j ∈ M′. Clearly,
vm({i}) ≤ xi ≤ vD({i}) and vm({j}) ≤ yj ≤ vD({j}) for every i ∈ M and j ∈ M′. Note that
vm({i}) ≥ v({i}) = 0, and vm({j}) ≥ v({j}) = 0, thus,

xi ≥ 0 for all i ∈ M and yj ≥ 0 for all j ∈ M′.

First, let (i, j) ∈ µ. Then,

vD({i, j}) = v(M ∪M′)− v((M \ {i}) ∪ (M′ \ {j})) = aij = v({i, j}) ≤ vm({i, j}) ≤ vD({i, j})

where the second equality follows because µ is optimal for M and M′ and (i, j) ∈ µ. Therefore,
all inequalities are equalities. Since (x, y) ∈ CC2(v), we have that aij = vm({i, j}) ≤ xi + yj ≤
vD({i, j}) = aij and

xi + yj = aij.

Second, let (i, j) 6∈ µ. Then, vm({i, j}) ≥ v({i, j}) = aij. Since xi + xj ≥ vm({i, j}), we have that

xi + yj ≥ aij.

Third, let i ∈ M be not assigned by µ. Then,

vD({i}) = v(M ∪M′)− v((M \ {i}) ∪M′) = 0 = v({i}) ≤ vm({i}) ≤ vD({i})

where the second equality follows because µ is optimal for M and M′ and i is not assigned by
µ. Therefore, all inequalities are equalities. Since (x, y) ∈ CC2(v), we have that 0 = vm({i}) ≤
xi ≤ vD({i}) = 0 and

xi = 0.

Analogously, if j ∈ M′ is not assigned by µ, then, vm({j}) = 0 = vD({j}) and

yj = 0.
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Therefore, (x, y) ∈ Core(v).

Remark 5.1. In fact, it can be seen that the core of an assignment game coincides with the 2-
core of the corresponding minimal rights game and with the 2-anti core of the utopia game.
Therefore, the class of assignment games satisfies the conditions in Lemma 4.11 c).

The following example illustrates that assignment games can be 1-compromise stable.

Example 5.2. Consider M = {1, 2, 3} and M′ = {4} and the assignment matrix A = (1, 1, 1)t. It is
easy to check that Core(v) = {(0, 0, 0, 1)} = CC1(v). This game is both 1- and 2-compromise stable.

Consider M = {1, 2} and M′ = {3, 4} and the assignment matrix

A =

(
5 3
4 3

)
.

Then, Core(v) = con{(0, 0, 5, 3), (1, 0, 4, 3), (3, 3, 2, 0), (4, 3, 2, 1)} = CC2(v) while Core(v) 6= CC1(v)
since (1, 3, 1, 3) ∈ CC1(v) \ Core(v). This game is 2-compromise stable, but not 1-compromise stable.

Appendix

In this Appendix, we provide a proof of Theorem 4.8. First, we recall the duality theorem.

Lemma A.1 (Duality theorem). Let A ∈ Mm×n(R) be an m× n matrix, b ∈ Rm, and c ∈ Rn. If
{x ∈ Rm : xT A ≥ bT} 6= ∅ and {y ∈ Rn : Ay = c, y ≥ 0} 6= ∅, then,

min{xTc : x ∈ Rm, xT A ≥ bT} = max{bTy : y ∈ Rn, Ay = c, y ≥ 0}.

Proof of Theorem 4.8. Using the definition of the utopia game and the fact that every element
of the k-core cover satisfies efficiency, we can reformulate the definition of the k-core cover as
follows

CCk(v) =

x ∈ RN :
∑i∈R xi ≥ vm(R) for all R ⊆ N, 0 < |R| ≤ k,

∑i∈R xi ≥ v(R) for all R ⊆ N, |N| − k ≤ |R| < |N|
∑i∈N xi = v(N)

 .

Therefore, the k-core cover is the set of optimal solutions to the linear programming problem
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(P) given by

(P) min ∑
i∈N

xi

∑
i∈R

xi ≥ vm(R) for every R ⊆ N with 0 < |R| ≤ k,

∑
i∈R

xi ≥ v(R) for every R ⊆ N with |N| − k ≤ |R| < |N|,

∑
i∈N

xi ≥ v(N)

if the optimal value is v(N). Note that the corresponding dual programming problem (D) is

(D) max ∑
R⊆N:

0<|R|≤k

δRvm(R) + ∑
R⊆N:

|N|−k≤|R|<|N|

δRv(R) + δNv(N)

∑
R⊆N:

0<|R|≤k

δReR + ∑
R⊆N:

|N|−k≤|R|<|N|

δReR + δNeN = eN ,

δR ≥ 0 for all R ⊆ N with 0 < |R| ≤ k,
δR ≥ 0 for all R ⊆ N with |N| − k ≤ |R| < |N|,
δN ≥ 0.

Obviously, the set of feasible solutions of (P) is nonempty (we can take xi = a ∈ R for every
i ∈ N with a big enough so that ∑i∈R xi = |R|a ≥ vm(R) for every R ⊆ N with 0 < |R| ≤ k,

∑i∈R xi = |R|a ≥ v(R) for every R ⊆ N with |N| − k ≤ |R| < |N|, and ∑i∈N xi = |N|a ≥ v(N)).
Moreover, the set of feasible solutions of (D) is nonempty (we can take δN = 1 and δR = 0
for every R ⊆ N with either 0 < |R| ≤ k, or |N| − k ≤ |R| < |N|). Besides, we have that
CCk(v) 6= ∅ if, and only if, v(N) is the optimal value of the linear programming problem (P)
which, by Lemma A.1, is true if, and only if, v(N) is the optimal value of the dual programming
problem (D). This is true if, and only if,

v(N) ≥ ∑
R∈B:

0<|R|≤k

δRvm(R) + ∑
R∈B:

|N|−k≤|R|<|N|

δRv(R) + δNv(N)

for every B ∈ Fk,|N|−k(N) and for every δ ∈ ∆(B). Using the definition of utopia game, we can
rewrite the equation above as

v(N) ≥ ∑
R∈B:

0<|R|≤k

δRvm(R)− ∑
R∈B:

|N|−k≤|R|<|N|

δRvD(N \ R) + ∑
R∈B:

|N|−k≤|R|<|N|

δRv(N) + δNv(N)

for every B ∈ Fk,|N|−k(N) and for every δ ∈ ∆(B).

To conclude the proof, we show that v is k-compromise admissible if, and only if, it satisfies
the inequalities for minimal balanced families on N in Fm

k,|N|−k(N). Note that if a game is k-
compromise admissible, then, it also satisfies the inequalities for minimal balanced families on
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N in Fm
k,|N|−k(N). Therefore, we only have to show that if v satisfies the inequalities for every

minimal balanced family on N inFm
k,|N|−k(N), then, it is also k-compromise admissible. Assume

that v satisfies the inequalities for every minimal balanced family on N in Fm
k,|N|−k(N), and let

B ∈ Fk,|N|−k(N) \ Fm
k,|N|−k(N) and {δR}R∈B ∈ ∆(B). Then, there exist B1, . . . ,Br ∈ Fm

k (N) and

t1, . . . , tr ∈ (0, 1) with ∑r
l=1 tl = 1 such that B = ∪r

l=1Bl and δR = ∑l∈{1,...,r}:Bl3R tlγ
Bl
R . If N 6∈ B,

then,

∑
R∈B:

0<|R|≤k

δRvm(R)− ∑
R∈B:

|N|−k≤|R|<|N|

δRvD(N \ R) + ∑
R∈B:

|N|−k≤|R|<|N|

δRv(N)

= ∑
R∈B:

0<|R|≤k

( ∑
l∈{1,...,r}:

R∈Bl

tlγ
Bl
R )vm(R)

− ∑
R∈B:

|N|−k≤|R|<|N|

( ∑
l∈{1,...,r}:

R∈Bl

tlγ
Bl
R )vD(N \ R) + ∑

R∈B:
|N|−k≤|R|<|N|

( ∑
l∈{1,...,r}:

R∈Bl

tlγ
Bl
R )v(N)

=
r

∑
l=1

tl

 ∑
R∈Bl :

0<|R|≤k

γBl
R vm(R)− ∑

R∈Bl :
|N|−k≤|R|<|N|

γBl
R vD(N \ R) + ∑

R∈Bl :
|N|−k≤|R|<|N|

γBl
R v(N)



≤
r

∑
l=1

tl

(1− ∑
R∈Bl :

|N|−k≤|R|<|N|

γBl
R

)
v(N) + ∑

R∈Bl :
|N|−k≤|R|<|N|

γBl
R v(N)


=

r

∑
l=1

tlv(N) = v(N).

If N ∈ B, let Br = {N}. Note that B \ {N} ∈ Fk,|N|−k and {δ′R}R∈B\{N} ∈ ∆(B \ {N}) with
δ′R = δR

1−δN
for every R ∈ B \ {N}. Then,

∑
R∈B:

0<|R|≤k

δRvm(R)− ∑
R∈B:

|N|−k≤|R|<|N|

δRvD(N \ R) + ∑
R∈B:

|N|−k≤|R|<|N|

δRv(N) + δNv(N)

= (1− δN)

 ∑
R∈B\{N}:
0<|R|≤k

δ′Rvm(R)− ∑
R∈B\{N}:

|N|−k≤|R|<|N|

δ′RvD(N \ R) + ∑
R∈B\{N}:

|N|−k≤|R|<|N|

δ′Rv(N)

+ δNv(N)

≤ (1− δN)v(N) + δNv(N) = v(N)

where the inequality follows from above. 2

22



References

Aumann R., Maschler M. (1985) Game theoretic analysis of a bankruptcy problem from the
Talmud. Journal of Economic Theory 36:195–213

Bondareva, O.N. (1963) Some applications of linear programming methods to the theory of
cooperative games. Problemy Kibernitiki 10:119–139 (in Russian)

Gillies, D.B. (1953) Some theorems on n-person games. PhD thesis, Princeton University

Gillies, D.B. (1959) Solutions to general non-zero-sum games. Annals of Mathematical Studies
40, 47–85.

Núñez, M. and Rafels, C. (2002) The assignment game: the τ-value. International Journal of
Game Theory 31:411–422

O’Neill, M. (1982) A problem of rights arbitration from the Talmud. Mathematical Social Sci-
ences 2, 345–371.

Potters, J., Poos, R., Muto, S., Tijs, S.H. (1989) Clan games. Games and Economic Behavior
1:275–293

Quant, M., Borm, P., Reijnierse, H., van Velzen, B. (2005) The core cover in relation to the nucle-
olus and the weber set. International Journal of Game Theory 33:491–503

Schmeidler, D. (1969) The nucleolus of a characteristic function game. SIAM Journal on applied
mathematics 17: 1163–1170

Shapley, L.S. (1967) On balanced sets and cores. Naval Research Logistics Quarterly 14:453–460

Shapley, L.S. (1971) Cores of convex games. International Journal of Game Theory 1:11–26

Shapley, L.S. and Shubik, M. (1972) The assignment game I: the core. International Journal of
Game Theory 1:111–130

Tijs, S. and Lipperts, F. (1982) The hypercube and the core cover of the n-person cooperative
games. Cahiers du Centre d’Études de Recherche Opérationnelle 24:27–37

Weber, R.J. (1988) Probabilistic values for games. In: Roth, A. E. (Ed.), The Shapley value. Essays
in honor of L. S. Shapley. Cambridge University Press, Cambridge, pp. 101–119.

23


