Smoothing-based inference with directional data

Eduardo García-Portugués (egarcia@math.ku.dk)

Department of Mathematical Sciences University of Copenhagen

Department of Statistics Universidad Carlos III de Madrid

Wencesfest, June 8, 2016

Directional data: what, why, where?

 Directional data are vectors whose support is the hypersphere

 $\Omega_q = \left\{ \mathbf{x} \in \mathbb{R}^{q+1} : ||\mathbf{x}|| = 1
ight\}$

- Particular cases are the circle
 (q = 1) and the sphere (q = 2)
- Statistical methods must account for the special nature of directional data
- Present in different applied fields: corner stone in bioinformatics

Figure: Spherical von Mises density

Directional data: what, why, where?

 Directional data are vectors whose support is the hypersphere

 $\Omega_q = \left\{ \mathbf{x} \in \mathbb{R}^{q+1} : ||\mathbf{x}|| = 1 \right\}$

- Particular cases are the circle
 (q = 1) and the sphere (q = 2)
- Statistical methods must account for the special nature of directional data
- Present in different applied fields: corner stone in bioinformatics

Figure: Schematic view of the protein's backbone

Von Mises-Fisher distribution

The von Mises-Fisher (vMF) is the most well known directional density:

$$f_{\rm vMF}(\mathbf{x};\boldsymbol{\mu},\boldsymbol{\kappa}) = C_q(\boldsymbol{\kappa}) \exp\left\{\boldsymbol{\kappa} \mathbf{x}^T \boldsymbol{\mu}\right\}, \quad C_q(\boldsymbol{\kappa}) = \frac{\boldsymbol{\kappa}^{\frac{q-1}{2}}}{(2\pi)^{\frac{q+1}{2}} \mathcal{I}_{\frac{q-1}{2}}(\boldsymbol{\kappa})}$$

parametrized by a mean $oldsymbol{\mu}\in\Omega_q$ and a concentration $\kappa\geq 0$

Density wrt the Lebesgue measure ω_q in Ω_q. ω_q denotes also the area surface of Ω_q:

$$\omega_q \equiv \omega_q(\Omega_q) = 2\pi^{\frac{q+1}{2}}/\Gamma\left(\frac{q+1}{2}\right)$$

(Isotropic) Gaussian analogue:

1 Same MLE characterization property **2** If $\mathbf{X} \sim \mathcal{N}_{q+1} \left(\boldsymbol{\mu}, \sigma^2 \mathbf{I}_{q+1} \right)$, then

$$\left| \mathbf{X} \right| \left| \left| \mathbf{X} \right| \right| = 1 \sim \mathrm{vMF}\left(\frac{\mu}{\left| \left| \mu \right| \right|}, \frac{\left| \left| \mu \right| \right|}{\sigma^2} \right)$$

Contents of the talk

- Part I. Kernel density estimation with directional data under rotational symmetry
 - Present a KDE under rotational symmetry
 - Study its main asymptotic properties
 - Illustrate empirical performance through simulations

- **2** Part II. Estimation and testing in linear-directional regression
 - Present a local linear estimator with directional predictor
 - Build a goodness-of-fit test for regression models
 - Apply both to test a common assumption in bioinformatics

Part I

Kernel density estimation with directional data under rotational symmetry

García-Portugués, E., Ley, C., Verdebout, T. (2016). Kernel density estimation for directional data under rotational symmetry. *Under preparation*.

Eduardo García-Portugués

Contents of Part I

I KDE with directional data

KDE under rotasymmetry The rotasymmetrizer Rotasymmetric KDE

3 Simulation study

KDE with directional data

For a sample X₁,..., X_n ∼ f, the Kernel Density Estimator (KDE) for directional data is

$$\hat{f}_h(\mathbf{x}) = \frac{c_{h,q}(L)}{n} \sum_{i=1}^n L\left(\frac{1-\mathbf{x}^T \mathbf{X}_i}{h^2}\right) = \frac{1}{n} \sum_{i=1}^n L_h\left(\mathbf{x}, \mathbf{X}_i\right), \quad \mathbf{x} \in \Omega_q$$

F

- Bai, Z. D., Rao, C. R. and Zhao, L. C. (1988). Kernel estimators of density function of directional data. J. Multivariate Anal., 27:24–39
- Note the h^2 because $2(1 \mathbf{x}^T \mathbf{X}_i) = ||\mathbf{x} \mathbf{X}_i||^2$
- ► Normalizing constant c_{h,q}(L)⁻¹ = λ_q(L)h^q(1 + o(1)) with

$$\lambda_q(L) = 2^{\frac{q}{2}-1} \omega_{q-1} \int_0^\infty L(r) r^{\frac{q}{2}-1} \, dr$$

- "Second moment" of L: $b_q(L) = \int_0^\infty L(r)r^{\frac{q}{2}} dr / \int_0^\infty L(r)r^{\frac{q}{2}-1} dr$
- If $L(r) = e^{-r}$, the vMF kernel, $c_{h,q}(L) = e^{1/h^2}C_q(1/h^2)$

Eduardo García-Portugués

Smoothing-based inference with directional data

Eduardo García-Portugués

Smoothing-based inference with directional data

Eduardo García-Portugués

Rotasymmetry I

- Recurrent assumption: X is rotational symmetric (or rotasymmetric) about some direction θ ∈ Ω_q
- Circular case: rotasymmetry is reflective symmetry
- High-dimensional situation: rotasymmetry is behind many celebrated distributions

Figure: Rotasymmetry in the circular and spherical cases

Rotasymmetry II

Proposition (Rotasymmetry characterization)

Let X a directional rv with density f. These statements are equivalent:

- **Q** $\mathbf{X} \stackrel{d}{=} \mathbf{O}\mathbf{X}$, where $\mathbf{O} = \boldsymbol{\theta}\boldsymbol{\theta}^T + \sum_{i=1}^q \mathbf{b}_i \mathbf{b}_i^T$ is a rotation matrix on \mathbb{R}^{q+1} that fixes $\boldsymbol{\theta} \in \Omega_q$
- 2 $f(\mathbf{x}) = g(\mathbf{x}^T \boldsymbol{\theta}), \forall \mathbf{x} \in \Omega_q$, where $g : [-1, 1] \longrightarrow \mathbb{R}^+$ is a link such that

$$f^*(t) = \omega_{q-1}g(t)(1-t^2)^{rac{q}{2}-1}$$
 is a density in $[-1,1]$

Rotasymmetry is related with the tangent-normal decomposition:

$$\mathbf{x} = t\boldsymbol{ heta} + (1-t^2)^{rac{1}{2}} \mathbf{B}_{\boldsymbol{ heta}} \boldsymbol{\xi}$$

with $t = \mathbf{x}^T \boldsymbol{\theta} \in [-1, 1]$, $\boldsymbol{\xi} \in \Omega_{q-1}$ and $\mathbf{B}_{\boldsymbol{\theta}} = (\mathbf{b}_1, \dots, \mathbf{b}_q)_{(q+1) \times q}$ such that $\mathbf{B}_{\boldsymbol{\theta}}^T \mathbf{B}_{\boldsymbol{\theta}} = \mathbf{I}_q$ and $\mathbf{B}_{\boldsymbol{\theta}} \mathbf{B}_{\boldsymbol{\theta}}^T = \mathbf{I}_{q+1} - \boldsymbol{\theta} \boldsymbol{\theta}^T$

No monotonicity required in g, axial variables are covered as well

The rotasymmetrizer

Definition (Rotasymmetrizer)

The **rotasymmetrizer** around θ , R_{θ} , transforms a function $f : \Omega_q \longrightarrow \mathbb{R}$ into

$$R_{\boldsymbol{\theta}}f(\mathbf{x}) = \frac{1}{\omega_{q-1}} \int_{\Omega_{q-1}} f(\mathbf{x}_{\boldsymbol{\theta},\boldsymbol{\xi}}) \, \omega_{q-1}(d\boldsymbol{\xi}),$$

with
$$\mathbf{x}_{\boldsymbol{ heta},\boldsymbol{\xi}} = (\mathbf{x}^{T} \boldsymbol{ heta}) \boldsymbol{ heta} + (1 - (\mathbf{x}^{T} \boldsymbol{ heta})^2)^{\frac{1}{2}} \mathbf{B}_{\boldsymbol{ heta}} \boldsymbol{\xi}$$

- For point x ∈ Ω_q, the operator averages out the density along the points sharing the same colatitude (wrt θ)
- Intuitively: parallel redistribution of probability mass

Properties

Proposition (Rotasymmetrizer properties)

Let be $f, f_1, f_2 : \Omega_q \longrightarrow \mathbb{R}^+$ directional densities and $\theta \in \Omega_q$.

Invariance from different matrices B_θ:

$$\int_{\Omega_{q-1}} f\left(\mathbf{x}_{\boldsymbol{\theta},\boldsymbol{\xi},1}\right) \, \omega_{q-1}(d\boldsymbol{\xi}) = \int_{\Omega_{q-1}} f\left(\mathbf{x}_{\boldsymbol{\theta},\boldsymbol{\xi},2}\right) \, \omega_{q-1}(d\boldsymbol{\xi}),$$

with $\mathbf{x}_{\theta, \boldsymbol{\xi}, k} = (\mathbf{x}^T \theta) \theta + (1 - (\mathbf{x}^T \theta)^2)^{\frac{1}{2}} \mathbf{B}_{\theta, k} \boldsymbol{\xi}$, k = 1, 2

- 2 Linearity: $R_{\theta}(\lambda_1 f_1 + \lambda_2 f_2)(\mathbf{x}) = \lambda_1 R_{\theta} f_1(\mathbf{x}) + \lambda_2 R_{\theta} f_2(\mathbf{x})$
- **3 Density preservation**: $R_{\theta}f$ is a density
- **()** Characterization: $R_{\theta}f = f \iff f$ is rotasymmetric around θ
- S Explicit expression for the vMF density:

$$R_{\theta} f_{\rm vMF}(\mathbf{x}; \boldsymbol{\mu}, \kappa) = \frac{C_q(\kappa) \exp\left\{\kappa \mathbf{x}^T \boldsymbol{\theta} \boldsymbol{\mu}^T \boldsymbol{\theta}\right\}}{\omega_{q-1} C_{q-1} \left(\kappa \left[(1 - (\mathbf{x}^T \boldsymbol{\theta})^2)(1 - (\boldsymbol{\mu}^T \boldsymbol{\theta})^2)\right]^{\frac{1}{2}}\right)}$$

Rotasymmetric KDE

► Goal: estimate semiparametrically *f* under rotasymmetry

Definition (Rotasymmetric KDE)

The **rotasymmetric KDE (RKDE)** is the application of the rotasymmetrizer to the usual KDE:

$$\hat{f}_{h,\theta}(\mathbf{x}) = R_{\theta}\hat{f}_{h}(\mathbf{x}) = \frac{1}{n}\sum_{i=1}^{n}L_{h,\theta}(\mathbf{x}, \mathbf{X}_{i}),$$
with $L_{h,\theta}(\mathbf{x}, \mathbf{X}_{i}) = \frac{c_{h,q}(L)}{\omega_{q-1}}\int_{\Omega_{q-1}}L\left(\frac{1-\mathbf{x}_{\theta,\xi}^{T}\mathbf{X}_{i}}{h^{2}}\right)\omega_{q-1}(d\xi)$

The rotasymmetric vMF kernel has an explicit expression:

$$L_{h,\theta}(\mathbf{x}, \mathbf{X}_i) = \frac{C_q(1/h^2) \exp\left\{\mathbf{x}^T \theta \mathbf{X}_i^T \theta / h^2\right\}}{\omega_{q-1} C_{q-1} \left(\left[(1 - (\mathbf{x}^T \theta)^2)(1 - (\mathbf{X}_i^T \theta)^2)\right]^{\frac{1}{2}} / h^2\right)}$$

• The order of the normalizing constant is $\mathcal{O}(h^{-1})$

Figure: Kernels for the KDE (upper row) and their RKDE counterparts (lower), with $\theta = (\mathbf{0}_q, 1)$. The kernels have the same bandwidth

Figure: Kernels for the KDE (upper row) and their RKDE counterparts (lower), with $\theta = (\mathbf{0}_q, 1)$. The kernels have the same bandwidth

Figure: Kernels for the KDE (upper row) and their RKDE counterparts (lower), with $\theta = (\mathbf{0}_q, 1)$. The kernels have the same bandwidth

Figure: Kernels for the KDE (upper row) and their RKDE counterparts (lower), with $\theta = (\mathbf{0}_q, 1)$. The kernels have the same bandwidth

Figure: Kernels for the KDE (upper row) and their RKDE counterparts (lower), with $\theta = (\mathbf{0}_q, 1)$. The kernels have the same bandwidth

Figure: Kernels for the KDE (upper row) and their RKDE counterparts (lower), with $\theta = (\mathbf{0}_q, 1)$. The kernels have the same bandwidth

Figure: Kernels for the KDE (upper row) and their RKDE counterparts (lower), with $\theta = (\mathbf{0}_q, 1)$. The kernels have the same bandwidth

Figure: Kernels for the KDE (upper row) and their RKDE counterparts (lower), with $\theta = (\mathbf{0}_q, 1)$. The kernels have the same bandwidth

Connections with KDE in [-1, 1]

- ► The RKDE kernels only depend on the projected sample $T_i = \mathbf{X}_i^T \boldsymbol{\theta}$ and the projected point $t = \mathbf{x}^T \boldsymbol{\theta}$
- ► RKDE is equivalent to KDE on [-1, 1] with bounded kernels adapted to capture the spikes of f*(t) = ω_{q-1}g(t)(1 - t²)^g/₂ - 1
- Boundary bias is $\mathcal{O}(h^2)$ without any corrections

Figure: KDE of f^* with $g(t) = C_q(\kappa) \exp{\{\kappa t\}}$, $\kappa = 1$ and q = 1

.

Connections with KDE in [-1, 1]

- ► The RKDE kernels only depend on the projected sample $T_i = \mathbf{X}_i^T \boldsymbol{\theta}$ and the projected point $t = \mathbf{x}^T \boldsymbol{\theta}$
- ► RKDE is equivalent to KDE on [-1, 1] with bounded kernels adapted to capture the spikes of f*(t) = ω_{q-1}g(t)(1 - t²)^g/₂ - 1
- Boundary bias is $\mathcal{O}(h^2)$ without any corrections

Figure: KDE of f^* with $g(t) = C_q(\kappa) \exp{\{\kappa t\}}$, $\kappa = 1$ and q = 2

Connections with KDE in [-1,1]

- ► The RKDE kernels only depend on the projected sample $T_i = \mathbf{X}_i^T \boldsymbol{\theta}$ and the projected point $t = \mathbf{x}^T \boldsymbol{\theta}$
- ► RKDE is equivalent to KDE on [-1, 1] with bounded kernels adapted to capture the spikes of f*(t) = ω_{q-1}g(t)(1 - t²)^g/₂ - 1
- Boundary bias is $\mathcal{O}(h^2)$ without any corrections

Connections with KDE in [-1,1]

- ► The RKDE kernels only depend on the projected sample $T_i = \mathbf{X}_i^T \boldsymbol{\theta}$ and the projected point $t = \mathbf{x}^T \boldsymbol{\theta}$
- ► RKDE is equivalent to KDE on [-1, 1] with bounded kernels adapted to capture the spikes of f*(t) = ω_{q-1}g(t)(1 - t²)^g/₂ - 1
- Boundary bias is $\mathcal{O}(h^2)$ without any corrections

Figure: KDE of f^* with $g(t) = C_q(\kappa) \exp{\{\kappa t\}}$, $\kappa = 1$ and q = 10

Connections with KDE in [-1,1]

- ► The RKDE kernels only depend on the projected sample $T_i = \mathbf{X}_i^T \boldsymbol{\theta}$ and the projected point $t = \mathbf{x}^T \boldsymbol{\theta}$
- ► RKDE is equivalent to KDE on [-1, 1] with bounded kernels adapted to capture the spikes of f*(t) = ω_{q-1}g(t)(1 - t²)^g/₂ - 1
- Boundary bias is $\mathcal{O}(h^2)$ without any corrections

Bias (θ known)

Assumptions:

A1 f is extended by $f(\mathbf{x}/||\mathbf{x}||)$ and is twice continuously differentiable A2 $L: \mathbb{R}^+ \to \mathbb{R}^+$ is continuous, bounded and has exponential decay A3-1 The sequence $h = h_n$ satisfies $h \to 0$ and $nh \to \infty$ A3-q The sequence $h = h_n$ satisfies $h \to 0$ and $nh^q \to \infty$

► A3-q is required for consistency at $\mathbf{x} = \pm \boldsymbol{\theta}$ (note A3-q \Rightarrow A3-1)

Proposition (Bias, θ known)

Under **A1–A3**-1 and uniformly in $\mathbf{x} \in \Omega_q$,

$$\mathbb{E}\left[\hat{f}_{h,\theta}(\mathbf{x})\right] = \frac{R_{\theta}f(\mathbf{x}) + \frac{b_q(L)}{q} \operatorname{tr}\left[R_{\theta}\mathcal{H}f(\mathbf{x})\right]h^2 + o\left(h^2\right)$$

If rotasymmetry holds, then $R_{\theta}f = f$ and the bias is KDE's one

•

Variance (θ known)

Proposition (Variance, θ known)

Under A1–A2, A3 if $(\mathbf{x}^T \theta)^2 < 1$ and A4 otherwise,

$$\operatorname{Var}\left[\hat{f}_{h,\theta}(\mathbf{x})\right] = C_{\mathbf{x}^{T}\theta,q,L}(h) \frac{R_{\theta}f(\mathbf{x})}{n} (1+o(1)) - \frac{(R_{\theta}f(\mathbf{x}))^{2}}{n}$$

uniformly in $\mathbf{x} \in \Omega_q$, where

$$C_{\mathbf{x}^{T}\theta,q,L}(h) = \begin{cases} \frac{\lambda_{q}(L^{2})\lambda_{q}(L)^{-2}}{h^{q}}, & (\mathbf{x}^{T}\theta)^{2} = 1, q \ge 1, \\ \frac{\lambda_{1}(L^{2})\lambda_{1}(L)^{-2}}{2h}, & (\mathbf{x}^{T}\theta)^{2} < 1, q = 1, \\ \frac{\lambda_{q}(L)^{2}\lambda_{q-1}(L)^{-2}}{\omega_{q-1}(1 - (\mathbf{x}^{T}\theta)^{2})^{\frac{1}{2}}h}, & (\mathbf{x}^{T}\theta)^{2} < 1, q \ge 2 \end{cases}$$

The asymptotic constant of the variance increases with q → ∞ since ω_{q-1} → 0! (but slowly than KDE's)

Spherical area surface

- The area of Ω_q tends to zero, but not monotonically
- Weird maximum at dimension q = 6
- $[-1,1]^q$ touches Ω_q in 2^q points, yet its area tends to infinity!

Key orders & asymptotic normality

Concept	KDE (√/× rotasym.)	RKDE (√ rotasym.)	RKDE (× rotasym.)
Bias	$\mathcal{O}\left(h^{2}\right)$	$\mathcal{O}\left(\hbar^{2}\right)$	$O(R_{\theta}f(\mathbf{x}) - f(\mathbf{x}))$
Variance	$\mathcal{O}\left((\mathit{nh^q})^{-1} ight)$	$\mathcal{O}\left((\mathit{nh})^{-1} ight)$	$\Big \qquad \mathcal{O}\left((nh)^{-1} ight)$
Optimal AMISE	$\mathcal{O}\left(n^{-\frac{4}{4+q}}\right)$	$\mathcal{O}\left(n^{-\frac{4}{5}}\right)$	$O\left(\int (R_{\theta}f-f)^2\right)$

Table: Summary of the KDE and RKDE key orders

Corollary (Pointwise asymptotic normality, θ known) Under A1-A2, A3 if $(\mathbf{x}^T \theta)^2 < 1$ and A4 otherwise, $a_n \left(\hat{f}_{h,\theta}(\mathbf{x}) - f(\mathbf{x}) \right) \xrightarrow{d} \mathcal{N} \left(R_{\theta} f(\mathbf{x}) - f(\mathbf{x}), C_{\mathbf{x}^T \theta, q, L}(1) \right)$, where $a_n = \sqrt{nh}$ if $(\mathbf{x}^T \theta)^2 < 1$ and $a_n = \sqrt{nh^q}$ otherwise

What if θ is unknown?

Assumption:

A4 $\hat{\theta}$ is a \sqrt{n} -consistent estimator: $\hat{\theta} - \theta = \mathcal{O}_{\mathbb{P}}(n^{-\frac{1}{2}})$

- Examples of $\hat{\theta}$:
 - ▶ If **X** such that *g* is strictly monotone, $\sum_{i=1}^{n} \mathbf{X}_{i} / ||\sum_{i=1}^{n} \mathbf{X}_{i}||$ ▶ If **X** is an axial rv, the first eigenvector of $\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i} \mathbf{X}_{i}^{T}$
- ▶ Work in progress: under A1–A2, A3-1/A3-g and A4:

$$\mathbb{E}\left[\hat{f}_{h,\hat{\theta}}(\mathbf{x})\right] = R_{\theta}f(\mathbf{x}) + \frac{b_q(L)}{q} \operatorname{tr}\left[R_{\theta}\mathcal{H}f(\mathbf{x})\right]h^2 + o\left(h^2\right) + \mathcal{O}\left(n^{-\frac{1}{2}}\right),$$

$$\mathbb{V}\operatorname{ar}\left[\hat{f}_{h,\hat{\theta}}(\mathbf{x})\right] = C_{\mathbf{x}^{T}\theta,q,L}(h)\frac{R_{\theta}f(\mathbf{x})}{n}(1+o(1)) - \frac{(R_{\theta}f(\mathbf{x}))^2}{n},$$

$$a_n(\hat{f}_{h,\hat{\theta}}(\mathbf{x}) - f(\mathbf{x})) \xrightarrow{d} \mathcal{N}\left(R_{\theta}f(\mathbf{x}) - f(\mathbf{x}), C_{\mathbf{x}^{T}\theta,q,L}(1)\right)$$

Eduardo García-Portugués

Simulation study

Figure: Performance of the three kernel estimators with q = 1 (left) and q = 2 (right), with n = 100

Ratios optimal MISEs	q=1	q = 2	q = 3	<i>q</i> = 4	q = 5	<i>q</i> = 6
KDE/RKDE, <i>θ</i>	1.796	2.999	4.065	5.643	5.871	8.019
KDE/RKDE, $\hat{oldsymbol{ heta}}$	1.289	2.014	2.537	3.035	3.207	3.467

Eduardo García-Portugués

Simulation study

Figure: Performance of the three kernel estimators with q = 3 (left) and q = 4 (right), with n = 100

Ratios optimal MISEs	q=1	q = 2	q = 3	<i>q</i> = 4	q = 5	q = 6
KDE/RKDE, θ	1.796	2.999	4.065	5.643	5.871	8.019
KDE/RKDE, $\hat{\theta}$	1.289	2.014	2.537	3.035	3.207	3.467

Eduardo García-Portugués

Simulation study

Figure: Performance of the three kernel estimators with q = 5 (left) and q = 6 (right), with n = 100

Ratios optimal MISEs	q=1	q = 2	q = 3	<i>q</i> = 4	q = 5	q = 6
KDE/RKDE, $\hat{\theta}$	1.796	2.999	4.065	5.643	5.871	8.019
KDE/RKDE, $ heta$	1.289	2.014	2.537	3.035	3.207	3.467

Eduardo García-Portugués

Part II

Estimation and testing in linear-directional regression

García-Portugués, E., Van Keilegom, I., Crujeiras, R. and González-Manteiga, W. (2016). Testing parametric models in linear-directional regression. *Scand. J. Stat. (to appear)*

22 / 33

Eduardo García-Portugués

Contents of Part II

Nonparametric estimation of the regression

Goodness-of-fit tests for models with directional predictor Asymptotic distribution Calibration in practice

3 Data application

Regression with directional data

- Let (X, Y) be a rv with support in $\Omega_q imes \mathbb{R}$ and X having density f
- Consider the regression model

$$Y = m(\mathbf{X}) + \sigma(\mathbf{X})\varepsilon \quad \text{with} \quad \begin{cases} m(\mathbf{x}) = \mathbb{E}\left[Y|\mathbf{X} = \mathbf{x}\right], \\ \sigma^{2}(\mathbf{x}) = \mathbb{V}\text{ar}\left[Y|\mathbf{X} = \mathbf{x}\right], \end{cases}$$

with $\mathbb{E}\left[\varepsilon|\mathbf{X}\right] = 0$, $\mathbb{E}\left[\varepsilon^{2}|\mathbf{X}\right] = 1$ and $\mathbb{E}\left[|\varepsilon|^{3}|\mathbf{X}\right]$ and $\mathbb{E}\left[\varepsilon^{4}|\mathbf{X}\right]$
bounded zets

bounded rv's

- ► Goal: estimate *m* nonparametrically from $\{(\mathbf{X}_i, Y_i)\}_{i=1}^n$
- ► Taylor expansions are required, so the first condition is:
 - A1 *m* and *f* ar extended as $m(\mathbf{x}/||\mathbf{x}||)$ and $f(\mathbf{x}/||\mathbf{x}||)$. *m* is third and *f* is twice continuously differentiable and *f* is bounded away from zero

► Let $\mathbf{x}, \mathbf{X}_i \in \Omega_q$. The one term Taylor expansion of m is: $m(\mathbf{X}_i) = m(\mathbf{x}) + \nabla m(\mathbf{x})^T (\mathbf{X}_i - \mathbf{x}) + \mathcal{O}\left(||\mathbf{X}_i - \mathbf{x}||^2\right)$

• Let $\mathbf{x}, \mathbf{X}_i \in \Omega_q$. The one term Taylor expansion of *m* is:

 $m(\mathbf{X}_i) = m(\mathbf{x}) + \boldsymbol{\nabla} m(\mathbf{x})^T \left(\mathbf{I}_{q+1} - \mathbf{x} \mathbf{x}^T \right) \left(\mathbf{X}_i - \mathbf{x} \right) + \mathcal{O} \left(||\mathbf{X}_i - \mathbf{x}||^2 \right)$

► Let $\mathbf{x}, \mathbf{X}_i \in \Omega_q$. The one term Taylor expansion of *m* is:

 $m(\mathbf{X}_i) = m(\mathbf{x}) + \boldsymbol{\nabla} m(\mathbf{x})^T \mathbf{B}_{\mathbf{x}} \mathbf{B}_{\mathbf{x}}^T (\mathbf{X}_i - \mathbf{x}) + \mathcal{O}\left(||\mathbf{X}_i - \mathbf{x}||^2 \right)$

► Let $\mathbf{x}, \mathbf{X}_i \in \Omega_q$. The one term Taylor expansion of m is: $m(\mathbf{X}_i) = m(\mathbf{x}) + \nabla m(\mathbf{x})^T \mathbf{B}_{\mathbf{x}} \mathbf{B}_{\mathbf{x}}^T (\mathbf{X}_i - \mathbf{x}) + \mathcal{O}\left(||\mathbf{X}_i - \mathbf{x}||^2\right)$ $\approx \beta_0 + (\beta_1, \dots, \beta_q)^T \mathbf{B}_{\mathbf{x}}^T (\mathbf{X}_i - \mathbf{x}),$ with $\mathbf{B}_{\mathbf{x}} = (\mathbf{b}_1, \dots, \mathbf{b}_q)_{(q+1) \times q}$ such that $\mathbf{B}_{\mathbf{x}} \mathbf{B}_{\mathbf{x}}^T = \mathbf{I}_{q+1} - \mathbf{x} \mathbf{x}^T,$ $\beta_0 = m(\mathbf{x})$ and $(\beta_1, \dots, \beta_q) = \mathbf{B}_{\mathbf{x}}^T \nabla m(\mathbf{x})$

► Let $\mathbf{x}, \mathbf{X}_i \in \Omega_q$. The one term Taylor expansion of m is: $m(\mathbf{X}_i) = m(\mathbf{x}) + \nabla m(\mathbf{x})^T \mathbf{B}_{\mathbf{x}} \mathbf{B}_{\mathbf{x}}^T (\mathbf{X}_i - \mathbf{x}) + \mathcal{O}\left(||\mathbf{X}_i - \mathbf{x}||^2\right)$ $\approx \beta_0 + (\beta_1, \dots, \beta_q)^T \mathbf{B}_{\mathbf{x}}^T (\mathbf{X}_i - \mathbf{x}),$ with $\mathbf{B}_{\mathbf{x}} = (\mathbf{b}_1, \dots, \mathbf{b}_q)_{(q+1) \times q}$ such that $\mathbf{B}_{\mathbf{x}} \mathbf{B}_{\mathbf{x}}^T = \mathbf{I}_{q+1} - \mathbf{x}\mathbf{x}^T,$ $\beta_0 = m(\mathbf{x})$ and $(\beta_1, \dots, \beta_q) = \mathbf{B}_{\mathbf{x}}^T \nabla m(\mathbf{x})$

Weighted minimum least squares problem:

$$\min_{\boldsymbol{\beta} \in \mathbb{R}^{q+1}} \sum_{i=1}^{n} \left(Y_i - \beta_0 - \delta_{p,1} \left(\beta_1, \ldots, \beta_q \right)^T \mathbf{B}_{\mathbf{x}}^T (\mathbf{X}_i - \mathbf{x}) \right)^2 L_h(\mathbf{x}, \mathbf{X}_i)$$

► Let $\mathbf{x}, \mathbf{X}_i \in \Omega_q$. The one term Taylor expansion of m is: $m(\mathbf{X}_i) = m(\mathbf{x}) + \nabla m(\mathbf{x})^T \mathbf{B}_{\mathbf{x}} \mathbf{B}_{\mathbf{x}}^T (\mathbf{X}_i - \mathbf{x}) + \mathcal{O}\left(||\mathbf{X}_i - \mathbf{x}||^2\right)$ $\approx \beta_0 + (\beta_1, \dots, \beta_q)^T \mathbf{B}_{\mathbf{x}}^T (\mathbf{X}_i - \mathbf{x}),$ with $\mathbf{B}_{\mathbf{x}} = (\mathbf{b}_1, \dots, \mathbf{b}_q)_{(q+1) \times q}$ such that $\mathbf{B}_{\mathbf{x}} \mathbf{B}_{\mathbf{x}}^T = \mathbf{I}_{q+1} - \mathbf{x}\mathbf{x}^T$, $\beta_0 = m(\mathbf{x})$ and $(\beta_1, \dots, \beta_q) = \mathbf{B}_{\mathbf{x}}^T \nabla m(\mathbf{x})$

Weighted minimum least squares problem:

$$\min_{\boldsymbol{\beta} \in \mathbb{R}^{q+1}} \sum_{i=1}^{n} \left(Y_i - \beta_0 - \delta_{p,1} \left(\beta_1, \ldots, \beta_q \right)^T \mathbf{B}_{\mathbf{x}}^T (\mathbf{X}_i - \mathbf{x}) \right)^2 L_h(\mathbf{x}, \mathbf{X}_i)$$

The solution is given by

$$\hat{m}_{h,p}(\mathbf{x}) = \mathbf{e}_{1,p}^{T} \left(\boldsymbol{\mathcal{X}}_{\mathbf{x},p}^{T} \boldsymbol{\mathcal{W}}_{\mathbf{x}} \boldsymbol{\mathcal{X}}_{\mathbf{x},p} \right)^{-1} \boldsymbol{\mathcal{X}}_{\mathbf{x},p}^{T} \boldsymbol{\mathcal{W}}_{\mathbf{x}} \mathbf{Y} = \sum_{i=1}^{n} W_{p}^{n} \left(\mathbf{x}, \mathbf{X}_{i} \right) Y_{i},$$

$$\boldsymbol{\mathcal{X}}_{\mathbf{x},1} = \begin{pmatrix} 1 & (\mathbf{X}_1 - \mathbf{x})^T \mathbf{B}_{\mathbf{x}} \\ \vdots & \vdots \\ 1 & (\mathbf{X}_n - \mathbf{x})^T \mathbf{B}_{\mathbf{x}} \end{pmatrix},$$

Eduardo García-Portugués

 $\mathcal{W}_{\mathbf{x}} = \operatorname{diag}\left(L_{h}(\mathbf{x}, \mathbf{X}_{1}), \ldots, L_{h}(\mathbf{x}, \mathbf{X}_{n})\right)$

n

Eduardo García-Portugués

Smoothing-based inference with directional data

time-based interence with directional

Eduardo García-Portugués

Eduardo García-Portugués

Eduardo García-Portugués

nal data _____ 26 / 33

Eduardo García-Portugués

Eduardo García-Portugués

Eduardo García-Portugués

Output

Figure: Local linear estimator with n = 100 for the circle and the sphere

Testing a parametric model

- ► Goal: check nonparametrically $H_0 : m \in \mathcal{M}_\Theta = \{m_\theta : \theta \in \Theta \subset \mathbb{R}^s\}$
- ► The statistic is the weighted L²-distance between m̂_{h,p} and the smoothed m_∂:

$$T_n = \int_{\Omega_q} \left(\hat{m}_{h,p}(\mathbf{x}) - \mathcal{L}_{h,p} m_{\hat{\boldsymbol{\theta}}}(\mathbf{x}) \right)^2 \hat{f}_h(\mathbf{x}) w(\mathbf{x}) \, \omega_q(d\mathbf{x}),$$

with $\mathcal{L}_{h,p}m_{\hat{\theta}}(\mathbf{x}) = \sum_{i=1}^{n} W_{n}^{p}(\mathbf{x}, \mathbf{X}_{i}) m_{\hat{\theta}}(\mathbf{X}_{i})$ the smoothing operator and $w: \Omega_{q} \to \mathbb{R}^{+}$ a weight function (useful for removing possible boundary effects)

- Alcalá, J. T., Cristóbal, J. A., and González-Manteiga, W. (1999). Goodness-of-fit test for linear models based on local polynomials. *Statist. Probab. Lett.*, 42(1):39–46
 - Härdle, W. and Mammen, E. (1993). Comparing nonparametric versus parametric regression fits. *Ann. Statist.*, 21(4):1926–1947

Asymptotic distribution

Theorem (Goodness-of-fit for linear-directional models)
Under A1-A6 and
$$H_0: m \in \mathcal{M}_{\Theta}$$
 (i.e., $m = m_{\theta_0}$),
 $nh^{\frac{q}{2}} \left(T_n - \frac{\lambda_q(L^2)\lambda_q(L)^{-2}}{nh^q} \int_{\Omega_q} \sigma_{\theta_0}^2(\mathbf{x})w(\mathbf{x})\,\omega_q(d\mathbf{x}) \right) \xrightarrow{d} \mathcal{N}\left(0, 2\nu_{\theta_0}^2\right)$,
where $\sigma_{\theta_0}^2(\mathbf{x}) = \mathbb{E}\left[(Y - m_{\theta_0}(\mathbf{X}))^2 | \mathbf{X} = \mathbf{x} \right]$ and
 $\nu_{\theta_0}^2 = \int_{\Omega_q} \sigma_{\theta_0}^4(\mathbf{x})w(\mathbf{x})^2\,\omega_q(d\mathbf{x})$
 $\times \gamma_q\lambda_q(L)^{-4} \int_0^\infty r^{\frac{q}{2}-1} \left\{ \int_0^\infty \rho^{\frac{q}{2}-1}L(\rho)\varphi_q(r,\rho)\,d\rho \right\}^2 dr$

Conditions:

A5 $\hat{\theta}$ is such that $\hat{\theta} - \theta_1 = \mathcal{O}_{\mathbb{P}}(n^{-\frac{1}{2}})$, with $\theta_1 = \theta_0$ if H_0 holds

A6 m_{θ} is continuously differentiable as a function of θ , being this derivative also continuous for $\mathbf{x} \in \Omega_q$

► If *L* is the von Mises kernel, $\nu_{\theta_0}^2 = \int_{\Omega_a} \sigma_{\theta_0}^4(\mathbf{x}) w(\mathbf{x})^2 \omega_q(d\mathbf{x}) \times (8\pi)^{-\frac{q}{2}}$

29 / 33

Empirical evidence

Figure: QQ-plot comparing the quantiles of the asymptotic distribution with the sample quantiles for $\left\{nh^{\frac{1}{2}}\left(T_{n}^{j}-\frac{\sqrt{\pi}}{4}nh\right)\right\}_{j=1}^{500}$ with $n = 10^{2}$ (left) and $n = 5 \times 10^{5}$ (right)

Calibration in practice

Algorithm (Calibration in practice)

To test $H_0 : m \in \mathcal{M}_{\Theta}$ from the sample $\{(\mathbf{X}_i, Y_i)\}_{i=1}^n$:

Obtain $\hat{\theta}$, set $\hat{\varepsilon}_i = Y_i - m_{\hat{\theta}}(\mathbf{X}_i)$, i = 1, ..., n and compute T_n

2 Bootstrap resampling. For
$$b = 1, \dots, B$$
:

- ► Set $Y_i^* = m_{\hat{\theta}}(\mathbf{X}_i) + \hat{\varepsilon}_i V_i^*$, where V_i^* are iid rv's such that $\mathbb{E}^*[V_i^*] = 0$ and $\mathbb{E}^*[(V_i^*)^2] = 1$, i = 1, ..., n
- Compute $\hat{\theta}^*$ from $\{(\mathbf{X}_i, Y_i^*)\}_{i=1}^n$ and T_n^{*b}

3 Estimate the p-value by
$$rac{1}{B}\sum_{b=1}^B \mathbf{1}_{\{T_n \leq T_n^{*b}\}}$$

Theorem (Bootstrap consistency)

Under A1-A4, A5-A6 and A9, conditionally on the sample,

$$nh^{\frac{q}{2}}\left(T_{n}^{*}-\frac{\lambda_{q}(L^{2})\lambda_{q}(L)^{-2}}{nh^{q}}\int_{\Omega_{q}}\sigma_{\theta_{1}}^{2}(\mathbf{x})w(\mathbf{x})\,\omega_{q}(d\mathbf{x})\right)\overset{d}{\longrightarrow}\mathcal{N}\left(0,2\nu_{\theta_{1}}^{2}\right)$$

in probability. If H_0 holds, then $\theta_1 = \theta_0$ and $T_n^* \stackrel{d}{=} T_n$ asymptotically

Protein structure modelling

Figure: Backbone and C_{α} representation

Figure: Cartoon view of a protein

Boomsma, W., Mardia, K. V., Taylor, C. C., Ferkinghoff-Borg, J., Krogh, A. and Hamelryck, T. A generative, probabilistic model of local protein structure. *PNAS*, 105(26):8932-8937

Protein structure modelling

Figure: Backbone and C_{α} representation

Figure: Cartoon view of a protein

Boomsma, W., Mardia, K. V., Taylor, C. C., Ferkinghoff-Borg, J., Krogh, A. and Hamelryck, T. A generative, probabilistic model of local protein structure. *PNAS*, 105(26):8932-8937

Protein structure modelling

Figure: Backbone and C_{α} representation

Figure: Cartoon view of a protein

Boomsma, W., Mardia, K. V., Taylor, C. C., Ferkinghoff-Borg, J., Krogh, A. and Hamelryck, T. A generative, probabilistic model of local protein structure. *PNAS*, 105(26):8932-8937

Testing in the C_{α} representation

 Goal: test the constant pseudo--bond length assumption:

 $H_0: m(\mathbf{x}) = c, \ c \in \mathbb{R}$

- ► Data: n = 18030 pseudo-angles (X ≡ (Θ, T)) and pseudo-lengths (Y) extracted from 100 high precision protein structures
- ► Grid of 10 bandwidths, B = 1000bootstrap replicates and weight $w(\theta, \tau) = \mathbf{1}_{\{80 \le \frac{180}{\pi}\theta \le 150\}}$
- ► Emphatically rejection of *H*₀
- ► Exploration of m(θ, τ) by local linear estimator m̂_{h_{CV},1}(θ, τ)

Figure: Significance trace of the goodness-of-fit tests

Testing in the C_{α} representation

 Goal: test the constant pseudo--bond length assumption:

 $H_0: m(\mathbf{x}) = c, c \in \mathbb{R}$

- Data: n = 18030 pseudo-angles
 (X ≡ (Θ, T)) and pseudo-lengths
 (Y) extracted from 100 high precision protein structures
- ► Grid of 10 bandwidths, B = 1000bootstrap replicates and weight $w(\theta, \tau) = \mathbf{1}_{\{80 \le \frac{190}{\pi}\theta \le 150\}}$
- ► Emphatically rejection of *H*₀
- ► Exploration of m(θ, τ) by local linear estimator m̂_{h_{CV},1}(θ, τ)

Figure: Contourplot of $\hat{m}_{h_{\rm CV},1}(\theta,\tau)$ and pseudo-angles sample

Thanks for your attention!

Eduardo García-Portugués