
Multivariate Longitudinal Dynamic Regression Model of eGFR and
ACR for Predicting Decline in Renal Function

Inês Sousa

Department of Mathematics and Applications, Minho University (Portugal) and
School of Health and Medicine, Lancaster University (UK); isousa@math.uminho.pt

Abstract. We will look at the problem of estimate progression of kidneydisease. The most common
test gives us individual urinary albumin creatinine ratio (uACR). However, doctor would also like to
see the estimated glomerular flitration rate (eGFR) test in the nacional health service. The aim of this
study was to investigate the rate of progression of chronic kidney diseas, according to their eGFR and
ACR. We propose a multivariate analysis as an extencion of a longitudinal dynamic regression model
propose in [1].
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1 Introduction

The global epidemic of chronic kidney disease (CKD) is a significant public health issue affecting adult
population. Until recently the chief methods of screening for CKD in the UK population had involved
annual assessment of urine albumin creatinine ration (uACR) and serum creatinine levels. National In-
stitute for Clinical Excellence guidelines published in September 2008 recommend annual assessment of
eGFR and uACR in line with the United States National Kidney Foundation-Kidney Disease Outcomes
Quality Initiative guidelines. It is recommended annual testing of these parameters regardless of their
degree of urine albumin excretion to aid early detection andprevention of progression in patients with
early kidney disease. The rate of progression of CKD in single studies is not well described. Decline in
eGFR varies considerably between individuals. The aim of this study was to assess progression of CKD
according to their eGFR and presence of albuminuria.
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2 The Statistical Problem

In this problematic we consider that there are two stochastic processes measuring differently the same
true process of the progression of kidney function, wich we want to make inference about. These be-
ing the eGFR and ACR processes. In previous work ([2]) only the baseline ACR is consider and this
is treated as one more categorical explanatory variable. When using the longitudinal dynamic model
proposed in [1], we are allowing for the different sources ofvariability in the data, and at the same time,
we model the progression as an integrated random walk. By extending it to a multivariate contex we use
information from the two eGFR and ACR processes to estimate and make predictions about the kidney
function.

3 The Model

We consider a multivariate dynamic model to the longitudinal data, incorporating variability within and
between patients, considering repeated measurements fromsame subjects. Consider(Y1

i j ,Y
2
i j ) the loga-

rithm transformation of eGFR and ACR, respectively on subject i = 1, ...,mat time pointti j , j = 1, ...,ni .
Where timeti j here is age of subjecti at timeti j . We then assume that

Y1
i j = µ1

i j +Ui +Ci(ti j )+Z1
i j

and

Y2
i j = µ2

i j + α1Ui + α2Ci(ti j )+Z2
i j

The rate of progression varies randomly, both between subjects and within subjects over time. The
formal specification of the model for the time sequence(Y1

i j ,Y
2
i j ), is conditional on a subject specificUi

and time specific random effectCi(ti j ). The latter is the dynamic part of the model. Moreover, the latter
is the true kidney function, that is shared by the two eGFR andACR. Notice that, we might need two
constants in this terms due to the different scales of the responses.

The Z1
i j and Z2

i j are mutually independent measurement errors,Z1
i j ∼ N(0,τ2

1) and Z2
i j ∼ N(0,τ2

2).
The subject specific random effectsUi are mutually independent realisations of the distributionUi ∼
N(0,ω2). Finally, as we are interested in the rate, we consider the integral of the Brownian motion,
Ci(ti j ) =

R ti j
0 Bi(u)du. Where,Bi(ti j ) is a subject time specific rate of change which evolves over time

as a Brownian motion with starting valueBi(t0 = 0) = 0, Var(Bi(t)) = σ2t and Cov{Bi(t),Bi(s)} =
σ2min{t,s}. Therefore, what we are interested in is the subject time specific rate of change, here the
processBi(ti j ). We will be calling the model as the Integrated Random Walk (IRW) model. As we are
imposing the condition ofB(t0 = 0) = 0 consequently alsoC(t0 = 0) = 0. Notice that,B(·) is a Markov
process, where
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Bi(t)|Bi(s) ∼ N
(

Bi(s),(t −s)σ2)
.
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