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Abstract

In this work a new test for the goodness of fit of a parametric form of the drift and volatility
functions of interest rate models is proposed. The test is based on a marked empirical process
of the residuals. More specifically, the marked empirical process is constructed using esti-
mators of the integrated regression function for the drift function and integrated conditional
variance function for the volatility function. The distribution of the processes is approximated
using bootstrap techniques. The test is applied to simulated classical financial models and is
illustrated in an empirical application to the EURIBOR data set.

Keywords: Función de Regresión Integrada, Función de Varianza Condicional Integrada, Procesos
de Difusión.

1 Introduction

The objective of investing is to obtain benefits, that is, to acquire goods and capital so the fore-
seeable yield for the cost of a unit of investment exceeds the cost of money or the interest rate.
Variations in the interest rate occur frequently, affecting directly or indirectly the investments and
the economy in general. The globalization of capital markets has resulted in increased volatility

∗The authors acknowledge partial support by Project MTM2008-03010 of the Ministerio de Ciencia e Innovación,
Spain.
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of interest rates worldwide, which has aroused the interest of both financial and academic profes-
sionals. The characterization of the dynamics of interest rates allows the determination of their
temporal structure, the evaluation of the prices of a wide range of financial assets, the design of in-
vestment and hedging strategies and risk assessment. From a macroeconomic perspective, it has
special relevance in the determination of appropriate monetary policy and in various transmission
channels, for relations between short- and long-term rates and for the formation of expectations.
Based on current information, interest rates in the future are unknown: thus, a model will be
used to characterize this uncertainty. Hence, some authors consider probabilistic descriptions to
characterize their evolution in the future.

In finance, continuous time models have become of vital importance, particularly continuous
time diffusion processes frequently used to characterize the dynamics of major economic vari-
ables, such as exchange rates, asset valuation and interest rates. In recent years, research in this
context has shown notable growth and development, starting with the work of Merton (1973),
who proposed an interest rate model as a stochastic process to option pricing. Later, arbitrage
arguments similar to the works of Black and Scholes (1973) were used to model the temporal
structure of interest rates as observed in the works of Vasicek (1977) and Brennan and Schwartz
(1979). Based on these ideas, models to further perfect the initial considerations were proposed,
which include Cox et al. (1980), Cox et al. (1985), Chan et al. (1992), among others.

As for the modeling of interest rates, more and more literature has appeared in recent years.
However, the selection of an appropriate model for a given data set remains a topic of discussion
with no defined criterion. Clearly, the correct specification of a model describing the probabilistic
behavior of short-term interest rates, and information on individual risk preferences, fully deter-
mine the associated temporal structure. An incorrect specification of the associated model would
lead to an inadequate analysis of the data and to serious errors in the assessment of interest rates
and risk. Hence, taking into account the various models proposed in the literature, one of the in-
terests of researchers and finance professionals focused on searching for tools to determine which
model among the wide range available in the literature is appropriate to characterize the empiri-
cal regularities of interest rates. For finance professionals parametric models are often interesting,
since observations can be interpreted in terms of parameters. The question, then, is if it is appro-
priate to use a parametric model for a given set of financial data. Some work with question. See
Aı̈t-Sahalia (1996), Gao and King (2004), Hong and Li (2005), Chen et al. (2008), who propose tests
to compare the parametric specification of a diffusion process using the marginal or transition
density functions of the process; Corradi and White (1999) present a normal asymptotic test for
the diffusion function; Dette and von Lieres und Wilkau (2003) propose a test for the paramet-
ric form of the volatility function based on the stochastic process of the integrated volatility; Li
(2007) proposes a nonparametric test for the parametric specification of the diffusion function in
a diffusion process based on the quadratic error between the estimated diffusion function, non-
parametrically, and the diffusion proposed as null hypothesis; Arapis and Gao (2006), Gao and
Casas (2008) propose a test to determine the parametric form of the drift and volatility based on
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smoothing techniques; Fan and Zhang (2003), Fan et al. (2003) propose simultaneous tests for the
specification of the drift and diffusion function, based on the likelihood ratio test.

The proposals mentioned above, in most cases, are usually based on nonparametric tech-
niques, in terms of the estimation of the model or the proposed test. Indeed, this is an additional
disadvantage, since the selection of the smoothing parameter can also affect the power of the test.
The aim of this paper is to present a test to compare the goodness of fit for a parametric form of
the drift function and the volatility function in interest rate models based on empirical processes,
see Stute (1997) and Stute et al. (1998) for goodness of fit test in regression models, and Koul and
Stute (1999) for goodness of fit test for time series. There are few papers testing the goodness of fit
for diffusion models based on the empirical process. The amount of literature is scarce, of course
with the exception of the works of Lee and Wee (2008), who propose a test based on the empirical
process of the residues of the diffusion model, and Negri and Nishiyama (2009), who proposed a
goodness of fit test for ergodic diffusion models.

The proposal presented in this paper suggests using a goodness of fit test of easy and efficient
implementation. As mentioned earlier, because the literature on this topic is scarce, an alternative
source to address the problem is using the tests proposed for regression models. The idea is to
rewrite the diffusion process as if a regression model were being used. Thus, the goodness of
fit test for the drift function is based on the ideas presented in Stute (1997), and in this case con-
sidered the integrated regression function of the process variations that characterize the interest
rates, thereby obtaining an empirical process based on the residues of the regression model con-
sidered. Then, the test for the volatility function is constructed from the integrated conditional
variance function which gives a new empirical process which will be compared with the hypoth-
esis of a parametric volatility function. The distributions of both statistics are approximated using
bootstrap techniques, as observed in the regression models presented in Stute et al. (1998). Note
that for test implementation only the estimation of the parameters of the process (using consistent
“root-n” estimators) and the application of a bootstrap procedure is required, which will be de-
scribed in detail later, for the calibration of the distribution of the test statistic, which is relatively
simple.

The article is structured as follows. Section 2 presents the diffusion model on which the study
and particular aspects of the same will be based. In Section 3 the goodness of fit test and its
construction for both the drift function and the volatility function will be presented. In Section 4 a
simulation study will be implemented for the tests proposed, to verify the level and power of the
tests. Finally, Section 5 will present an application to the series of EURIBOR interest rates.
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2 Diffusion Models for Interest Rates

In finance a model frequently used to characterize the dynamics of interest rates is the diffusion
model in continuous time or Itô process given by the stochastic differential equation,

drt = µ(rt)dt + σ(rt)dWt, (1)

where Wt is a standard Brownian motion, and µ(rt) and σ(rt) depend on interest rate alone. In
Equation (1), µ(rt) is denoted as drift function, and σ(rt) is called diffusion or volatility function
satisfying the following expressions:

µ(rt) = lim
∆→0

1
∆

E (rt+∆ − rt | rt) and

σ2(rt) = lim
∆→0

1
∆

E
(
(rt+∆ − rt)

2 | rt

)
.

To study model (1) and observe its empirical behavior, basically there are two approaches. In the

first approach, it is assumed that the behavior of the functions is known and determined by a pa-
rameter, θ, in a space of parameters, Θ ⊂ Rd with d being a positive integer number, estimated by
parametric techniques, for example, maximum likelihood method, generalized moments method,
or estimation by approximation of the likelihood function, see e.g. Aı̈t-Sahalia (1999), among oth-
ers. Model (1) is then expressed parametrically as,

drt = µ(rt, θ)dt + σ(rt, θ)dWt. (2)

In the second approach, no specific behavior is assumed for functions µ(rt) and σ(rt), and non-
parametric techniques are used for its estimation, see, for example, Stanton (1997), Arapis and
Gao (2006), Gao and Casas (2008), among others. The different parametric representations of (2)
have generated several types of interest rate models in the last 30 years, among which note:

Merton : drt = αdt + σdWt,

VAS : drt = (α + βrt)dt + σdWt,

CIR : drt = (α + βrt)dt + σ
√

rtdWt,

CKLS : drt = (α + βrt)dt + σrγ
t dWt,

proposed respectively by Merton (1973); Vasicek (1977); Cox et al. (1985) and Chan et al. (1992).
An alternative version in discrete time of the model (2) is given as:

rti+1 − rti = µ(rti , θ)∆ +

+σ(rti , θ)∆1/2εti+1 , i = 1, . . . , n, (3)

where {εti} are independent and standard normal random variables, and ti = i∆, with i =

1, . . . , n in a time interval [0, T ], for fixed ∆, that is, the observations are equidistant. For example,
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when the unit of time is one year, the sample is selected weekly in ti = i/52, that is, ∆ = 1/52
for i = 1, . . . , n. The discrete version (3) of model (1) is useless when simulating trajectories of the
diffusion model, hence, this approximation in discrete time allows the estimation of the model
parameters, as will be seen in the next section.

2.1 Estimation of the Model

There is extensive literature on the estimation of drift and volatility functions of model (2), for a
detailed review of the different methods, see, for example, Prakasa-Rao (1999) and Iacus (2008).
In practice, all continuous time models are observed in discrete time. Therefore, for the estimation
of the parameters of the continuous time model (2), the discrete model is considered (3), that is,
it is assumed that the process is observed in discrete time. It is denoted as Fn = σ{rti , i ≤ n} the
sigma-algebra generated by the n first observations with F0 the trivial sigma-algebra. Thus, the
likelihood function of the discrete process is given by

Ln(θ) =
n∏

i=1
pθ(∆, rti+1 |rti)pθ(rt0) (4)

where pθ(∆, rti |rti−1) denotes the transition density or conditional density function. Ln(θ) can be
obtained by using the Markovian property of the rt process (see, for example, Arnold (1974)). Let

ℓn(θ) = log Ln(θ) =
n∑

i=1
ℓi(θ) + log(pθ(rt0))

=
n∑

i=1
log pθ(∆, rti+1 |rti) + log(pθ(rt0)), (5)

be the logarithm of the likelihood function. Usually pθ(rt0) is unknown, or under certain assump-
tions it is not always easy to determine. If the number of observations is increase with time, it can
be assumed that the relative weight of pθ(rt0) in the likelihood function Ln(θ) decreases, so it can
be assumed that pθ(rt0) = 1.

The maximum likelihood estimator (MLE) is expressed as θ̂ = arg maxθ ℓn(θ). If the paramet-
ric model generating observations {rti}i is known, then the method to be applied naturally is that
of maximum likelihood. However, with the exception of some cases, like for example the diffu-
sion models of Vasicek (VAS)-Orsntein Uhlenbeck or CIR, explicit forms are not available for the
transition density function, as is the case of the CKLS model, among others.

A technique commonly used to estimate model (1) is to proceed as if the observations come
from the Gaussian distribution, with mean the drift of the model and the standard deviation of
the volatility function, and then obtain the maximum likelihood estimator. Note that the method
is efficient if ∆, the discretization step, is sufficiently small (see Fan and Zhang (2003)), since
significant biases can be produced in the estimations when ∆ is large. To reduce the estimation
bias Aı̈t-Sahalia (1999) suggests an approximation of the transition density function using Hermite
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polynomials. By applying this approximation the author obtains a maximum likelihood estimator,
see Aı̈t-Sahalia (2002), “root-n” consistent for a diffusion process.

In this work, it is important to obtain consistent estimations of the parameters, hence, in what
follows the maximum likelihood method suggested by Aı̈t-Sahalia (2002) will be applied, given
that its implementation and the computational cost are quite reasonable, in accordance with the
requirements needed for the development of the proposal that will be presented in the following
section.

3 Goodness of Fit Test for Interest Rate Models

In this section two goodness of fit tests are presented. The first is used to test the null hypothesis
for the parametric form of the drift function. So, a test based on the integrated regression function
of the process formed by interest rate variations is proposed, as a result obtaining an empirical
process determined by the residuals of the regression model in question. Note that the volatil-
ity function in this case is then determined by the model for which the drift function is being
compared. The second test aims to test the null hypothesis relative to the fact that the volatil-
ity function belongs to a parametric family. In this case, a test based on the integrated volatility
function is proposed, from which an empirical process determined by the residuals is obtained.
Similarly, for this test the drift function is then determined by the model for which its volatility
function is being compared. The distribution of the test, in each case, will be approximated using
bootstrap techniques.

3.1 Test for the drift function

For regression models, an alternative procedure, to the smoothing methods, for the construction
of a goodness of fit test for the regression function is that based on the integrated regression func-
tion, see Stute (1997). Consider (X, Y ) the random vector with F being the marginal distribution
function of X and the associated regression function

m(x) = E (Y |X = x) .

The integrated regression function is defined as:

I(x) = E
(
Y |1{X≤x}

)
=
∫ x

−∞
m(y)dF (y). (6)

Function (6) can be estimated empirically using

In(x) =
1
n

n∑
i=1

1{Xi≤x}Yi. (7)

The idea is to compare the estimator of the integrated regression function, In(x), with an estimator
that is based on the suppositions under the null hypothesis. So, considering the null hypothesis
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H0 : m = m0

and I0(x) an appropriate estimator of (6) under the null hypothesis, for example

I0(x) =
1
n

n∑
i=1

1{Xi≤x}m0(Xi),

then the test is defined using the empirical process determined by the residuals of the regression

Rn(x) =
√

n (In(x) − I0(x))

=
1√
n

n∑
i=1

1{Xi≤x}(Yi − m0(Xi)). (8)

For a composite null hypothesis, H0 : m ∈ {mθ : θ ∈ Θ}, the goodness of fit test is defined from
the process:

Rn(x) =
1√
n

n∑
i=1

1{Xi≤x}(Yi − mθ̂(Xi)).

with θ̂ an appropriate estimator of the true parameter θ. In each case, to contrast the hypothesis

H0 a functional (for example, the Kolmogorov-Smirnov statistic based on Rn) is applied to the
empirical process Rn.

The purpose of this paper is to propose a general method based on the empirical process
determined by the residuals, for diffusion models, to test the goodness of fit of the parametric
form of the drift function of interest rate model (2). In other words, the hypothesis being studied
is

H0 : µ ∈ {µ(·, θ) : θ ∈ Θ}, (9)

where µ(·, θ) represents the drift function of model (2) with (θ ∈ Θ ⊂ Rp). To contrast this
hypothesis, the discretized version of model (2) is considered, that is, the model

Yti

∆
= µ(rti , θ) + σ(rti , θ)∆− 1

2 εti+1 , i = 1, . . . , n (10)

where Yti = rti+1 − rti , represents the variations or differences of process {rti}, {εti} are inde-
pendent and normal standard random variables and independent of process {rti}. Rewriting the
before mentioned process as if dealing with a parametric time series model,

Yti

∆
= µ(rti , θ) + ηti , (11)

where ηti = σ(rti , θ)∆− 1
2 εti+1 , ideas relative to the goodness of fit test for regression models based

on the integrated regression function can be applied.
For an appropriate estimator θ̂ of the true θ value, the statistic of the goodness of fit test, for

diffusion models, would be based on the process

Rd
n(x) =

1√
n

n∑
i=1

1{rti ≤x}

(
Yti

∆
− µ(rti , θ̂)

)
, x ∈ R. (12)
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Consider a continuous functional Ψ(·) to define the statistic Dn = Ψ(Rd
n). Then, the null hypoth-

esis H0 is rejected if Dn > c1−α where c1−α satisfies:

P{Ψ(Rd
n) > c1−α} = α,

that is, c1−α is a critical value for an α level test. To determine the value of c1−α, the distribution

of the process Rd
n must be known. An alternative is to approximate by bootstrap techniques the

distribution of process Rd
n, see Stute et al. (1998). The critical value, c1−α, is approximated by c∗

1−α

such that

P∗{Ψ(Rd∗
n ) > c∗

1−α} = α,

where P∗ denotes a probability measure generated by the bootstrap sample and

Rd∗
n (x) =

1√
n

n∑
i=1

1{r∗
ti

≤x}

(
Y ∗

ti

∆
− µ(r∗

ti
, θ̂∗)

)
, x ∈ R. (13)

with θ̂∗ being an estimator calculated from the bootstrap sample, {
(
r∗

ti
, Y ∗

ti

)
}, which will be de-

fined later. In practice, c∗
1−α is approximated by MonteCarlo

c∗
1−α = D∗⌈B(1−α)⌉

n

being the ⌈B(1 − α)⌉-th order statistic from B bootstrap replicates

D∗j
n = Ψ(Rdrift∗

n ), 1 ≤ j ≤ B.

Hence, the test is defined by the statistic Dn = Ψ(Rd
n) such that H0 is rejected if Dn > c∗

1−α.

As Ψ(·) functional, the criteria of Kolmogorov-Smirnov (KS) and Cramér-von Mises (CvM) are
considered; that is,

DKS
n = sup

x
|Rd

n(x)|, (14)

and
DCvM

n =
∫

R

(
Rd

n(x)
)2

Fn(dx) (15)

where Fn is the empirical distribution function {rti}i. Depending on the case, Dn = DKS
n or

Dn = DCvM
n are denoted to indicate if one or the other statistic is applied. Furthermore, the

empirical p-value is also estimated using expression

♯{D∗j
n > Dn}

B
,

meaning, the proportion of D∗
n(·) bootstrap replicas exceeding Dn.

So, the bootstrap procedure to carry out the approximation of the critical value is as follows:
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1. For each i = 1, 2, . . . , n are generated

Y ∗
ti
= µ(rti , θ̂)∆ + σ(rti , θ̂)∆1/2ε∗

ti
, (16)

the bootstrap sample {
(
r∗

ti
, Y ∗

ti

)
}n

i=1, where θ̂ is an appropriate estimator of the process, the
variable r∗

ti
= rti remains unaltered (fixed design), and with {ε∗

ti
}, random independent

variables with normal standard distribution, N (0, 1). Variables {ε∗
ti

} are independent of
{rti}.

2. θ̂∗ is estimated, using an appropriate estimator, from the bootstrap resample
{(

rti , Y ∗
ti

)}n

i=1
,

obtained in step 1. ,

3.

Rd∗
n (x) =

1√
n

n∑
i=1

1{rti ≤x}

(
Y ∗

ti

∆
− µ(rti , θ̂∗)

)
.

is determined.

4. D∗
n = Ψ(R∗d

n (x)) is calculated.

5. The previous steps are repeated B times, obtaining, j = 1, 2, . . . , B replicas of D∗j
n .

6. Finally, ĉ∗
1−α = D

∗⌈B(1−α)⌉
n is calculated.

Remark 1. As mentioned in Section 2.1, for the procedure described before, the estimators θ̂ and
θ̂∗, considered adequate, meet the criteria of the consistent “root-n” type. A reasonable alternative
is to apply the maximum likelihood estimator proposed by Aı̈t-Sahalia (2002). Any other estima-
tor meeting these criteria can be considered for the estimation of the parameters. Of course, the
selection of an estimator with the characteristics before mentioned is dependent on the efficiency
of said estimator in terms of computational time.

3.2 Test for the volatility function

In this case, and in the same way as with the test for the drift function, the objective is to construct a
goodness of fit test to compare the null hypothesis of the parametric form of the volatility function,

H0 : σ ∈ {σ(·, θ) : θ ∈ Θ}. (17)

To define the test, consider the integrated conditional variance function

Vo(x) =
∫ x

−∞
σ2(u)dF (u) = E

(
σ2(rt, θ)1{rt≤x}

)

= E
[(

Yt

∆
− µ(rt, θ)

)2
1{rt≤x}

]
. (18)
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where F is a stationary distribution function of the process {rt}. An empirical estimator of Vo(x)

is obtained by expression:

Von(x) =
1
n

n∑
i=1

1{rti ≤x}

(
Yti

∆
− µ(rti , θ)

)2
. (19)

Then, for θ̂ an adequate estimator of the true parameter θ, the process used to base the goodness
of fit test will be defined, for a diffusion model, as

Rv
n(x) =

1√
n

n∑
i=1

1{rti ≤x}

((
Yti

∆
− m(rti , θ̂)

)2
− σ2(rti , θ̂)

∆

)
, x ∈ R (20)

As with the drift function test, a continuous functional Ψ(·) is considered to define the statistic
Vn = Ψ(Rv

n), such that H0 is rejected if c1−α is a critical value that satisfies

P (Ψ(Rv
n) > c1−α) = α

To approximate the distribution of the statistic, bootstrap techniques similar to those applied in

the previous section will be used. Hence, c1−α is approximated by c∗
1−α such that

P∗ (Ψ(Rv∗
n ) > c∗

1−α) = α

where, P∗ denotes the probability measure generated by the bootstrap sample and

Rv∗
n (x) =

1√
n

n∑
i=1

1{r∗
ti

≤x}

((
Y ∗

ti

∆
− m(r∗

ti
, θ̂∗)

)2
−

σ2(r∗
ti

, θ̂∗)

∆

)
x ∈ R, (21)

with θ̂∗ and estimator of the parameter θ calculated from the bootstrap sample {(r∗
ti
), Y ∗

ti
} gener-

ated in the same way as in the case of the drift function, using (16). The value c∗
1−α is approximated

using MonteCarlo

c∗
1−α = V ∗⌈B(1−α)⌉

n

the ⌈B(1 − α)⌉-th order statistic from B bootstrap replicates

V ∗j
n = Ψ(Rv∗

n ), 1 ≤ j ≤ B.

Therefore, the test is defined by the statistic Vn = Ψ(Rv
n) with H0 rejection region if Vn > c∗

1−α. As

with the test for the drift function, as Ψ(·) functionals are considered the criteria of Kolmogorov-
Smirnov (KS) and Cramér-von Mises (CvM), respectively denoted as,

V KS
n = sup

x
|Rv

n(x)| , (22)

and
V CvM

n =
∫

R
(Rv

n(x))
2 Fn(dx) (23)

where Fn is the empirical distribution function of {rti}i. Similarly, the p-value is estimated from
the expression

♯{V ∗j
n > Vn}

B
meaning, the proportion of V ∗

n bootstrap replicas exceeding Vn.
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4 Simulation study

For the performance of the goodness of fit test, in this section we present a simulation study
to determine the level and power of the test proposed. Hence, simulations are considered to
evaluate the test, to compare the parametric form of the drift function and the parametric form of
the volatility function. In this section, two CKLS diffusion models (mean-reverting process and
constant volatility elasticity parameter) and their respective alternatives are considered. For the
first model, the CKLS model is considered as an alternative hypothesis with certain perturbations
generated by a non-linear function ρ(·) in its drift, in the case of drift function test, and in its
volatility, for the volatility function test. For the second model, let us suppose that the alternative
hypothesis is a jump diffusion model.

Model 1.

In the first case, one CKLS model is considered as a null hypothesis. In particular we will work
with the model

drt = (0.0408 − 0.5921rt)dt +
√

1.6704r1.4999
t dWt, (24)

the values of the parameters of the model (24) were worked in Chan et al. (1992) based on one-
month treasury bill yields of the United States, and later used in Fan et al. (2003). The power of
the goodness of fit test for the drift function will be evaluated in a series of alternative models
indexed by the parameter, 0 ≤ ρd ≤ 0.1, of a non-linear function ρd(rt) = ρd(1 − rρd

t ), (see Figure
1(a))

drt = (0.0408 − 0.5921rt + ρd(1 − rρd
t )) dt +

√
1.6704r1.4999

t dWt. (25)

Clearly, under the null hypothesis, ρd = 0. The power of the goodness of fit test for the parametric
form of volatility will be evaluated in a series of alternative models indexed by the parameter,
0 ≤ ρv ≤ 0.02, of a non-linear function ρv(rt) = ρv(1 − rρv

t ), (see Figure 1(b))

drt = (0.0408 − 0.5921rt)dt +
(√

1.6704r1.4999
t + ρv(1 − rρv

t )
)

dWt. (26)

Again, under the null hypothesis, ρv = 0.
Series of data are generated weekly (i.e. ∆ = 1/52) of model (24) with the number of observa-

tions, n = 100, 500, 1000. So, for each value

ρd ∈ {0.01, 0.05, 0.07, 0.09, 0.1},

series of data are generated weekly of the model (25) with n = 100, 500, 1000, respectively. Finally,

for

ρv ∈ {0.001, 0.005, 0.009, 0.01, 0.02},

series of data are generated weekly (∆ = 1/52) of the model (26) with n = 300, 500, respectively.
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Figure 1: Behavior of the ρ functions. (a) Perturbation function of drift, ρd,(b) Perturbation func-
tion of volatility, ρv.

Based on 1000 simulations, and for B = 1000 bootstrap trials, the percentage of rejections is calcu-
lated using the respective statistics (14) and (15), (22) and (23) for different levels of significance,
α = 0.01, 0.05, 0.10.

As observed in table (1), for ρd = ρv = 0, models (25) and (26), are actually model CKLS (24),
therefore, the power value under the null hypothesis should be approximately the nominal value
of significance level 1%, 5%, and 10%. As observed in tables (1) and (2), for ρd = ρv = 0, the
estimated values approach the nominal level of significance. As the values of ρd and ρv are in-
creased, in their respective models (25) and (26), the alternative hypotheses deviate from the null
hypothesis, so the rejection rates are expected to increase. In fact, simulations (see Tables (1) and
(2)) confirm what was stated before and show that the test presents reasonably good power. For
example, in the case of the power for the goodness of fit test of the drift function, for ρ = 0.07,
the test is able to reject the null hypothesis in approximately 70% of the time, for a significance
level of 10%. In the case of the power for the goodness of fit test of the volatility function, for
ρv = 0.009, the test is able to reject the null hypothesis nearly 70% of the time, for a significance
level of 10%. This suggests that the test has admissible discrimination capacity for the differenti-
ation of model (24) with respect to models (25) and (26). An important aspect in our simulation
study is related with the sample size. Evidently, in the MonteCarlo simulation study the increase
in sample size leads to an improvement in the estimations. For example, in the case of a test, it is
the power. However, in the study presented before this finding is not totally reflected. In Table
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Table 1: Rates of rejections, α̂KS and α̂CvM , estimated from the model (25), for different values of
ρd and several sample sizes, n, when the test statistic, Dn, is applied for the drift function; p̂KS

and p̂CvM correspond to the estimated p-values. The index (KS) and (CvM) denote the criteria of
Kolmogorov-Smirnov and Cramer von Misses, respectively.

α̂KS α̂CvM

ρd n p̂KS p̂CvM 10% 5% 1% 10% 5% 1%

0 100 0.477 0.488 0.081 0.041 0.004 0.080 0.041 0.002
500 0.499 0.491 0.110 0.051 0.009 0.096 0.050 0.009

1000 0.507 0.512 0.107 0.048 0.011 0.110 0.048 0.010
0.05 100 0.271 0.258 0.327 0.199 0.039 0.373 0.250 0.077

500 0.263 0.262 0.347 0.210 0.053 0.369 0.246 0.072
1000 0.268 0.277 0.319 0.201 0.054 0.328 0.203 0.051

0.07 100 0.094 0.079 0.707 0.525 0.180 0.761 0.607 0.282
500 0.093 0.076 0.731 0.567 0.219 0.787 0.643 0.303

1000 0.106 0.092 0.684 0.500 0.189 0.735 0.576 0.258
0.1 100 0.068 0.053 0.797 0.613 0.208 0.847 0.699 0.303

500 0.058 0.042 0.835 0.698 0.343 0.880 0.762 0.462
1000 0.053 0.042 0.846 0.703 0.355 0.876 0.775 0.460

(1) there are cases where an increase in sample size, for example n = 1000 for ρd = 0.07, does
not produce an increase in power, α̂KS = 0.684 at a significance level of 10%, if compared with
the corresponding sample size n = 500 which produces an estimate α̂KS = 0.731. One explana-
tion for this phenomenon is the effect produced by an increase in sample size in the observation
window. The sampling considered in this work is of fixed design, that is, the observation win-
dow is [0, n∆ = T ], with ∆ = constant, that increases when n (sample size) increases. In other
words, when the sample size is increased, more observations are not being included in the same
period, but rather, the observation horizon is becoming greater, which implies at first that we are
not observing the same process, but rather a process with a subset of new observations. Hence,
the series could be affected by this, as well as the estimations of the parameters and the power,
since it is not actually an increase in sample size, especially when dealing with mean reverting
processes.

Model 2.

The jump diffusion models were introduced by Das (2002) and Johanes (2004) to characterize
the dynamics of interest rates. Their use is founded mainly on the fact that economic shocks,
government interventions in the market, news dissemination, among others, cause big jumps in
interest rates, thereby generating discontinuity in their dynamics. Consider the jump diffusion
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Table 2: Rate of rejections, α̂KS and α̂CvM , estimated from model (25), for different values of ρv

and several sample sizes, n, when the test statistic , Vn is applied to the volatility function; p̂KS

and p̂CvM correspond to the estimated p-values. The index (KS) and (CvM) denote the criteria of
Kolmogorov-Smirnov and Cramer von Misses, respectively.

α̂KS α̂CvM

ρv n p̂KS p̂CvM 10% 5% 1% 10% 5% 1%

0 100 0.502 0.503 0.079 0.020 0.002 0.079 0.051 0.008
500 0.511 0.501 0.099 0.051 0.012 0.099 0.051 0.011

1000 0.498 0.499 0.108 0.048 0.099 0.108 0.049 0.087
0.005 100 0.431 0.429 0.151 0.078 0.022 0.144 0.077 0.017

500 0.397 0.398 0.233 0.163 0.056 0.231 0.160 0.066
1000 0.361 0.363 0.289 0.204 0.106 0.291 0.214 0.101

0.009 100 0.318 0.319 0.271 0.171 0.048 0.279 0.174 0.053
500 0.171 0.166 0.616 0.521 0.352 0.635 0.538 0.354

1000 0.115 0.108 0.736 0.667 0.520 0.764 0.685 0.515
0.02 100 0.230 0.175 0.430 0.305 0.101 0.569 0.426 0.207

500 0.030 0.018 0.911 0.868 0.757 0.946 0.914 0.832
1000 0.003 0.001 0.992 0.983 0.956 0.998 0.996 0.977

model CKLS, based on the specification proposed by Das (2002), that is,

drt = (α + βrt) dt + σrγ
t dWt + J(λ, ρ2)dπt(qt) (27)

So, interest rates evolve with a drift function of average return and two random terms, the volatil-
ity function (Wt standard Brownian movement) or diffusion and a Poisson process πt with fre-
quency of events qt, including a random jump J(λ, ρ2) with distribution N (λ, ρ2). Let model
specification (discretized) considered by Das (2002) be,

Yti = α + βrti−1 + σrγ
ti−1εti + J(λ, ρ2)∆πti(qti), i = 1, . . . , n, (28)

where Yti = rti − rti−1 and {εti} are random independent variables with distribution N (0, 1) and
independent of {rti}; and ∆πti(qti) is the Poisson process of discrete time increments, approxi-
mated by an independent random variable with Bernoulli distribution of parameter

qti =
1

1 + exp(−a − brti−1)
(29)

and with jump size the value of the random variable J(λ, ρ2) with distribution N (λ, ρ2). The
conditioned mean for the variation in interest rate is:

E (rti − rti−1|rti−1) = α + βrti−1 + qtiλ (30)
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Table 3: Rate of rejections, α̂KS and α̂CvM , estimated from model (33), for different values of
ρd and several sample sizes, n, when the test statistic Dn is applied to the drift function ; p̂KS

and p̂CvM correspond to the p-estimated values. The index (KS) and (CvM) denote the criteria of
Kolmogorov-Smirnov and Cramer von Misses, respectively.

α̂KS α̂CvM

λ ρ2 n p̂KS p̂CvM 10% 5% 10% 5%

0 0 300 0.470 0.478 0.080 0.042 0.070 0.041
400 0.489 0.487 0.091 0.047 0.079 0.042
500 0.509 0.502 0.109 0.052 0.090 0.048

0.0009 0.001 300 0.387 0.433 0.164 0.092 0.140 0.074
400 0.384 0.434 0.206 0.110 0.148 0.078
500 0.256 0.285 0.368 0.252 0.350 0.252

0.0079 0.001 300 0.200 0.209 0.488 0.358 0.434 0.292
400 0.181 0.194 0.502 0.350 0.456 0.300
500 0.145 0.156 0.578 0.404 0.516 0.376

0.019 0.001 300 0.177 0.163 0.516 0.374 0.518 0.386
400 0.137 0.124 0.596 0.418 0.600 0.446
500 0.108 0.092 0.676 0.508 0.624 0.504

while the variance is

E
[
(rti − rti−1)

2|rti−1
]
= σ2r2

ti−1 + qti

(
ρ2 + (1 − qti)λ

2
)

(31)

For the simulation study consider again the CKLS model as null hypothesis,

drt = (0.00739344 − 0.0876rt)dt + 0.7791r1.48
t dWt, (32)

whose parameters are taken from Aı̈t-Sahalia (1999), based on the monthly sampling Fed funds
rate, from January 1963 to December 1998. To study the power of the test, N = 500 are generated,
for n = 300, 400, 500, observations of a series of alternatives indexed by λ ∈ {0; 0.0009; 0.0079; 0.019},
ρ ∈ {0, 0.001}, and a = −0.5 and b = −0.5, of the jumps diffusion model (27),

drt = (0.00739344 − 0.0876rt) dt + 0.7791r1.48
t dWt + J(λ, ρ2)dπt(qt) (33)

For B = 1000 bootstrap replicas the following results are obtained,
It is clear that under the null hypothesis, λ = ρ = 0, the value of the power should be approx-

imately the nominal value of the significance level 5%, and 10%. As observed in the tables (3),(4),
the estimated values approach the nominal level of significance, and sample size influences the
estimated values.
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Table 4: Rate of rejections, α̂KS and α̂CvM , estimated from model (33), for different values of ρd

and several sample sizes, n, when the test statistic Vn is applied to the volatility function; p̂KS

and p̂CvM correspond to the p-estimated values. The index (KS) and (CvM) denote the criteria of
Kolmogorov-Smirnov and Cramer von Misses, respectively.

α̂KS α̂CvM

λ ρ2 n p̂KS p̂CvM 10% 5% 10% 5%

0 0 300 0.470 0.478 0.080 0.042 0.070 0.041
400 0.489 0.487 0.091 0.047 0.079 0.042
500 0.509 0.502 0.109 0.052 0.09 0.048

0.0009 0.001 300 0.233 0.237 0.458 0.346 0.468 0.338
400 0.205 0.213 0.516 0.404 0.512 0.404
500 0.009 0.008 0.978 0.966 0.984 0.970

0.0079 0.001 300 0.037 0.030 0.904 0.858 0.912 0.880
400 0.015 0.013 0.960 0.934 0.972 0.948
500 0.017 0.018 0.962 0.948 0.958 0.946

0.01 0.001 300 0.034 0.029 0.906 0.874 0.930 0.890
400 0.020 0.020 0.952 0.922 0.950 0.926
500 0.015 0.013 0.960 0.946 0.966 0.948

When the value of λ is increased, the alternative hypotheses deviate from the null hypothesis,
so the rate of rejections is increased. This is observed in the simulations presented in Table (3),
which confirms what was mentioned before, and shows that the test has reasonable power. Then,
the influence of the parameter λ on the variance (31) of the jumps diffusion process (33) produces a
set of alternative hypotheses for the volatility function, so, when the goodness of fit test is applied
to the volatility function the results shown in Table (4) are obtained. As observed in the Table,
there is an increase in power with respect to λ.

Remark 2. In Section (2.1) the distribution of the empirical process, Rd
n(x), was approximated

using bootstrap techniques. An alternative way of approximating the distribution of the empirical
process, Rd

n(x), is from a limit distribution function corresponding to certain zero-mean Gaussian
process. In terms of goodness of fit tests for generalized mixed linear models, Pan and Lin (2005),
suggest this type of approximation for methods based on cumulative sums of residuals over co-
variates or predictions of the response variable. In this case, that is, in the context of diffusion
models for interest rate, the approximation can be carried out as follows:

Wn(x) =
1√
n

n∑
i=1

1{rti ≤x}

(
Yti

∆
− µ(rti , θ̂)

)
, x ∈ R. (34)

Note that process Wn(x) = Rd
n(x) of Section (2.1). Under the supposition that the first and second

16



derivatives of µ(rti , θ) are bounded, the process

Wn(x) =
1√
n

n∑
i=1

1{rti ≤x}

(
Yti

∆
− µ(rti , θ̂) + µ(rti , θ) − µ(rti , θ)

)

=
1√
n

n∑
i=1

1{rti ≤x}

[(
Yti

∆
− µ(rti , θ)

)
+
(
µ(rti , θ) − µ(rti , θ̂)

)]
.

Considering the expansion in Taylor series of

(
µ(rti , θ) − µ(rti , θ̂)

)
in the setting of θ̂, the process Wn(x) is asymptotically equivalent to the process

Wn(x) =
1√
n

n∑
i=1

1{rti ≤x}

(
Yti

∆
− µ(rti , θ)

)
+ η′(x, θ̂)n1/2(θ̂ − θ).

with

η(x; θ) = − 1
n

n∑
i=1

1{rti ≤x}
∂µi(rti , θ)

∂θ

a function of the drift function gradient evaluated in each observation rti and under the regularity

conditions over the estimator of the parameter θ̂,

n1/2(θ̂ − θ) = Ω−1n−1/2U (rti , θ) + op(1)

where

ℓn(θ) =
n∑

i=1
log (p(rti |rti−1; θ)) ,

U (rti ; θ) =
∂ℓn(θ)

∂θ
=

n∑
i=1

Ui(rti , θ),

Ω = lim
n→∞

I(θ), and I(θ) = − 1
n

∂2ℓn(θ)

∂θ∂θ′ .

Finally, the process Wn(x) is approximated by the process of cumulative sums Ŵn(x) whose first

term corresponds to the estimation of the original process and the second term corresponds to the
covariance structures generated from the estimation of the model considered,

Ŵn(x) =
1√
n

n∑
i=1

1{rti ≤x}

{(
Yti

∆
− µ(rti , θ̂)

)
+ η′(x, θ̂)I−1(θ̂)Ui(rti , θ̂)

}
Gi (35)

where G1, G2, . . . , Gn are independent normal standard random variables. Same as with the tests
previously presented in Section (2.1), the statistic is defined using
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Table 5: Rate of rejections, α̂KS and α̂CvM , estimated from model (25), for different values of
ρd and several sample sizes, n, when the test statistic Sn is applied to the drift function ; p̂KS

and p̂CvM correspond to the p-estimated values. The index (KS) and (CvM) denote the criteria of
Kolmogorov-Smirnov and Cramer von Misses, respectively.

α̂KS α̂CvM

ρd n p̂KS p̂CvM 10% 5% 1% 10% 5% 1%

0 100 0.434 0.468 0.146 0.056 0.005 0.089 0.031 0.007
500 0.491 0.484 0.114 0.054 0.010 0.101 0.052 0.005

1000 0.497 0.483 0.092 0.050 0.009 0.094 0.048 0.006
0.05 100 0.24 0.24 0.387 0.237 0.039 0.408 0.271 0.075

500 0.243 0.247 0.398 0.227 0.074 0.40 0.285 0.09
1000 0.255 0.267 0.348 0.218 0.059 0.355 0.216 0.06

0.07 100 0.138 0.125 0.615 0.442 0.123 0.651 0.499 0.183
500 0.13 0.116 0.615 0.434 0.17 0.672 0.513 0.235

1000 0.145 0.136 0.566 0.373 0.138 0.6 0.438 0.149
0.1 100 0.07 0.062 0.794 0.64 0.227 0.827 0.695 0.305

500 0.077 0.057 0.781 0.609 0.295 0.843 0.727 0.414
1000 0.085 0.07 0.75 0.583 0.231 0.785 0.661 0.325

SKS
n = sup

x
|Ŵn(x)|, or SCvM

n =
∫

R

(
Ŵn(x)

)2
Fn(dx)

where Fn is the empirical distribution of {rti}i. Depending on the case, let us denote by Sn = SKS
n

or Sn = SCV M
n to indicate if one or another statistic is applied. Then, H0 is rejected if Sn > s∗

1−α.
The critical point s∗

1−α is estimated using MonteCarlo by

s∗
1−α = S∗⌈B(1−α)⌉

n .

The estimator of the p-value is given as:

♯{S∗j
n > Sn}

B
,

the proportion of bootstrap replicas S∗
n exceeding Sn. The advantage of this approximation is

that it reduces the computational cost originated by the approximation process Rd
n, since for each

iteration, a new estimation of the parameters is required for each bootstrap resampling. Evidently,
this advantage is restricted by a good approximation of the terms η′(x, θ̂), I−1(θ̂), and Ui(rti , θ̂).
Table (5) presents the results of when this alternative procedure is applied to the simulation data
from model (25). As observed, for ρd = 0, that is, model CKLS, the estimated values approach
the test level. So, when the value of ρd is increased, the estimated values of the power are also
increased, similar to the results obtained using the bootstrap approximation.
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Table 6: Table comparing the running times between approximations Ŵn and Rd∗
n , of the distribu-

tion of the process Rd
n; titer, running time for each approximation of Dn and Sn corresponding to

a sample size n; tsim, running time until obtaining α̂KS .

Dn Sn

n p̂KS α̂KS titer(sec) tsim(min) p̂KS α̂KS titer(sec) tsim(min)

100 0.477 0.081 10.78 180 0.434 0.146 0.136 2.26
500 0.499 0.110 34.92 582 0.491 0.114 0.362 6.04
1000 0.507 0.107 62.52 1042 0.497 0.092 0.621 10.35

Note that in table (5), the effect produced by increasing the sample size in the simulation study
and estimating the power becomes more pronounced. It is evident that in this case the estimations
of the parameters of the process as well as the approximation of the distribution of the process
involved in the test are certainly more sensitive to any change in the simulation process. The
increase in sample size, as mentioned before, is not considered like an increase in the number of
observations in the observation horizon, but rather, this generates a different process in another
observation horizon, which neither generates a direct profit in the estimation of the parameters
nor of the test statistic.

Table (6) shows the running times for both approximations, Dn and Sn for the particular case,
ρ = 0 (null hypothesis), and with significance level α = 0.10. The differences between the running
times are significant from one to another approximation, these becoming more pronounced when
the size of the series is increased.

5 Applications to EURIBOR data

This Section presents the most important characteristics of an EURIBOR (Euro Interbank Offered
Rate) interest rate series for different periods of time. The temporal period goes from October
15, 2001 to March 30, 2006, with daily frequency. The periods considered are 1, 2 and 3 weeks
and 1, 2, . . . , 12 months. The source for the data is the, Euribor Historical Data (EURIBOR-EBF).
The figure (2) represents the daily level of the EURIBOR interest rates series for the different time
periods considered. The most notable traits of the short-term series are: (a) it is persistent, spends
long periods of time above and below the long-term value, (b) abrupt changes are observed in the
level of the interest rates that are smoothed as the period of time becomes longer. The goodness
of fit test suggested in the previous Sections will be applied to the EURIBOR interest rates series
mentioned before, to test the goodness of fit of the models of Vasicek (1977) (VAS), Chan et al.
(1992) (CKLS), in terms of the parametric form of the drift function and of the volatility function.

Table (7) shows the estimated values of the p-values, when the test statistic Dn and Vn are
applied to EURIBOR series. The estimated p-value was significant for the long-term series, lasting
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Figure 2: Euribor Series.

20



Table 7: P-values for testing the forms of the drift and volatility function for the Vasicek model
(VAS) and the CKLS model. The index (KS) and (CvM) denote the criteria of Kolmogorov-Smirnov
and Cramer von Misses, respectively.

Drift function Volatility function

Maturity Vasicek CKLS Vasicek CKLS

p̂KS p̂CvM p̂KS p̂CvM p̂KS p̂CvM p̂KS p̂CvM

1 week 0.033 0.011 0.053 0.138 0 0 0 0
2 weeks 0.212 0.029 0.405 0.239 0 0 0 0
3 weeks 0.109 0.030 0.251 0.168 0 0 0 0
1 month 0.105 0.018 0.254 0.122 0 0 0.002 0.0002
2 months 0.199 0.044 0.265 0.111 0 0 0 0
3 months 0.409 0.169 0.454 0.275 0 0 0 0
4 months 0.710 0.653 0.693 0.717 0 0 0 0.0002
5 months 0.999 0.977 0.999 0.975 0 0 0 0.0004
6 months 0.963 0.985 0.989 0.976 0 0 0 0
7 months 0.928 0.937 0.945 0.913 0 0 0.002 0
8 months 0.923 0.860 0.942 0.834 0 0 0.004 0
9 months 0.897 0.803 0.957 0.768 0 0 0 0

10 months 0.930 0.736 0.966 0.691 0 0 0.001 0.0004
11 months 0.885 0.666 0.909 0.618 0 0 0.001 0
12 months 0.804 0.598 0.918 0.558 0 0 0.001 0
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Table 8: Comparative of the bootstrap approximations of the statistics Dn and Sn of the goodness
of fit test for the drift function, (KS) corresponding to the criteria of Kolmogorov-Smirnov, critical
values ĉ∗KS

0.10 (10% significance), p-values and titer running times by iteration, for the CKLS model.

Rd∗
n Ŵn

Maturity p̂KS cKS
0.10 DKS

n titer(min) p̂KS cKS
0.10 SKS

n titer(min)

1 week 0.044 0.028 0.032 1.489 0.072 0.033 0.035 0.094
3 months 0.422 0.010 0.007 1.102 0.501 0.010 0.007 0.091
6 months 0.964 0.013 0.006 1.308 0.990 0.014 0.005 0.090
9 months 0.976 0.018 0.008 1.189 0.968 0.019 0.009 0.090

12 months 0.888 0.022 0.011 1.136 0.926 0.023 0.011 0.090

over three months. This suggests that the model can be adequate to explain the dynamics of the
EURIBOR series, at least for the drift function.

However, the p-value in the case of the volatility function shows that the model is inadequate
to explain the volatility of the series. In the case of series for periods less than three months
the estimates of the p-value, for the goodness of fit test of the drift function, show relatively low
values. Table (8) shows the results obtained when the Sn statistic presented in observation (1) was
applied to an EURIBOR series and a CKLS model was considered to explain the dynamics of the
interest rates. The Table also shows the results obtained when the Tn statistic, described in Section
(2), was applied. As observed, the values obtained in each case present the minor discrepancies
in terms of the values of the critical points, test statistic and p-values, so, the conclusions reached
by one or another method do not imply, in most cases, differences. One major difference between
the two methods is the running time, which is significant.

6 Conclusions

The results obtained clearly show that a goodness of fit test based on empirical processes is a tool
that is able to discriminate among interest rate models. The test presented also shows satisfactory
performance, reflected in its size or level of significance and its power. Then, the implementation
of the test and the bootstrap resampling scheme is quite simple compared to the methods based on
smoothing techniques. With respect to the results obtained when the test is applied to EURIBOR

series, the test is able to discriminate between the models that are able to explain the dynamics
of these series, for example, for the case of series with maturity above three months, the test
determines that the CKLS models, with linear drift and with mean-reverse, tend to be adequate
while for shorter periods of time the models are considered not fit to explain the behavior of the
interest rate models. This last point is corroborated by the economic theory, which expresses that
models with brief maturity periods tend to be more susceptible to the decisions of the regulatory
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organizations of the market.
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