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Directional data: what, why, where?

» Directional data are vectors whose
support is the hypersphere

Q= {x e R [|x]| = 1}
» Particular cases are the circle
(g = 1) and the sphere (g = 2)

» Statistical methods must account
for the special nature of directional
data

> Present in different applied fields: Figure: Spherical von Mises density
corner stone in bioinformatics

©
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Directional data: what, why, where?

» Directional data are vectors whose
support is the hypersphere

Q= {x e R [|x]| = 1}
» Particular cases are the circle
(g = 1) and the sphere (g = 2)

» Statistical methods must account
for the special nature of directional
data

> Present in different applied fields: Figure: Schematic view of the

corner stone in bioinformatics protein's backbone
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Von Mises-Fisher distribution

> The von Mises-Fisher (vVMF) is the most well known directional
density:

q—1
K 2

(27) % Taa (k)

parametrized by a mean p € €, and a concentration x > 0

four (x; p, k) = Co(r)exp {rx"p},  C4(r) =

> Density wrt the Lebesgue measure wq in 4. wq denotes also the
area surface of Qg:

wg = wq(Qq) =27 "*“/r(qgl)

> (Isotropic) Gaussian analogue:

@ Same MLE characterization property
Q If X ~ Ngi1 (p,0%1g41), then

bl ||>
X[ |IX|| =1 ~vMF £ A0
[ 11X (Iul = @
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Contents of the talk

@ Part |. Kernel density estimation with directional data under
rotational symmetry

> Present a KDE under rotational symmetry

> Study its main asymptotic properties

> lllustrate empirical performance through
simulations

@ Part Il. Estimation and testing in linear-directional regression

» Present a local linear estimator with directional
predictor

> Build a goodness-of-fit test for regression models

> Apply both to test a common assumption in
bioinformatics

©
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Part |

Kernel density estimation with
directional data under rotational
symmetry

a Garcia-Portugués, E., Ley, C., Verdebout, T. (2016). Kernel density
estimation for directional data under rotational symmetry. Under
preparation.

©
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Contents of Part |

@ KDE with directional data

@ KDE under rotasymmetry
The rotasymmetrizer
Rotasymmetric KDE

© Simulation study

©
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KDE with directional data

v

For a sample Xy,...,X, ~ f, the Kernel Density Estimator (KDE)
for directional data is

?h(X)_Ch"Z’(L)ZL<1_XTX) ZLh XX XGQq

i=1

@ Bai, Z. D., Rao, C. R. and Zhao, L. C. (1988). Kernel estimators of
density function of directional data. J. Multivariate Anal., 27:24-39

Note the h? because 2(1 — x7X;) = ||x — X;||?
Normalizing constant cj 4(L)™* = Ag(L)h9(1 + 0(1)) with

v

v

[oe]
Aq(L):z%—lwq,l/o L(r)r?~tdr

v

“Second moment” of L: bg( fo r)ri dr/ fooo L(r)ri—tdr
If L(r) = e~", the vMF kernel, cth(L) = /P C,(1/h?)

v
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KDE construction: spherical case

Figure: Left: KDE with n=1. Right: true density
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KDE construction: spherical case

i
Figure: Left: KDE with n =2. Right: true density .
°
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KDE construction: spherical case

7Y
&
[ ]

Figure: Left: KDE with n = 3. Right: true density
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KDE construction: spherical case

i
Figure: Left: KDE with n =5. Right: true density .
°
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KDE construction: spherical case

i
Figure: Left: KDE with n = 10. Right: true density .
°
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KDE construction: spherical case

i
Figure: Left: KDE with n = 20. Right: true density .
°
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Rotasymmetry |

> Recurrent assumption: X is rotational symmetric (or
rotasymmetric) about some direction 8 € Qg

» Circular case: rotasymmetry is reflective symmetry

» High-dimensional situation: rotasymmetry is behind many
celebrated distributions

Tty
\\\\\‘ ’////*,
K/D :

anf2

Figure: Rotasymmetry in the circular and spherical cases @
[ ]
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Rotasymmetry |l

Proposition (Rotasymmetry characterization)

Let X a directional rv with density f. These statements are equivalent:

QO X & OX, where O = 00" + Z7=1 b,-b,-T is a rotation matrix on
RI*L that fixes 6 € Qq

Q f(x) =g (x"8), Vx € Qq, where g : [-1,1] — RT is a link
such that

F*(t) = we_18(t)(1 — t2)2 1 is a density in [~1,1]

> Rotasymmetry is related with the tangent-normal decomposition:
x =10+ (1— t?)?Bg&

with t =x76 € [-1,1], £ € Qq_1 and Bg = (b1,...,bg)(g+1)xgq
such that BJBg = I, and BgB] = 1,,1 — 007

» No monotonicity required in g, axial variables are covered as well

Smoothing-based inference with directional data
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The rotasymmetrizer

Definition (Rotasymmetrizer)

The rotasymmetrizer around 6, Ry, trans-
forms a function f : Q; — R into

- /szq_l f (xo,¢) wg—1(d§),

Wqg—1

with xg¢ = (x70)0 + (1 — (x70)2)2Bg¢

Rgf(X) =

» For point x € Qg, the operator averages
out the density along the points sharing the
same colatitude (wrt 0)

> Intuitively: parallel redistribution of Figure: Input and
probability mass output of Rp with
8 =(0,0,1) L5
[ ]
°
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Properties

Proposition (Rotasymmetrizer properties)
Let be f,fi,f : Qq — R* directional densities and 6 € Q.
@ /Invariance from different matrices Bg:

/Q 1 f (x0,¢,1) wg—1(d€) = / f (xo0.c2) wa_1(dE),

q— Qg1
with xg ¢k = (x70)0 + (1 — (XT0)2)%Bgvk£, k=1,2
@ Linearity: Rg(Afi + XA2f)(X) = A1 Refi(x) + AaRgfa(x)
© Density preservation: Rgf is a density
Q@ Characterization: Rgf = f <= f is rotasymmetric around 6
@ Explicit expression for the vIMF density:
Cq(K) exp {KJXTO/,LTO}

we1 o1 (5 1(1 — (xTO)2)(1 — (uT0))]} )

Ro fomr(X; p, £) =

i
&
[ ]
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Rotasymmetric KDE

» Goal: estimate semiparametrically f under rotasymmetry
Definition (Rotasymmetric KDE)

The rotasymmetric KDE (RKDE) is the application of the rotasym-
metrizer to the usual KDE:

Fuo(x) = Rofn(x) = Zth x, X;)

L 1— x5 X,
with Lh,g (X, X,) = M L(%) wq_l(dﬁ)
Qq-1

Wqg—1
> The rotasymmetric vMF kernel has an explicit expression:
Co(1/h*) exp {xTOX]0/H?}
1
wa-1Co1( [(1= (xTOR)(1 — (X]0)?)])* /1)

> The order of the normalizing constant is O (h™!)

Lno(x, X;) =

Eduardo Garcia-Portugués Smoothing-based inference with directional data 13/ 33



Comparison of kernels
),
/)

a2

€
o/

Figure: Kernels for the KDE (upper row) and their RKDE counterparts

(lower), with @ = (04,1). The kernels have the same bandwidth .g
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Comparison of kernels

2

O
NP4

(V).
N/

Figure: Kernels for the KDE (upper row) and their RKDE counterparts

(lower), with @ = (04,1). The kernels have the same bandwidth .@
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Comparison of kernels

Figure: Kernels for the KDE (upper row) and their RKDE counterparts

(lower), with @ = (04,1). The kernels have the same bandwidth @
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Comparison of kernels

Figure: Kernels for the KDE (upper row) and their RKDE counterparts

(lower), with @ = (04,1). The kernels have the same bandwidth @
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Comparison of kernels

2
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Figure: Kernels for the KDE (upper row) and their RKDE counterparts

(lower), with @ = (04,1). The kernels have the same bandwidth .@
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Comparison of kernels
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Figure: Kernels for the KDE (upper row) and their RKDE counterparts

(lower), with @ = (04,1). The kernels have the same bandwidth .@
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Comparison of kernels

2

\
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Figure: Kernels for the KDE (upper row) and their RKDE counterparts

(lower), with @ = (04,1). The kernels have the same bandwidth @
[ ]
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Comparison of kernels

Figure: Kernels for the KDE (upper row) and their RKDE counterparts

(lower), with @ = (04,1). The kernels have the same bandwidth @
[ ]
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Connections with KDE in [—1,1]

» The RKDE kernels only depend on the projected sample
T; = X/ 6 and the projected point t = x70

> RKDE is equivalent to KDE on [—1, 1] with bounded kernels
adapted to capture the spikes of f*(t) = w,_1g(t)(1 — t?)3~1

» Boundary bias is O (h?) without any corrections

] —
— RKDE
Kernels

Density

-1.0 -0.5 0.0 0.5 1.0

Figure: KDE of * with g(t) = Cq(k)exp{xt}, k=1and g=1 .g
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Connections with KDE in [—1,1]

» The RKDE kernels only depend on the projected sample
T; = X/ 6 and the projected point t = x70

> RKDE is equivalent to KDE on [—1, 1] with bounded kernels
adapted to capture the spikes of f*(t) = w,_1g(t)(1 — t?)3~1

» Boundary bias is O (h?) without any corrections

] —
— RKDE
Kernels

Density

-1.0 -0.5 0.0 0.5 1.0

Figure: KDE of f* with g(t) = C4(k)exp{st}, k =1and g =2 .g
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Connections with KDE in [—1,1]

» The RKDE kernels only depend on the projected sample
T; = X/ 6 and the projected point t = x70

> RKDE is equivalent to KDE on [—1, 1] with bounded kernels
adapted to capture the spikes of f*(t) = w,_1g(t)(1 — t?)3~1

» Boundary bias is O (h?) without any corrections

] —
— RKDE
Kernels

Density

-1.0 -0.5 0.0 0.5 1.0

Figure: KDE of f* with g(t) = C4(k)exp{st}, k =1and g =3 .@
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Connections with KDE in [—1,1]

» The RKDE kernels only depend on the projected sample
T; = X/ 6 and the projected point t = x70

> RKDE is equivalent to KDE on [—1, 1] with bounded kernels
adapted to capture the spikes of f*(t) = w,_1g(t)(1 — t?)3~1

» Boundary bias is O (h?) without any corrections

] —
— RKDE
Kernels

Density

T T T
-1.0 -0.5 0.0 0.5 1.0

Figure: KDE of f* with g(t) = C4(k)exp{xt}, k=1 and g =10 .@
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Connections with KDE in [—1,1]

» The RKDE kernels only depend on the projected sample
T; = X/ 6 and the projected point t = x70

> RKDE is equivalent to KDE on [—1, 1] with bounded kernels
adapted to capture the spikes of f*(t) = w,_1g(t)(1 — t?)3~1

» Boundary bias is O (h?) without any corrections

] —
— RKDE
Kernels

Density

T T T T
-1.0 -0.5 0.0 0.5 1.0

Figure: KDE of f* with g(t) = Cq(k)exp{xt}, Kk =1 and g = 100 .@
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Bias (6 known)

» Assumptions:

Al f is extended by f (x/||x||) and is twice continuously differentiable
A2 L:R" — RT is continuous, bounded and has exponential decay
A3-1 The sequence h = h, satisfies h — 0 and nh — oo
A3-g The sequence h = h, satisfies h — 0 and nh? — oo

» A3-q is required for consistency at x = +60 (note A3-g = A3-1)

Proposition (Bias, 6 known)
Under A1-A3-1 and uniformly in x € Qg,

E [?,,’o(x)} = Rof(x) + #tr [RoHf(x)] h* + o (h2)

If rotasymmetry holds, then Rgf = f and the bias is KDE's one
:'1\\;‘[;7
[ ]

Smoothing-based inference with directional data

Eduardo Garcia-Portugués
16 / 33



Variance (6 known)

Proposition (Variance, 6 known)
Under A1-A2, A3 if (x"0)? < 1 and A4 otherwise,

(Rof(x))?

n

Rg f(X)

Var [f0(x)] = Gara g, ()" 22 (14 0(1)) -

uniformly in x € g, where
Aa(L)g(L)
ha ’
A (LA (L)
2h ’
/\q(L)2>‘q—1(L)_2
wa—1 (1 — (xT0)2)2 h

(x"0 =1,q>1,
Cero,q,(h) = (xTB)2 <1l,qg=1,

, (xT0) <1,9>2

> The asymptotic constant of the variance increases with g — co
since wg—1 — 0! (but slowly than KDE's)

i
[ ]
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Spherical area surface

35

Area
20
I

15
I

10

T T T T 1 T T T T 1 T T T T 1 T T T T 1 T
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

. . . _ g+l q+1
Figure: Spherical surface wy = 272 /F(T)
> The area of £ tends to zero, but not monotonically
» Weird maximum at dimension g = 6

> [—1,1]9 touches Qg in 29 points, yet its area tends to infinity! §

Eduardo Garcia-Portugués Smoothing-based inference with directional data 18 /33



Key orders & asymptotic normality

Concept ‘ KDE ‘ RKDE ‘ RKDE
(v'/ % rotasym.) (v rotasym.) (x rotasym.)
Bias | o (m) | o (n) | O(Rof(x) — f(x))
Variance ‘ O ((nhq)*l) ‘ O ((nh)*l) ‘ ((nh) 1)
Optimal __4 _4
it | o) | o(rt) | o(fre )

Table: Summary of the KDE and RKDE key orders

Corollary (Pointwise asymptotic normality, 6 known)
Under A1-A2, A3 if (x"0)? < 1 and A4 otherwise,

a, (?h,g(x) _ f(x)) 45 N (Rof(x) — £(x), Cere.q.0(1))

where a, = v/nh if (x70)? < 1 and a, = v/nh9 otherwise
[ ]
°
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What if 0 is unknown?

» Assumption:
A4 Bisa \/n-consistent estimator: 0—0= Op(n’%)

» Examples of 8-

> If X such that g is strictly monotone, >7_ X;/ ||>7_, Xi|
> If X is an axial rv, the first eigenvector of %27:1 X X7

» Work in progress: under A1-A2, A3-1/A3-q and A4:

E [?h,é(x) = Rof(x) + %(EL)U [RoHf(x)] h* + o (h*) + (’)(n_%)7

Rgl;(x) (1+0(1) - (R@frfx))z,

}
Var [Ah,é(x)} = Crgq,0(h)

a"(?h,é(x) - f(X)) i> N (Rgf(x) - f(X), CXTB,q,L(]-))

©
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Simulation study

0050 0100 0200

MISE

0005 0010 0020
L

0050 0100 0200

MISE.

0005 0010 0020

Figure: Performance of the three kernel estimators with g = 1 (left) and
q = 2 (right), with n = 100

Ratios optimal MISEs g=1 g=2 ¢g=3 qg=4 qg=5 qg=6
KDE/RKDE, 6 1.796 2999 4.065 5.643 5.871 8.019
KDE/RKDE, 6 1.289 2.014 2.537 3.035 3.207 3.467 .

[ ]
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Simulation study

0050 0100 0200

MISE

0005 0010 0020
L

0050 0100 0200

MISE.

0005 0010 0020

Figure: Performance of the three kernel estimators with g = 3 (left) and
q = 4 (right), with n = 100

Ratios optimal MISEs g=1 g=2 ¢g=3 qg=4 qg=5 qg=6
KDE/RKDE, 6 1.796 2999 4.065 5.643 5.871 8.019
KDE/RKDE, 6 1.289 2.014 2.537 3.035 3.207 3.467 .

[ ]

Eduardo Garcia-Portugués

Smoothing-based inference with directional data
21 /33



Simulation study

a=5 q=6
\\3""" - A
Figure: Performance of the three kernel estimators with g = 5 (left) and
q = 6 (right), with n =100
Ratios optimal MISEs g=1 g=2 ¢g=3 qg=4 qg=5 qg=6
KDE/RKDE, 6 1.796 2999 4.065 5.643 5.871 8.019
KDE/RKDE, & 1289 2014 2537 3.035 3207 3.467 £
°
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Part Il

Estimation and testing in
linear-directional regression

ﬁ Garcia-Portugués, E., Van Keilegom, I., Crujeiras, R. and
Gonzalez-Manteiga, W. (2016). Testing parametric models in
linear-directional regression. Scand. J. Stat. (to appear)

©
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Contents of Part 1l

@ Nonparametric estimation of the regression

@ Goodness-of-fit tests for models with directional predictor
Asymptotic distribution
Calibration in practice

© Data application

©
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Regression with directional data

> Let (X, Y) be a rv with support in Q4 x R and X having density f

» Consider the regression model

_ - m(x) =E[Y|X =x],
Y = m(X) + o(X)e with { o2(x) = Var[Y|X = x]
with E [¢|X] =0, E [¢?|X] =1 and E [|¢*|X] and E [¢*|X]

bounded rv's
» Goal: estimate m nonparametrically from {(X;, Y;)}_;
» Taylor expansions are required, so the first condition is:

Al m and f ar extended as m(x/ ||x||) and f (x/||x||). m is third and f
is twice continuously differentiable and f is bounded away from zero

i
&
[ ]
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Estimator

> Let x,X; € Q4. The one term Taylor expansion of m is:

m(X;) = m(x) + Vm(x)7(X; = x) + O (|IX; = x|I")

©

Eduardo Garcia-Portugués Smoothing-based inference with directional data 25/ 33



Estimator

> Let x,X; € Q4. The one term Taylor expansion of m is:

m(X;) = m(x) + Vm(x)7 (g1 —xxT) (X = %) + 0 (|X; = x°)

©
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Estimator

> Let x,X; € Q4. The one term Taylor expansion of m is:

m(X;) = m(x) + Vm(x)"B,B] (X; — x) + O (|X; - x|’

©
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Estimator

> Let x,X; € Q4. The one term Taylor expansion of m is:
m(X;) = m(x) + Vm(x)"B,B] (X; — x) + O (|X; - x|’
~ BO + (Bla e aﬂq)T B)Z—(XI - X),

with By = (b1, ..., bg)(g+1)xq such that ByB] =11 —xx7,
Bo = m(x) and (B1,...,58q) = B Vm(x)
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Estimator

> Let x,X; € Q4. The one term Taylor expansion of m is:
m(X;) = m(x) + Vm(x) BB (X; ~ x) + O (|X; - x|’

~ BO + (Bla e aﬂq)T B)Z—(XI - X)a
with By = (b, ..., bg)(g+1)xq such that ByB] =lg11 — xxT,
BO = m(x) and (ﬁla s 75‘]) = BIVITI(X)

» Weighted minimum least squares problem:
n 2
min, > (Y= o= 80 (B, 80) BI (X = %)) La(x,X)

BERa+1

i=1
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Estimator

> Let x,X; € Q4. The one term Taylor expansion of m is:
m(X;) = m(x) + Vm(x)"B,B] (X; — x) + O (|X; - x|’

~ BO + (Bla e aﬂq)T B)Z—(XI - X)a
with By = (b, ..., bg)(g+1)xq such that ByB] =lg11 — xxT,
BO = m(x) and (ﬁla s 75‘]) = BIVITI(X)

» Weighted minimum least squares problem:

n

2
ﬁénRipﬂ Z (Yf — Bo = 8p,1 (B1, .-, Bq) " B (Xi — X)) La(x, X;)

i=1
» The solution is given by

—1 " n
fnp(x) = e, (X pWan)  XLWY =D W (x, X)) Y,

i=1
1 (X;—x)"Bx

Xx,l = ) Wx =diag(Lh(x,X1),...,Lh(x,
1 (X, —x)"Bx
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How does it work?
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How does it work?
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Output

Figure: Local linear estimator with n = 100 for the circle and the sphere

©
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Testing a parametric model

> Goal: check nonparametrically Hy : m € Mg = {mg : 6 € © C R®}

» The statistic is the weighted L2-distance between 1, , and the
smoothed my:

o= [ (000 = ()" o) o),
Q

with Ly ,my(x) = S0 WP (x,X;) my(X;) the smoothing operator
and w : Q4 — R a weight function (useful for removing possible
boundary effects)

@ Alcala, J. T., Cristébal, J. A., and Gonzalez-Manteiga, W. (1999).
Goodness-of-fit test for linear models based on local polynomials. Statist.
Probab. Lett., 42(1):39-46

@ Hardle, W. and Mammen, E. (1993). Comparing nonparametric versus
parametric regression fits. Ann. Statist., 21(4):1926-1947

©
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Asymptotic distribution

Theorem (Goodness-of-fit for linear-directional models)
Under AI-A6 and Hy : m € Mg (i.e., m = mg,),

nh3 T, — Ag(L2)Aqg(L) 2
nhd o

where o (x) = E [(Y — mg,(X))?|X = x| and

o3, (x)w(x) wq(dx)> 5 N (0,204,)

q

i, = / 08, (X)W ()? wa(dx)

q
oo 2
9_ 9_
2 1{/ p 1L(p)sOq(r,p)dp} dr
0

X ’Yq/\q(l-)74/
0
» Conditions:
A5 8 is such that  — 8; = Op(n~2), with 81 = 65 if Ho holds
A6 mg is continuously differentiable as a function of 8, being this
derivative also continuous for x € Q4

> If L is the von Mises kernel, v5, = [, o, (x)w(x)? wq(dx) x (87)~
q

=

aq
2
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Empirical evidence

2 Quantiles for h, =05 xn ™3, p-values: K-5=0.00, S-W=0.00. 2 Quantiles for h, =0.5xn ™3, p-values: K-$=0.27, S-W=0.84.
w |° Quantiles for hy = 0.5 xn""/%. p-values: K-$=0.00, S-W=0.00. . | ° Quantiles for hy=0.5xn/%. p-values: K-$=0.00, S-W=0.01.
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Figure: QQ-plot comparing the quantiles of the asymptotic distribution
with the sample quantiles for {nh? (T} — @nh) }Jsi(i with n = 102 (left)
and n =5 x 10° (right)
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Calibration in practice

Algorithm (Calibration in practice)
To test Hy : m € Mg from the sample {(X;, Y;)}!_;:
@ Obtain 0, set &, =Y, — my(X;), i=1,...,n and compute T,
@ Bootstrap resampling. For b=1,...,B:
> Set Y/ = my(Xi) + V", where V;* are iid rv's such that
E*[Vi]=0and E*[(V))]=1,i=1,...,n
> Compute 8" from {(Xi, Y)}, and T;*

© Estimate the p-value by % Zle 17, <100y

Theorem (Bootstrap consistency)
Under A1-A4, A5-A6 and A9, conditionally on the sample,
2 —2
nh? (Tn* — 7/\‘7(1_ Na(L) / agl(x)w(x) wq(dx)> i>/\f(0,2y§1)
Q

nhd
q

in probability. If Hy holds, then 81 = 6y and T} 4 T, asymptotically
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Protein structure modelling

Figure: Backbone and C,

. Figure: Cartoon view of a protein
representation

a Boomsma, W., Mardia, K. V., Taylor, C. C., Ferkinghoff-Borg, J., Krogh, A.
and Hamelryck, T. A generative, probabilistic model of local protein structure. @
PNAS, 105(26):8932-8937 ([
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Protein structure modelling

Figure: Backbone and C,

. Figure: Cartoon view of a protein
representation
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Testing in the C, representation

» Goal: test the constant pseudo-
-bond length assumption:

B — Local constant test
—— Local linear test

0.4

- Local constant test, no outliers

Ho:m(x)=c,ceR B bt

» Data: n = 18030 pseudo-angles
(X=(©, T)) and pseudo-lengths
(Y) extracted from 100 high
precision protein structures

» Grid of 10 bandwidths, B = 1000 °]
bootstrap replicates and weight

p-values
2

1

001 005

w(0,7) = Ligocamg<iso) L e
o Dl(v UZ 03 0.4 05 0.6 0.7 08 09 1
» Emphatically rejection of H h
> Exploration of m(6,7) by local Figure: Significance trace of the
linear estimator /i, 1(6,7) goodness-of-fit tests Py
o
[
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Testing in the C, representation

» Goal: test the constant pseudo-
-bond length assumption:

Ho:m(x)=c,ceR

» Data: n = 18030 pseudo-angles
(X=(©, T)) and pseudo-lengths
(Y) extracted from 100 high -
precision protein structures

» Grid of 10 bandwidths, B = 1000
bootstrap replicates and weight
w(0,7) = 1{803%9@50}

» Emphatically rejection of Hj

» Exploration of m(6,7) by local  Figure: Contourplot of A, 1(6,7)
linear estimator /i, 1(6,7) and pseudo-angles sample @
[ ]
°
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Thanks for your attention!

©
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