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Abstract

This paper considers sequencing situations with due date criteria.
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1 Introduction

In one-machine sequencing situations a number of jobs has to be processed on
a single machine. We assume that associated to each job there is an agent
(player) who has a speci�c cost function which among other things depends
on the completion time of his job. Further, there is assumed to be an initial
order on the jobs of the agents before the processing of the machine starts. The
objective is to �nd a processing order of the jobs that minimizes the aggregate
cost function of all players.

Once this order has been obtained, a new question arises: how to allocate
the corresponding cost savings with respect to the initial order among the a-
gents? Curiel, Pederzoli and Tijs (1989) analyzed this problem by considering
corresponding cooperative sequencing games for the special class of sequencing
situations in which all players use a weighted completion time criterion. It was
shown that all sequencing games of this type are convex games, so that allo-
cation rules which always result in outcomes that are stable against coalitional
deviations (core elements) can be devised. The EGS-rule, which is based on an
allocation procedure that follows the algorithm to go from the initial order to
an optimal one, was proposed as a particular choice of such a rule.

In Curiel, Potters, Rajendra Prasad, Tijs, and Veltman (1993) a more
general class of sequencing situations is considered. For each agent, the cost
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function is just assumed to be weakly monotonic in the completion time of his
job. The corresponding class of sequencing games were called �0�component
additive games, where �0 represents the initial order of the jobs. These games
are, in general, not convex but core elements do exist. The ��rule was proposed
as an extension of the EGS�rule, always yielding stable outcomes within the
core of the corresponding game.

Hamers (1995) and Hamers, Borm, and Tijs (1995) considered sequencing
situations where all agents use the weighted completion time criterion but where
also to each job a ready time is associated: the earliest time the processing of
this job can begin. It was shown that if in the initial order the jobs are arranged
such that the ready times are non-decreasing, the corresponding games are �0-
component additive games. Moreover, if all the jobs have equal processing times,
then these games are convex.

In this paper we deal with sequencing situations where a due date is associ-
ated to each job: a time moment before which the processing of the job should
be �nished. Moreover, for each agent the cost criterion not only depends on
the completion time but also on the due date of the corresponding job. We
will assume that all players will use the same type of criterion. Three types of
criteria are considered: the weighted penalty criterion, the weighted tardiness
criterion, and the weighted completion time criterion. In each of these cases,
the associated sequencing game is �0�component additive.

Our aim is to analyze the convexity property for each of the three corre-
sponding classes of cooperative games. The convexity condition expresses that
the incentives of an arbitrary agent for joining a certain coalition increase as the
coalition grows. In the context of cooperative games, the property of convexity
has drawn the interest of several researchers. The class of convex TU games
has several nice properties. Shapley (1971) and Ichiischi (1981) showed that
the extreme points of the core are the marginal vectors of the game if and only
if the game is convex. Hence, convex games have a non-empty core. More-
over, with respect to one-point game theoretical solution concepts, it holds that
the Shapley value (Shapley (1953)), which is by de�nition the average of the
marginal vectors, is the barycenter of the core. Besides, the convexity property
has been also extended and applied to the class of NTU games (Vilkov (1977)
and Sharkey (1982)) and to the class of stochastic cooperative games (Suijs and
Borm (1999)).

It turns out that convexity is not satis�ed in general for the classes of games
we deal with. It depends on the di�erent parameters of the model: the process-
ing times, the due dates, and the exact penalties for being late. We will show
which classes of parameters do and do not necessary lead to convexity.

The organization of the paper is as follows. In section 2, we describe the
underlying sequencing model and provide a characterization of the property
of convexity for the class of �0-component additive games. In section 3 and
4, we analyze this property for the class of sequencing games that arise from
sequencing situations where the aggregate cost function is based on weighted
penalty criteria and weighted tardiness criteria, respectively. In each of these
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sections, we �rst describe a procedure that leads to an optimal order. Several
examples illustrate that not all games associated to these sequencing situations
are convex. Nevertheless, convexity holds by �xing some parameters in the
model. In section 5, we show that sequencing situations in which all jobs have
equal processing times, the due date of each job is a multiple of its processing
time and the cost of each job is given by the weighted completion time function,
yield the same class of convex games as the sequencing situations in which all
jobs have equal processing times, the ready time of each job is a multiple of its
processing time and the cost of each job is determined by a weighted completion
time criterion, i.e., the class considered by Hamers, Borm, and Tijs (1995).

2 Sequencing Situations and Games with Due

Dates

A sequencing situation with due dates or brie
y a d�sequencing situation is
given by a 5-tuple (N; �0; p; d; c) where N is the set of jobs to be processed
on a machine, �0 is the initial order1 of the jobs, p = (pi)i2N is a vector
specifying the processing times, d = (di)i2N is a vector specifying the due dates,
such that d��1

0 (1) � : : : � d��1
0 (n); and c = (ci)i2N speci�es the cost function

ci : [0;1)! IR where ci (t) is to be interpreted as the cost incurred by agent i
if his job is completed at time t. In this paper we consider three types of cost
functions:

(C1) \weighted penalty" c1i (t) =

�
0 if t � di
�i if t > di

where �i > 0. So if job

i 2 N is completed after its due date, it incurs a �xed cost �i.
(C2) \weighted tardiness2" c2i (t) = �imaxft � di; 0g = �i(t � di)+ with

�i > 0: Hence, job i incurs no costs if it is completed in time and a cost
proportional to its tardiness if it is completed after its due date.

(C3) \weighted completion time" c3i (t) = �it where �i > 0. The cost for
job i is proportional to its completion time. There is, however, one obvious
restriction here. It is assumed that we only consider orders in which all jobs are
on time.

If the jobs are arranged by an order � 2 �(N ); let t�;i be the starting time
of job i; i.e.,

t�;i =
P

k2N :�(k)<�(i)

pk and let C(�; S) be the time moment that all jobs in S

are completed if the order is given by �; i.e., C(�; S) =
P

k2N :�(k)��(m)

pk where

m 2 S is the last player in S according to the order given by �; i.e.,
�(m) � �(k) forall k 2 S: With minor abuse of notation we will write

C (�; i) instead of C (�; fig) : Let c�(S) be the aggregate cost of S in the order

1Formally, �0 is a bijection from N to f1; : : : ; ng where �0(i) = s means that job i is in
position s in the queue before the machine. We will denote the class of all these bijections by
� (N).

2Given t 2 IR, we will denote [t]+ = maxft;0g :
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given by �; c�(S) =
P
i2S

ci(C(�; i)):

The (maximal) cost savings of a coalition S depend on the set of admissible
rearrangements of this coalition. We call a bijection � : N ! f1; :::; ng admis-
sible for S if it satis�es P (�; i) = P (�0; i) for all i 2 NnS, where P(�; i) = fj 2
N j �(j) < �(i)g: Hence, we consider an order to be admissible for S if each
agent outside S has the same starting time as in the initial order. Moreover,
the agents of S are not allowed to jump over players outside S. The set of all
admissible rearrangements for a coalition S is denoted by �S .

Given a d�sequencing situation (N; �0; d; p; �) the corresponding sequencing
game is de�ned in such a way that the worth of a coalition S is equal to the
maximal cost savings the coalition can achieve by means of admissible rearrange-
ments. Formally, we have v(S)=max�2�S

fc�0 (S) � c� (S)g = c�0 (S) � c�̂ (S)
where �̂ 2 �S is an optimal order for the coalition S.

From the de�nition of admissible rearrangements it follows that the essential
coalitions for sequencing games are the connected ones. A coalition S is called
connected with respect to �0 if for all i; j 2 S and k 2 N such that �0(i) <
�0(k) < �0(j) it holds that k 2 S: For convenience, we use the following obvious
notations for the di�erent types of connected coalitions:

(m,j]�0 := fk j �0(m) < �0(k) � �0(j)g
[m,j)�0 := fk j �0(m) � �0(k) < �0(j)g
(m,j)�0 := fk j �0(m) < �0(k) < �0(j)g
[m,j]�0 := fk j �0(m) � �0(k) � �0(j)g ifm and j are jobs such that �0(m) <

�0(j):

A game (N; v) is called convex if v(T [ fig)� v(T ) � v(S [ fig)� v(S) for
all i 2 N and all S � T � N n fig :

Curiel, Potters, Rajendra Prasad, Tijs and Veltman (1993) introduced the
class of �0�component additive games. Given �0 2 �(N ), a cooperative game
(N; v) is called a �0� component additive game if the following three conditions
are satis�ed:

� v(fig) = 0 for each i 2 N;

� v is superadditive: for each S; T 2 2N if S \ T = ;; then v(S [ T ) �
v(S) + v(T ); and

� v(S) =
P

T2S=�0
v(T ), where S=�0 is the set of all maximally connected

components of S:

Notice that from the conditions on admissible rearrangements it follows that
d�sequencing games are �0�component additive games.

Given a set of players N and a coalition T � N; the T�unanimity game
uT is de�ned by uT (S) = 1 if T � S and uT (S) = 0 for all other coalitions.
Every game (N; v) can be expressed as a linear combination of the T -unanimity

games as follows v=
P

T�N �v (T )uT ; where �v (T ) =
P
S�T

(�1)
jT j�jSj

v (S).
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These coe�cients are called the dividends and its computation can be a hard
task. Given a �0�component additive game �v (T ) = 0 for every non-connected
coalition T as a direct consequence of theorem 2 in Owen (1986). Then, in this
class of games, only the dividends associated to the connected coalitions appear.
In the next result we obtain a simple expression for the value of these coe�cients
for an arbitrary �0�component additive game.

Proposition 1 Let (N; v) be a �0�component additive game. Then, the char-
acteristic function v can be written as v=

P
[k;l]�0�N :�0(k)<�0(l)

g[k;l]�0u[k;l]�0 ;

where g[k;l]�0=v([k; l]�0)� v([k; l)�0)� v((k; l]�0) + v((k; l)�0 ).

Proof.

W.l.o.g. we assume N = f1; : : : ; ng and �0 2 �(N ) such that �0 (i) = i
for all i 2 N . We also omit subscripts. De�ne w =

P
[k;l]�N :k<l

g[k;l]u[k;l]: Let

T = [i; j] � N be a connected coalition with i < j. Then

w(T ) =
X

[k;l]�[i;j]:k<l

g[k;l]

=

j�1X
k=i

jX
l=k+1

g[k;l]

=

j�1X
k=i

jX
l=k+1

[v([k; l])� v([k; l))� v((k; l]) + v((k; l))]

=

j�1X
k=i

jX
l=k+1

[v([k; l])� v([k; l))]�

j�1X
k=i

jX
l=k+1

[v((k; l])� v((k; l))]

=

j�1X
k=i

[v([k; j])� v(fkg)]�

j�1X
k=i

v((k; j])

= v([i; j])

= v(T ):

Now, let T � N be a coalition. Then using the �0�component additivity
and the proof above we �nd v(T)=

P
S2Tn�0

v(S) =
P

S2Tn�0
w(S):

Moreover,

X
S2Tn�0

w(S) =
X

S2Tn�0

0@ X
[k;l]�N :k<l

g[k;l]u[k;l](S)

1A
=

X
[k;l]�N :k<l

g[k;l]

0@ X
S2Tn�0

u[k;l](S)

1A
=

X
[k;l]�N :k<l

g[k;l]u[k;l](T )

= w(T ):
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Hence, we �nd w(T ) = v(T ):

Remark. Notice we can write the coe�cients in two ways:

g[k;l] = [v([k; l])� v([k; l))]� [v((k; l])� v((k; l))]

= [v([k; l])� v((k; l])]� [v([k; l))� v((k; l))] :

The �rst expression can be interpreted as follows: the �rst part, v([k; l])�
v([k; l)); measures the contribution of player l (the last player of the coalition
[k; l]) if he joins to the end of the ordered coalition [k; l); and the second part,
v((k; l]) � v((k; l)) measures the contribution of player l if he joins to the end
of the ordered coalition (k; l): So, the di�erence speci�es the role of player k to
the marginal contribution of player l: The second expression can be interpreted
in a similar way.

The next theorem is a direct consequence of the results above.

Theorem 2 Let (N; v) be a �0�component additive game. Then (N; v) is con-
vex if and only if the coe�cients g[k;l]�0 are non negative for all k; l 2 N such
that �0 (k) < �0 (l).

The next sections are devoted to the study of the convexity of the sequencing
games arising from d�sequencing situations. As a consequence of theorem 2,
in order to check whether a �0�component additive game is convex, it su�ces
to check the non-negativity of all the coe�cients g[k;l]�0 . This fact implies a
signi�cant reduction in the number of conditions that need to be checked for
the convexity of these games. We have to verify 1

2 (n� 1) (n � 2) conditions3.

This clearly improves the
nP

m=2
(nm) (

m
2 ) conditions that Zumsteg (1995) indicates

for the general case.

3 Convexity of Sequencing Games arising from

d-Sequencing Situations with cost criterion C1

In this section we study the convexity of the sequencing games that arise from
d�sequencing situations (N; �0; p; d; c

1) when all players use a cost criterion
�tting C1. These situations we callC1-sequencing situations. The next example
shows that, in general, the associated game need not be convex.

Example 1. Let us consider the following C1�sequencing situation:

1. N = f1; 2; 3; 4g,

2. �0(i) = i for all i 2 N ,

3. p = (300; 201; 201; 100),

3When �0 (l) = �0 (k) + 1, g[k;l]�0
= v
�
[k; l]�0

�
and then, clearly g[k;l]�0

� 0.
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4. di = 500 for all i 2 N ,

5. �i = 1 for all i 2 N .

Easy calculations shows that g[1;4] = v[1; 4] � v(1; 4] � v[1; 4) + v(1; 4) =
1� 1� 1 + 0 = �1 < 0: Hence, the corresponding game is not convex.

itbpFU3.1047in2.3341in0inOptimal orders w.r.t. C1posterin.wmf
The C1�sequencing situation of example 1 illustrates the fact that the as-

sociated cooperative games to C1�sequencing situations with equal unitary
penalties or equal due dates, in general, need not be convex. If we consider
C1�sequencing situations where all jobs having equal processing times, the as-
sociated sequencing game will be convex. In order to prove this result we only
need to check the non-negativity of the coe�cients g[k;l]�0 for every connected
coalition [k; l]�0. We will use the Lawler's algorithm (Lawler (1976)) to �nd an
optimal order of every connected coalition w.r.t. the initial order in the associat-
ed sequencing game, and then we easily can compute the marginal contributions
of each player who joins to the end of the connected coalition.

Let us consider �0 2 �(N ) and let m; j 2 N such that �0(m) < �0(j). We
will denote V[m;j]

�0
as a set of players which is in time in an optimal order of

[m; j]�0 where every job i 2 Nn [m; j]�0 is located in the position �0(i). For each
V[m;j]

�0
, G[m;j]

�0
is the set of jobs of [m; j]�0that can not be completed in time

in the optimal order associated to V[m;j]
�0
; i:e:; G[m;j]

�0
= [m; j]�0 nV[m;j]

�0
:

Moreover, a[m;j]
�0
will be the di�erence between the corresponding cost of an

optimal order of [m; j]�0 and the associated cost of an optimal order of [m; j)�0 .

For simplifying the notation, if �0 is the identity permutation, we will denote
V[1;j]

�0
= Vj ; G[1;j]

�0
= Gj; and a[1;j]

�0
= aj . Vj will be called a j � optimal

set4. In example 1, V4 = f4; 2g ; G4 = f3; 1g and a4 = 0:

Lawler (1976) gave an O(n logn) algorithm to �nd an n � optimal set to
minimize the weighted number of tardy jobs under one additional assump-
tion (w.l.o.g. we will assume that �0 is the identity permutation): Giv-
en i,j2 N suchthatpi < pj; then�i � �j: This means that if a job has a
shorter processing time than another, its penalty is at least equal or larger.
This condition is trivially satis�ed if all the processing times are equal.

Take pi = q for all i 2 N . Lawler (1976) set bV0 = ; and, recursively,

bVj =
( bVj�1 [ fjg if C(b�j�1; bVj�1) + q � dj�bVj�1 [ fjg

�
n flg otherwise

where b�j�1 represents an optimal order associated to the (j � 1) � optimal

set bVj�1, and l is the minimum element w.r.t. the following relation between

elements of bVj�1 [ fjg:

i � kifandonlyif

�
�i < �k; or
�i = �k andb�j�1(i) < b�j�1(k) (1)

4An n� optimal set is formed by the jobs that are in time in an optimal order of N:
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Next, we will carefully compute the gains baj and locate the jobs in a speci�c
position step by step.

Let us consider the initial situation given by bV0 = ;; b�0 = �0:

First step:

Consider the �rst job. If it can be processed in time, go to the second step.
If not, label it as garbage and go to the second step. That means

� If p1 � d1; bV1 = f1g ; and b�1 = �0:

� If p1 > d1; bV1 = ;; bG1 = f1g ; and b�1 = �0:

In both cases ba1 = 0:

j-th step:

� If no garbage jobs exist ( bGj�1 = ;), put job j behind job j � 1:

{ If j is on time, proceed to the next step. That means bVj = bVj�1[fjg,bGj = ;; and baj = 0:

{ If job j is not on time, take the job l determined by (1) and put it
right behind j.

Then, bVj = (bVj�1 [ fjg) n fl g. One of the following two cases must
happen:

� l = j; then bVj = bVj�1, bGj = fjg and baj = 0:

: itbpFU2.4249in1.8256in0ingarb1.wmf

� If l 6= j ; bVj = (bVj�1[fjg) n fl g, bGj = flg and in this case there
is a positive gain baj = �j��l: itbpFU2.4059in1.8109in0ingarb2.wmf

� If garbage jobs exist ( bGj�1 6= ;); put job j right in front of garbage jobs.

{ If now job j is processed in time, there are two possibilities:

� Job j was already in time before it was moved. Then, it is
certainly in time now. Hence, the movement causes no gain,baj = 0, since all garbage jobs ahead of j were late and now still
are. All other jobs are still on time.

� Job j was not in time before it was moved, moving it ahead the
garbage yields a positive gain baj = �j.

In both cases, bVj = bVj�1[fjg and bGj = bGj�1. itbpFU2.4059in1.8109in0ingarb3.wmf

{ If now job j is not processed in time, then it was certainly not in
time behind the garbage jobs, hence moving it ahead them does not
yield a gain. Now choose the job l to be removed from bVj�1 [ fjg
to the garbage can as in (1). Put this new garbage job right behind
the old garbage that remains in place. Hence, there are again two
possibilities:

8



� l = j. Job j was the job that was added to the garbage. Thenbaj = 0, bVj = bVj�1, and bGj = bGj�1[fjg. itbpFU2.4059in1.8109in0ingarb4.wmf

� l 6= j. Job j was not the job that was added to the garbage.
We see that the job jmust now be in time and a gain was made,baj = �j � �l. In this case bVj = (bVj�1 [ fjg) n fl g and bGj =bGj�1 [ flg.

itbpFU2.4059in1.8109in0ingarb5.wmf

If there are still jobs behind the garbage, go to the next step. Otherwise
stop.

Note that the �nal n�optimal set bVn has been achieved by non-negative
switches only, baj � 0 for all j 2 f1; 2; :::; ng.

We have just described how to obtain an n � optimal set. Of course with
obvious modi�cations this procedure can be applied to obtain an optimal order
of the coalition [m; j] with m < l.

The following lemma shows that given a C1�sequencing situation where all
processing times equal q; it can be established a relation between the set bV[k;l];
and the set bV(k;l].
Lemma 3 Let (N; �0; p; d; c1) be a C1�sequencing situation where pi = q for
all i 2 N . It is veri�ed that for all k; l 2 N such that �0(k) < �0(l);

bV(k;l]�0 � bV[k;l]�0 ; (2)

0 �
��� bG[k;l]�0

���� ��� bG(k;l]�0

��� � 1; and (3)

ba[k;l]�0 � ba(k;l]�0 � 0: (4)

Proof.

See the appendix.

Example 2. This example shows that to have (2), (3), and (4) we really have
to restrict to equal processing times. In example 1, it is easy to check that��� bG[1;3]

���� ��� bG(1;3]

��� = 1� 2 = �1; andba[1;4] � ba(1;4] = 0� 1 < 0:

Moreover in the C1�sequencing situation with
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1. N = f1; 2; 3; 4g ;

2. �0(i) = i for all i 2 N;

3. p = (2; 2; 3; 3);

4. d = (2; 2; 5; 7); and

5. � = (5; 5; 5; 3)

one readily sees that bV[2;4] = f3g and bV(2;4] = f4g:

Theorem 4 Let (N; �0; p; d; c1) be a C1�sequencing situation where pi = q for
all i 2 N . Then, the corresponding sequencing game (N; v) is a convex game.

Proof.

Taking into account the result of theorem 2, it su�ces to prove that g[k;l]�0 �
0 for all k; l 2 N such that �0(k) < �0(l): And, this is derived from lemma 3,
since g[k;l]�0 = ba[k;l]�0 � ba(k;l]�0 :

In the next table we summarize the convexity results for sequencing games

arising fromC1-sequencing situations.

�i = b; di = e; and pi = q for all i 2 N convex (Theorem 4)
�i = b and pi = q for all i 2 N convex (Theorem 4)
�i = b and di = e for all i 2 N not convex (Example 1)
di = e and pi = q for all i 2 N convex (Theorem 4)
pi = q for all i 2 N convex (Theorem 4)
di = e for all i 2 N not convex (Example 1)
�i = b for all i 2 N not convex (Example 1)

4 Convexity of Sequencing Games arising from

d-Sequencing Situations with cost criterion C2

In this section we study d-sequencing situations (N; �0; p; d; c
2) where all players

use a cost criterion �tting C2. This means that the associated cost to each
job is proportional to its tardiness. We refer to these sequencing situations as
C2�sequencing situations. The associated games need not be convex in general
as the following examples illustrate.

Example 3. Let us consider the following C2�sequencing situation:

1. N = f1; 2; 3g ;

2. �0 (i) = i for all i 2 N ,

3. p = (2; 3; 1);

4. di = 3, for all i 2 N; and

5. � = (4; 5; 8) :
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Easy calculations gives us the value of g[1;3]: g[1;3] = v [1; 3] � v (1; 3] �
v [1; 3) + v (1; 3) = �2 < 0: Thus, the associated game to this C2-sequencing
situation is not convex.

Example 4. Let us consider the following C2�sequencing situation:

1. N = f1; 2; 3; 4; 5g;

2. �0 (i) = i; for all i 2 N ,

3. p = (19; 17; 16; 9; 9);

4. d = (20; 22; 28; 35;40), and

5. �i = 1, for all i 2 N:

In this case, the value of g[1;5] is given by

g[1;5] = v [1; 5]� v (1; 5]� v [1; 5) + v (1; 5)

= 21� 21� 11 + 9

= �2 < 0

From examples 3 and 4, one can derive that in order to guarantee the con-
vexity of the associated sequencing game to a C2�sequencing situation, it is not
enough to consider jobs with either the same due dates or the same penalties for
their tardiness. Nevertheless, convexity appears when all jobs have both equal
penalties for their tardiness and equal processing times, or both equal due dates
and equal processing times, or both equal due dates and equal penalties for
their tardiness.

In the �rst case, the associated sequencing game is a zero game, since all jobs
are arranged in a non-decreasing way of their due dates in both the initial and
an optimal order (Smith (1956)). In order to study the two remaining cases, we
proceed in the following way: �rst we state the gains attainable for player i and
j in case player i is directly in front of player j ; then, we establish a result that
gives us a way to �nd an optimal order; and, �nally, we prove the convexity
results.

Lemma 5 Let (N; �; p; d; c2) be a C2-sequencing situation where dl = e for all
l 2 N: Let us take i; j 2 N , such that � (j) = � (i) + 1.

a) If �l = b for all l 2 N the gains of switching i and j are given by

g
[i;j]�

=
�
min

�
[b (C(�; i)� e)]+ ; b (pi � pj)

	�
+
: (5)

b) If pl = q for all l 2 N the gains of switching i and j are given by

g
[i;j]�

=
h
min

n
[(�j � �i) ((jP (�; i)j+ 2)q � e)]+ ; q(�j � �i)

oi
+
: (6)

11



Proof.

See the appendix.

Next we describe an optimal order for a C2-sequencing situation when all
players have both equal due dates and equal processing times, or both equal
due dates and equal penalties for their tardiness. This result is directly derived
from lemma 5.

Lemma 6 Let (N; �0; p; d; c2) a C2-sequencing situation where di = e for all
i 2 N:

a) If �i = b for all i 2 N . Then, �̂ is an optimal order if

p�̂�1(1) � : : : � p�̂�1(k) � p�̂�1(k+1) � ::: � p�̂�1(n): (7)

b) If pi = q for all i 2 N: Then, �̂ is an optimal order if

��̂�1(1) � : : : � ��̂�1(k) � ��̂�1(k+1) � ::: � ��̂�1(n): (8)

Remark. From the previous lemma a processing order in which all the
jobs are processed in a non-decreasing way w.r.t. the urgency index, de�ned by
ui =

�i

pi
for all i 2 N , maximizes the total gain. Nevertheless, there are several

optimal orders. In case a), two optimal orders di�er in the position where the
jobs in time or the jobs with equal processing times are placed on; in case b),
clearly, these di�erences are in the position of the jobs in time or the jobs with
equal penalties for their tardiness. Moreover, for any proper connected coalition
S, we can obtain an optimal order just applying to the jobs in S the constraints
(7) (case a)) or (8) (case b)), respectively. On the other hand, given an optimal
order, �̂(i;j], for a coalition (i; j]�0 , it is clear that we can �nd an optimal order
for coalition [i; j]�0 through switches of player i and any player k 2 (i; j]�0 such
that �0 (i) < �̂(i;j] (k) � �0 (j) and pi > pk (case a)) or �i < �k (case b)). The
aggregate gains, which are obtained from these switches, equal the di�erence
between v

�
[i; j]�0

�
and v

�
(i; j]�0

�
:

Theorem 7 Let (N; �0; p; d; c2) be a C2-sequencing situation such that di = e
for all i 2 N: The associated sequencing game is convex when �i = b for all
i 2 N; or pi = q for all i 2 N:

Proof.

We only proof the theorem for the case �i = b for all i 2 N:
Let (N; v) be the associated game to (N; �0; p; d; c

2). Taking into account
theorem 2, we just have to check that v([i; j]�0) � v((i; j]�0 ) � v([i; j)�0 ) �
v((i; j)�0 ) for all connected coalition [i; j]�0 � N with �0(i) < �0(j):

W.l.o.g. we will suppose that �0 is the identity permutation, [i; j] = [1; n] =
N , and �̂ 2 �(N ) is an optimal order of N such that �̂(ik) = k (player ik is
located in position k in an optimal order �̂ of N ): So, due to the remark above,
we can suppose that pi1 � pi2 � ::: � pin .

Let �̂(1) = s and �̂(n) = t, where s; t 2 f1; 2; :::; ng and s 6= t: Two cases
may be considered:

12



1. t > s: That means that player n is coming behind player 1 in the optimal
order �̂. Then, as a consequence of lemma 6, player 1 switches positions
with other players in (1; n) until he attains position s. As a direct conse-
quence of lemma 5, v[1,n]-v(1,n]=v[1,n)-v(1,n).

2. t < s. In this case, player n is coming ahead player 1 in the optimal
order �̂. Then, applying lemma 6, player 1 reaches position s in �̂ by
switches with players i1; : : : ; is�1 2 (1; n]. Using lemma 5, the marginal
contribution of player 1 to (1; n] is given by

v[1,n]-v(1,n]=

sX
k=2

24min

8<:
"
b

 
C (�0; 1) +

k�2X
l=1

pil � e

!#
+

; b
�
p1 � pik�1

�9=;
35
+

: (9)

Meanwhile, player 1 reached position s � 1 in an optimal order of [1; n) by
switches with players i1; : : : ; it�1; it+1; : : : ; is�1 2 (1; n): Then, v[1,n)-v(1,n)=

tX
k=2

24min

8<:
"
b

 
C (�0; 1) +

k�2X
l=1

pil � e

!#
+

; b
�
p1 � pik�1

�9=;
35
+

+ (10)

sX
k=t+2

24min

8<:
"
b

 
C (�0; 1) +

k�2X
l=1

pil � pit � e

!#
+

; b
�
p1 � pik�1

�9=;
35
+

(11)

Easily, expressions (9) and (10) can be compared: all the terms in both
expressions are non-negative; each one of the t � 1 initial terms coincides in

both expressions; and for each k = t + 2; :::; s
k�2P
l=1

pil �
k�2P
l=1

pil � pit: Therefore,

v[1; n)� v(1; n) � v[1; n]� v(1; n]:
Hence, we conclude that the associated game is convex.

In this section we discussed the convexity property of the games arising from
C2�sequencing situations according to the di�erent parameters of the model.
Nevertheless, one case is still unsolved. When all jobs have equal processing
times, Slikker(1993) proved that if the job number is less or equal than 4; the
game is convex. But, in case of a larger number of jobs, the convexity problem
is still open.

In the next table we summarize the convexity results for sequencing games

arising fromC2-sequencing situations.

di = e for all i 2 N not convex (Example 3)
�i = b for all i 2 N not convex (Example 4)
�i = b and di = e for all i 2 N convex (Theorem 7)
pi = q and di = e for all i 2 N convex (Theorem 7)
�i = b and pi = q for all i 2 N convex (zero game)

pi = q for all i 2 N
if jN j � 4; convex
if jN j > 4; open problem

13



5 Convexity of Sequencing Games arising from

d-Sequencing Situations with cost criterium

C3

In this section we concentrate on d�sequencing situations that satisfy (A1)
di 2 f1; :::; ng and pi = 1 for all i 2 N Further, it is assumed that there is
an initial bijection �0 : N ! f1; :::; ng on the jobs of the players before the
processing of the machine starts with the properties (A2) di � dj for all i; j 2
N with �0(i) < �0(j); and C(�0; i) � di for all i 2 N

and
(A3) �0(i) = C(�0; i) for all i 2 N: Note that the assumptions (A1)� (A2)

imply that in the initial bijection there is no time gap in the job processing and
that in particular the last job that is processed according to �0 is completed
at time n. In spite of the conclusion that assumption (A3) is super
uous, we
have added it here for the sake of convenience and symmetry with ready time
sequencing situations discussed later on. Moreover, the cost function of each
job is proportional to its completion time. (A4) c3i (t) = �it; for all i 2 N:
These d�sequencing situations will be called C3�sequencing situations.

Since each job has to be completed before its due date, we will consider for
each coalition S only those orders � 2

P
S such that satisfy C(�; i) � di. Note

that by the assumptions on the initial and admissible bijections we have for any
� 2 �S that �(i) = C(�; i) for all i 2 N .

Next, we describe the special class of one-machine sequencing situations, in
which all jobs have equal processing times and the ready time of each job is a
multiple of the processing time and the corresponding class of games. The de-
scription of these sequencing games is identical to the d�sequencing situations.
The only di�erence is that there is no due date imposed on a agent but a ready
time. The ready time ri of the job of agent i is the earliest time that the job can
be processed on the machine. We will concentrate on sequencing situations that
satisfy (B1) ri 2 f0; :::; n�1g and pi = 1 for all i 2 N: The initial order �0 has
the properties (B2) ri � rj for all i; j 2 N with �0(i) < �0(j) and C(�0; i) �
ri + 1 for all i 2 N and (B3) �0(i) = C(�0; i) for all i 2 N: Note that the
assumptions (B1)� (B3) imply that in the initial bijection �0 there are no time
gaps in the job processing and that the job that is processed last is complet-
ed at time n. The cost for agent i is given by (A4). A sequencing situation
as described above is denoted by (N; �0; r; p; �) and will be refered to as an
r-sequencing situation.

In r-sequencing situations we will only consider those bijections � : N !
f1; :::; ng that satisfy C(�; i) � ri + 1 for all i 2 N . The set of admissible
rearrangements, denoted by AS , has the same restrictions with respect to inter-
changing positions between players of a coalition S as before. Hence, we may
again conclude that for any � 2 AS we have that �(i) = C(�; i). The cor-
responding sequencing game is de�ned by v(S)=max�2AS

f
P

i2S �iC(�0; i) �

14



P
i2S �iC(�; i)g
Hamers, Borm and Tijs (1995) show that sequencing games arising from

r-sequencing situations are convex by establishing relations between optimal
orders of subcoalitions. These relations are obtained by analyzing the proce-
dure described in Rinnooy Kan (1976) that provides an optimal order. For
the optimal order in d-sequencing situations we can use the procedure of Smith
(1956), which operates similar to the procedure of Rinnooy Kan (1976). Both
procedures aim for having the jobs with the largest cost coe�cient �i as far
as possible at the front of the queue. The Smith-procedure has to take into
account the due dates, whereas the Rinnooy Kan-procedure has to take into
account the ready times. For this reason the Smith-procedure starts at the end
of the queue, whereas the Rinnooy Kan-procedure starts at the front of the
queue. In spite of this di�erence it is possible for d-sequencing situations to
establish similar relations between optimal orders of various subcoalitions as for
r-sequencing situations. However, where in the Rinnooy Kan-procedure these
relations are established if a player is added at the end of a (sub)queue, in the
Smith-procedure these relations can be established if a player is added at the
front of a (sub)queue. Following exactly the same line of argument it can be
infered that sequencing games arising from d-sequencing situations are convex
games.

In fact, we will show even a stronger result: both classes of sequencing
situations generate the same class of sequencing games.

Theorem 8 Let R(N ) and D(N ) be the class of sequencing games that arise
from r-sequencing situations and C3-sequencing situations, respectively. Then
R(N ) = D(N ).

Proof.

We show that R(N ) � D(N ). Let (N; v) 2 R(N ). Let (N; �0; r; p; �) be
an r-sequencing situation that generates the game (N; v). W.l.o.g. we can take
�0(i) = i for all i 2 N . Let S = fi; i + 1; :::; jg; be a connected set w.r.t. �0.
Then

v(S) = maxf

jX
k=i

�kk �

jX
k=i

�kxk j xk � rk + 1 8k 2 S; fxi; :::; xjg = fi; :::; jgg:

(12)
Consider the d-sequencing situation (N; �0; d; p; �) in which for all i 2 N we
de�ne �0(i) = n+ 1� i, di = n� ri and �i = c+(�n��i) with c = maxi2N �i.
We �rst show that (N; �0; d; p; �) satis�es the assumptions (A1) � (A3). Ob-
viously, (A3) is a consequence of (B1), while (A1) follows immediately from
the de�nition of d and (B1). If �0(l) < �0(m) then m < l which implies that
rm � rl. The de�nition of d yields immediately that dl � dm. Further, we
have for any l 2 N that �0(l) = l � rl + 1 = n + 1 � dl. This implies that
dl � n+ 1� l = �0(l) = C(�0; l). Hence (A2) is satis�ed.
Note that from the de�nition of �0 it follows that S is also connected w.r.t. �0.
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Then for the game (N;w) corresponding to (N; �0; d; p; �) it holds that

w(S) = maxf

jX
k=i

�k(n+ 1� k)�

jX
k=i

�kyk j yk � dk 8k 2 S; (13)

fyi; :::; yjg = fn+ 1� j; :::; n+ 1� igg (14)

Let ŷ be an optimal solution of (12). By de�ning x̂ by x̂k = n + 1� ŷk for all
k 2 fi; :::jg we have

w(S) =

jX
k=i

�k(n+ 1� k) �

jX
k=i

�kŷk

=

jX
k=i

(c + �n � �k)(n + 1� k)�

jX
k=i

(c + �n � �k)(n+ 1� x̂k)

= (c + �n)

jX
k=i

(x̂k � k) +

jX
k=i

�k(k � x̂k)

=

jX
k=i

�k(k � x̂k)

� v(S);

where the �rst equality holds since ŷ is optimal, the second equality by the def-
inition of �0; � and x̂, the third equality and fourth equality by straightforward
calculations. The inequality holds by (11) since x̂k = n+1� ŷk � n+ 1� dk =
n + 1� (n� rk) = rk + 1 and fx̂i; :::; x̂jg = fi; :::; jg.
Let x̂ be an optimal solution of (11). By de�ning ŷ by ŷk = n + 1 � x̂k for all
k 2 S we can show in the same way as above that v(S) � w(S), which completes
the �rst part of this proof.
Obviously, the second part, D(N ) � R(N ), can be dealt with in an analogous
way.
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Appendix
In this section we present the proofs that were omitted in sections 3 and 4.

Proof of lemma 3.
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We will prove the result by induction in the size of [k; l]�0 with �0(k) <
�0(l):W.l.o.g. we will assume q = 1 and �0(i) = i for all i 2 N: Notice that
with this assumption the position of each job in any order is its completion time.

Let us suppose that l = k + 1: We distinguish two cases:

� k > dk. Clearly,

{ if bV(k;k+1] = ;, then (2) holds. Moreover
��� bG(k;k+1]

��� = 1 and â(k;k+1] =

0. Since k > dk,
��� bG[k;k+1]

��� � 1 and â[k;k+1] � 0. So (3) and (4) hold.

{ if bV(k;k+1] = fk + 1g, then bG(k;k+1] = ; and â(k;k+1] = 0. Since

k > dk; bV[k;k+1] = fk + 1g ; bG[k;k+1] = fkg ; and â[k;k+1] = 0: Then
(2), (3), and (4) follow.

� k � dk: Clearly,

{ if bV(k;k+1] = ;, then (2) holds. Moreover
��� bG(k;k+1]

��� = 1, â(k;k+1] = 0,

and
���bV[k;k+1]

��� = 1 since k + 1 > dk+1 � dk � k. So
��� bG[k;k+1]

��� = 1

and (3) follows. Furthermore, â[k;k+1] = 0 if �k+1 � �k or â[k;k+1] =
�k+1 � �k if �k+1 > �k: In both cases â(k;k+1] � â[k;k+1] and (4)
holds.

{ if bV(k;k+1] = fk + 1g ; then bV[k;k+1] = fk; k + 1g, bG(k;k+1] = ;,bG[k;k+1] = ;, â(k;k+1] = 0 = â[k;k+1]. Thus (2), (3), and (4) fol-
low.

Let [k; l] be such that l � k + 2. We may assume that bV(k;r] � bV[k;r],
0 �

��� bG[k;r]

��� � ��� bG(k;r]

��� � 1, and ba[k;r] � ba(k;r] � 0 for all r such that k � r < l.

So, taking5 r = l � 1 bV(k;l) � bV[k;l); (15)

0 �
��� bG[k;l)

���� ��� bG(k;l)

��� � 1; and (16)

ba[k;l) � ba(k;l) � 0: (17)

Three cases can happen in the algorithm in the step in which job l is added
to [k; l) for getting a [k; l]� optimal set:

� If bV[k;l] = bV[k;l); then bG[k;l] = bG[k;l) [ flg: Taking into account (13), (14),
and the Lawler�s algorithm, player l will not be in time in a (k; l]�optimal

set. Then, bV(k;l] = bV(k;l); bG(k;l] = bG(k;l) [ flg; andba[k;l] = ba(k;l] = 0:

Then, (2), (3), and (4) hold.

5Let us notice that bV(k;l) = bV(k;l�1]:

17



� If bV[k;l] = bV[k;l) [ flg ; then bG[k;l) = bG[k;l] and ba[k;l] = 0 if job l is in time
initially or ba[k;l] = �l if job l is not in time initially. We distinguish two
cases:

{ If
��� bG[k;l)

��� = ��� bG(k;l)

���, then bV(k;l] = bV(k;l)[flg ; bG(k;l) = bG(k;l]; and ba(k;l] =ba[k;l]:
{ If

��� bG[k;l)

��� = ��� bG(k;l)

���+ 1, then either

� bV(k;l] = bV(k;l) [ flg ; bG(k;l) = bG(k;l]; and ba(k;l] = ba[k;l]:
or

� bV(k;l] = �bV(k;l) [ flg� � fmg and bG(k;l] = bG(k;l) [ fmg. Since

l is not in time in the initial order and taking into account the
selection of the job m, then ba[k;l] � ba(k;l] = �l � (�l � �m) =
�m � 0.

So, it is easy to check that (2), (3), and (4) hold.

� If bV[k;l] = (bV[k;l)[flg)nfmg, wherem 2 bV[k;l) with �m = min
n
�i j i 2 bV[k;l)o :

Then bG[k;l] = bG[k;l) [fmg and ba[k;l] = �l ��m: Clearly l is not in time in

front of garbage jobs of bG[k;l) nor of bG(k;l). Now, two cases must be taken
into account,

{ If m 2 bV(k;l); then bV(k;l] = (bV(k;l) [ flg)nfmg, bG(k;l] = bG(k;l) [ fmg;
and ba(k;l] = �l � �m = ba[k;l]:

{ If m =2 bV(k;l); then bV(k;l ] = (bV(k;l) [ flg)nfsg where s2 bV(k;l) [ flg �bV[k;l) [ flg such that �m � �s = min
n
�i j i 2 bV(k;l) [ flgo : ThenbG(k;l] = bG(k;l) [ fsg and ba(k;l] = �l � �s � ba[k;l]:

Then (2), (3), and (4) hold.

Proof of lemma 5.

a) Let (N; �; p; d; c2) be a C2-sequencing situation where dl = e for all l 2 N:
Let us take i; j 2 N , such that � (j) = � (i) + 1. Let us consider the ordering
� de�ned by � (l) = � (l) for all l 2 N � fi; jg, � (i) = � (j) and � (j) =
� (i) : The de�nition of g

[i;j]�
and � clearly implies that g

[i;j]�
= v

�
[i; j]

�

�
=�

c2�
�
[i; j]

�

�
� c2� ([i; j]�)

�
+
:

Then, in order to consider the cost saving between both orders, we must
take into account the following cases:

A) e � C(�; i) and e � C(�; j): In this case players i and j are in time
in the order �; and then they are also in time when they switch their
positions. So, g

[i;j]�
= 0 and

�
min

�
[b (C(�; i)� e)]+ ; b (pi � pj)

	�
+
=

[minf0; b (pi � pj)g]+ = 0:

18



B) e � C(�; i) and e < C(�; j): In this case player i is in time in the order �;
meanwhile player j is not in time. It is trivial to check that g

[i;j]�
= 0 con-

sidering that �i = �j = b:Moreover,
�
min

�
[b (C(�; i)� e)]+ ; b (pi � pj)

	�
+
=

[minf0; b (pi � pj)g]+ = 0:

C) e < C(�; i). In this case, player i is not in time in the order � and, hence,
player j is not in time too. We will distinguish two cases:

C1) C(�; i)�pi+pj � e. If the players switch their positions, then player
j will be in time and player i will still be late. Thus, the gains are

g
[i;j]�

= b

 P
k2P (�;i)

pk + pi � e

!
= b (C(�; i)� e) :

Clearly,�
min

�
[b (C(�; i)� e)]+ ; b (pi � pj)

	�
+

=

minfb (C(�; i)� e) ; b (pi � pj)g = b (C(�; i)� e) :

C2) C(�; i) � pi + pj > e. If the players switch their positions, both
will still not be in time, and its trivial to check that g

[i;j]�
=�

b (pi � pj) if pi > pj
0 otherwise

:

In this case,

� if pi > pj ,�
min

�
[b (C(�; i)� e)]+ ; b (pi � pj)

	�
+

=

minfb (C(�; i)� e) ; b (pi � pj)g = b (pi � pj) :

� if pi � pj ,
�
min

�
[b (C(�; i)� e)]+ ; b (pi � pj)

	�
+
= [b (pi � pj)]+ = 0:

b) Let (N; �; p; d; c2) be a C2-sequencing situation where dl = e for all l 2 N:
Let us take i; j 2 N , such that � (j) = � (i) + 1. Let us consider the ordering
� de�ned by � (l) = � (l) for all l 2 N � fi; jg, � (i) = � (j) and � (j) =
� (i) : The de�nition of g

[i;j]�
and � clearly implies that g

[i;j]�
= v

�
[i; j]

�

�
=�

c2�
�
[i; j]

�

�
� c2�

�
[i; j]

�

��
+
:

Then, in order to consider the saving costs between both orders, we must
take into account the following cases:

A) e � C(�; i) and e � C(�; j): In this case players i and j are in time in the
order �; and then they are also in time when they switch their positions.
So, g

[i;j]�
= 0 andh

min
n
[(�j � �i) ((jP (�; i)j+ 2)q � e)]+ ; q(�j � �i)

oi
+

=

[minf0; q(�j � �i)g]+ = 0:
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B) e � C(�; i) and e < C(�; j): In this case player i is in time in the or-
der �; meanwhile player j is not in time. It is trivial to check that
c2� ([i; j]) � c2� ([i; j]) = (�j � �i) ((jP (�; i)j+ 2)q � e) : Thus, g

[i;j]�
=

[(�j � �i) ((jP (�; i)j+ 2)q � e)]+ : Moreover, since C(�; i) = (jP (�; i)j+

1)q � e < (jP (�; i)j+2)q = C(�; j) it follows that

h
min

n
[(�j � �i) ((jP (�; i)j+ 2)q � e)]+ ; q(�j � �i)

oi
[(�j � �i) ((jP (�; i)j+ 2)q � e)]+ :

C) C(�; i) > e. In this situation, both players are not in time in the order
�, then both will still be late when they switch their positions. Then,
g
[i;j]�

= [q(�j � �i)]+ : And, since (jP (�; i)j+ 1)q > e, we have

� if �j � �i; then
h
min

n
[(�j � �i) ((jP (�; i)j+ 2)q � e)]+ ; q(�j � �i)

oi
+
=

q(�j � �i):

� if �j < �i; then
h
min

n
[(�j � �i) ((jP (�; i)j+ 2)q � e)]+ ; q(�j � �i)

oi
+
=

0:
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