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Abstract. Nowadays, statistical functional Magnetic Resonance Imaging (fMRI) dataanalysis emerges
as an important area of current research in Neurosciences. Different statistical techniques have been
applied for inference purposes, e.g., statistical denoising, reconstruction, parameter estimation, etc.
Specifically, in this paper, a functional framework is considered in the derivation of filtering estimators
and confidence intervals, in the wavelet domain. A real data example is considered to illustrate results.
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1 Motivation

The main objective of FMRI studies is to detect changes in areas of the brain, reflected in terms of
neuronal activity modifications with respect a general activity pattern. Different statistical methodolo-
gies such as general linear models (GLM), multivariate methods (e.g., Principal Component Analysis),
Bayesian approaches and statistical shrinkage estimation are studied (see, for example, [2], [6], [3], [4]
and [7]), to solve the problem of detection and prediction of brain areas with significative activity from
fMRI, positron emission tomography (PET) and magnetoencephalography(MEG) data.

In this paper, we first include a brief introduction to statistical analysis of fMRI data. Second, the
orthogonal decomposition of the observed images, in terms of dual Riesz bases, is considered, to ap-
proximate the functional least-squares estimators of the elements of the original 2D-image sequence.
Asymptotic functional confidence intervals are then derived in the waveletdomain.
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2 Statistical models in fMRI

The statistical analysis of fMRI data involves working with massive data sets that present a complicated
spatiotemporal structure. The component of interest in a fMRI signal is theBOLD response signal (Blood
Oxigentation Level Dependent= ratio of the oxigenated to deoxigenated hemoglobin in the blood, that
is, oxygen consumption of active neurons), which is modeled as the convolution of the stimulus function
v(t) with the HRF (Hemodinamic Response Function)h(t), supposed to be constant across all voxels,
i.e.,

x(t) = (v∗h)(t).

The GLM is given by
Y = Xβ+ ε, (1)

whereY represent the observed response variable in terms of a linear combinationof explanatory vari-
ablesX (design matrix), and an error termε i.i.d. ∼ N(0,σ) (see [1]). The parameterβ is estimated by
applying least-squares method, that is,β is approximated bŷβ, defined as the solution to the following
equation system:

β̂ = (XTX)−1XTY. (2)

As fMRI data are autocorrelated, an extension of the above model is then performed by estimating the
autocorrelation in the residuals, after model fitting, and removing the autocorrelation by pre-whitening
considering a new design matrixW1/2X and whitened dataW1/2y, then:

β̂ = (XTWX)−1XTWY . (3)

Other possible extensions consist on considering that the HRF may vary from voxel to voxel and
this structure has been incorporated in the GLM. The idea of different HRFs in different brain regions is
modeled by the notion of spatiotemporal basis function (waveforms) (see [1]).

3 Functional estimation

In a functional data context (see [5]),
Y(·) = X(·)+ε(·),

the Orthogonal Projection Theorem is formulated in terms of Hilbert-valued random variables. Specifi-
cally, the functional linear least-squares estimator ofX is given by

X̂(t,x) = Lt,xY(t,x), x ∈ R
2, t ∈ R+,

where operatorLt,x satisfies the following equation:

RXY = Lt,xRYY , (4)

with RXY = E[X(·)⊗Y(·)], andRYY = E[Y(·)⊗Y(·)], and beingZ(·)⊗Y(·) the operator given by the
tensorial product of the random functionZ(·) with Y(·).

That is,
X̂(t,x) = Lt,xY(t,x) = [RXY R−1

YY Y](t,x). (5)
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The above equation is approximated here by considering the following orthogonal decomposition of
the functional data processY :

Y(·) =
H(Y)

∑
k∈Γ0

Y(ϕk)ϕk(·)+ ∑
j≥0

∑
θ∈Θ j

Y(γ j:θ)γ j:θ(·), (6)

where ϕk = T ′(φk), for all k ∈ Γ0, and γ j:θ = T ′(ψ j:θ), for all θ ∈ Θ j ,
j ≥ 0. The covariance operator ofY, RYY , is assumed to be factorized asRYY = T ′T . The system{
ϕk : k ∈ Γ0

}
∪
{

γ j:θ : θ ∈ Θ j , j ≥ 0
}

defines the dual Riesz basis with respect toL2(S) of the Riesz ba-

sis
{

ϕk : k ∈ ΓS
0

}
∪

{
γ j:θ : θ ∈ ΘS

j , j ≥ 0
}
, constructed from the orthogonal wavelet basis

{
φk : k ∈ ΓS

0

}
∪

{
ψ j:θ : θ ∈ ΘS

j , j ≥ 0
}

of L2(S). Here,A′ denotes the adjoint operator ofA.

3.1 Functional confidence intervals

Under the assumption that our observed functional image sequence is stationary in time, asymptotic
functional confidence intervals are derived, from the trace of the empirical wavelet covariance operator
of the functional estimatêX of X. Specifically, a suitable wavelet basis is selected in order to obtain a
weak-dependence model for the functional estimateX̂ in the wavelet domain. Thus, strongly mixing
conditions are satisfied by the wavelet-based approximation ofX̂. Central Limit Theory can then be
applied to derive the asymptotic normality of the wavelet-based functional estimator. Consequently, the
following asymptotic functional confidence interval can be obtained, whenK andN go to infinity:

[
1
N

N

∑
i=1

ŴX i −3
√

trace(R̂ŴX ),
1
N

N

∑
i=1

ŴX i +3
√

trace(R̂ŴX )

]
,

where

R̂ŴX =
1
N

N

∑
i=1

ŴX i(·)⊗ŴX i(⋆), ŴX i =
1
K

K

∑
k=1

ŴX
(k)
i , i = 1, . . .N,

andŴX
(k)
i is defined from the wavelet-based orthogonal transform of thekth functional elementY(k)

i of

the sampleY(1)
i , . . . ,Y(K)

i , of sizeK, available at timei, with i = 1, . . . ,N. Here, trace(R̂ŴX ) denotes the
trace of the empirical covariance operatorR̂ŴX .

4 Data analysis

In this section, we consider the filtering problem from fMRI data, in terms of the above-described
wavelet-based orthogonal approximation of the corresponding functional least-squares estimator. A se-
quence of 9 images is considered. Estimated functional variances (EFV) of the wavelet-based functional
spatial estimates are displayed in Table(1). Figure(1) shows an observed image and its functional esti-
mation at the first time instant.
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Time T=1 T=3 T=3 T=4 T=5 T=6 T=7 T=8 T=9
EFV 0.1306 0.1083 0.0259 0.0137 0.0146 0.0908 0.0386 0.1911 0.2032

Table 1: Estimated functional variances.

Figure 1:Observed image at first time considered t= 1 (left), wavelet-based filtered image (right).
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