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José Maŕıa Alonso–Meijide†, Francesc Carreras‡ and Maŕıa Albina Puente§
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Abstract

The symmetric coalitional binomial semivalues extend the notion of binomial
semivalue to games with a coalition structure, in such a way that they gener-
alize the symmetric coalitional Banzhaf value. By considering the property of
balanced contributions within unions, two axiomatic characterizations for each
one of these values are provided.
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1 Introduction

Games with a coalition structure were first considered by Aumann and Drèze [2], who
extended the Shapley value to this new framework in such a manner that the game
really splits into subgames played by the unions isolatedly from each other, and every
player receives the payoff allocated to him by the Shapley value in the subgame he is
playing within his union. A second approach was used by Owen [7], when introducing
and axiomatically characterizing his coalitional value (Owen value). In this case, the
unions play a quotient game among themselves, and each one receives a payoff which,
in turn, is shared among its players in an internal game. Both payoffs, in the quotient
game for unions and within each union for its players, are given by the Shapley value.

By applying a similar procedure to the Banzhaf value, Owen [8] got a second
coalitional value, the modified Banzhaf value for games with a coalition structure or
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Owen–Banzhaf value. In this case the payoffs at both levels, that of the unions in the
quotient game and that of the players within each union, are given by the Banzhaf
value.

Alonso and Fiestras [1] realized that the Owen–Banzhaf value fails to satisfy two
interesting properties of the Owen value: symmetry in the quotient game and the
quotient game property. Then they suggested to modify the two–step allocation
scheme and use the Banzhaf value for sharing in the quotient game and the Shapley
value within unions. This gave rise to the symmetric coalitional Banzhaf value.

The notion of p–binomial semivalue was first given by Puente [9]. Carreras and
Puente [3] extended this notion to games with a coalition structure and obtained at the
same time a wide generalization of the Alonso and Fiestras value (essentially: p ∈ [0, 1]
instead of p = 1/2), the family of symmetric coalitional p–binomial semivalues.

Our aim here is to provide two axiomatic characterizations for each symmetric
coalitional binomial semivalue, both based on the interesting property of balanced
contributions within unions. First we use it jointly with additivity, the dummy player
property, symmetry in the quotient game and the coalitional p–binomial total power
property. Next, we prove that the symmetric coalitional p–binomial semivalue is the
unique coalitional value of the p–binomial semivalue that satisfies balanced contribu-
tions within unions and the quotient game property.

The organization of the paper is as follows. In Section 2, a minimum of prelimi-
naries is provided. In Section 3 we recall the definition of the symmetric coalitional
binomial semivalues, introduce the property of balanced contributions within unions
and state and prove the characterization theorems.

2 Preliminaries

2.1 Games and semivalues

Let N be a finite set of players and 2N be the set of its coalitions (subsets of N). A
cooperative game on N is a function v : 2N → R, that assigns a real number v(S) to
each coalition S ⊆ N with v(∅) = 0. A game v is monotonic if v(S) ≤ v(T ) whenever
S ⊆ T ⊆ N . A player i ∈ N is a dummy in v if v(S ∪ {i}) = v(S) + v({i}) for all
S ⊆ N\{i}. Two players i, j ∈ N are symmetric in v if v(S ∪ {i}) = v(S ∪ {j}) for
all S ⊆ N\{i, j}.

Endowed with the natural operations for real–valued functions, the set of all co-
operative games on N is a vector space GN . For every nonempty coalition T ⊆ N ,
the unanimity game uT is defined by uT (S) = 1 if T ⊆ S and uT (S) = 0 otherwise.
Finally, every permutation θ of N induces a linear automorphism of GN given by
(θv)(S) = v(θ−1S) for all S ⊆ N and all v.

By a value on GN we will mean a map f : GN → R
N , that assigns to every game

v a vector f [v] with components fi[v] for all i ∈ N .
Following Weber’s [12] axiomatic description, ψ : GN → R

N is a semivalue iff it
satisfies the following properties:
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(i) linearity: ψ[v+v′] = ψ[v]+ψ[v′] (additivity) and ψ[λv] = λψ[v] for all v, v′ ∈ GN

and λ ∈ R;
(ii) anonymity: ψθi[θv] = ψi[v] for all θ on N , i ∈ N , and v ∈ GN ;
(iii) positivity: if v is monotonic, then ψ[v] ≥ 0;
(iv) dummy player property: if i ∈ N is a dummy in game v, then ψi[v] = v({i}).

There is an interesting characterization of semivalues, by means of weighting co-
efficients, due to Dubey, Neyman and Weber [4]. Set n = |N |. Then: (a) for every

weighting vector {pk}
n−1

k=0
such that

n−1
∑

k=0

pk

(

n−1

k

)

= 1 and pk ≥ 0 for all k, the expres-

sion
ψi[v] =

∑

S⊆N\{i}

ps[v(S ∪ {i}) − v(S)] for all i ∈ N and all v ∈ GN ,

where s = |S|, defines a semivalue ψ; (b) conversely, every semivalue can be obtained
in this way; (c) the correspondence given by {pk}

n−1

k=0
7→ ψ is bijective.

Well known examples of semivalues are the Shapley value ϕ (Shapley [10]), for
which pk = 1/n

(

n−1

k

)

, and the Banzhaf value β (Owen [6]), for which pk = 21−n. The
Shapley value ϕ is the only efficient semivalue, in the sense that

∑

i∈N

ϕi[v] = v(N) for

every v ∈ GN .
Notice that these two classical values are defined for each N . The same happens

with the binomial semivalues, introduced by Puente [9] as follows. Let p ∈ [0, 1] and
pk = pk(1 − p)n−k−1 for k = 0, 1, . . . , n− 1. Then {pk}

n−1

k=0
is a weighting vector and

defines a semivalue that will be denoted as ψp and called the p–binomial semivalue.
Of course, ψ1/2 = β.

2.2 Games with a coalition structure

Let us consider a finite set, say, N = {1, 2, . . . , n}. We will denote by P (N) the set
of all partitions of N . Each P ∈ P (N) is called a coalition structure or system of
unions on N . The so–called trivial coalition structures are P n = {{1}, {2}, . . . , {n}}
and PN = {N}. A cooperative game with a coalition structure is a pair [v;P ], where
v ∈ GN and P ∈ P (N) for a given N . We denote by Gcs

N the set of all cooperative
games with a coalition structure and player set N .

If [v;P ] ∈ Gcs
N and P = {P1, P2, . . . , Pm}, the quotient game vP is the cooper-

ative game played by the unions, or, rather, by the set M = {1, 2, . . . ,m} of their
representatives, as follows:

vP (R) = v(
⋃

r∈R

Pr) for all R ⊆M.

Unions Pr, Ps are said to be symmetric in [v;P ] if r, s are symmetric players in vP .
By a coalitional value on Gcs

N we will mean a map g : Gcs
N → R

N , which assigns to
every pair [v;P ] a vector g[v;P ] with components gi[v;P ] for each i ∈ N .

Given a value f on GN , a coalitional value of f is a coalitional value g on Gcs
N such

that g[v;P n] = f [v] for all v ∈ GN .
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3 The symmetric coalitional p–binomial semivalues

The symmetric coalitional p–binomial semivalue represents a two–step bargaining
procedure where, first, the unions are allocated in the quotient game the payoff given
by the p–binomial semivalue ψp and, then, this payoff is efficiently shared within each
union according to the Shapley value ϕ.

Definition 3.1 (Carreras and Puente [3]) Let p ∈ [0, 1]. For any fixed player set N ,
the symmetric coalitional p–binomial semivalue is the coalitional value Ωp defined on
Gcs

N by

Ωp
i [v;P ] =

∑

R⊆M\{k}

∑

T⊆Pk\{i}

pr(1 − p)m−r−1 1

pk

(

pk−1

t

) [v(Q ∪ T ∪ {i})− v(Q ∪ T )]

for all i ∈ N and [v;P ] ∈ Gcs
N , where Pk ∈ P is the union such that i ∈ Pk and

Q =
⋃

r∈R

Pr. In case p = 1/2, we get Ω1/2 = Π, the symmetric coalitional Banzhaf

value introduced by Alonso and Fiestras [1].

Definition 3.2 A coalitional value g on Gcs
N satisfies the property of balanced contri-

butions within unions if, for all [v;P ] ∈ Gcs
N , all Pk ∈ P and all i, j ∈ Pk,

gi[v;P ] − gi[v;P−j ] = gj [v;P ] − gj [v;P−i],

where P−i is the coalition structure that results when player i leaves the union he
belongs to, i.e.,

P−i = {P1, . . . , Pk−1, Pk\{i}, Pk+1, . . . , Pm, {i}},

and P−j is defined analogously. Notice that in P−i player i does not leave the game,
but only union Pk.

This property states that the loss (or gain) of a player i ∈ Pk when a player j ∈ Pk

decides to leave the union and remain alone is the same as the loss (or gain) of player
j when player i decides to leave the union. It is reminiscent of Myerson’s [5] fairness
concept.

Let us consider the following properties for a coalitional value g on Gcs
N :

• additivity : g[v + v′;P ] = g[v;P ] + g[v′;P ] for all v, v′ and P
• dummy player property : if i is a dummy in v, then gi[v;P ] = v({i}) for all P
• coalitional p–binomial total power property: for all [v;P ] ∈ Gcs

N ,

∑

i∈N

gi[v;P ] =
∑

k∈M

∑

R⊆M\{k}

pr(1 − p)m−r−1[vP (R ∪ {k})− vP (R)]

• symmetry in the quotient game: if Pr, Ps ∈ P are symmetric in [v;P ] then

∑

i∈Pr

gi[v;P ] =
∑

j∈Ps

gj [v;P ]
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• quotient game property: for all [v;P ] ∈ Gcs
N ,

∑

i∈Pk

gi[v;P ] = gk[vP ;Pm] for all Pk ∈ P

(this property makes sense only for coalitional values defined for any N ; here and in
the sequel we abuse the notation and use a unique symbol g on both Gcs

N and Gcs
M ).

In the next theorem we give a first characterization of each symmetric coalitional
p–binomial semivalue. We will need a lemma whose proof is straightforward.

Lemma 3.3 Let p ∈ [0, 1], ∅ 6= S ⊆ N , s = |S| and i ∈ N . Then ψp
i [uS ] = ps−1 if

i ∈ S, and ψp
i [uS ] = 0 otherwise. �

Theorem 3.4 (First axiomatic characterization) Let p ∈ [0, 1]. For any N there is
a unique coalitional value on Gcs

N that satisfies additivity, the dummy player property,
balanced contributions within unions, the coalitional p–binomial total power property
and symmetry in the quotient game. It is the symmetric coalitional p–binomial semi-
value Ωp.

Moreover, Ωp satisfies the quotient game property, is a coalitional value of the
p–binomial semivalue ψp, and yields Ωp[v;PN ] = ϕ[v] for all v ∈ GN .

Proof : (a) (Existence) It suffices to show that the coalitional value Ωp satisfies the
five properties enumerated in the statement.

1. Additivity. It merely follows from the expression of Ωp
i [v;P ].

2. Dummy player property. Let i ∈ N be a dummy player in game v and P be
any coalition structure. Assume i ∈ Pk. Then v(Q∪ T ∪ {i})− v(Q∪ T ) = v({i}) for
all R and T . As, moreover,

∑

R⊆M\{k}

pr(1 − p)m−r−1 = 1 and
∑

T⊆Pk\{i}

1

pk

(

pk−1

t

) = 1,

we conclude that Ωp
i [v;P ] = v({i}).

3. Balanced contributions within unions. Let us take [v;P ] ∈ Gcs
N , with P =

{P1, P2, . . . , Pm} and M = {1, 2, . . . ,m}. Let Pk ∈ P and i, j ∈ Pk. Then we have

Ωp
i [v;P ] =

∑

R⊆M\{k}

∑

T⊆Pk\{i,j}

pr(1 − p)m−r−1 (pk − t− 1)!t!

pk!
[v(Q ∪ T ∪ {i})− v(Q ∪ T )]+

∑

R⊆M\{k}

∑

T⊆Pk\{i}:j∈T

pr(1 − p)m−r−1 (pk − t− 1)!t!

pk!
[v(Q ∪ T ∪ {i}) − v(Q ∪ T )] =

∑

R⊆M\{k}

∑

T⊆Pk\{i,j}

pr(1 − p)m−r−1 (pk − t− 1)!t!

pk!
[v(Q ∪ T ∪ {i})− v(Q ∪ T )]+
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∑

R⊆M\{k}

∑

T⊆Pk\{i,j}

pr(1−p)m−r−1 (pk − t− 2)!(t+ 1)!

pk!
[v(Q∪T∪{j}∪{i})−v(Q∪T∪{j})],

where Q =
⋃

r∈R

Pr. We now consider

P−j = {P ′
1, P

′
2, . . . , P

′
m+1},

where P ′
h = Ph for h ∈ {1, . . . , k − 1, k + 1, . . . ,m}, P ′

k = Pk\{j}, P ′
m+1 = {j} and

M ′ = {1, 2, . . . ,m+ 1}, and get, in a similar way,

Ωp
i [v;P−j ] =

∑

R⊆M ′\{k}

∑

T⊆P ′

k
\{i}

pr(1 − p)m−r (pk − t− 2)!t!

(pk − 1)!
[v(Q ∪ T ∪ {i})− v(Q ∪ T )] =

∑

R⊆M\{k}

∑

T⊆Pk\{i,j}

pr(1 − p)m−r (pk − t− 2)!t!

(pk − 1)!
[v(Q ∪ T ∪ {i}) − v(Q ∪ T )]+

∑

R⊆M\{k}

∑

T⊆Pk\{i,j}

pr+1(1−p)m−r−1 (pk − t− 2)!t!

(pk − 1)!
[v(Q∪T∪{j}∪{i})−v(Q∪T∪{j})].

Thus
Ωp

i [v;P ] − Ωp
i [v;P−j ] =

∑

R⊆M\{k}

∑

T⊆Pk\{i,j}

A1[v(Q∪T∪{i})−v(Q∪T )]+A2[v(Q∪T∪{j}∪{i})−v(Q∪T∪{j})],

where

A1 = pr(1 − p)m−r−1 (pk − t− 1)!t!

pk!
− pr(1 − p)m−r (pk − t− 2)!t!

(pk − 1)!

and

A2 = pr(1 − p)m−r−1 (pk − t− 2)!(t+ 1)!

pk!
− pr+1(1 − p)m−r−1 (pk − t− 2)!t!

(pk − 1)!
.

It is easy to check that A2 = −A1, so that

Ωp
i [v;P ] − Ωp

i [v;P−j ] =

∑

R⊆M\{k}

∑

T⊆Pk\{i,j}

A1[v(Q∪T ∪{i})+v(Q∪T ∪{j})−v(Q∪T )−v(Q∪T ∪{i}∪{j})].

Since this expression depends on i in the same way as it depends on j,

Ωp
i [v;P ] − Ωp

i [v;P−j ] = Ωp
j [v;P ] − Ωp

j [v;P−i].
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4. Coalitional p–binomial total power property. Let [v;P ] ∈ Gcs
N . Fixing k ∈ M ,

for every R ⊆M\{k} we consider the game vR ∈ GPk
defined by

vR(T ) = v(Q ∪ T ) − v(Q) for all T ⊆ Pk.

The Shapley value gives, for each i ∈ Pk,

ϕi[vR] =
∑

T⊆Pk\{i}

1

pk

(

pk−1

t

) [v(Q ∪ T ∪ {i})− v(Q ∪ T )].

Using the efficiency of ϕ, we get

∑

i∈Pk

ϕi[vR] = vR(Pk) = v(Q ∪ Pk) − v(Q) = vP (R ∪ {k}) − vP (R).

Hence
∑

i∈Pk

Ωp
i [v;P ] =

∑

R⊆M\{k}

pr(1 − p)m−r−1[vP (R ∪ {k}) − vP (R)] = ψp
k[vP ]

and, finally,

∑

i∈N

Ωp
i [v;P ] =

∑

k∈M

∑

R⊆M\{k}

pr(1 − p)m−r−1[vP (R ∪ {k})− vP (R)].

5. Symmetry in the quotient game. It readily follows from the relationship

∑

i∈Pk

Ωp
i [v;P ] = ψp

k [vP ],

stated in the previous point, and the anonymity of the p–binomial semivalue ψp.
(b) (Uniqueness) Let g be a coalitional value that satisfies the above five properties.

We will see that g is uniquely determined, so that g = Ωp.
Using additivity and the fact that the unanimity games form a basis of GN , it

suffices to see that g is uniquely determined on each pair of the form [λuT ;P ]. So let
λ ∈ R, ∅ 6= T ⊆ N and P ∈ P (N). Let R = {k ∈ M : T ∩ Pk 6= ∅} and Rk = T ∩ Pk

for each k ∈ R.
Using the dummy player property it follows that gi[λuT ;P ] = 0 if i /∈ T . Now we

apply the coalitional p–binomial total power property:

∑

i∈N

gi[λuT ;P ] =
∑

k∈M

∑

S⊆M\{k}

ps(1 − p)m−s−1[(λuT )P (S ∪ {k}) − (λuT )P (S)].

It is easy to see that (λuT )P = λuP
T . Then, by the definition of the p–binomial

semivalue and its linearity, we have

∑

i∈N

gi[λuT ;P ] =
∑

k∈M

ψp
k [λuP

T ] = λ
∑

k∈M

ψp
k[uP

T ].
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As, moreover, uP
T = uR, using Lemma 3.3 yields
∑

i∈N

gi[λuT ;P ] = λ
∑

k∈M

ψp
k[uR] = λ

∑

k∈R

pr−1 = λrpr−1.

Let k ∈ R. From the dummy player property and symmetry in the quotient game we
get

∑

i∈Rk

gi[λuT ;P ] =
∑

i∈Pk

gi[λuT ;P ] = λpr−1.

It remains to see that gi[λuT ;P ] =
λpr−1

rk
for all i ∈ Rk. To this end, we use induction

on rk = |Rk|.
If rk = 1 it is obvious because Rk = {i}. So, let rk > 1. If i, j ∈ Rk, from balanced

contributions within unions it follows that

gi[λuT ;P ] − gi[λuT ;P−j ] = gj [λuT ;P ] − gj [λuT ;P−i].

Now, the cardinality of the corresponding subsets (R−i)k and (R−j)k, for both P−i

and P−j , is rk−1, whereas |R−i| = |R−j | = r+1, so that, by the inductive hypothesis,

gi[λuT ;P−j ] =
λpr

rk − 1
= gj [λuT ;P−i]

and hence

gi[λuT ;P ] =
λpr−1

rk
= gj [λuT ;P ].

This completes the uniqueness proof.
(c) First, if P = PN then

Ωp
i [v;P

N ] =
∑

T⊆N\{i}

1

n
(

n−1

t

) [v(T ∪ {i}) − v(T )] = ϕi[v]

for all i ∈ N and all v ∈ GN . Analogously, Ωp is a coalitional value of the p–binomial
semivalue ψp. Indeed, for P = P n

Ωp
i [v;P

n] =
∑

R⊆N\{i}

pr(1 − p)m−r−1[v(R ∪ {i}) − v(R)] = ψp
i [v].

Finally, the quotient game property: as we have seen when showing the symmetry in
the quotient game in part (a) of this proof, and using the preceding property for Gcs

M ,
∑

i∈Pk

Ωp
i [v;P ] = ψp

k[vP ] = Ωp
k[vP ;Pm]. �

In Vázquez et al. [11], it was shown that the Owen value is the unique coalitional
value of the Shapley value that satisfies the properties of quotient game and balanced
contributions within unions. Analogously, Alonso and Fiestras [1] proved that the
symmetric coalitional Banzhaf value Π is the unique coalitional value of the Banzhaf
value that satisfies these two properties. In the next theorem we generalize this result.
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Theorem 3.5 (Second axiomatic characterization) Let p ∈ [0, 1]. The symmetric
coalitional p–binomial semivalue Ωp is the unique coalitional value of the p–binomial
semivalue ψp defined for any N that satisfies balanced contributions within unions
and the quotient game property.

Proof : (a) (Existence) It follows from Theorem 3.4.
(b) (Uniqueness) Assume that g1 6= g2 are coalitional values of the p–binomial

semivalue ψp defined for anyN and satisfying the above two properties. LetN be such
that g1 6= g2 on Gcs

N and take, among those [v;P ] ∈ Gcs
N such that g1[v;P ] 6= g2[v;P ],

a pair [v;P ] with the maximum number of unions m.
As g1 and g2 satisfy the quotient game property, for all k ∈M we have

∑

i∈Pk

gh
i [v;P ] = gh

k [vP ;Pm] for h = 1, 2,

and, from both being coalitional values of ψp (also on M , of course),

∑

i∈Pk

g1
i [v;P ] = ψp

k[vP ] =
∑

i∈Pk

g2
i [v;P ] for all k ∈ M,

so that g1 and g2 coincide (say, additively) on each union Pk. If Pk = {i} then
g1

i [v;P ] = g2
i [v;P ]. If pk > 1, let i, j ∈ Pk be distinct. Using the property of balanced

contributions within unions,

gh
i ([v;P ] − gh

j [v;P ] = gh
i [v;P−j ] − gh

j [v;P−i] for h = 1, 2.

By the maximality of m, it follows that

g1
i [v;P−j ] − g1

j [v;P−i] = g2
i [v;P−j ] − g2

j [v;P−i]

and hence
g1

i [v;P ] − g1
j [v;P ] = g2

i [v;P ] − g2
j [v;P ],

that is,
g1

i [v;P ] − g2
i [v;P ] = ck (a constant) for all i ∈ Pk.

However
0 =

∑

i∈Pk

g1
i [v;P ] −

∑

i∈Pk

g2
i [v;P ] = pkck,

so that ck = 0 and therefore g1 and g2 coincide on each player of Pk; thus, g1 = g2

on N , a contradiction. �

Remark 3.6 (A third axiomatic characterization) A further axiomatic characteriza-
tion of each symmetric coalitional p–binomial semivalue Ωp was carried out in Carreras
and Puente [3] by just replacing the property of balanced contributions within unions
with

• symmetry within unions : if i, j ∈ Pk are symmetric in v then gi[v;P ] = gj [v;P ].
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Remark 3.7 (Restriction to simple games) Axiomatic characterizations, analogous
to those of Theorems 3.4 and 3.5 (in case of Remark 3.6, see Carreras and Puente [3]),
can be established for the restriction of each symmetric coalitional p–binomial semi-
value Ωp to the class of (monotonic) simple games by just replacing additivity with

• transfer property : g[v ∨ v′;P ] = g[v;P ] + g[v′;P ] − g[v ∧ v′;P ].
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[2] Aumann, R.J. and Drèze, J. [1974]: “Cooperative games with coalition struc-
tures.” International Journal of Game Theory 3, 217–237.

[3] Carreras, F. and Puente, M.A. [2004]: “Symmetric coalitional binomial semival-
ues.” Research Report MA2–IR–04–00006, Department of Applied Mathematics
II, Polytechnic University of Catalonia, Spain.

[4] Dubey, P., Neyman, A. and Weber, R.J. [1981]: “Value theory without effi-
ciency.” Mathematics of Operations Research 6, 122–128.

[5] Myerson, R.B. [1977]: “Graphs and cooperation in games.” Mathematics of Op-
erations Research 2, 225–229.

[6] Owen, G. [1975]: “Multilinear extensions and the Banzhaf value.” Naval Research
Logistics Quarterly 22, 741–750.

[7] Owen, G. [1977]: “Values of games with a priori unions.” In: Mathematical
Economics and Game Theory (R. Henn and O. Moeschlin, eds.), Springer, 76–
88.

[8] Owen, G. [1982]: “Modification of the Banzhaf-Coleman index for games with a
priori unions.” In: Power, Voting and Voting Power (M.J. Holler, ed.), 232–238.

[9] Puente, M.A. [2000]: Aportaciones a la representabilidad de juegos simples y al
cálculo de soluciones de esta clase de juegos (in Spanish). Ph.D. Thesis. Poly-
technic University of Catalonia, Spain.

[10] Shapley, L.S. [1953]: “A value for n-person games.” In: Contributions to the
Theory of Games II (H.W. Kuhn and A.W. Tucker, eds.), Princeton University
Press, 307–317.

[11] Vázquez, M., Nouweland, A. van den, and Garćıa–Jurado, I. [1997]: “Owen’s
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