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Abstract

We analysed the landings per unit effort (LPUE) from the Barcelona trawl
fleet (NW Mediterranean) of the red shrimp (Aristeus antennatus) using the novel
bayesian approach of additive extended regression or distributional regression, that
comprises a generic framework providing various response distributions, such as
the log-normal and the gamma and allows estimations for location and scale or
shape (as the frequentist counterpart GAMLSS). The dataset covers a span of 17
years (1992-2008) during which the whole fleet has been monitored and consists
of a broad spectrum of predictors: fleet-dependent (e.g. number of trips performed
by vessels and their technical characteristics, such as the gross registered tonnage),
temporal (inter- and intra-annual variability) and environmental (NAO index) vari-
ables. This dataset offers a unique opportunity to compare different assumptions
and model specifications. So that we compared 1) log-normal versus gamma dis-
tribution assumption, 2) modelling only the expected LPUE versus modelling both
expectation and scale (or shape) of LPUE, and finally 3) fixed versus random spec-
ifications for the catching unit effects (boats). Our preliminary results favour the
gamma over the log-normal and modelling of both location and shape (in the case
of the gamma) rather than only the location, while not noticeable differences occur
in estimation when considering catching units as fixed or random.
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1 Introduction
In fishery research, the LPUE (Landings Per Unit Effort) is an index widely used in
stock assessment to estimate the relative abundance of an exploited species (Mendelssohn
and Cury, 1989; Marchal et al., 2002). It constitutes one of the most common pieces of
information used in assessing the status of fish stocks and is reckoned in different ways
depending on data availability. The “landings” portion of the measure is the quantity
of the stock brought to the port by each vessel and is usually expressed as number of
individuals or weight of the whole stock, while the “unit effort” portion refers to the
unit of time spent by a unit of the gear used to catch (e.g. vessel or square meters of a
net). Therefore, LPUE is a relative index, which use is based on the assumption that it
is proportional to the natural quantity of the species, despite their proportionality has
been debated in the past (e.g. Gulland, 1964; Bannerot and Austin, 1983).

The most commonly applied analyses on LPUE is its standardisation to remove the
bias induced by influential factors that do not reflect the natural variability (Maunder
et al., 2006). In fact, many factors can affect the index (e.g. time, seasonality, fish-
ing area and fleet characteristics, among others), some of which (i.e. fishery related
variables) if not considered can lead to biased interpretations of stock states. Here we
model the LPUE using all available explanatory variables. For some of the influential
variables, a simple linear impact on LPUE as often assumed in standard statistical mod-
els may not be flexible enough and alternative, semiparametric modelling approaches
may be required. Moreover, in most cases LPUE data are collected repeatedly for
the same catching units over time leading to the necessity to account for unobserved
characteristics of these units to avoid correlations in the repeated measurements.

The most common class of regression models to determine the impact of covari-
ates x1, . . . ,xp on the expectation of the LPUE are generalized linear models (GLM,
McCullagh and Nelder, 1989) and generalized additive models (GAM, Hastie and Tib-
shirani, 1986). In GLM the expectation of LPUE is related to a linear combination of
the covariate effects, i.e.

E(LPUEi) = h(β0 +β1xi1 + . . .+βpxip), i = 1, . . . ,n

with a suitable transformation function h that ensures positivity of the expected LPUE
and regression coefficients β0,β1, . . . ,βp (for GLM applications in LPUE analyses see
(see Goñi et al., 1999; Maynou et al., 2003). Popular special cases for modelling LPUE
include the gamma distribution or the normal distribution applied to log-transformed
LPUE values (which is equivalent to assume a log-normal distribution). To overcome
the limitation of GLMs to purely linear effects of covariates, generalized additive mod-
els, GAM have been introduced (see Damalas et al., 2007; Denis, 2002) where now the
expectation is specified as

E(LPUEi) = h(β0 + f1(xi1)+ . . .+ fp(xip)).

The nonlinear functions f1, . . . , fp remain unspecified and should be estimated flexi-
bly from the data, for example using penalized spline approaches (see Wood, 2006;
Ruppert et al., 2003).

Another direction for extending the GLM approach is the inclusion of catching
unit-specific effects to acknowledge the effect that usually multiple observations are
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collected and that unobserved heterogeneity remains even when accounting for some
covariate effects. If the individual catching units are indexed as i = 1, . . . ,n and the
repeated measurement for one catching unit are indexed as j = 1, . . . ,ni, the resulting
model can be written as

E(LPUEi j) = h(β0 +β1xi j1 + . . .+βpxi jp +αi), i = 1, . . . ,n, j = 1, . . . ,ni.

The additional parameter αi is introduced to stand for any effect specific to the catch-
ing unit that is not represented in the effects of covariates x1, . . . ,xp. Of course, similar
extensions can be defined for generalized additive models. In the statistical commu-
nity, the most common assumption for αi would be the specification as a random ef-
fect, i.e. αi i.i.d. N(0,τ2), to acknowledge the fact that the catching units represent a
sample from the population of catching units. This leads to the class of generalized lin-
ear mixed models (GLMMs, Pinheiro and Bates, 2000) or generalized additive mixed
models (GAMMs, Wood, 2006). An alternative specification is to treat the αi as usual,
fixed parameters that result from dummy coding of the catching units. This may be
considered more appropriated if, for example, the complete fleet of catching units for a
specific area has been observed. We will return to this debate later when discussing the
methods in more detail, see also Bishop et al. (2004), Cooper et al. (2004) or Helser
et al. (2004) for the use of mixed models in this field.

Another important aspect when modelling LPUE is the choice of the response dis-
tribution. In most cases, skewed distributions have been considered, including in par-
ticular the gamma distribution (Maynou et al., 2003; Stefánsson, 1996), the log-normal
distribution (Brynjarsdóttir and Stefánsson, 2004; Myers and Pepin, 1990) and the delta
distribution (Gavaris, 1980; Pennington, 1983). The latter provides a form of zero-
adjustment where zero catches are modelled separately from the nonnegative catches
via a Bernoulli distribution. As a possibility to differentiate between gamma and log-
normal distribution, the Kolmogorov-Smirnov test has been applied to fitted values
from corresponding GLMs. Then, the distribution leading to a lower value for the test
statistic can be considered to be closer to the distribution of the data (Brynjarsdóttir
and Stefánsson, 2004; Stefánsson and Palsson, 1998).

In this paper, structured additive distributional regression models (Klein et al.,
2013b) has been considered as a comprehensive, flexible class of models that encom-
passes all special cases discussed so far and a number of further extensions. More
specifically, this class of models allows to deal with the following problems:

• Selection of the response distribution: Additive distributional regression com-
prises a generic framework providing various response distributions and in par-
ticular the log-normal and the gamma distributions. Extensions including zero-
adjustment to account for an inflation of observations with zero catch would also
be possible but not required in the data set considered later. Tools for effectively
deciding between competing modelling alternatives will also be considered.

• Linear versus nonlinear effects: Effects of continuous covariates can be esti-
mated nonparametrically based on penalized splines approximations that allow
for a data-driven amount of smoothness and therefore deviation from the linear-
ity assumption.
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• Fixed versus random effects: Both fixed and random specifications for the catch-
ing unit-specific effects are supported and can be compared in terms of their
ability to fit the data.

• Models for location, scale and shape: instead of restricting attention to only
modelling the expected LPUE, distributional regression allow to specify a further
parameter of the distribution that correspond to scale or shape. This both enables
for additional flexibility and a better understanding of how different covariates
affect the distribution of LPUE.

• Mode of inference: Distributional regression can be formulated both from a fre-
quentist and a Bayesian perspective and corresponding estimation schemes either
rely on penalized maximum likelihood or Markov chain Monte Carlo simula-
tions. This paper is focused on the Bayesian inference.

Structured additive distributional regression is in fact an extension of structured ad-
ditive regression (STAR, Brezger and Lang, 2006; Fahrmeir et al., 2004) in the frame-
work of generalized additive models for location, scale and shape (GAMLSS, Rigby
and Stasinopoulos, 2005). The parameter specifications rely very much on STAR, a
comprehensive class of regression models for the expectation of the response that com-
prises geoadditive models (Kammann and Wand, 2003), generalized additive models
(Hastie and Tibshirani, 1986) and generalized additive mixed models (Lin and Zhang,
1999) as special cases.

Our analysis deals with the red shrimp (Aristeus antennatus) LPUE. The red shrimp
is the target species for the deep-water trawl fishery in the Western Mediterranean (Bas
et al., 2003), where catches have reached more than 1000 t/yr (FAO/FISHSTAT, 2011).
This fishery is developed in deep-waters - 450−900 m - on the continental slope and
near submarine canyons (Sardà et al., 1997; Tudela et al., 1998). A. antennatus LPUE
has already been studied: its fluctuations have been related to changes in oceanographic
conditions, e.g. at least partially triggered by changes in the North Atlantic Oscillation
(Maynou, 2008) or explained by changes in the seasonal availability of the resource,
linked to its life-cycle (Carbonell et al., 1999) and source demand (Sardà et al., 1997).

The main objective of this study is to demonstrate the usefulness of structured ad-
ditive distributional regression in modelling and predict shrimp LPUE and to provide
guidance for model choice and variable selection, questions that arise in the process of
developing an appropriate model for a given data set. Therefore, we will discuss tools
such as quantile residuals, information criteria and predictive mean squared errors to
evaluate the ability of models to describe and predict LPUE adequately.

The rest of the paper is structured as follows: In Section 2 a description of the data
set is given to illustrate the application of structured additive distributional regression.
Section 3 provides an overview of the methods dealing with the real data set, including
the choice of an appropriate response distribution and variable selection. In Section 4,
we perform an extensive analysis of the red shrimp data, comparing different response
distributions, regression specifications and random versus fixed effects for the repeated
observations. The final Section 5 concludes and comments on main results and direc-
tions of future research.
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2 Data description
Data proceed from the daily sale slips of the Barcelona trawling fleet, granted by
the Barcelona Fishers’ Association. This data set comprises the information for 21
trawlers, with their total monthly landings (landings, kg), their monthly number of
trips performed (trips) and the Gross Registered Tonnage (grt, GRT). Furthermore, the
monthly average value of the North Atlantic Oscillation index (NAO) was obtained
from the web site of the Climatic Research Unit of the University of East Anglia (Nor-
wich, UK): http://www.met.rdg.ac.uk/cag/NAO/slpdata.html. Then we com-
puted the year average of NAO, whose relationship with landings of three years later
has been detected through cross-correlation analysis in previous studies by Maynou
(2008).

The total number of observations, N, amounts to N = 2314 using the whole fleet
(21 trawlers) having practised deep-fishing in the period from January 1992 to Decem-
ber 2008 (17 complete years). Landings of the whole fleet were monitored over time,
so, data depict the entire population of the fleet in the studied area and period. Red
shrimp fishery is a specific fishery, thus, all the product caught on board appears in
landings, due to its high commercial value, while, when landings are not reported for a
given boat is due to its inactivity, rather than to zero catches of the source.

The landings and number of trips were used to estimate the “nominal” LPUE index,

l puei j =
landingsi j

tripsi j
, (1)

where i and j refer to the observation i of the vessel j. The adjective “nominal”
refers to the variable not standardized. Table 1 and the introductory part of this Section
provide information on the variables in Equation 1. Trips are always performed in one
day, hence, the lpue represents the daily biomass average caught by a boat during one
day (kg d−1) with a monthly resolution.

As in previous regression analysis (see )mamouridis2014 months associated to
not significant parameters of the categorical variable months with categories monthk,
k = 1, . . . ,12 were backward assembled into two categories of a new variable period
(period of the year): period1 defines all months excluding June and November and
period2 refers to June and November. All variables are summarised in Table 1.

3 Methodology
It has become quite popular to model the expected LPUE as a function of linear covari-
ate effects. The results obtained from linear mean regression are easy to interpret but
depreciated by possible misspecification due to a more complex underlying covariate
structure, violation of homoscedastic errors or correlations caused by clustered data.
To deal with these problems we apply Bayesian distributional structured additive re-
gression models (Klein et al., 2013b) a model class originally proposed by Rigby and
Stasinopoulos (2005) in a frequentist setting. The idea is to assume a parametric dis-
tribution for the conditional behaviour of the response and to describe each parameter
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Table 1: List of variables.
Variable Description

landings the total catches landed at port by each boat in one month
l pue the daily LPUE index for each boat calculated as in Eq. 1
code a categorical variable assigned to each boat, c = 1, . . . ,21
time a total of 204 months from January 1992 to December 2008

coded with a letter and two digits, e.g. J92 is January 1992
trips the number of trips performed by each vessel during one month
grt Gross Registered Tonnage of each boat
nao3 mean annual NAO index of 3 years before the year of estimated l pue
month categorical variable with m = 1, . . . ,12

from January to December
period binary variable with grouped months holding the same effect

period1 = all month excluding June and November
period2 = June and November

of this distribution as a function of explanatory variables. In the following, only log-
normal and gamma distribution are considered for LPUE, although also an extension
to mixture distributions with point masses in zero would be possible as in Heller et al.
(2006) or Klein et al. (2013a). Here they are not necessary since the response in this
study is always greater than zero.

We consider the log-normal distribution with parameters µi j and σ2
i j such that

E(lpuei j) = exp

(
µi j +

σ2
i j

2

)

Var(lpuei j) =
(
exp
(
σ2

i j
)
−1
)

exp
(
2µi j +σ2

i j
)
.

Accordingly, log
(
lpuei j

)
is normal distributed with E(log(lpuei j))= µi j and Var(log(lpuei j))=

σ2
i j. As an alternative, we assume a gamma distribution with parameters µi j > 0, σi j > 0

and density

f (lpuei j|µi j,σi j) =

(
σi j

µi j

)σi j lpue
σi j−1
i j

Γ(σi j)
exp
(
−

σi j

µi j
lpuei j

)
.

Then, the expectation and variance are given by

E(lpuei j) = µi j

and

Var(lpuei j) =
µ2

i j

σi j

such that µi j is the location parameter and the parameter σi j is inverse proportional to
the variance.
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All parameters involved are linked to structured additive predictors, yielding

ηi j,µ = µi j ηi j,σ2 = log
(
σ2

i j
)

for the log-normal distribution where the log-link is used to ensure positivity of the
σ2

i j. For the gamma distribution, both parameters are restricted to be positive so that
we obtain

ηi j,µ = log(µi j) ηi j,σ = log(σi j) .

Dropping the parameter index, a generic structured additive predictor is of the form

ηi j = z′i jγ +
P

∑
p=1

fp(xi jp)+αi.

Here, zi j is a vector containing binary, categorical or continuous linearly related vari-
ables and f1, . . . , fP are smooth functions of continuous variables xi j1, . . . ,xi jP mod-
elled by Bayesian P(enalized) splines (Lang and Brezger, 2004). The basic assumption
is that the unknown functions fp can be approximated by a linear combination of B-
spline basis functions (Eilers and Marx, 1996). Hence, fp can in matrix notation be
written as Zpβp, where Zp is the design matrix with B-spline basis functions evaluated
at the observations and βp is the vector of regression coefficients to be estimated. To
enforce smoothness of the function estimates we use second order random walk priors
for the regression coefficients such that

p(βp|τ2
p) ∝

(
τ2

p
)−0.5rank(K)

exp

(
− 1

τ2
p

β ′
pKβp

)
where K = D′D for a second order difference matrix D and τ2

p are the smoothing
variances with inverse gamma hyperpriors.

The additional, boat-specific effect αi is introduced to represent any effect specific
to the catching unit that is not represented in the covariate effects of zi j,xi j1, . . . ,xi jP.
A standard assumption for this effect would be αi i.i.d. N(0,τ2), to acknowledge the
fact that the catching units represent a sample from the population of catching units.
Alternatively, αi can be treated as a fixed effect resulting from dummy coding of the
different catching units. There has been considerable debate in the past (Bishop et al.,
2004; Cooper et al., 2004; Helser et al., 2004; Venables and Dichmont, 2004) about
whether it is more appropriate to specify αi as random or fixed effects from a method-
ological perspective, but then random effects have been rarely considered (e.g. Marchal
et al., 2007). One differentiation goes along the lines discussed above, i.e. differen-
tiating between situations where the catching units in the data set define a (random)
subsample of the population of the catching unit (which would favour the specification
as random effects) and situations where (almost) the complete fleet has been observed
(which would favour the specification as fixed effects). From the Bayesian perspective,
this differentiation provides an incomplete picture since the differentiation between
random and fixed parameters only corresponds to a difference in prior specifications.
From a practical point of view the random effects assumption can also be seen as a
possibility to regularise estimation in case of large numbers of catching units and/or
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small individual time series where estimation of fixed effects may easily become un-
stable. Note also that in case of a fixed effects specification, no other time-constant
covariates zi characterising the catching units can be included since they can not be
separated from the fixed effects. In our data set, this applies for the gross register ton-
nage which may be expected to provide important information on LPUE but which can
not be included in a fixed effects analysis. This problem can be avoided for example by
clustering catching units but with a probable loss of information (as the solution used in
Mamouridis et al., 2014). In the next section, we compare the performance of random
and fixed effects specifications based on model fit criteria to decide which model has a
better explanatory ability.

Our inferences is based on efficient Markov chain Monte Carlo (MCMC) simula-
tion techniques (for more details on distributional regression see (Klein et al., 2013b)).
In principle, the approach in all models could also be performed in a frequentist set-
ting (Stasinopoulos and Rigby, 2007) via direct optimization of the resulting penalized
likelihood which is often achieved by Newton-type iterations with numerical differen-
tiation. However, many models turned out to be numerically unstable leading to no es-
timation results or warnings concerning convergence. Therefore the study is restricted
to the Bayesian analysis. The Bayesian approach with MCMC also reveals several ad-
ditional advantages, e.g. simultaneous selection of the smoothing parameters due to the
modularity of the algorithm, credibility intervals which are directly obtained as quan-
tiles from the samples and the possibility to extend the model for instances with spatial
variations. All models have been estimated in the free open source software BayesX
(Belitz et al., 2012).

The performance of models is compared in terms of the Deviance Information Cri-
terion, DIC (Spiegelhalter et al., 2002). The DIC is similar to the frequentist Akaike
Information Criterion, compromising between the fit to the data and the complexity of
the model. Furthermore it can easily be computed from a sample θ 1, . . . ,θ M of the
posterior distribution p(y|θ),

DIC = 2D(θ)−D(θ),

with deviance D(θ) = −2log(p(y|θ)) and D(θ) = 1
M ∑M

m=1 D(θ m), θ = 1
M ∑M

m=1 θ m

respectively. We also use the DIC to determine important variables and optimal pre-
dictors ηi,µ and ηi,σ2 or ηi,σ .

To validate the distribution assumption we used normalized quantile residuals. That
allowed to decide between equivalent models under different response assumptions.
Normalized quantile residuals are defined as ri = Φ−1(ui). Here, Φ−1 is the inverse
cumulative distribution function of a standard normal distribution and ui is the cumu-
lative distribution function of the estimated model and with plugged in estimated pa-
rameters. For consistent estimates, the residuals ri, i = 1, . . . ,n follow approximately a
standard normal distribution if the estimated distribution is the true distribution. There-
fore, models can be compared graphically in terms of quantile-quantile-plots.

Finally, to assess the predictive accuracy of the models we performed a k-fold Cross
Validation using the mean squared error of prediction (MSEP)

MSEPk =
∑N

i=1 [l puei,k − Ẽ(l puei,k)]
2

N
.
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Here l puei,k is the observation i of subset k, Ẽ(l puei,k) is the expectation of the
prediction in the validation set, given parameters estimated on the k-th training set and
N refers to the number of observations of the corresponding test set. We performed
a 10 fold stratified (within each catching unit) random partition of the whole dataset
to ensure a minimum number of observations for each boat in both the training and
the validation sets. Taking the 10% of the data to built the latter, we ensure at least 10
observations per unit in the validation set. If at least one catching unit is not represented
in one of the partitions, the prediction for the missing catching unit in fixed effects
models could not be computed. This clarifies the usefulness in using mixed effects
specification when interested on predictions for unobserved catching units.

4 Data analysis

4.1 Model diagnostics and comparison
During model building variables were selected using a stepwise forward procedure ac-
cording to the DIC scores and the significance of their effect. Single models have been
built first for each variable, to assess its explanatory potential. For each distribution the
predictor for location has been modelled, adding one variable at a time till finding the
best predictor. Then, using this “best” predictor for location, also the predictor for the
second parameter, the scale or shape for log-normal or gamma respectively, has been
modelled using the same procedure.

For both distributions, all models with single explanatory variable returned signif-
icant effects, except some categories of code and month. So that, we decide to model
month effect as binary (period), after grouping categories (see Methodology Section
and Mamouridis et al. (2014)). Conversely, code variable has not been merged, to
allow the comparison between fixed and mixed effects models.

Assuming log-normal distribution and according to the ascending DIC, variables
are ordered from code (DIC=17059.4 as random and DIC=17060.0 as fixed effect),
then trips, time, grt, nao3, to period (DIC=17735.7). The same ordination has been
found assuming the gamma distribution with DIC scores ranged between DIC=16763.0
for code and DIC=17290.0 for period. Variables have been added in this order till the
saturated model. Variables nao3 and grt do not strongly improve model in terms of
DIC scores (less then 20 units for each variable). However parameters are significantly
different from zero and their incorporation effective to be discussed. We used the same
procedure for the second predictor. According to the DIC, variables are ordered as
follows: code, trips, time, grt, nao3 and period. The effects of variables nao3 period
and grt for the second parameter were not significant.

According to the DIC scores, for log-normal assumption, the appropriate predictor
structures for location ηµ and scale ησ2 , are

ηµ = β0,µ +β1,µ period2 + f1,µ(trips)+ f2,µ(time)+ f3,µ(nao3)+∑
i

αi,µ

ησ2 = β0,σ2 + f1,σ2(trips)+ f2,σ2(time)+∑
i

αi,σ2
(2)
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for both fixed and mixed effects specification. Here the βk,· are parameters as-
sociated to the intercept and linear fixed effects of the variable period. The αi,· are
parameters associated to the effects of code, specified as fixed in fixed effects models
and as random in mixed effects models. Instead, fl,· are smooth functions associated
to nonlinear effects of the variables trips, time and nao3. The second sub-index in all
parameters, µ or σ2, identifies which predictor the parameter or function belongs, ηµ
or ησ2 respectively.

Using fixed effects specification for code the inclusion of variable grt leads to in-
stability, due to the reasons mentioned in Section 3, so then, the model with grt cannot
be estimated in these cases. On the contrary, in mixed effects specification grt could
be estimated but it leads to equal or lightly higher values of DIC score. Thus it has
been backward eliminated, however the associated parameter was significantly differ-
ent from zero and positive.

Under the gamma distribution assumption, the log-link function has been chosen,
since the support of both parameters is the positive real domain and the final predictor
structures for location and shape are

ηµ = β0,µ +β1,µ period2 + f1,µ(trips)+ f2,µ(time)+ f3,µ(nao3)+∑
i

αi,µ

ησ = β0,σ + f1,µ(trips)+ f2,σ (time)+∑
i

αi,σ
(3)

for both fixed and mixed effects specification. The notation here is the same spec-
ified for the log-normal models however here the second parameter, the shape, is de-
noted σ .

Table 2: Global scores of selected models. Columns indicate: M, refers to model
coding (see specifications in the text); DEV, the residual deviance; EP: Effective total
number of Parameters, DIC: Deviance Information Criterion, MSEP, mean and sd of
the mean square error of predictions calculated through 10-fold validation.

M DEV EP DIC MSEP

M1 16163.9 47.1 16258.0 98.3±12.3
M2 16164.2 46.8 16257.7 96.9±12.4
M3 15138.4 91.2 15320.8 436.2±434.9
M4 15142.7 87.2 15317.2 315.0±307.4
M5 16095.7 45.6 16187.0 77.8±11.5
M6 16096.8 43.9 16184.7 77.3±11.7
M7 15027.1 90.9 15208.9 71.5±9.2
M8 15032.4 86.9 15206.1 71.7±9.4

The Table 2 provides a selection of models that we used for comparison purposes
and their corresponding global parameters: the deviance, the effective number of pa-
rameters and the DIC, estimated on the whole dataset, and the MSEP calculated by
predictions on the validation subsets as described in the methodology.
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The eight models in table 2 present a combination between alternatives of the fol-
lowing assumptions:

(A) The log-normal (LN) or gamma (GA) as the underlying distribution assumption;

(B) Only location (LO) or both location and scale/shape (LS) parameters explicitly
modelled using one or more explanatory variables;

(C) Effects of code as fixed or random leading to a fixed effects model (FI) or mixed
effects model (MI) respectively;

So, model M1 is specified by A=LN, B=LO and C=FI; M2 by A=LN, B=LO and
C=MI; M3 by A=LN, B=LS and C=FI; M4 by A=LN, B=LS and C=MI; M5 by A=GA,
B=LO and C=FI; M6 by A=GA, B=LO and C=MI; M7 by A=GA, B=LS and C=FI;
and M8 by A=GA, B=LS and C=MI. The predictors for location in models denoted
as M1, M2, M5 and M6 (with B=LO) have the same structure of ηmu in Equations 2
and 3, while the corresponding predictor for scale/shape is simply the constant. Both
predictors in models M3, M4, M7 and M8 correspond to Equations 2 and 3.

Concerning to (A), model specifications widely favour the gamma over the log-
normal distribution. In fact DIC scores are lower under the gamma assumption, with
approximately 100 scores of difference between analogous models (i.e. same variables
specified in the predictors). The benefit in assuming the gamma distribution is also
evident comparing MSEP scores (lower scores for better predictions). Nevertheless,
results of log-normal models’ MSEP is not entirely satisfactory, because when account-
ing for both predictors MSEP should behave as in the gamma models, i.e. lower scores
than accounting only for the predictor ηµ . Regarding to the estimation of both predic-
tors for first and second parameters (B), models under the gamma assumption show an
improvement when explicitly modelling the dependence of second parameter σ from
explanatory variables in both DIC and MSEP scores (both decrease). Contrariwise, un-
der the log-normal assumption, however the DIC decreases, the MSEP increases and
presents higher variance, suggesting worse predictions, when the second parameter is
explicitly modelled. But as discussed few lines above, that is not realistic and follows a
strange behaviour of ησ2 , thus, we still working on this point. Finally no notable leaps
have been observed between fixed and random effects models (C). Whereby the best
DIC and MSEP scores and QQplots lead to the final model with predictors given in (3).

According to the DIC (Table 2) the model that better fits the data is the gamma
model M8 whose predictors are given in Equation 3 specifying catching units as ran-
dom effects.

The boxplots of MSEPs also favour the gamma assumption (see Figure 1 and values
in Table 2). The minor MSEP better the prediction, MSEP results divide models into
three distinguishable groups from highest to lowest mean MSEP: 1) log-normal mod-
els considering heteroscedasticity, 2) log-normal models considering constant variance
(compare M1-M2 with M3-M4), and 3) all gamma models (compare M1-M4 with M5-
M8). Within this group, modelling the shape in dependence to some variables, consis-
tently decreases MSEP estimates, in terms of average and variance (compare M5-M6
with M7-M8).

In order to validate the distribution assumptions, QQplots for residuals are reported
in Figure 2, from which it follows that:
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Figure 1: Boxplots for MSEP calculated for all models. See Table 2 and Equations in
the text for model specifications.

• the residuals in gamma models almost follow the straight line (M5-M8 in the
Figure), while in the log-normal they show upward-humped curves (M1-M4),
suggesting a definitively “better approximation” of models to the gamma distri-
bution.

• Modelling the second parameter in gamma models improves QQplot outputs,
while the opposite happens for log-normal models. Focusing only in gamma
models, the outlier is “absorbed” into the straight line in the right part validating
the improvement in estimations (compare M5-M6 and M7-M8 in Figure 2).

We finally assess the normality for random effects for the model M8 corresponding
to Equation 3. Figure 4.1 provides the QQplots of the random effects for both predic-
tors. The majority of sample quantiles approximatively follow the normal quantiles,
however they depart from it at the extremes, especially evident in the lower tails and
for αµ (on the left).

4.2 Description of partial effects
Estimations of linear fixed effects for A) µ and B) σ predictors of final model (3), to
which we referred in the text as M8, are reported in table 3.

Table 3: Estimations of linear fixed effects for the final model, Eq. (3) associated to A)
µ and B) σ respectively.

A) B)

mean sd mean sd
const 2.891 0.058 -1.551 0.099
period2 -0.153 0.024
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Figure 2: QQplots of residuals for selected log-normal and gamma models.

The categorical variable period describes the intra-annual variability and shows a
negative effect during period2, corresponding to June and November in comparison to
the rest of the year. That should be related to a lower demand of this source during
these months, as suggested by Sardà et al. (1997).

The variable grt, referring to the gross registered tonnage of boats, (not incorpo-
rated into the model because did not improve the DIC score) bears a significantly pos-
itive slope parameter (0.009±0.003 when included), causes a linear increment on the
predictor for location. We consider important to quantify its effect in order to compare
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Figure 3: QQplots for normality of catching units as random effects in the mixed model
M8. αµ refer to random effects in the predictor for location, while ασ refers to the
predictor for the shape.

it with other fisheries, where, contrariwise, it could have a major effect. grt is not the
only variable characterising a fleet, nevertheless is the only reliable for this fishery.

The second variable we can consider as fishery-related variable is represented by
the catching units. Variable code captures all abilities of fishermen and technical char-
acteristics of the fleet, appropriate technologies and strategies, e.g. the power and type
of the engine, the net shape and the skipper’s expertise and ability. Results (Figure
??) show that many trawlers have similar effects, while few of them hold or positive
either negative effects. The former are very specialised and powerful boats that capture
large amounts of the resource so then that leads to higher values of LPUE while the
latter are not specialised trawlers that accordingly capture lower amounts, leading to
lower LPUE (see the partial effects on µ). At the same time catching units associated
to higher effects on the predictor of µ also present higher effects on the predictor for
σ , while boats associated to lower effects on µ also hold lower effects on σ . In other
words, more specialised catching units are able to capture more quantities of the re-
course, and they also present less variability. Contrariwise landings of not specialised
trawlers present more variability. This fraction of the fleet more likely is represented
by boats that fish usually on the continental shelf and occasionally displace towards
deeper waters going in search of the red shrimp, representing one of the most lucrative
resources for the NW Mediterranean fisheries. It is likely to think that these boats have
less knowledge of red shrimp fishing grounds (Maynou et al., 2003) and catch less.

Concerning to nonparametric effects (Figure 4.2), trips and time influence both ηµ
and ησ , while nao3 slightly affects only ηµ .

trips shows a negative effect on the predictor for µ when trips ≤ 8, while positive
otherwise. The rate of the effect decreases moving through the covariate interval till
rising a plateau beginning around trips= 17. For extreme high values this covariate has
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an uncertain effect. It is plausible that increasing the number of trips per month, more
likely increase the ability to find high-concentration shoals inside the fishing grounds
in a process of trial and error (as suggested by Sardà and Maynou 1998).

The effect of time on the predictor for µ is the most difficult to interpret, show-
ing high inter-annual variability, certainly caused from unobservable multiple factors.
Between 1992-1996, the function decreases while increases in next three years. We
could not find a reasonable explanation to this trend. Afterwards, between 1999-2000,
it drops till a minimum low followed by a rapid increase up to a pick in 2004. We
believe that the minimum is related to both negative NAO observed in previous years
and to the rising of fuel price started in 2000, that in turn is related to a lower number
of trips performed by trawlers (see comments below and the discussion in Mamouridis
et al., 2014). Then, for five years it presents a slightly oscillatory trend till the last
year characterized by another positive pick probably related to the rise of the economic
value of the resource, that offsets the increase in the fuel price.

Finally, the nao3 has a moderate effect?? for this deep-sea species, being notori-
ously evident only when reaches anomalous values. Numerous studies on this and other
fish stocks (e.g. Maynou, 2008; Báez et al., 2011) demonstrated that the NAO can have
important effects when it reaches extreme values??, whether they are positive or neg-
ative. Our results show that nao3 has a moderate effect?? for this deep-sea species,
however they suggest that it can lead to the reduction of its biomass when reaches very
negative values. Combining results of time and nao3 effects and comparing data series

Figure 4: Interval plots of estimated random effects in the predictor for location (αµ )
and shape (ασ ) of model M8 on the upper and lower plots respectively. Bars indicates
95% CI.
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Figure 5: Nonparametric effects for the GA mixed effect of the selected gamma model
(M8). Effects on predictor for µ (left side) and for σ (right side). Grey shapes represent
95% credible intervals.

of both the raw (or nominal) LPUE and the NAO, we believe that the LPUE low starting
at the end of 1999 can be related to consecutive negative NAO during the previous four
years, especially during 1996, corresponding to three years before the beginning of the
decline of LPUE ??see][]mamouridis2014analisys. NAO leads to paucity of resources
when it is low, while enhances productivity when it is high. Between nao3 = 0.50
and nao3 = 1 the effect increases however without significant evidences. In the middle
region of the observed variable span, NAO shows any effect, that could represents a
“buffering region” related to “normal” weather conditions for the stock.
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All partial effects are linked to the expectation, E(LPUE), through the exponential
of ηµ , such that, when partial effects of trips, time and nao3 hire positive values,
E(LPUE) is positive while negative otherwise. Regarding to the variance of LPUE, it
is affected by both predictors being directly proportional to µ and inverse proportional
to σ .

The effect of trips is negative for low values of the covariate (trips ≤ 10) and
positive for higher values. It also shows a high increment till a maximum corresponding
to trips = 17, while decreasing again for higher values, although always positive. The
effect of time is slightly negative before 1995 and slightly positive between 1995 and
2000. Then for two years has no effect and, in 2002, it switches clearly positive again
till 2006, showing a high pick in 2004 and finally negative in the last years during
2006-2008, reaching an abrupt drop in late 2007.

Thus, regarding to the Var(LPUE), results show that values of covariates associated
to positive effects in ηµ and negative effects in ησ , in turn affect positively (increase)
to the variance. We can also deduce that time and trips are drivers in causing the
heteroscedasticity in LPUE, times mainly in last years when its effect on ηµ is positive
and its effect on ησ is strongly negative. This high variability could be related to
different factors, probably of economic origin, such as the fuel and ex-vessel shrimp
prises.

5 Conclusions
In this study distributional structured additive models have been proposed for the first
time to model the LPUE, index widely used in fisheries research. Data deal with the
LPUE of red shrimp (A. antennatus) from the Barcelona’s fleet during years 1992 -
2008.

Our aims were: 1) find the best distribution in relation to the response variable,
comparing gamma and log-normal distributions, 2) improve estimations modelling
both predictors for first and second parameter 3) compare parameter specification for
catching units, fixed versus mixed effects models, and finally 4) achieve new insights
in the understanding of the effect that the explanatory variables considered have on the
LPUE of red shrimp.

On a methodological viewpoint, distributional structured additive models, DSTAR,
as the frequentist counterpart GAMLSS, permit the estimation of both first and second
order moments of the LPUE, allowing more accurate estimations and the analysis of
both the expectation and the variance of the response. Results indicate that explicitly
modelling the second moment in dependence to appropriate explanatory variables can
lead to better estimations and predictions. We also rose a more detailed understanding
of the LPUE, that bears some amount of heteroscedasticity in the time span studied.
This heteroscedasticity had been observed but could not be described in previous anal-
ysis (Mamouridis et al., 2014). In fact the analysis performed on almost the same data
set, a frequentist approach using GAM accounting only for the location, could not avoid
the heteroscedasticity in the residuals (see Figure 4 within). Here, the modelling of the
shape, in the case of the gamma assumption, permitted to infer about the variance of he
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response. Here we demonstrated that both the number of trips and the time influence
the second parameter leading to changes in the variance.

Concerning to fixed versus mixed specification, in our study the fixed effects can be
considered appropriate representing sampling units the whole population of the studied
fleet, however mixed models permit more flexibility, such as the estimation of GRT
effect. Consider that mixed models also allow to get prediction for unobserved catching
units and in turn to generalise predictions outside the observed fishing population.
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