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Abstract. In this paper we consider situations where a finite number
of bimatrix games are going to be played once. We suppose that the column
player is the same and has the same strategies in all those bimatrix games
and, moreover, that he must play identically in all of them. We study several
properties concerning the equilibria arising in such situations. Problems of
tax control and inspection can be modeled in the way described above.
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1 Introduction

In this paper we study a special kind of conflicts where a player T' must
play s games I'! =< {1,T}, X, Y, K, L1 >,...,T° =< {s,T}, X*, Y,
K*’, L* > against players 1,.. ., s respectively in the following way (which is
common knowledge). Each game I" is played once. Player T' has to choose
a y € Y that he will use in all games meanwhile, for every 1, player ¢ elects
an ' € X'. Such decisions are taken simultaneously and independently,
resulting that Y7, L*(z',y) is the payoff to player T and K*(z',y) is the
payoff to player 1 for every ¢ € {1,...,s}. This situation is called the stack
game based on T',... T,

In this work we concentrate on stack games based on bimatrix games
and study the equilibria for this class of conflicts. Such a class is especially
interesting because it models those situations where an inspector has to
adopt a uniform behavior for his inspection task, meanwhile every person
who could be audited must decide to act according to the law or not. To
illustrate this we consider the following example.

Example 1.1 (Tax Game). Suppose there is a population of s individuals
who must pay their taxes after declaring their incomes. Each of them can
cheat or can be honest. At the same time, the tax inspector must design a
policy for the control of the declarations. The tax payer ¢ earns ¢; dollars if
he cheats and the inspector does not check his declaration, but he must pay
a fine of f; dollars if the inspector discovers his cheating. For the inspector,
to check a declaration involves a cost c. This situation can be modeled by a
stack game based on I',...,I'* where, for every ¢, I is the bimatrix game
below.

Player T
Check Not Check

Cheat ("“‘ft')fi' - C) (C{,"‘Ci)

Player s
Be honest (0,—¢) (0,0)

Figure 1. Tax game

The aim of this paper is to study the rational behavior of players in stacks



of bimatrix games. In section 2 we are concerned with their equilibria and
derive some results about them. We devote section 3 to stacks of matrix
games. Finally, we include some considerations and concluding remarks in
section 4.

Notation. For every n € IN, we denote by N the set of the n first natural
numbers and by A(N) the set

A(N) := {(zl,...,mn) ER Y r1ze=1l,zy>0forall ke {1,...,n}}.

If A, B C R", we write A+ B for the set {z + y|z € A, y € B}. We denote
by conv(A) the convex hull of A ¢ IR". For any two-person zero-sum game
I' with a value, we write v(T') for its value. Given the sets Ay,...,A,, we
denote its Cartesian product A; X ... x A by [J; A;. The elements of
the canonical basis of JR" are denoted by eq,...,e,. For any game T', we
represent by E(T') its set of equilibria.

2 Equilibria of stacks of bimatrix games
In this section we look at stack games based on the s my; X n bimatrix games
(4%, BY), ..., (A*, B*). For every i, (A’, B') is the game < {i,T}, A(M;),
A(N), K*,L* > such that:

a) 1 and T are the players of the game.

b) A(M;)and A(N) are the strategy spaces of player ¢ and T respectively.

c¢) K* and L' are the payoff functions of player 1 and T respectively, given
by

K'(,y) = @' A'y, I (2}, y) = ' B'y, (z° € A(M;),y € A(N)).
Then, we define a stack of s bimatriz games S as the game
<{1,...,8,T},AM),...,A(M,), A(N), K}, ..., K*, L > (1)
such that:

a) {1,...,8,T} is the set of players of the game.



b) A(M;) and K* are respectively the strategy space and the payoff func-
tion of player i({ € {1,...,s}), and A(N) and L are respectively the
strategy space and the payoff function of player T', with

K' : A(M;) x A(N) - R,E'(¢',y) ='A'y (fe {1,...,5})
L : fI A(M;) x A(N) ~ R, L(z,y) = ij 2’ By,
i=1 =1
where z = (z2,...,z*) € [[}-; A(M;).
An (z,y) € [Ti=; A(M;) x A(N) is an equilibrium of S if and only if
Ki(z',y) > K'(Z,9),VE € A(M;), Vi € {1,...,s},
and
L(z,y) > L(z,7),vy € A(N).

Remark 2.1, Let us consider a stack S like in (1). Now, take the s+ 1-
person game I'(S) given by

<{1,...,5 T} AM),...,A(M,),A(N),HY,... ,H* L >,
where, for all ¢ € {1,...,s}, H' is defined by

8
B :T[AM) x A(N) — R, H(z,y) = K'(z',y).
=1
Clearly, (z,y) is an equilibrium of S if and only if it is an equilibrium of
I'(S). Then, as I’(S) is the mixed extension of a finite s + 1-person normal
form game, according to the Nash theorem (Ref. 1), S has at least one
equilibrium.

Moreover, it is immediate that we can identify the set of stacks of s bi-
matrix games with the set of mixed extensions of finite s + 1-person games
in normal form which verify that there is a player T such that the payoff
function for any other player ¢ different form T' depends only on the strate-
gies that ¢ and T have chosen.

Next, we demonstrate the following theorem which relates the equilibira
of a stack S with the equilibria of a certain two-person game.

Theorem 2.1. Consider a stack of bimatrix games § like in (1) and define
K(z,y) = Lo K'(2*,y) for every (z,y) € [Tic1 A(M;) X A(N). Now take
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the two-person game TP(S) =< {P,T}, [Ii=; A(M;), A(N),K,L >. Then
(z,y) is an equilibrium of S if and only if it is an equilibrium of TP(S).

Proof. From the definition of K, it is clear that, if (z,y) is an equilibrium
of S, it is also an equilibrium of TP(S). Conversely, take an equilibrium
(z,y) of TP(S). Then, K(z,y) > K(zt,...,2" L, o, o1, .., 2°, y),
vzl € A(M;), Vi e{1,...,s}

L(z,y) > L(z,y'),Vy € A(N).
Now, looking at the definition of K, it is immediate that (z,y) is an equi-

librium of S. |

In the following of this section we go further and relate the equilibria of
a stack S to the ones of a certain bimatrix game. Namely, let S be a stack
of bimatrix games like in (1) and consider the (m1 X ... X m,) X n matrices

C
D =

(cai)ael'[';l M;, jEN
(daj)aeH‘;lM.-, jEN
such that, if o = (13, ...,1,),
Cof = ﬂ}u- +...+ ﬂf.j
daj = bt'u' +...+ b:-j

where A' = (a}‘cl)kEM;,lEN: B = (biz)kGM.-,lENs for all 1 € {1, ceny S}.
Now we consider the bimatrix game BI(S) given by (C, D), i.e.

BI(S) =< {AT},A(]] M:), A(N),0,Q >
=1
where O(z,y) = zCy and Q(z,y) = 2Dy, being 2z = (z”)aeﬂ' M; an el-

(E-38

ement of A(JT; M;). Observe that we can identify 2., A(M;) with a
subset of A([[!-; M;). Namely, for an z = (z!,...,2*), we define

i(z):=z€ A(fI M;),

=1

with

8
2y = at IR 1 (Va'=(i1,...,£,,)EH1V!.-).

=1



Then we prove the following theorem.

Theorem 2.2. With the notation above, {z,y) € []{=; A(M;) x A(N) is
an equilibrium of TP(S) if and only if (i(z),y) € A([T}=, M;) X A(N) is an
equilibrium of BI(S).

Proof. We denote R(A') := {e14',...,em;A'}. Then, observe that, for
any (z,9) € TTLy A(M) x ACK),

K(z,y) = Zx Aly= (Zx A')y = ay,
=1
where a := 3!, z'A* € 30, conv(R(A*)). Note also that, for every (z,y) €
AT s 4 A,

O(z,y) = 2Cy = ¢y,

where ¢ := 2C € conv(3 i, R(A%)). Moreover, it is clear that, for any a €
i, conv(R(A%)) and ¢ € conv(3 i, R(A')), there exist z € [[i—; A(M;)
and z € A([I}_, M;) such that, for every y € A(N),

K(z,y) = ay and O(z,y) = cy.

Observe that 0, conv(R(A')) = conv(T{_; R(A*)). Besides, it is
clear that K(z,y) = O(i(z),y) and L(z,y) = O(i(z),y) for every (z,y) €
i=1 A(M;) X A(N). Now, it is straightforward to prove the theorem. 0O

Note that, from theorems 2.1 and 2.2, we can state that, in order to
find all the equilibria of a stack of bimatrix games, it is enough to obtain
all the equilibria of a certain bimatrix game whose second player has the
same number of pure strategies as the second player in the stack. This
fact is important. For example, it allows us to use the geometric methods
described in Borm et al. (Ref. 2) and in Fiestras-Janeiro and Garcia-Jurado
(Ref. 3) to solve stacks of bimatrix games when T has two pure strategies.
These methods are particularly useful in this context because,when T' is an
inspector (as we have suggested it could be in many practical situations),
he will probably have two pure strategies: check or not check.

3 Stacks of matrix games

In this section we consider stack games S like in (1) when B = — A* for all
ie{l,...,s}.



First observe that, from theorem 2.1, S can be identified with the cor-
responding two-person game T P(S) (which now is also zero-sum) and that
E(S) = E(TP(S)) # 0. Besides, TP(S) has a value and E(TP(S)) is a
rectangular set (i.e., if (z,y) and (2',y') are in E(T'P(S)), then (z',y) and
(z,y') are also in E(TP(S))), and then we can speak of optimal strate-
gies of P and T in TP(S). Moreover, as K is a continuous function and

8

i=1 A(M;) and A(N) are compact sets,
v(TP(S)) = max m&n K(z,y) = m}nmiax K(z,y).

Then,

a &
— Sfaf N i (0
v(TP(S)) = ngnmgx?; K'(z',y) = m&ng rr;?xK'(a: y) >
F ] . . 2
: £ —_ 1)
Zm&nn:ng (=*,y) = Zv(I‘ ).
=1 i=1
Now, from theorem 2.2, we know that, in order to solve a stack of matrix

games, it is enough to solve a certain matrix game. But here we can go
further. Namely, for a given S we can construct the matrix X like in section
2 and consider the corresponding matrix game BI(S). Then,

v(TP(S)) = mvinz:ma_.x K'(2,y) = n{’inz:n}?xek.‘A"y =
i=1 * i=1 *
mvin max ¢;Cy = myin max zCy = v(BI(S)).
1]

Moreover, in a matrix game, the set of equilibria is rectangular and, accord-
ing to theorem 2.2, (x,y) € E(TP(S)) if and only if (i(z),y) € E(BI(S)).
Then, y is an optimal strategy of T' in TP(S) if and only if so it is in BI(S).

Next, let us see some examples which will show some interesting facts
about stacks of matrix games.

Example 3.1 (A stack of matching pennies games). Suppose that
players 1, 2 and T have to choose an integer greater than zero. If the sum of
the numbers chosen by 1 (2) and T is odd {even), then 1 (2) pays one dollar
to T. In the other case, T pays one dollar to 1 (2). This situation can be
modeled by the stack S; based on the two following matrix games.



Player T Player T

E O E O
EFl 1 |-1 E|l—-1]1

Player 1 Player 2
o|-1{1 oj 1 |-1

Figure 2, The stack S}

To analyse this stack observe that BI(S1) is the matrix game below

Player T
E O
EE| 6| O
EO| 2 | -2
Player P
OF | -2| 2
00| 0 0

Figure 3. BI(S4)
whose equilibria are the elements of the set
1

{(:c, y) € A(4) x A(2)|]z € conv{ey, %eg + 5

1 1
es,e4},Y = 3¢ + 562

and then, according to theorem 2.2,

E(S1) = {(:z:l,zz,y) € A(2) x A(2) X AQ)|

1 1
(:r:l, z?) € conv{(e1,e1),(ez,e2)},y = e + -2—e2}.

From example 3.1 above we can assert that, in general, given a stack of
matrix games $, (z!,22,y), (1,72, y) € E(S) does not imply that (z!,7%,y),
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(z!,2%,y) € E(S). However, we know that, if (z,y), (£,9) € E(S), then
(=,9), (Z,y) € E(S), because E(T'P(S)) is a rectangular set. From all
this we say that E(S) verifies the weak ezchange property for any S in the
conditions above. Observe that this property suggests that there should be
a sort of coordination between players 1 to s to reach an equilibrium.

Note also that, in example 3.1, F(S;) is a convex set. This fact is not a
coincidence as we see in theorem 3.1 below.

Theorem 3.1. For any stack of matrix games S, E(S) is a convex set.

Proof. From theorem 2.1., it is enough to prove that E(T P(S)) is convex.
To do it, observe that

z is optimal of P in TP(S) & K(z,v") > v(TP(S)) Vy' € A(N)
y is optimal of T in TP(S) & K(z',y) < v(TP(S)) Ve’ € [Ti=; A(M;).
Then, taking into account that K is a bilinear function, it is straightforward

to prove the theorem. 0

Now, let us study another example.

Example 3.2. Consider the stack S; based on the two matrix games ri
and T'? below.

011 110
210 L2 513

Figure 4. The stack S

I’y

BI(S) is the following matrix game.

D] R O 1=

B2 Of O] =t

Figure 5. BI(S3)

Using theorem 2.2 and, for example, a geometric method to solve m x 2
matrix games it is obtained that v(I'!) = v(I'?) = £, v(BI(S;)) = 2 and

2 1 1 2
B(I'Y) = {(561 +36 3% + "3*82)}



2 1 2 1
E(Pg) = {(581 + -3-82,‘561 + Eez)}

E(BIS) = {(s)eal)x a@)ye
conv{%el + —:~e2, %el + -31'82}}

E(S;)

{rens) e 5) x 22) x 2@y €
conv 381 382,381 362 .
We had already proved that, for any stack S based on the matrix games

I',...I%, o(TP(S)) > i, v(I"). From example 3.2, we can assert that
the equality does not always hold. Namely,

v(TP(Sz)) = v(BI(S2)) =2 > o(I'") +o(P?) = %

Besides, it is clear that, for any S in the conditions above, K(z,y) =
K(z',y') and L(z,y) = L(',y') for all (z,y), (',¥') in E(TP(S)) = B(S).
However, it is not true in general that K‘(zf,y) = Ki(z",y') for all § €
{1,...,8} and (z,y), (,¢) in B(TP(S)) = E(S) (as we can see in example
3.2). From this we say that E(S) verifies the weak equal payoff property.

Finally, observe that the strategies that all equilibria in Sz propose for
player 1 and 2 are not optimal for such players in I'! and I'? respectively.
However, K*(zf,y) > v(I¥) for all i € {1,2} and all (z,y) € E(S;). In
general, we can state the following result.

L]

Theorem 3.2. For any stack S based on s matrix games ..., I
Ki(2',y) > o(I*) for all 1 € {1,...,5} and (z,y) € E(Ss).

Prqof. If there exist + € {1,..., s} and (%,7) € E(Sz) such that K'(Z,7) <
v(T*), then

K'(Z,7) < v(I") = max m”in K'(2*,y) < max K*(«',7)
z* z'

and hence (%,7) is not in F(S), which is a contradiction. a

4 Concluding remarks

Our aim in this paper was to establish the initial theoretical basis for the
study of stacks of games, but we know that now many interesting questions
arise. Let us enumerate some of them:

10



a)
b)

More general models of stacks could be studied.

Many refinements of the equilibrium concept have been introduced to
avoid some unsatisfactory properties of such a concept (for an inter-
esting survey on refinements see Van Damme’s book, Ref. 4). One
possible object of study is the behavior of those refined concepts in
the context of stacks.

It is easily seen that a stack of bimatrix games is a special polymatrix
game in the sense of Quintas (Ref. 5). Then, we know that E(S) is
a finite union of polytopes. However, easier proofs of such a result
(or of stronger ones) can perhaps be given for this particular class of
polymatrix games.

Much research work has been made to prove the ordered field property
for different classes of games (for a recent paper on the topic see Vrieze
et al., Ref. 6). Using theorem 2.2, the ordered field property could be
proved for stacks of matrix games, but it could be studied for other
classes of stacks.
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