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Abstract. Nowadays, statistical functional Magnetic Resonance Imaging (fMRI)atalysis emerges
as an important area of current research in Neurosciences. Diffestatistical techniques have been
applied for inference purposes, e.g., statistical denoising, reconstrygiemameter estimation, etc.
Specifically, in this paper, a functional framework is considered in the dtoiv of filtering estimators
and confidence intervals, in the wavelet domain. A real data examplassdaved to illustrate results.
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1 Motivation

The main objective of FMRI studies is to detect changes in areas of the befliected in terms of
neuronal activity modifications with respect a general activity patternfei2int statistical methodolo-
gies such as general linear models (GLM), multivariate methods (e.g., PliG@pgonent Analysis),
Bayesian approaches and statistical shrinkage estimation are studigidi(ge@mple, [2], [6], [3], [4]
and [7]), to solve the problem of detection and prediction of brain aréhssignificative activity from
fMRI, positron emission tomography (PET) and magnetoencephalog(®ibg) data.

In this paper, we first include a brief introduction to statistical analysis dilfidata. Second, the
orthogonal decomposition of the observed images, in terms of dual Riees,lia considered, to ap-
proximate the functional least-squares estimators of the elements of the bEDHiamage sequence.
Asymptotic functional confidence intervals are then derived in the waglelegin.
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2 Statistical models in fMRI

The statistical analysis of fMRI data involves working with massive data setpthsent a complicated
spatiotemporal structure. The component of interest in a fMRI signal B&heD response signal (Blood
Oxigentation Level Dependest ratio of the oxigenated to deoxigenated hemoglobin in the blood, that
is, oxygen consumption of active neurons), which is modeled as the lotiovoof the stimulus function
v(t) with the HRF (Hemodinamic Response Functibfl), supposed to be constant across all voxels,
i.e.,

X(t) = (vxh)(t).
The GLM is given by

Y =XB+e¢, 1)

whereY represent the observed response variable in terms of a linear combiogérplanatory vari-
ablesX (design matrix), and an error tergri.i.d. ~ N(0,0) (see [1]). The parametf¥ris estimated by
applying least-squares method, thafiss approximated by, defined as the solution to the following
equation system: R

B=(XTX)"IXTy. 2)

As fMRI data are autocorrelated, an extension of the above model is ¢énfemmped by estimating the
autocorrelation in the residuals, after model fitting, and removing the autdaton by pre-whitening
considering a new design matii¥'/2X and whitened dat#/*/2y, then:

B=(XTwx)XTwy. (3)

Other possible extensions consist on considering that the HRF may wanyvivxel to voxel and
this structure has been incorporated in the GLM. The idea of differefitsHRdifferent brain regions is
modeled by the notion of spatiotemporal basis function (waveforms) ($ee [1

3 Functional estimation

In a functional data context (see [9]),
Y()=X()+e(),

the Orthogonal Projection Theorem is formulated in terms of Hilbert-valuediora variables. Specifi-
cally, the functional linear least-squares estimatoX @$ given by

X(t,x) = LxY(t,X), xeRZ teR,,
where operator; x satisfies the following equation:
Rxy = Lt xRyy, (4)

with Rxy = E[X(-)®@Y(+)], andRyy = E[Y(-)®Y(-)], and beingZ (-) ® Y (-) the operator given by the
tensorial product of the random functidr-) with Y (-).

That s, A
X(t,x) = LexY (t,X) = [Rxy R;&Y](t,x). (5)
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The above equation is approximated here by considering the followingguntiab decomposition of
the functional data process:

YO 5, Z YOS S YOl ©)

where ¢y = 7'(q), for al k € Tlp, and yjg = T/(Pje), for al 6 € O
j > 0. The covari_ance operator of, Ryy, is assumed to be factorized Rgy = 7'7. The system
{¢¥:keTolu{y®:0 €O, j >0} defines the dual Riesz basis with respedt(s) of the Riesz ba-

sis{¢x 1k ergtu {yj;g 10cO? > 0} , constructed from the orthogonal wavelet bgspg : k € I'§}U
{l.le;g 0o j> 0} of L2(S). Here,A’ denotes the adjoint operator Af

3.1 Functional confidence intervals

Under the assumption that our observed functional image sequence isataiiortime, asymptotic
functional confidence intervals are derived, from the trace of the &apwavelet covariance operator

of the functional estimatX of X. Specifically, a suitable wavelet basis is selected in order to obtain a
weak-dependence model for the functional estin¥tie the wavelet domain. Thus, strongly mixing
conditions are satisfied by the wavelet-based approximaticﬁﬁ.dtentral Limit Theory can then be
applied to derive the asymptotic normality of the wavelet-based functional éstinonsequently, the
following asymptotic functional confidence interval can be obtained, whandN go to infinity:

[; iWXi —3y/traceR gy ), % iV\/AXi +34/ trace{ﬁv\;x)] :

where
F?W—lNV\ix()@avVX(*) WX 1§vv”x(") i=1,...N
=N i\ i > i = i =4 N
TN k4"
— (k
andWXi( is defined from the wavelet-based orthogonal transform okthéunctional eIemenYi(k> of

the samplé((l)7 ... ,Y(K), of sizeK, available at time, withi=1,...,N. Here, traceﬁwx) denotes the

trace of the empirical covariance operaiRygy -

4 Data analysis

In this section, we consider the filtering problem from fMRI data, in terms efdhove-described
wavelet-based orthogonal approximation of the corresponding fuattieast-squares estimator. A se-
guence of 9 images is considered. Estimated functional variances (EE\E wavelet-based functional
spatial estimates are displayed in Tafl¢ Figure(1) shows an observed image and its functional esti-
mation at the first time instant.
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Time T=1 T=3 T=3 T=4 T=5 T=6 T=7 T=8 T=9
EFV 0.1306 0.1083 0.0259 0.0137 0.0146 0.0908 0.0386 0.1911 0.2032

Table 1: Estimated functional variances.

Figure 1:0bserved image at first time considered 1 (left), wavelet-based filtered image (right).
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