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Abstract

We model situations in which a principal provides incentives to a
group of agents to participate in a project (such as a social event or a
commercial activity). Agents’ benefits from participation depend on
the identity of other participating agents. We assume bilateral exter-
nalities and characterize the optimal incentive mechanism. Using a
graph-theoretic approach we show that the optimal mechanism pro-
vides a ranking of incentives for the agents, which can be described as
arising from a virtual popularity tournament among the agents. One
implication of our analysis is that higher levels of asymmetry of ex-
ternalities enable a reduction of the principal’s payment. In addition,
a slight change in the externality that an agent induces on others can
result in a substantial change in the payment that he receives from
the principal.
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1 Introduction

By multi-agent initiative we refer to a venture initiated by a certain party
(henceforth a principal), the success of which depends on the participation of
other agents. An agent willingness to participate depends, among other fac-
tors, on the participation of others. More specifically, when an agent decides
whether or not to participate she takes into account not only how many other
agents are expected to participate but, more importantly, who is expected to
participate. Finally, the principal provides incentives to the agents and has
to design these incentives optimally in view of the prevailing externalities.
Obvious examples of multi-agent initiatives are various hedonic activities
such as throwing a party or organizing a scientific conference where an agent
simply enjoys the activity with some of his peers more than with others. But
there are plentiful non-hedonic examples where the type-dependent external-
ities are pecuniary. Consider a firm (the principal) that makes acquisition
offers to several owners of other firms (agents). A successful initiative would
be a gathering of enough market power by the principal firm to maximize its
profits, and participation would be willingness on the part of the agents to
sell. An owner’s willingness to sell is also affected by the question of which
of his rivals are also expected to be purchased. An owner of a mall (or the
organizer of some other marketplace) who needs a certain mixture of stores
in order to maximize profits may offer incentives to a set of store owners to
open up a store in his mall. Store’s performance is affected by the other
stores in the mall, since the externalities among stores is a crucial factor in
the decision on whether to participate. Another relevant example is that of a
firm that is trying to sell a network technology. A buyer’s (agent’s) willing-
ness to pay for the technology is affected not only by the number of buyers
that are expected to adopt the technology but also by the identity of these
buyers and the nature of the agent’s bilateral relationship with these buyers.
A similar example is that of a standardization agency that tries to introduce
a new standard for a certain technology. The producers’ willingness to sup-
port the initiative is clearly exposed to type-dependent externalities, and a
success is considered an implementation (participation) of the standard by
the firms in the market. Finally, sports club trying to recruit a set of players
faces the same participation problem with type-dependent externalities. The
same holds for a start up company trying to convince a group of venture
capital funds to invest in their project.
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The planning and execution of a multi-agent initiative consists of two
some what distinct stages: the selection stage, in which the principal selects
the target audience for the new venture, and the participation stage, in which
the principal introduces a set of incentives in order to induce the participation
of his selected target audience. While we devote most of our attention in this
paper to the second stage and investigate the optimal incentive mechanism
for full participation of a pre-selected audience, our results will also hinge
on the selection problem that the principal faces. The externalities among
agents will be given in our model by a matrix whose typical entry wi(j)
represents the extent to which agent i is attracted to the initiative when agent
j participates. An optimal mechanism is a vector of rewards (offered by the
principal to the agents) that sustains full participation at minimal total cost
(or maximal total extraction) to the principal. In characterizing the optimal
mechanisms we will focus on three main questions: 1. What is the right
order of incentives across agents as a function of the externalities; i.e., who
should be getting a higher-powered incentives and who should be rewarded
less? 2. How does the structure of externalities affect the principal’s cost of
sustaining full participation? 3. How does a slight change in the externality
that an agent induces on the others affect his reward and the principal’s
benefits?
We expose a surprising connection between the answer to the first ques-

tion listed above and the way in which teams and players are ranked in sports
tournaments. We show that under positive externalities the incentives are de-
termined by an interesting virtual popularity tournament among the agents.
In this tournament agent i beats agent j if j is attracted by i more than i
is attracted by j. In other words, agent j values the participation of agent i
more than agent i values the participation of agent j. This binary relation
among the agents gives rise to a network described by a directed graph. We
will use some graph theory methods to characterize the optimal mechanism
and discuss the connection with sports tournaments.
The idea that under positive externalities players who induce stronger

externalities on other receive a higher powered incentive is supported by an
interesting empirical paper by Gould et al (2005). This paper demonstrates
how externalities between stores in malls affect contracts offered by the malls
owners. As in our model, stores are heterogeneous in the externalities they
induce on each others. Anchor stores (such as department stores, stores with
national brand name, etc) generate large positive externalities by attracting
most of the customer traffic to the mall, and therefore increase the sales of
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non anchor stores. The most noticeable characteristic of anchor contracts is
that most anchors either do not pay any rent or pay only a trivial amount.
On average, anchor stores occupy over 58% of the total leasable space in the
mall and yet pay only 10% of the total rent collected by the mall’s owner.
In answering the second question we will point to a striking feature of the

optimal mechanism. It turns out that the principal’s cost of incentivizing
the agents increases with the level of mutuality among the agents. Put dif-
ferently, the principal gains whenever the attraction between any two agents
is distributed asymmetrically. Such greater asymmetry, we will show, allows
the principal more leverage in exploiting the externalities. This observation
has an important implication on the principal’s choice of group for the ini-
tiative in the selection stage.
With regard to the third question, we show that a strict increase in the

(positive) externalities among agents does not necessarily entail that the
principal will be strictly better off. The structure of the optimal mechanism
has some interesting implications on the way in which agents choose to affect
the externalities they induce on others. We argue that the slightest change in
the externality that an agent induces on the others can result in a substantial
change in the payment that this agent receives from the principal. This
observation suggests that interaction of the sort that we describe may give
rise to a preliminary game in which agents attempt to affect the externalities
they generate, so as to improve their future rewards. We briefly discuss this
issue at the end of the paper. Finally, while the payment for each agent in an
optimal mechanism for a given set of externalities relies on a combinatorial
problem (i.e., the directed graph) we provide a simple and intuitive formula
for the total payment (i.e., the cost of the principal to incentivize the agents).
This formula is of significant importance for the selection problem.

This work is part of an extensive literature on multi-agent incentive mech-
anisms, in which externalities arise between the agents. The structure of our
game, in which the principal offers a set of incentives and the agents can
either accept or reject the offer, is akin to various applications introduced in
the literature. These include vertical contracting models (Katz and Shapiro
1986a; Kamien, Oren, and Tauman 1992) in which the principal supplies an
intermediate good, which is a fixed input (a license to use the principal’s
patent) to N identical downstream firms (agents), who then produce substi-
tute consumer goods; exclusive dealing models (Rasmusen, Ramseyer, and
Wiley 1991; Segal and Whinston 2000) in which the principal is an incum-
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bent monopolist who offer exclusive dealing contracts to N identical buyers
(agents) in order to deter entrance of a rival; acquisition for monopoly models
(Lewis 1983; Kamien and Zang 1990; Krishna 1993) in which the principal
makes acquisition offers to N capacity owners (agents), and these capacities
are used to produce homogeneous consumer good and network externalities
models (Katz and Shapiro 1986b).
Our general approach is closely related to the seminal papers by Segal

(1999, 2003) on contracting with externalities. These papers present a gen-
eralized model for the applications mentioned above as well as others. Our
approach is also related to the incentive schemes investigated by Winter
(2004) in the context of organizations. We follow Segal (2003) and Winter
(2004) in that we do not assume that the principal can coordinate agents on
his preferred equilibrium; that is we are looking for contracts that sustain par-
ticipation as a unique Nash equilibrium. Indeed, recent experimental papers
(see, for example, Brandt and Cooper 2005) indicate that in an environment
of positive externalities players typically are trapped in the bad equilibrium
of no-participation. Furthermore, as we show in the appendix, the optimal
strategy for a principal that maximizes the net benefit under the worst-case
scenario would be to offer a mechanism that sustains full participation as a
unique Nash equilibrium. In addition, we assume that contracts are simple
and descriptive in the sense that the principal cannot provide payoffs that
are contingent on the participation behavior of other agents. Notably, all the
examples discussed above seem to share this feature.
Our main departure from the above-mentioned literature lies in the fact

that we focus on the case of heterogeneous agents with type-dependent exter-
nalities. The papers mentioned above, indeed most of the literature, assume
that externalities depend on the volume of aggregate trade and not on the
identity of the agents. Our emphasis on heterogeneous agents and type-
dependent externalities allows us to capture what is not only a more realistic
ingredient of multilateral contracts, but the key ingredient in the surprising
relation between contracting and tournaments that we expose in this paper.
Identity-type externalities were used in Jehiel and Moldovanu (1996) and
Jehiel, Moldovanu, and Stachetti (1996), which consider the sale of a single
indivisible object by the principal to multiple heterogeneous agents using
auctions, when the utilities of the agents depend on which agent ultimately
receives the good.
Finally, in contrast to the above literature which typically separates be-

tween analysis of positive externalities and analysis of negative externalities,
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we allow both positive and negative externalities to coexist.
The rest of the paper is organized as follows. We start in Section 2 with

a simple two-agent example and demonstrate the role mutuality plays in the
principal’s cost of incentivizing the agents. Section 3 introduces the gen-
eral model and Section 4 provides the solution for the participation problem
under positive externalities between the agents. In this section we examine
the influence of some attributes of the multilateral externalities on the cost
of incentivizing the agents with an optimal mechanism, and provide a few
conclusions for the selection problem. In Section 5 we consider the solution
of participation problems under negative externalities and show that agents
must be fully compensated in order to sustain full participation equilibrium.
Section 6 provides a solution for the most general case in which positive and
negative externalities coexist in the same participation problem. In Section
7 we demonstrate how this model can be used to solve optimally the selec-
tion problem. We suggest a preliminary game in Section 8 in which agents
invest effort to increase the positive externalities that they impose on others
in order to raise future rewards, so that externalities become endogenous.
We conclude in Section 9.

2 A Simple Two-Agent Example

The key ideas behind some of this paper’s results can be illustrated by using
a simple two-agent example. For this purpose, suppose that the principal
wishes to induce the full participation of agents 1 and 2 in his multi-agent
initiative as a unique Nash equilibrium. The agents’ outside option in case
they decline the offer is c > 0. Assume that the additional utility of agent i
from participating jointly with agent j in the initiative is wi(j). The principal
offers agent i a payment vi if agent i decides to participate. We assume that
the two agents act simultaneously and none of them is informed about the
participation decision of the other.
Let’s consider the situation in which mutual externalities w1(2) and w2(1)

are strictly positive and symmetric, both agents value each other equally such
that w1(2) = w2(1) > 0. How much should the principal be paying in order
to induce both agents to participate in a unique Nash equilibrium? To answer
this question first note that in order to avoid an equilibrium in which no one
is participating, the principal must offer at least one agent, say agent 1, a
reward that induces him to participate even if the other agent is expected to
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decline. Hence offer him a reward of c. Now the principal can offer agent 2 a
reward lower than c due to the externalities between the agents. Since agent
2’s payoff from participation will be w2(1) + v2 and c in case she declines,
we must have that v2 ≥ c−w2(1). Hence, the optimal principal’s reward for
agent 2 should be c − w2(1). The total reward is thus given by 2c − w2(1).
Note that if we reverse the order of the payments and pay agent 2 a reward
of c and agent 1 a reward of c − w1(2) the total payment of rewards of
the principal doesn’t change. This result is generalized in our model and
states that whenever two agents value each other equally, the determination
of which agent receives a higher-powered incentive has no influence on the
principal’s optimal cost of inducing participation. The situation is different
when externalities are not fully mutual.
Consider now a situation in which agents’ externalities are still positive

but asymmetric, i.e., w�1(2) = w1(2) + ε and w�2(1) = w2(1)− ε respectively,
when ε > 0, so that w�1(2) > w

�
2(1). Similar to the argument above, promising

agent 1 a payoff of c and agent 2 a payoff of c − w�2(1) will result in both
agents participating in a unique equilibrium. The cost of this mechanism for
the principal would be 2c − w�2(1) = 2c− w2(1) + ε. However, if we reverse
the order of incentives by paying agent 2 a payoff of c and agent 1 a payoff
of c − w�1(2) we again sustain full participation as a unique equilibrium but
with a lower cost, i.e., 2c−w�1(2) = 2c−w1(2)−ε. Thus, the principal should
exploit the fact that agent 1 favors 2 more than agent 2 favors 1 by giving
preferential treatment to 2 and providing him with a higher incentive. In the
two-agent case there are only two choices for the order of incentives. We will
later provide a general result, and demonstrate that the set of contracts that
minimize the principal’s cost of sustaining full participation is derived from
a virtual popularity tournament. Our example here also demonstrates that
the principal benefits from higher asymmetry in agents’ externalities (i.e.,
lower mutuality). Indeed, the higher ε is, the lower the principal’s payment
in the optimal incentive mechanism. This observation will be extended later
in the paper.
If externalities are negative, i.e., wi(j) < 0 and wj(i) < 0, the principal

has to compensate each agent for the damage caused by the participation of
the other. Therefore, the optimal mechanism that induces full participation
is v1 = c+ |w1(2)| and v2 = c+ |w2(1)|. This feature of full compensation in
the case of negative externalities will also be generalized later.
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3 The Model

A participation problem is given by a triple (N,w, c) where N is a set of n
agents. The structure of externalities w is an n × n matrix specifying the
bilateral externalities among the agents. A typical entry wi(j) represents
the extent to which agent i is attracted to the initiative when agent j is
participating. In addition, agents gain no additional benefit from their own
participation, and so wi(i) = 0. We assume that the agents’ preferences are
additively separable, i.e., agent i’s utility from participating jointly with a
group of agents C is j∈C wi(j) for every C ⊆ N . We assume that the
externality structure w is fixed and exogenous. Finally, c is the vector of the
outside options of the agents. For simplicity and in a slight abuse of notation,
we assume that c is constant over all agents. Our results extend trivially to
the case of differential costs.
In order to induce participation the principal sets up an incentive mech-

anism v = (v1, v2, ..., vn) by which agent i receives a payoff of vi if he decides
to participate and zero otherwise. vi are not constrained in sign and the
principal can either pay or charge his agents. Given a mechanism v agents
face a normal form game G(v). Each agent has two possible strategies in the
game: participation or default. For a given set C of participating agents,
each agent in C earns j∈C wi(j) + vi and every agent outside C earns zero.
We assume agents’ participation decisions are taken simultaneously. We say
that an incentive mechanism v is incentive-inducing (INI) if it induces all
agents to participate in a unique equilibrium of G(v). Mechanism v is said
to be optimal if in addition the sum of rewards among all INI mechanisms is
minimal. We regard an optimal mechanism as a solution for the participation
problem.1

We view the participation problem as a reduced form of the global opti-
mization problem faced by the principal which involves both the selection of
the optimal group for the initiative and the design of incentives. Specifically,
let U be a (finite) universe of potential participants. For each N ⊆ U let
v∗(N) be the total payment made in an optimal mechanism that sustains the
participation of the set of agents N in a unique equilibrium. If the principal
wishes to avoid the strategic uncertainty involving multiplicity of equilibria,

1We allow the reward-minimizing mechanism not to be INI in itself. The formal defi-
nition should be the following: v is an optimal INI mechanism if (1) there exists no INI
mechanism with less total reward and (2) for any ε > 0, {vi+ ε}i∈N is an INI mechanism.
The caveat is needed because rewards take continuous values.
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then the maximal level of net benefit she can guarantee herself is given by the
following optimization problem: maxN⊆U [u(N)− v∗(N)], where u(N) is the
principal’s gross benefit from the participation of the set N of agents. In the
appendix we show that this optimization problem is identical to the one in
which the principal maximizes the net benefit under the worst-case scenario
arising from the fact that she cannot coordinate the agents to her preferred
equilibrium. While most of our analysis will concern with the structure of
incentives within the selected set N,our results will also shed light on the
selection problem.

4 Positive Externalities

In this section we describe the optimal mechanism under positive external-
ities, i.e., wi(j) > 0 for all i, j ∈ N , such that i 9= j. In this case, agents
are more attracted to the initiative the more other agents participate. We
demonstrate how an agent’s payment is influenced by the externalities that
he induces on others as well as by the externalities that others induce on
him. We will also refer to how changes in the structure of externalities affect
the principal’s welfare.
In Proposition 1 we show that the optimal mechanism is part of a general

set of mechanisms characterized by the divide and conquer2 property. This
set of mechanisms is constructed by ordering agents in an arbitrary fashion,
and offering each agent a reward that would induce him to participate in the
initiative under the belief that all the agents who are before him participate
and all the agents who are after him default. Due to the positive externalities,
“later” agents are induced (implicitly) by the participations of others and
thus can be offered smaller (explicit) incentives. More formally, the divide
and conquer (DAC) mechanisms have the following structure:

v = (c, c− wi2(i1), c− wi3(i1)− wi3(i2), ..., c−
k

win(ik))

where ϕ = {i1, i2, ..., in} is an arbitrary order of agents. We refer to this
order as the ranking of the agents and say that v is a DAC mechanism

2See Segal (2003) and Winter (2004) for a similarly structured optimal incentive
mechanism.
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with respect to the ranking ϕ. Note that the reward for agent ik is vk,
i.e., the k’th coordinate of the vector v. The reward for agent ik increases
along with his position in the ranking. More specifically, the higher agent
ik is located in the ranking, the higher is the payment that he is offered.
Note that given mechanism v, agent i1 has a dominant strategy in the game
G(v), 3 which is to participate. Given the strategy of agent i1, agent i2
has a dominant strategy to participate as well. In general, agent ij has a
dominant strategy to participate provided that agents i1 to ij−1 participate as
well. Therefore, mechanism v sustains full participation through an iterative
elimination of dominated strategies. The following proposition provides a
necessary condition for the optimal mechanism.
Proposition 1 If v is an optimal mechanism then it is a divide and

conquer mechanism.
Proof. Let’s assume mechanism v = {vi1, vi2, ..., vin} is an optimal mech-
anism of the participation problem (N,w, c). Hence, under mechanism v
full participation is a unique Nash equilibrium. Since no-participation by all
agents is not an equilibrium, at least a single agent, henceforth i1, receives a
reward equal to his outside option c. Agent i1 chooses to participate under
any profile of other agents’ decisions. Given that agent i1 participates and an
equilibrium of a single participation is not possible, at least one other agent,
henceforth i2, must receive a reward weakly higher than c−wi2(i1). Since v
is the optimal mechanism, i2’s reward cannot exceed c− wi2(i1), and under
any profile of decisions i2 will participate. Applying this argument iteratively
on the first k − 1 agents, at least one other agent, henceforth ik, must be
incentivized with a reward equal to c− k−1

j=1 wk(j). Otherwise an equilibrium
with partial participation may arise. Hence, the optimal mechanism v must
satisfy the divide and conquer property and therefore it is a DAC mechanism
under a certain ranking ϕ.

4.1 Optimal Ranking

Our construction of the optimal mechanism for the participation problem
(N,w, c) relies on Proposition 1. Since the optimal mechanism is a DAC,

we have to search for the DAC mechanism with the lowest sum of rewards.
The ranking that corresponds to this mechanism will be called the optimal

3Since rewards take continuous values we assume that if an agent is indifferent then he
chooses to participate.
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ranking. We show that under positive externalities the optimal ranking is de-
termined by a virtual popularity tournament among the agents in which every
agent is challenged by all the other agents. The results of these matches be-
tween all pairs of agents are described by a directed graph (digraph) G(N,A),
where the vertices set N = {1, 2, ..., n} represents the agents, and A ⊂ N×N
is a binary relation on N that defines the set of arcs. Our graphs will be
simple and complete digraphs. A digraph G(N,A) is simple if (i, i) /∈ A for
every i ∈ N and complete if for every i, j ∈ N at least (i, j) ∈ A or (j, i) ∈ A.
We refer to digraphs with such properties as tournaments. Note that we
allowed both (i, j) ∈ A and (j, i) ∈ A unless i = j. We define the tournament
G(N,A) with the set of arcs A as follows:

(1) wi(j) < wj(i) ⇐⇒ (i, j ) ∈ A
(2) wi(j) = wj(i) ⇐⇒ (i, j) ∈ A and (j, i) ∈ A
The interpretation of a directed arc (i, j) in the tournament G is that

agent j values mutual participation with agent i more than agent i values
mutual participation with agent j. We will also use the term agent i beats
agent j whenever wi(j) < wj(i). A two-sided arc represents a fully mutual
situation, i.e., wi(j) = wj(i). In this case we will say that i is even with j
and the match ends in a tie.
In our solution analysis we distinguish between acyclic and cyclic graphs.

We say that a tournament is cyclic if there exists at least a single vertex v
for which there is a directed path starting and ending at v.4

4.2 Optimal Ranking for Acyclic Tournaments

A ranking ϕ is said to be consistent with tournament G(N,A) if for every
pair i, j ∈ N if i appears before j in ϕ then i beats j in the tournament G. In
other words, if agent i is ranked higher than agent j in a consistent ranking,
then agent j values agent i more than agent i values j. We start with the
following, probably known, useful lemma:
Lemma 1 If tournament G(N,A) is acyclic, then there exists a unique

ranking that is consistent with G(N,A).
Proof. First we demonstrate that there is a single node that has n − 1
outgoing arcs. Since the tournament is complete, directed, and acyclic there
cannot be two such nodes. If we assume that such a node doesn’t exist,
then all nodes in G have both incoming and outgoing arcs. Since the num-

4By definition, if (i, j) ∈ A and (j, i) ∈ A, then the tournament is cyclic.
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ber of nodes is finite, we get a contradiction for the assumption that G is
acyclic. Let’s denote this node as i1 and place its corresponding agent first
in the ranking (hence this agent beats all other agents). Now let’s consider
the subgraph G(N1, A1) which results from the removal of node i1 and its
corresponding arcs. Graph G(N1, A1) is directed, acyclic, and complete and,
therefore, following the previous argument, has a single node that has exactly
n− 2 outgoing arcs. We denote this node as i2, and place its corresponding
agent at the second place in the ranking. Note that agent i1 beats agent i2
and therefore the ranking is consistent so far. After the removal of node i2
and its arcs we get subgraph G(N2, A2) and consequentially node i3 is the
single node that has n− 3 outgoing arcs in subgraph G(N2, A2). Following
this construction, we can easily observe that the ranking ϕ = {i1, i2, ..., in}
satisfies consistency among all pairs of agents and due to its construction is
unique.

We refer to the unique consistent ranking proposed in Lemma 1 as the
tournament ranking.5 From the consistency property, if agent i is ranked
above agent j in the tournament ranking, then i beats j. Moreover, each
agent’s location in the tournament ranking is determined by the number of
his winnings. Hence, the agent ranked first is the agent who won all matches
and the agent ranked last lost all matches. As we will demonstrate later a
tournament ranking is not well defined if the tournament G(N,A) is cyclic.
In Proposition 2 a solution for the participation problem (N,w, c) with

acyclic tournaments is provided. We show that the optimal ranking is the
tournament ranking, and therefore the optimal mechanism is a DAC mech-
anism with respect to the tournament ranking. Moreover, since the tourna-
ment ranking is unique, the optimal mechanism for the participation problem
is unique as well.
The intuition behind Proposition 2 is based on the notion that if agents

i, j ∈ N satisfy wi(j) < wj(i) then the principal should exploit the fact that
j favors i more than i favors j by giving preferential treatment to i (putting
him higher in the ranking) and using agent i’s participation to incentivize
agent j. We used similar argument for the two-agent example earlier in this
paper. Applying this notion upon all pairs of agents minimizes the principal
total payment to the agents. One may think of the tournament G(N,A) as a
set of constraints that the optimal mechanism has to satisfy that eventually

5The tournament ranking is actually the unique Hamiltonian Path in tournament
G(N,A).
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leads to a ranking.
Proposition 2 Let (N,w, c) be a participation problem for which the

corresponding tournament G is acyclic. Let ϕ be the tournament ranking,
such that the optimal mechanism is given by the DAC mechanism with re-
spect to ranking ϕ.
Proof. According to Proposition 1 the optimal INI mechanism is a DAC
mechanism. Hence the optimal mechanism is derived from constructing the
optimal ranking and is equivalent to the following optimization problem:

min
{j1,j2,...,jn}

c+ [c− wj2(j1)] + ...+ [c−
n

k=1

wjn(jk)]

= min
{j1,j2,...,jn}

n · c−
1

k=1

wj1(jk) +
2

k=1

wj2(jk) + ...+
n

k=1

wjn(jk)

= max
{j1,j2,...,jn}

1

k=1

wj1(jk) +
2

k=1

wj2(jk) + ...+
n

k=1

wjn(jk)

Since no externalities are imposed on nonparticipants, the outside options
of the agents have no role in the determination of the optimal mechanism.
We will next show that the ranking that solves the maximization problem
of the principal is the tournament ranking. Let’s assume, without loss of
generality, that the tournament ranking ϕ is the identity permutation and
Wϕ =

1
k=1w1(k) +

2
k=1w2(k) + ... +

n
k=1wn(k). Wϕ is the principal’s

revenue extraction due to the fact that agents enjoy positive externalities.
We need to show that this maximal revenue is attained when the order of
agents corresponds to the tournament order.
By way of contradiction let’s assume that there exists a different ranking

denoted by σ such thatWϕ ≤Wσ. First assume that σ is obtained from ϕ by
having two adjacent agents i and j trade places such that i precedes j in ϕ.
By Lemma 1 and its proof, agent i beats agent j and wi(j) < wj(i). Having
these two agents trade places means that Wσ = Wϕ − wj(i) + wi(j) and we
have Wσ < Wϕ. Consider now the case in which i and j are not adjacent.
Using the same argument iteratively we get again that Wσ < Wϕ since any
substitution is a result of a series of adjacent substitutions. Consider now
any arbitrary ranking σ different from ϕ. Since we can move from σ to ϕ
by a finite number of swaps of the sort described above we get again that
Wσ < Wϕ. Therefore the DAC mechanism with respect to the tournament
ranking is unique and optimal.
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Proposition 2 indicates that the optimal mechanism can be viewed as
follows. First the principal pays the outside option c for each of his agents.
Then the agents participate in a tournament that matches each agent against
all other agents. The winner of each match is the agent who imposes a higher
externality on his competitor. The loser of each match pays the principal
an amount equal to the benefit that he acquires from the participation of
his competitor. Note that if agent i is ranked higher than agent j in the
tournament then it is not necessarily the case that j pays back more than i
in total. The total amount paid depends on the size of bilateral externalities
and not merely on the number of winning matches. However, the higher
agent i is located in the tournament, the lower is the total amount paid to
the principal.
It is interesting to note that the reward for the agents is not increasing

continuously as a function of the externality that each imposes on the others.
It turns out that the slightest change may increase rewards significantly. This
is due to the fact that a minor change in externalities may change the optimal
ranking and thus affect agents’ payoffs substantially.

When discussing multi-agent initiatives one possible and intuitive solution
might be to reward agents according to their measure of popularity such that
the most popular agents would be rewarded the most. This follows from
the argument that once a popular agent agrees to participate it is easier to
convince the others to join. While the term “popularity” can be defined in
many ways, most of them are vague, they all come down to the quality of
being widely accepted by others. In our context agent i’s popularity will
be n

j=1wj(i), which is the sum of externalities imposed on others by his
participation. However, as we have seen, agents’ rankings in the optimal
mechanism are determined by something more refined than the standard
definition of popularity. Agent i’s position in our ranking depends on the set
of peers that value agent i’s participation more than i values theirs. This
two-way comparison may result in a different ranking than the one imposed
by a standard definition of popularity.

Example 1 Consider a group of 4 agents with identical outside option c =
20. The externalities structure of the agents is given by matrix w as shown
in Figure 1. The tournament G is acyclic and the tournament ranking is
ϕ = (3, 1, 2, 4). Consequently, the optimal mechanism is v = (20, 17, 14, 10),
which is the divide and conquer mechanism with respect to the tournament
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ranking. Note that agent 3 who is ranked first does not have the maximal
n
j=1wj(i).

Figure 1

We note that while the principal’s cost of incentivizing full participation
is weakly decreasing with respect to the entries in the matrix of externalities
it is not strictly decreasing. Consider a two-agent example in which wi(j) >
wj(i). If we increase wi(j) by a small ε the total payment will decrease by
ε. However, if wj(i) is increased by ε, the total payment in the optimal
mechanism will remain unchanged.6 That is, the principal does not exploit
the externality j induces on i since the reverse externality is greater. In
general, let V be the optimal sum of payments of a participation problem
(N,w, c). If wi(j) > wj(i) then V is strictly decreasing with wi(j).
Solving for the optimal mechanism with an arbitrary matrix of externali-

ties may prove to be quite hard as it requires going through the combinatorial
problem of identifying the tournament ranking. However, we can express the
total cost of the optimal mechanism with a simple and intuitive formula, one
that is also a useful tool for the principal to solve the selection problem. Two
crucial terms play a role in this formula: The first measures the aggregate
level of externalities, i.e.,Kagg =

1
2
i j
wi(j); the second measures the bilateral

asymmetry among the agents and is given by Kasym =
1
2
i<j
|wi(j)− wj(i)|.

Kasym stands for the extent to which agents induce mutual externalities on
each other. The smaller the value ofKasym the higher the degree of mutuality
of the agents. Proposition 3 shows that the cost of the optimal mechanism
is additive and declining in these two measures.
Proposition 3 Let (N,w, c) be a participation problem and V be the

principal’s optimal cost of inducing participation. If the corresponding tour-
nament G(N,A) is acyclic then V = n · c−Kagg −Kasym.

6As long as the inequality holds.

15



Proof. Without loss of generality, let’s assume that the tournament ranking
ϕ is the identity permutation. Hence, under the optimal mechanism, the
principal’s payment is V = n · c− 1

j=1w1(j) + ...+
n
j=1wn(j) .

Let’s denote si(j) = sj(i) = [wi(j) + wj(i)]/2 ; ai(j) = [wi(j) − wj(i)]/2
and aj(i) = [wj(i)−wi(j)]/2. We can presentKagg andKasym in the following
manner: Kagg =

1
2

i j
wi(j) =

i< j

wi(j)+wj(i)

2
=
i<j

si(j) and Kasym =
i<j

|ai(j)|. Since wi(j) = si(j) + ai(j) we can rewrite the principal’s payment as
V = n · c − 1

j=1 {s1(j) + a1(j)}+ ...+ n
j=1 {sn(j) + an(j)} = n · c−

i<j

si(j)−
i<j
ai(j). Note that Kasym is always non-negative. Since we assumed

that the tournament is acyclic, the tournament ranking satisfies wi(j) < wj(i)
when agent i is positioned above agent j in the ranking. Hence ai(j) > 0 for
all agents, Kasym is defined properly, and thus V = n · c−Kagg −Kasym.
An interesting consequence of Proposition 3 is that the principal can

benefit from a low degree of mutuality among the agents. Corollary 3.1 argues
that the cost of the optimal mechanism for the principal is increasing with the
level of mutuality (decreasing in the level of asymmetry in the externalities
among agents). The intuition behind this result is rather simple if we consider
again the virtual tournament discussed above. In each matching that takes
place the principal extracts a “fine” from the losing agents. It is clear that
these fines are increasing with the level of asymmetry (assuming wi(j)+wj(i)
is kept constant). Hence, a higher level of asymmetry allows the principal
more leverage in exploiting the externalities. This observation may have
important implications on the principal’s selection stage.
Corollary 3.1 Let V be the principal’s cost of the mechanism for the

participation problem (N,w, c) in an acyclic tournament, then V is strictly
decreasing with the asymmetry level.
Proof. Let’s assume without loss of generality that the tournament ranking
is the identity permutation ϕ. Then the minimal payment of the principal
is V = n · c − 1

j=1w1(j) +
2
j=1w2(j) + ...+

n
j=1wn(j) . Increasing the

asymmetry level while the aggregate level of externalities remains constant
requires that a given pair of agents i, j ∈ N such that wi(j) < wj(i) satisfy
wi(j) = wi(j)−ε and wj(i) = wj(i)+ε when ε > 0. Consequently this implies
that V = V − ε. This result can be immediately observed from Proposition
3.
If we relax the requirement of a unique Nash equilibrium and assume
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that the principal wishes to sustain full participation as a not necessarily
unique equilibrium, then the cost of the optimal mechanism is substan-
tially less. In the lowest cost mechanism that sustains full participation, it
is easy to verify that in this partial implementation framework each agent
i should be getting vi = c − j wi(j). However, in this mechanism no-
participation is an additional equilibrium. The total cost of this mechanism
is Vmultiple = n · c−

i j
wi(j). In other words, under partial implementa-

tion the principal can extract the full revenue generated by the externalities.
Our emphasis on unique implementation is motivated by the fact that under
most circumstances the principal cannot coordinate the agent to play his
most-preferred equilibrium. Brandts and Cooper (2005) report experimental
results that speak to this effect. Agents’ skepticism about the prospects of
the participation of others trap the group in the worst possible equilibrium
even when the group is small. Nevertheless, one might be interested in eval-
uating the cost of moving from partial to unique implementation. Corollary
3.2 points out that this extra cost is decreasing with the level of asymmetry.
More specifically, if the asymmetry level Kasym = 0 (or, equivalently, when
wi(j) = wj(i) for all pairs), it is going to be most expensive for the princi-
pal to move from partial to unique implementation. The other extreme case
is when the externalities are always one-sided, i.e., for each pair of agents
i, j ∈ N satisfies that either wi(j) = 0 or wj(i) = 0. In this case we can show
that the extra cost is zero and full implementation is as expensive as partial
implementation. In general we have:

Corollary 3.2 Let V be the principal’s cost of the optimal (unique im-
plementation) mechanism for the problem (N,w, c) with acyclic tournament.
Then V − Vmultiple = Kagg − Kasym and V − Vmultiple is strictly decreasing
with the level of asymmetry.
Proof. The result follows immediately both from Proposition 3, where we
show that V = n · c − 1

2
i j
wi(j) − 1

2
i<j
|wi(j)− wj(i)|, and from the fact

that Vmultiple = n · c−
i j
wi(j). Taken together, the two yield V −Vmultiple =

1
2
i j
wi(j)− 1

2
i<j
|wi(j)− wj(i)| = Kagg −Kasym.

4.3 Optimal Ranking of Cyclic Tournaments

In Section 4.2 we have shown that the optimal mechanism for the partici-
pation problem can be derived from a virtual tournament among the agents
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in which agent i beats agent j if wi(j) < wj(i). The discussion was based
however, on this tournament being acyclic. If the tournament is cyclic, then
the choice of the optimal DAC mechanism (i.e., the optimal ranking) is more
delicate since Lemma 1 does not hold anymore. Any ranking is prone to
yield inconsistencies in the sense that there must be a pair i, j such that i is
ranked above j although j beats i in the tournament.7

We will show that this problem is solved in very much the same way that
it is solved in sports tournaments. Soccer, tennis, and football tournaments
involve a sequence of bilateral matches that may turn out to yield a cyclic
outcome. Various sports organizations (such as the National Collegiate Ath-
letic Association - NCAA) nevertheless provide rankings of teams/players
based on the cyclic tournament outcome. Extensive literature in operations
research suggests solution procedures for determining the “minimum viola-
tion ranking” (MVR) (Kendall 1955, Ali et al. 1986, Cook and Kress 1990,
Coleman 2005 are a few examples) that selects the ranking for which the
number of inconsistencies is minimized. It can be shown that this ranking
can be obtained as follows. Take the cyclic (directed) graph obtained by the
tournament and find the smallest set of arcs such that reversing the direc-
tion of these arcs results in an acyclic graph. The desired ranking is taken
to be the consistent ranking (per Lemma 1) with respect to the resulting
acyclic graph.8 In graph theory terminology this corresponds to the problem
of “minimum feedback arc set”. It turns out that the solution to our problem
follows a very similar path. In our framework arcs are not homogeneous and
so they will be assigned weights determined by the volume of externalities.
Instead of looking at the smallest set of arcs for which the graph becomes
acyclic, we will look for the set of arcs with minimal total weight for which
the graph is acyclic. We will explain more formally how these weights are
determined and how the optimal ranking is derived.
For a participation problem (N,w, c) and for each arc (i, j) ∈ A we define

by t(i, j) = wj(i)− wi(j) the weight of the arc from i to j. Note that t(i, j)
is always non-negative because an arc (i, j) refers to a situation in which j
favors i more than i favors j.9 Hence t(i, j) refers to the extent of the one-

7Consider, for example, the three-agent case where agent i beats j, agent j beats k,
and agent k beats i. The tournament is cyclic and any ranking of these agents necessarily
yields inconsistencies. The ranking [i, j, k], for instance, yields an inconsistency involving
the pair (i, k) since k beats i and i is ranked above agent k.

8Note that there may be multiple rankings resulting from this method.
9If the arc is two sided then t(i, j) = 0
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sidedness of the externalities between the pairs of agents. If an inconsistency
involves the arc (i, j), i.e., j precedes i although i beats j, the additional
payment for the principal relative to the consistent ordering of the pair is
t(i, j).10 For each subset of arcs S = {(i1, j1), (i2, j2), ..., (ik, jk)} we define
t(S) = (i,j)∈S t(i, j), which is the total weight of the arcs in S. For each
graph G and subset of arcs S we denote by G−S the graph obtained from G
by reversing the arcs in the subset S. Consider a cyclic graph G and let S∗

be the subset of arcs that satisfies the following:
(1) G−S∗ is acyclic
(2) t(S∗) ≤ t(S) for all S that satisfy the first condition.
Then, G−S∗ is the acyclic graph obtained from G by reversing the set of

arcs with the minimal total weight. Proposition 4 shows that the optimal
ranking of G is the tournament ranking of G−S∗ since the additional cost
from inconsistencies, t(S∗), 11 is the lowest.
Proposition 4 Let (N,w, c) be a participation problem with a cyclic

tournament G. Let ϕ be the tournament ranking of G−S∗. Then, the optimal
mechanism is the DAC mechanism with respect to ϕ.
Proof. Consider a subset of arcs S where G−S is acyclic, and assume that
the tournament ranking of G−S is ϕ = {j1, j2, ..., jn}. The payment of the
principal V under the DAC mechanism with respect to ϕ is V = n · c −

1
k=1wj1(jk) +

2
k=1wj2(jk) + ...+

n
k=1wjn(jk) . Note that each (i, j) ∈

S satisfies an inconsistency in tournament ranking ϕ. More specifically, if
(i, j) ∈ S, then although i beats j, agent j is positioned above agent i (since
arc (i, j) is reversed in G−S) and the reward of agent i is reduced by wi(j).
Note that wi(j) = wj(i)− t(i, j). Let’s provide the following substitution: If
(i, j) ∈ S then wi(j) = wj(i)−t(i, j); otherwise wi(j) = wi(j) and rewrite the
principal’s payment as V = n ·c− 1

k=1wj1(jk) + ...+
n
k=1wjn(jk) +t(S).

Note that wi(j) = max(wi(j), wj(i)); therefore all rankings differ only in
the level of t(S). Therefore, the subset S with the lowest t(S) brings V to
a minimum. Hence, the optimal mechanism is the DAC mechanism with

10Consider an inconsistency that arise from a pair of agents (i, k), when i beats k. Since
agent k precedes i the payment for agent i is reduced by wi(k). However, in a consistent
order of the agents (in which i precedes k) the payment for agent k is reduced by wk(i).
Since wi(k) < wk(i) the principal is forced to pay an additional cost of wi(k) − wk(i)
relative to the consistent ranking of the pair, which is equivalent to the weight t(i, k).
11Note that each (i, j) ∈ S∗ satisfies an inconsistency in the tournament ranking of

G−S∗.
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respect to the tournament ranking of G−S∗.

Example 2 Consider a group of 4 agents each having identical outside op-
tion c = 20. The externality structure and the equivalent cyclic tourna-
ment are demonstrated in Figure 2. The reversion of the arcs of both subsets
S∗1 = {(2, 4)}, S∗2 = {(1, 2), (3, 4)} provide acyclic graphs G−S∗1 and G−S∗2 with
minimal weights. The corresponding tournament rankings are ϕ1 = (4, 3, 1, 2)
and ϕ2 = (3, 2, 4, 1). Hence, the optimal mechanisms are v1 = (20, 13, 13, 12)
and v2 = (20, 16, 10, 12).

Figure 2

A participation problem is said to be symmetric if wi(j) = wj(i) for
all pairs i, j ∈ N . In the symmetric case, the principal cannot exploit the
externalities among the agents, and the total payment made by the principal
is identical for all rankings. This follows fromProposition 4 by noting that the
tournament has two-way arcs connecting all pairs of agents, and so t(i, j) = 0
for all i, j and t(S) is uniformly zero.
Corollary 5.1 When the externality structure w is symmetric then all

DAC mechanisms are optimal.
It is also easy to verify that for any two agents with wi(j) = wj(i),

changing the position of i and j in the optimal ranking results in another
optimal ranking.

We can now provide the analogue of Proposition 3 for the cyclic case.
In this case, the optimal ranking has an additional term Kcyclic = t(S∗)
representing the cost of making the tournament acyclic.
Proposition 6 Let (N,w, c) be a participation problem. Let V be the

principal’s optimal cost of inducing participation. Then V = n · c−Kagg −
Kasym +Kcyclic.
Proof. Consider a participation problem (N,w, c) with corresponding cyclic
tournament G(N,A). Assume that ϕ is both the optimal ranking and, with-
out the loss of generality, the identity permutation. In Proposition 3 we have
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demonstrated that the principal’s payment in the optimal mechanism can be
presented in the following way: V = n · c− 1

j=1 s1(j) + ...+
n
j=1 sn(j) −

1
j=1 a1(j) + ...+

n
j=1 an(j) , when si(j) = sj(i) =

wi(j)+wj(i)

2
; ai(j) =

wi(j)−wj(i)
2

and aj(i) =
wj(i)−wi(j)

2
. If the pair (i, j) displays an inconsistency

with respect to ϕ, i.e., i beats j and j precedes i in ϕ, then (i, j) ∈ S∗ and
ai(j) < 0. Let’s denote ai(j) = |ai(j)| so that we can express the principal’s
payment, given the optimal ranking, in the following way: V = n · c−

i j

si(j)−
i j
ai(j) + t(S

∗). Therefore, we can conclude that under cyclic tour-

naments the principal’s payment is V = n · c−Kagg −Kasym +Kcyclic.
We note that Corollary 3.1 still holds for pairs of agents that are not

in S∗. More specifically, if we decrease the level of mutuality over pairs of
agents that are outside S∗, we reduce the total expenses that the principal
incurs in the optimal mechanism.

5 Negative Externalities

So far we have limited our discussion to environments in which an agent’s
participation positively affects the willingness of other agents to participate;
i.e., we assumed that externalities are positive. We now turn to the orthogo-
nal case in which externalities are all negative. Later in Section 6 we discuss
the general case of mixed externalities.
The most relevant environments of negative externalities are those of

congestions. Traffic, market entry, and competition among applicants are
all examples that share the property that the more agents that participate,
the lower the utility of each participant is. The type-dependent property in
our framework seems quite descriptive in some of these examples. In the
context of competition it is clear that a more competitive candidate/firm
induces a larger externality (in absolute value) than a less competitive one.
It is also reasonable to assume, at least for some of these environments, that
the principal desires a large number of participants in spite of the negative
externalities that they induce on each other.
We show that in order to sustain full participation as a unique Nash equi-

librium under negative externalities the principal has fully to compensate all
agents for the participation of the others. This means that the optimal mech-
anism under negative externalities is not a DAC mechanism. As we have
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seen, positive externalities allow the principal to exploit the participation of
some agents in order to incentivize others. With negative externalities this
is not the case as agents’ incentives to participate decline with the partici-
pation of the others. Hence it remains for the principal simply to reimburse
the agents for the disutility arising from the participation of the others.
Proposition 6 Let (N,w, c) be a participation problem with negative

externalities. Then the unique optimal mechanism v is given by vi = c +

i�=j |wi(j)|
Proof. Mechanism v induces a dominant strategy for all agents, which is to
participate, since for all agents ui = n

i=1wi(j)+vi = c, which means that it
is optimal for a player to participate under the worst-case scenario in which
all other players participate. Hence, participation by all players is a unique
Nash equilibrium. To show that v is optimal, consider a mechanism m for
which mi < vi for some agents and mi = vi for the rest. Let’s assume by
contradiction that full participation equilibrium holds under mechanism m.
Consider an agent i for which mi < vi. If all other players are participating,
then player i’s best response is not to participate because ui = n

i=1wi(j) +
mi < c. Hence, v is a unique and optimal mechanism.

6 Mixed Externalities

While our solution for positive externalities builds on a virtual tournament
among the agents, we demonstrated that when externalities are negative the
optimal mechanism is simple and unique: agents are fully compensated for
the disutility imposed by the participation of others. We are now going to
deal with the general case of mixed externalities where the matrix of exter-
nalities consists both positive and negative entries. It turns out that the
optimal mechanism for this case is a hybrid solution combining the structure
of the optimal mechanisms in the two special cases (positive and negative
externalities). Specifically, we shall show that the optimal mechanism for
the mixed case can be derived by decomposing the problem into two sep-
arate problems, one with positive externalities and the other with negative
externalities. The optimal mechanism for the original (mixed) problem will
be obtained by adding agents’ compensation payoffs to the solution of the
positive participation problem. Formally:

Proposition 7 Let v be the optimal mechanism of a participation prob-
lem (N,w, c). Let (N, q, c) be an amended participation problem such that
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qi(j) = wi(j) if wi(j) > 0 and qi(j) = 0 if wi(j) < 0, and let u be the opti-
mal mechanism of (N, q, c). Then, vi = ui + j∈Di |wi(j)| where Di = {j |
wi(j) < 0 s.t. i, j ∈ N}.
Proof. Let’s assume without loss of generality that the optimal ranking
of the participation problem (N, q, c) is ϕ = {1, 2, ..., n} and the optimal
mechanism is u. In addition, let Di be the set of agents who induce neg-
ative externalities on agent i, and hence Di = {j | wi(j) < 0 s.t. j ∈ N}
and gi : C → R for C ⊆ N the compensation function, which is defined by
gi(Di) = j∈Di |wi(j)|. Finally, let v be an optimal mechanism of the mixed
participation problem (N,w, c). To induce full participation as a unique equi-
librium, we must rule out the “no participation” equilibrium. This is achieved
by providing at least one agent with the incentive to participate under any
profile of strategies. Consider the reward u1 of the agent ranked first at ϕ.
If D1 = ∅ then agent 1 will participate under any set of profiles and v1 = u1.
However, if D1 9= ∅, then agent 1 must be rewarded v1 = c + g1(D1) in or-
der to enable his participation under the worst-case scenario in which only
agents who negatively affect agent 1 participate. To deter a single participa-
tion equilibrium, agent 2’s reward is v2 = u2 if D2 = ∅ . However, if D2 9= ∅,
he also must be compensated for the worst-case scenario and therefore the
minimal reward is v2 = u2+g2(D2). Following this construction, since agents
{1, ..., k − 1} are participating the agent located at the k’th position in the
optimal ranking ϕ will be offered vk = uk if Dk = ∅, and vk = uk + gk(Dk)
if Dk 9= ∅ . Under this mechanism, the participation game is dominant solv-
able, and full participation is a unique equilibrium. In addition, the sum of
rewards V = ui + |Di| is optimal since mechanism u is optimal.

Proposition 7 implies that the virtual tournament we discussed in earlier
sections plays a central role also in the mixed externalities case because
it determines payoffs for the positive component of the problem. In this
tournament i beats j whenever (1) wj(i) > 0, and (2) wj(i) > wi(j) (where
wi(j) can be either positive or negative) We use the following example to
demonstrate how the optimal mechanism is derived in the mixed externalities
case.

Example 3 Consider a group of 4 agents each having identical outside op-
tion c = 20. The externality structure of the agents is demonstrated by matrix
w, as shown in Figure 3. The positive externality component (N, q, c) of the

decomposition yields the optimal ranking ϕ = (4, 3, 2, 1). The corresponding
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optimal mechanism of the positive component is u = (20, 16, 3, 15). Adding
compensations for negative externalities results in the optimal mechanism
v = (20, 20, 4, 17). Note that S∗ = {(1, 3)}.

Figure 3
We conclude this section by deriving the analogous result to Propositions

3 and 6 in the case of mixed externalities. We show that the principal’s cost
of incentivizing his agents is decomposed in pretty much the same way as
in the positive externalities case, only that now the principal has to add the
compensation for the negative externalities. Specifically:
Proposition 8 Let (N,w, c) be a mixed participation problem and V

be the payment of the optimal mechanism v. Let (N, q, c) be an amended
participation problem such that qi(j) = wi(j) if wi(j) > 0 and qi(j) = 0
if wi(j) < 0. In addition, let Kagg, Kasym, and Kcyclic be the characteristics
of the amended participation problem (N, q, c). Then, V = n · c − Kagg −
Kasym +Kcyclic + (i,j)∈D |wi(j)| when D = {(i, j) | wi(j) < 0 s.t. i, j ∈ N}.

7 Group Identity and Selection

In this section we demonstrate our model as a special case in which external-
ities assume the values 0 and 1. We interpret it as an environment in which
an agent either benefits from the participation of his peer or gains no benefit.
We provide three examples of group identity in which the society is parti-
tioned into two groups and agents have hedonic preferences over members in
these groups:

(1) Segregation - agents benefit from participating with their own group’s
members and enjoy no benefit from participating with members from
the other group. More specifically, consider the two groups B1 and B2
such that for each i, j ∈ Bk , k = 1, 2, we have wi(j) = 1. Otherwise,
wi(j) = 0.
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(2) Desegregation12 - agents benefit from participating with the other
group’s members and enjoy no benefit from participating with members
of their own group. More specifically, consider the two groups B1 and
B2 such that for each i, j ∈ Bk , k = 1, 2, we have wi(j) = 0. Otherwise,
wi(j) = 1.

(3) Status - the society is partitioned into two status groups, high and
low. Each member of the society benefits from participating with each
member of the high status group and enjoys no benefit from partici-
pating with members of the low status group. Formally, let B1 be the
high status group and set wi(j) = 1 if and only if j ∈ B1 (otherwise
wi(j) = 0).

We show that in a segregated environment the principal cost of incentives
is increasing with the level of mixture, while in the anti-segregation case the
principal’s cost is declining with mixture. In the Status case the cost is
declining with the number of agents recruited from B1.

Proposition 9 Let (N,w, c) be a participation problem. Let n1 and n2
be the number of agents selected from groups B1 and B2 respectively such
that n1 + n2 = n. Denote by v(n1, n2) the principal cost of incentivizing
agents under the optimal mechanism given that the group composition is n1
and n2. The following holds:
1) under Segregation v(n1, n2) is declining in | n1 − n2|.
2) under Desegregation v(n1, n2) is increasing in | n1 − n2|.
3) under Status v(n1, n2) is increasing in n1.

Proof. In both segregated and desegregated environments the externality
structure is symmetric and, following Corollary 5.1, all rankings are optimal.
Let’s consider first the segregated environment. Since all rankings are opti-
mal, a possible optimal mechanism is v = (c, ..., c−(n1−1), c, ..., c−(n2−1)).
Hence, the optimal payment for the principal is v(n1, n2) = n · c− n1−1

l=1 l−
n2−1
k=1 k = n · c− n1(n1−1)

2
− (n−n1)(n−n1−1)

2
. Assuming that v(n1, n2) is contin-

uous with n1 then
∂v(n1,n2)

∂n1
= −1/2(2n1 − 1 − 2(n − n1) + 1) = 0 and since

∂2v(n1,n2)
∂n21

< 0 the maximum is achieved when n∗1 =
n
2
, which is the worst-case

scenario for the principal in the segregated environment, and therefore the
cost of incentivizing is declining with | n1−n2|. With respect to the desegre-
gation example, a possible optimal mechanism is v = (c, ..., c, c−n1, ..., c−n1).
12Like a singles party.
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Therefore, the principal’s payment is v(n1, n2) = n · c− (n− n1) · n1. Again,
let’s assume that v(n1, n2) is continuous with n1, in which case solving
∂v(n1,n2)

∂n1
= −n + 2n1 = 0 results that since ∂2v(n1,n2)

∂n21
> 0 the minimum

payment for the principal in the desegregated environment is received at
n∗1 =

n
2
, and the cost of incentivizing is increasing with |n1 − n2|. Finally,

in a status environment, due to the many externalities’ equalities among the
agents there may be numerous optimal rankings. However, since group B1
is the more esteemed group, all agents from B1 beat all agents from B2;
therefore agents from B1 should precede the agents from B2 in the opti-
mal ranking. A possible optimal ranking is ϕ = {i1, ., , , in1, j1, ..., jn2} when
ik ∈ B1, jm ∈ B2 and 1 ≤ k ≤ n1, 1 ≤ m ≤ n2. Therefore, a possible optimal
mechanism is v = (c, ..., c−(n1−1), c−n1, ..., c−n1). The principal’s payment
is v(n1, n2) = n · c− n1−1

l=1 l − n2 · n1 = n · c− n1(n1−1)
2
− (n− n1)n1. Again,

assuming that v(n1, n2) is continuous with n1, then
∂v(n1,n2)

∂n1
= n1+

1
2
−n = 0

and since ∂2v(n1,n2)
∂n21

> 0 the minimal payment for the principal is achieved at

n∗1 = n− 1
2
. Note that V (n1 = n) = V (n1 = n− 1) = n · c− n(n−1)

2
. There-

fore, we can say that the best scenario for the principal is when n1 = n.
Alternatively, the cost of incentivizing is increasing with n1.

8 Endogenous Externalities

In this paper we analyzed a model of multi-agent initiatives with exogenous
externalities, i.e., i’s level of attraction of j, wi(j) is fixed and exogenous.
As we saw, the matrix of bilateral externalities affects agents’ payoffs. This
may suggest some preliminary game in which agents invest effort to increase
the positive externalities that they induce on others. For example, agents
can invest in their social skills to make themselves more attractive invitees
to social events. A firm may invest to increase its market share in order
to improve its tournament’s position in an acquisition game. Indeed, under
certain circumstances such an investment may turn out to be extremely at-
tractive as we have seen that a slight change in externalities may result in a
substantial change in rewards. The preliminary game on externalities can be
thought of as a network formation game similar to the ones discussed in the
network formation literature (see Jackson 2003 for a comprehensive survey).
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Specifically, consider a selection13 of an optimal mechanism function that
maps each matrix of externalities to a payoff vector Γ : w → π (payoffs for
agents include both the transfer from the principal as well as the intrinsic
benefits from participation). One can think of the matrix of externalities as
a generalized network in the sense that it specifies the intensity14 of links, in
contrast to standard networks which only specify whether a link exists. If we
assume that agents can increase bilateral externalities according to a given
cost function we will have that the externalities become endogenous. The
new game will now have two stages. The first one is a network formation
game (that determines the externalities) and the second stage is the partici-
pation game. The analysis of such a game is beyond the scope of this paper
but we find this task to be a fascinating next step.

9 Conclusion

In this paper we explored the implications of the type-dependent externalities
in a regular principal multiple agents environment. We exposed an interest-
ing relation between the participation problem and sports tournaments and
illustrated the importance of externality asymmetry in enabling a reduction
of the incentives paid by the principal. In addition, we have shown that con-
trary to the intuition, providing the highest incentive to the most popular
agent would not necessarily produce the best results. Moreover, an increase
in the positive externalities in the group would not always provide a reduc-
tion in the necessary incentives. Conditions under which such changes are
efficient were given. In addition, we provided the general terms under which
agents would be interested in affecting the externalities that they induce on
others in order to increase their future rewards. But, also the principal can
significantly benefit from such changes. In this case, the principal can affect
these relations already in his selection stage of the initiative.
This model is related to a growing branch of literature - two sided markets.

In this literature, a platform principal’s aim is to attract buyers and sellers
to use his platform (such as a credit card company) by taking advantage

13We refer to selection because the optimal mechanism may not be unique.
14See Calvo, Lasaga, and van den Nouweland (1999), Calvo-Armengol and Jackson

(2001, 2001b), Goyal and Moraga (2001), and Page, Wooders, and Kamat (2001) for such
models.
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of the externalities they impose on each other and gain from their trades.
One can easily use our framework to describe a multi sided markets, by
characterizing the externalities between the sides and solving for the optimal
incentive mechanism that induce the sides to participate.

Finally, we have assumed that agents make their participation decisions
simultaneously (i.e., in ignorance of the participation decisions of the oth-
ers). An alternative track of modeling would be to assume that the principal
approaches agents sequentially and makes participation decisions publicly
known. A model of this sort may potentially be able to address some other
interesting issues concerning joint initiatives, including the optimal sequenc-
ing and the way it is affected by the structure of externalities. Related to
this is Winter (2006), which addresses similar issues in a moral hazard model
of incentives in organizations.
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10 Appendix

Consider a more general participation problem in which the targeted set of
participants is determined endogenously by weighting the principal’s ben-
efits from participation with the cost of providing incentives. Specifically,
the principal is facing a (finite) universe U of agents from which she has
to select a group N ⊂ U for the initiative. The principal’s gross benefit
from the participation of N is denoted by u(N). The incentive mechanism
v offers each agent i ∈ U a payoff vi if i participates and zero if he does-
n’t. For a mechanism v we denote by E(v) the collection of all groups that
can participate in equilibrium under v, i.e., for N ∈ E(v) if and only if
there exists an equilibrium of G(v) with N being the group of participants.
We also denote by C(v) = i∈U vi the total cost of the mechanism v. Un-
der the worst-case scenario the mechanism v will generate a net benefit of
minN∈E(v)[u(N)−C(v)]. Hence, a principal who wishes to maximize his net
benefit under the worst-case scenario will attempt to choose a mechanism
v that solves maxvminN∈E(v)[u(N) − C(v)]. Proposition A1 asserts that to
solve this problem the principal needs to design the optimal mechanism for
group N (i.e., sustaining the participation of N as a unique equilibrium as
we did earlier in the paper) and then select the optimal group. Formally:

Proposition 10 For eachN ⊂ U let v∗|N denote the optimal mechanism
sustaining full participation as a unique equilibrium when the set of agents
is in N (as in our model in Section 3). Then

max
v

min
N∈E(v)

[u(N)− C(v)] = max
N
[u(N)− C(v∗|N)]

Proof. Let d(N |v) = u(N) − C(v) and consider v̂ to be the mechanism
that maximizes minN∈E(v)[u(N) − C(v)]. In addition, Let N̂ be a group
of participants in an equilibrium that has the minimal value under mech-
anism v̂; hence N̂ ∈ argminN∈E(v) d(N |v̂). Let N be the smallest subset of

N̂ that belongs to E(v̂). We will demonstrate that d(N̂ |v̂) = d(N |v̂).15 If
N̂ =N then d(N̂ |v̂) = d(N |v̂) and we’re done. Let N ⊂ N̂ and assume
by contradiction that d(N̂ |v̂) > d(N |v̂). Since N is the smallest subset of
N̂ there is no equilibrium A ∈ E(v̂) such that A ⊂N , and therefore the
equilibrium that results from the payments v̂i for every i ∈ N must be

15Actually, we show that d(N̂ |v̂) ≥ d(N |v̂), but since N̂ ∈ argminN∈E(v̂) d(N |v̂), the
equality must hold.
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unique. Since v∗|N is an optimal mechanism that sustains a unique equilib-
rium of N we have by definition C(v∗|N) ≤ C(v̂) and therefore d(N |v∗) ≥
d(N |v̂). Note that since E(v∗) = {N} then d(N |v∗) = minN∈E(v∗) d(N |v∗).
Therefore, minN∈E(v∗) d(N |v∗) ≥ d(N |v̂) > d(N̂ |v̂) = minN∈E(v) d(N |v̂), in
contradiction to the assumption that v̂ is the mechanism that maximizes
minN∈E(v) d(N |v). Thus, d(N |v̂) = d(N̂ |v̂) and d(N |v̂) = minN∈E(v̂) d(N |v̂).
Moreover, since v̂ is optimal C(v∗|N) = C(v̂) then v∗ also maximizes
minN∈E(v) d(N |v). Hence, the optimization problem maxvminN∈E(v)[u(N)−
C(v)] is solved with the pair (N, v) that brings the maximal value d(N |v) such
that v is the optimal mechanism that induces N to be a unique equilibrium,
which is equivalent to maxN [u(N)− C(v∗|N)].
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