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Testing uniformity for the case of a planar unknown support

Abstract

A new test is proposed for the hypothesis of uniformity on bi-dimensional supports. The
procedure is an adaptation of the “distance to boundary test” (DB test) proposed in
Berrendero, Cuevas and Vázquez-Grande (2006). This new version of the DB test, called
DBU test, allows us (as a novel, interesting feature) to deal with the case where the
support S of the underlying distribution is unknown. This means that S is not specified
in the null hypothesis so that, in fact, we test the null hypothesis that the underlying
distribution is uniform on some support S belonging to a given class C. We pay special
attention to the case that C is either the class of compact convex supports or the (broader)
class of compact λ-convex supports. The basic idea is to apply the DB test in a sort of
plug-in version, where the support S is approximated by using methods of set estimation.
The DBU method is analyzed from both the theoretical and practical point of view, via
some asymptotic results and a simulation study, respectively.

Keywords: convexity; distance to boundary; λ-convexity; set estimation; uniformity
test.
AMS 2000 subject classifications: Primary 62G05; secondary 62G20.

1 Introduction

We are concerned with the problem of testing the null hypothesis

H0 : the random variable X has a uniform distribution on some support S.

We assume throughout that the available information is given by an iid sampleX1, . . . , Xn

drawn from the d-dimensional random variable X.
The vast majority of theoretical developments and applications for this problem deal

with either the univariate case d = 1 or the bivariate models with d = 2. The motivations
for both situations are quite different. While the univariate uniformity tests are often
motivated by the need of having good “random number generators”, the bivariate uni-
formity problems arise usually in the setting of spatial statistics. Anyway, the bivariate
problem is considerably harder in several senses. A first obvious difficulty for d = 2 is the
lack of a distribution-free procedure (such as the univariate Kolmogorov-Smirnov test)
based on the empirical distribution. Also, the choice of the support is not an issue in
most univariate uniformity problems, as they are naturally set out in a known interval
S = [a, b] which can be reduced to the standard case [a, b] = [0, 1]; on the contrary, when
we are dealing with bivariate data there is no good reason for restricting us to a fixed
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support as, for example, S = [0, 1]2. Of course, S = [0, 1]2 is a relevant case, but there
are many other conceivable interesting supports (such as polygons, ellipses, etc.) and
one might even consider the case where S is not known in advance and only a generic
regularity assumption on its structure is imposed. In other words, the class U(R2) of
uniform distributions with connected support in R

2 is much more complicated than its
one-dimensional analog, U(R). The latter is a parametric family so that, even if the sup-
port S were unknown, its estimation is a simple matter based on standard methods. This
is not at all the case with U(R2). Thus, it is clear that the goodness-of-fit problem to the
non-parametric family U(R2) (or to appropriate sub-families of it) involves non-trivial
geometric and statistical issues which lead us to the main point of this work.

The purpose of this paper

We specifically aim at developing a new uniformity test, based on an iid sample of
size n, for the null hypothesis

H0 : the random variable X has a uniform distribution belonging to the class UC , (1)

where UC is the class of bivariate uniform distributions whose support S belongs to a
given class C of compact supports in R

2. As we will see, the natural assumption of
connectedness for S can be incorporated to our approach but it is not strictly needed.

Our test will consist of an adaptation of the Distance-to-Boundary Method (DB)
which was proposed by Berrendero, Cuevas and Vázquez-Grande (2006) for the simplest,
usual case that the support S is completely known and specified in the null hypothesis; in
the notation (1), this would amount to take a class C = {S} with a unique member. The
DB-method was based on calculating the distances Yi from the sampling observations Xi

to the boundary of the support S. The test checks the fit of the empirical distribution
of this variables to that corresponding to the case where H0 is true (a more detailed
account will be given below). The purpose of this paper is to show that this method can
be adapted to the case where the support S is unknown so that we deal in fact with a
general problem of type (1). Our extension of the DB procedure, which we will denote
DBU test, relies on methods of set estimation (see Cuevas and Fraiman (2009) for a
survey of this topic). The basic idea is a sort of plug-in device: we apply the DB test
presented in Berrendero, Cuevas and Vázquez-Grande (2006) replacing the support S by
a suitable estimator Sn. If the estimated boundary ∂Sn approaches fast enough to the
population counterpart ∂S, the respective critical regions in both tests (with the tests
statistics calculated from S and Sn, respectively) will be asymptotically equivalent.

There are many possible different choices for UC in (1). We will pay especial attention
to the cases where C is either the class of compact convex supports or the class of
compact λ-convex supports. The notion of λ-convexity arises as a natural generalization
of convexity, so every convex set is also λ-convex for all λ > 0. In short a set is λ-convex if
it can be expressed as the intersection of the complements of a family of open balls with
radii λ; see Perkal (1956), Walther (1997, 1999), Cuevas, Fraiman and Pateiro-López
(2011) and references therein.
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Some related literature

In the recent paper by Berrendero, Cuevas and Pateiro-López (2011) a further uni-
formity test is proposed for the problem (1), when C is also the class of compact supports
which are either convex or λ-convex. However the idea behind this test is completely
different from that developed here as it is based on the size of the estimated maximal
bivariate spacing (so we call it EMS test), as defined in Janson (1987).

As we will see in the simulations below, the EMS procedure is, in some sense, com-
plementary of the DBU test. While the former is particularly suitable for alternative
hypothesis of Neyman-Scott type, e.g., for departures from uniformity which lead to
“clustered observations”, the DBU test turns out to be more powerful for “contami-
nation models”, prone to give more observations close to (or far away from) ∂S than
expected under uniformity.

In the work by Jain et al. (2002) it is analyzed (especially from the practical and
computational point of view) another method for the uniformity testing problem with
unknown support. It is based on ideas of graph theory.

Let us finally mention the interesting proposal by Liang et al. (2001). These au-
thors propose a uniformity test, easy to implement even for very large dimensional data.
However their method is designed for the specific case that S = [0, 1]d.

This paper is organized as follows. In Section 2, the basic ideas of the DB test
proposed in Berrendero, Cuevas and Vázquez-Grande (2006) are summarized. Then
the corresponding DBU test (for the case of unknown support) is defined. Also, some
notions on λ-convex sets and their estimation are recalled. In Section 3 we show that the
test-statistic Dn of the DB-method and its counterpart D∗

n in the new DBU procedure
satisfy |Dn − D∗

n| → 0, in probability, so that both tests are asymptotically equivalent
regarding their properties of consistency and asymptotic preservation of the significance
level. Section 4 is devoted to empirical results. Some geometric and computational issues
are discussed in Section 5.

2 The DBU test

Let S ⊂ R
2 be a compact set. Let us also consider a two-dimensional random variable X

taking values in S and denote by Xn = {X1, ..., Xn} a sample drawn from X. As a first
step in the development of our DBU test we briefly describe below the implementation
of the original distance-to-boundary test with known support (DB test) proposed by
Berrendero, Cuevas and Vázquez-Grande (2006).

The DB test: The support S is known

The target is to test the null hypothesis

H0 : the distribution of X is uniform with support S.
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Some notation: D(x, y) denotes the Euclidean distance between points x and y; for
A ⊂ R

2, D(x,A) = infy∈AD(x, y). The distribution function of the random variable
Y = D(X, ∂S) under H0 will be denoted by F and Fn is the empirical distribution
function corresponding to Y1, . . . , Yn, where Yi = D(Xi, ∂S) The usual Kolmogorov-
Smirnov statistic is denoted by Dn, so that Dn =

√
n‖F − Fn‖, where ‖ · ‖ stands for

the sup-norm. The closed and open balls with center y and radius r will be denoted
respectively by B(y, r) and B̊(y, r).

The implementation of the DB test can be summarized as follows.

1. Given the original sample X1, . . . , Xn, compute the distances to the boundary Yi =
D(Xi, ∂S), i = 1, . . . , n.

2. Compute the “maximum depth” R = max{D(x, ∂S), x ∈ S} and define the “nor-
malized distances” Y R

i = Yi/R, for i = 1, . . . , n.

3. If the set S is “invariant by erosion upon an homothecy” (see Berrendero, Cuevas
and Vázquez-Grande (2006) for details and Pegden (2011) for closely related ideas)
it can be proved that the distribution function FR of the Y R

i , under H0, is beta
with parameters a = 1 and b = 2 (regardless of the support S). Then the DB test
would reject H0, at a level α, if the Kolmogorov-Smirnov statistic based on the
normalized distances DR

n =
√
n‖FR

n −FR‖ is greater that the corresponding critical
value Dn,α.

4. Otherwise (i.e., when S does not fulfill the mentioned shape assumption), the distri-
bution of the Y R

i will depend, in general, on S. So the normalization by R indicated
in the second step above is not particularly useful. In this case the test is performed,
as indicated in the previous step, using in the Kolmogorov-Smirnov statistic Dn

calculated from the (non-normalized) distances Yi. If the distribution under H0

of the Yi is difficult to calculate in a closed form it can be approximated by a
Monte Carlo procedure by just drawing a large number of artificial iid observations
X̂i, i = 1, . . . ,m from the uniform distribution on S and taking the corresponding
empirical distribution associated with Ŷi = D(X̂i, ∂S) as an approximation to F .

We next present the adaptation of the DB method for the case that the support
S is not specified in the null hypothesis. So, we will deal with the general problem
(1) stated in the introduction. As commented above, the crucial idea is to replace the
support S with an appropriate estimator Sn = Sn(X1, . . . , Xn). There are all purpose
set estimators which provide consistency properties (and even known convergence rates)
under very general conditions on S; see Cuevas and Fraiman (2009) for details. However,
given the special role of ∂S in the DB test, it is important for the plug-in estimator ∂Sn

to approximate the population counterpart at a fast enough rate. This will lead us to
impose some restriction on the class C of possible supports. We will further comment on
this below. Now, let us formally state the implementation of the DBU test.
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DBU test: The support S is unknown

1. Construct Sn, an estimator of S based on the sample Xn.

2. Define X ∗
n = {X∗

1 , . . . , X
∗
n∗} = {Xi ∈ Xn, Xi /∈ ∂Sn, i = 1, . . . , n}.

3. Compute Y ∗
i = D(X∗

i , ∂Sn), i = 1, . . . , n∗.

4. Generate an artificial sample X̂m = {X̂1, . . . , X̂m}, from a uniform distribution on
Sn.

5. Compute Ŷi = D(X̂i, ∂Sn), i = 1, . . . ,m.

6. Perform a two-sample Kolmogorov-Smirnov test of the null hypothesis that Y ∗
i and

Ŷi were drawn from the same continuous distribution. Thus, the test is based
on the statistic D∗

n =
√
n‖F∗

n − F̂‖, where F
∗
n is the empirical distribution of

Y ∗
i = D(X∗

i , ∂Sn) and F̂ is the distribution function of Ŷi. Since this distribution
under H0 is difficult to calculate it is approximated by the corresponding empirical
distribution.

The choice of the support estimator Sn

Keeping in mind that Sn must provide and efficient, easy-to-compute estimator for
both S and (via ∂Sn) for ∂S, a natural choice for the class C in (1) would be

C = {class of compact convex supports in R
2}.

In this case the natural estimator of S is the convex hull of Xn,

Sn = conv(Xn). (2)

The properties of this estimator have been extensively analyzed since the early sixties; see
Reitzner (2009). We will need here the consistency properties established by Dümbgen
and Walther (1996). In particular, these authors show that (for the two-dimensional case
d = 2), with probability 1 (a.s.),

dH(Sn, S) = O

(

(

logn

n

)1/2
)

,

where dH(A,B) stands for the Hausdorff distance between two compact non-empty sets
A and B.

As we will see, this convergence rate is not fast enough for our purposes. Under
additional smoothness assumptions on S (see Walther (1997, 1999), Rodŕıguez-Casal
(2007)) we have

dH(Sn, S) = O

(

(

log n

n

)2/3
)

, a.s. (3)
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and, more importantly,

dH(∂Sn, ∂S) = O

(

(

logn

n

)2/3
)

, a.s. (4)

Whereas convexity is a simple, natural and well-studied assumption to be imposed
on S, it is quite restrictive for many practical purposes. For example, when analyzing
spatial patterns in ecological data, it is not always reasonable to assume that the habitat
of a certain plant species is a convex domain. Hence we will also consider a second (much
less popular) condition called λ-convexity with allows for a much more flexible class of
possible supports. For another recent application of this condition to the problem of
testing uniformity see Berrendero, Cuevas and Pateiro-López (2011).

A closed set S ⊂ R
2 is said to be λ-convex for some λ > 0 if S coincides with its

λ-convex hull, that is S = Cλ(S), where

Cλ(S) =
⋂

B̊(y,λ)∩S=∅

B̊(y, λ)c. (5)

The origin of this notion goes back to Perkal (1956). See Walther (1997), Rodŕıguez-
-Casal (2007), Berrendero, Cuevas and Pateiro-López (2011), and references therein, for
additional insights as well as statistical applications.

The condition of λ-convexity is clearly reminiscent of the plain notion of convexity,
as it can be seen by replacing the balls in (5) by half-spaces. In fact, every closed convex
set is also λ-convex for all λ > 0. It is also apparent that λ-convexity is a much more
flexible condition which allows the set to have inlands (as long as they are not too sharp)
or holes and even to be disconnected.

From a statistical point of view, the most important feature of definition (5) is the
fact that a λ-convex support S has a natural estimator from a random sample Xn which
is the λ-convex hull of the sample points,

Sn = Cλ(Xn). (6)

This estimator turns out to be computationally feasible; the R-package alphahull

developed by Pateiro-López and Rodŕıguez-Casal (2010) provides an efficient calculation
of (6) in the two-dimensional case. Moreover, under appropriate smoothness conditions,
this estimator exhibits also the fast convergence rates (3) and (4). This will be important
in the theoretical developments of the following section.

3 Asymptotic properties

The aim of this section is to show that, under suitable shape restrictions on the class C
in (1), the DBU test is asymptotically equivalent to the DB test proposed in Berrendero,
Cuevas and Vázquez-Grande (2006) for the case of a known support. According to the
notation introduced in Section 2, this amounts to show that |Dn−D∗

n| → 0, in probability
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as n → ∞. We will establish this in two results (Theorems 1 and 2 below), obtained
under two different assumptions for C.

In what follows, µ(A) will stand for the Lebesgue measure of a set A and the cardinal
of the set {i : Xi ∈ ∂Sn} will be denoted by Nn (that is, Nn = n − n∗). All the
convergence results below correspond to limits as n → ∞.

First, we will establish two lemmas giving the conditions under which F̂ is close
enough to F , and F

∗
n is close enough to Fn, respectively.

Lemma 1. Assume that the set S and the estimator Sn are such that F is Lipschitz

continuous, Sn ⊂ S with probability one,
√
nµ(S \ Sn)

P→ 0 and
√
ndH(∂S, ∂Sn)

P→ 0.

Then,
√
n‖F̂ − F‖ P→ 0.

Proof: Since both F and F̂ have compact support, there exists K > 0 (not depending
on n) such that ‖F̂ − F‖ = supt∈[0,K] |F̂ (t) − F (t)|. Let B be the closed unit ball in R

2

and denote by C ⊖D = {x : x+D ⊂ C} the Minkowski difference of two sets C and D.
Observe that Y ≥ t if and only if X ∈ S ⊖ tB, and Ŷ ≥ t if and only if X̂ ∈ Sn ⊖ tB.
Then,

|F̂ (t)− F (t)| = |P(X̂ ∈ Sn ⊖ tB)− P(X ∈ S ⊖ tB)|,
and, using the triangle inequality,

|F̂ (t)− F (t)| ≤ |P(X̂ ∈ Sn ⊖ tB)− P(X ∈ Sn ⊖ tB)|
+ |P(X ∈ Sn ⊖ tB)− P(X ∈ S ⊖ tB)|. (7)

Regarding the first term in the right-hand side of inequality (7), observe that, for all
t ∈ [0,K],

|P(X̂ ∈ Sn ⊖ tB)− P(X ∈ Sn ⊖ tB)| = µ(Sn ⊖ tB)

µ(Sn)
− µ(Sn ⊖ tB)

µ(S)

≤ µ(Sn ⊖ tB)

µ(Sn)

(

1− µ(Sn)

µ(S)

)

≤ 1− µ(Sn)

µ(S)
=

µ(S \ Sn)

µ(S)
.

Since, by assumption,
√
nµ(S \ Sn)

P→ 0, we also have

√
n sup

t∈[0,K]
|P(X̂ ∈ Sn ⊖ tB)− P(X ∈ Sn ⊖ tB)| P→ 0.

For the second term in the right-hand side of inequality (7), observe that, for all t ∈ [0,K],

P
(

X ∈ (S ⊖ tB) \ (Sn ⊖ tB)
)

≤ P
(

Y ≥ t, D(X, ∂Sn) < t
)

+
µ(S \ Sn)

µ(S)
,

since X ∈ S ⊖ tB amounts to Y ≥ t, and X /∈ Sn ⊖ tB implies that D(X, ∂Sn) < t or
X ∈ S \ Sn.

Also, D(X, ∂Sn) < t implies Y < t + ǫn, where ǫn = dH(∂S, ∂Sn). Indeed, since
D(X, ∂Sn) < t, there exists zn ∈ ∂Sn such that D(X, zn) < t. By definition of Hausdorff
distance, there exists z ∈ ∂S with D(z, zn) ≤ ǫn. Hence,

Y = D(X, ∂S) ≤ D(X, z) ≤ D(X, zn) +D(zn, z) < t+ ǫn.
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As a consequence,

P
(

X ∈ (S ⊖ tB) \ (Sn ⊖ tB)
)

≤ P
(

t ≤ Y < t+ ǫn
)

+
µ(S \ Sn)

µ(S)
. (8)

Since F is Lipschitz continuous, there exists M > 0 such that P
(

t ≤ Y < t + ǫn
)

=
F (t+ ǫn)− F (t) ≤ Mǫn. From this bound, (8) and taking into account the assumptions
we deduce

√
n sup

t∈[0,K]
P
(

X ∈ (S ⊖ tB) \ (Sn ⊖ tB)
)

≤ M
√
nǫn +

√
nµ(S \ Sn)

µ(S)

P→ 0.

�

Lemma 2. Assume that the set S and the estimator Sn are such that F is Lipschitz

continuous, Sn ⊂ S with probability one, Nn/
√
n

P→ 0 and n1/2+δ dH(∂S, ∂Sn)
a.s.→ 0, for

some δ > 0. Then,
√
n‖F∗

n − Fn‖ P→ 0.

Proof: For i = 1, . . . , n define Ỹi = D(Xi, ∂Sn) and let F̃n be the empirical distribution
function corresponding to Ỹ1, . . . , Ỹn. Since

√
n‖F∗

n − Fn‖ ≤ √
n‖F∗

n − F̃n‖+
√
n‖F̃n − Fn‖, (9)

it is enough to prove that both terms in the right-hand side of the last inequality go
to zero in probability. Since there exists K > 0 such that all the involved distributions
have supports included in [0,K], the sup-norms can always be computed on a compact
interval [0,K] instead of R.

Observe that, for t ≥ 0, F̃n(t) = (1−Nn/n)F
∗
n(t) +Nn/n. Therefore,

√
n‖F∗

n − F̃n‖ =
Nn√
n

sup
t∈[0,K]

(

1− F
∗
n(t)

)

≤ Nn√
n

P→ 0,

by assumption.
Regarding the second term of the right-hand side of (9), notice that Ỹi ≤ Yi ≤ Ỹi+ǫn,

where ǫn = dH(∂S, ∂Sn). Then,

√
n‖F̃n − Fn‖ ≤ sup

t∈[0,K]

1√
n

n
∑

i=1

I{t<Yi≤t+ǫn} (10)

Define the sequence bn = n−1/2−δ, where δ > 0 is given in the assumptions of the lemma.
Notice that, from the assumption on dH(∂S, ∂Sn), we have bn > ǫn eventually with
probability 1. Then,

sup
t∈[0,K]

1√
n

n
∑

i=1

I{t<Yi≤t+ǫn} ≤ sup
t∈[0,K]

1√
n

n
∑

i=1

I{t<Yi≤t+bn}, eventually with probability 1.

(11)
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Now, denote by Cn, for each n, the minimal covering of (0,K] by intervals of the form
Inj = (jbn, (j + 1)bn], j = 1, 2, . . .. Clearly, the cardinality of Cn is O(b−1

n ) = O(nγ) with
γ = 1/2 + δ. Also, since F , the distribution of the Yi’s, is Lipschitz continuous, there
exists M such that

max
I∈Cn

PF (I) ≤ Mbn = o(n−1/2).

Therefore, the sequence of coverings Cn fulfills the assumptions in Lemma 2.2 of Fernholz
(1991). It follows that Tn/

√
n

a.s.→ 0, where Tn is the maximum number of Yi’s with values
in any I ∈ Cn. Then,

sup
t∈[0,K]

1√
n

n
∑

i=1

I{t<Yi≤t+bn} ≤
2Tn√
n

a.s.→ 0. (12)

From (10), (11) and (12) we get
√
n‖F̃n − Fn‖ a.s.→ 0. �

The following result is a straightforward consequence of the two previous lemmas.

Lemma 3. Assume that the set S and the estimator Sn are such that F is Lips-

chitz continuous, Sn ⊂ S with probability one,
√
nµ(S \ Sn)

P→ 0, Nn/
√
n

P→ 0, and

n1/2+δ dH(∂S, ∂Sn)
a.s.→ 0, for some δ > 0. Then, |Dn −D∗

n|
P→ 0.

Proof: Applying the triangle inequality,

‖F∗
n − F̂‖ ≤ ‖F∗

n − Fn‖+ ‖Fn − F‖+ ‖F − F̂‖,

and
‖Fn − F‖ ≤ ‖Fn − F

∗
n‖+ ‖F∗

n − F̂‖+ ‖F̂ − F‖.
Hence,

Dn −√
n‖F∗

n − Fn‖ −
√
n‖F − F̂‖ ≤ D∗

n ≤ Dn +
√
n‖F∗

n − Fn‖+
√
n‖F − F̂‖

and the result follows from Lemmas 1 and 2. �

Now we apply Lemma 3 to the cases when we can assume that S is convex and
λ-convex respectively. We will also need the following smoothness condition: A ball of
radius r is said to roll freely inside a closed set A ⊂ R

d if for each point a ∈ ∂A there
exists x ∈ R

d such that a ∈ B(x, r) ⊂ A.

Theorem 1. Let S ⊂ R
2 be a compact convex set with nonempty interior such that F is

Lipschitz continuous and such that a ball of radius r > 0 rolls freely inside S for some

r > 0. Let Sn be the convex hull of Xn. It holds |Dn −D∗
n|

P→ 0.
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Proof: We are going to check the assumptions of Lemma 3. By Theorem 3 and Remark
3 in Rodŕıguez-Casal (2007), it holds

dH(∂S, ∂Sn) = O

(

log n

n

)2/3

with probability 1. Observe that, if S is convex and Sn, Cλ(Xn) stand for the convex
hull and the λ-convex hull, respectively, of Xn, then Cλ(Xn) ⊂ Sn ⊂ S for any λ > 0.
Thus, n1/2+δ dH(∂S, ∂Sn)

a.s.→ 0, for 0 < δ < 1/6.
Theorem 1 in Schütt (1994) ensures that for any convex body S ⊂ R

d, E[µ(S \
Sn)] = O(n−2/(d+1)). In particular, for d = 2 and using Markov inequality we have

nβ µ(S \ Sn)
P→ 0, for 0 ≤ β < 2/3.

Finally, according to a well-known result due to Efron (1965) and using again Schütt’s
Theorem,

E(Nn) = n
E[µ(S \ Sn−1)]

µ(S)
= O(n(d−1)/(d+1)).

In particular, for d = 2 and using Markov’s inequality we have Nn/n
β P→ 0, for β > 1/3.

�

Theorem 2. Let S ⊂ R
2 be a compact λ-convex set with nonempty interior such that Sc

is also λ-convex and int(Si) 6= ∅ for each path-connected component Si ⊂ S. Assume that

F is Lipschitz continuous. Let Sn be the λ-convex hull of Xn. It holds |Dn −D∗
n|

P→ 0.

Proof: We are going to check the assumptions of Lemma 3. By Theorem 3 in Rodŕı-
guez-Casal (2007), with probability 1

dH(∂S, ∂Sn) = O

(

log n

n

)2/3

and the same rate holds for µ(S \ Sn). Then, nβ µ(S \ Sn)
a.s.→ 0, for 0 ≤ β < 2/3,

and n1/2+δ dH(∂S, ∂Sn)
a.s.→ 0, for 0 < δ < 1/6. Finally, by Theorem 3 in Pateiro-López

and Rodŕıguez-Casal (2011), we have E(Nn) = O(n1/3) and using Markov inequality we
obtain Nn/n

β for β > 1/3. �

As a consequence of these results the DBU test inherits the properties of the DB test
studied in Berrendero, Cuevas and Vázquez-Grande (2006), in particular, it asymptoti-
cally preserves the prescribed significance level and it is consistent to detect non-uniform
alternatives provided that they do not include “crown-uniform” distributions.

4 Empirical results

4.1 Empirical significance level

We have checked the performance of the DBU test in terms of preservation of the nominal
confidence level. The numerical results given below have been obtained using the R

10



−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

r = 1 r = 2

r = 3 r = 4

Figure 1: Lamé curves |x|r + |y|r = 1 and different values of r.

software, see R Development Core Team (2008).

A simulation example: the “unknown” support S is a set limited by a Lamé curve. The

possible supports in the null hypothesis are either convex or λ-convex
Table 1 gives the outputs corresponding to the empirical significance level obtained

(as an average over 5000 independent runs) with the DBU test and the DB test intended
for nominal significance levels α = 0.05, 0.1. Sample sizes are n = 50, 100, 200. The
considered supports are sets limited by different Lamé curves (also called superellipses),
that is, sets of the form S =

{

(x, y) ∈ R
2 : |x|r + |y|r ≤ 1

}

for different values of r, see
Figure 1. Note that for r = 1 and r = 2 the equation of the Lamé curve describes a
square and a circle, respectively. We refer to Jaklič, Leonardis and Solina (2000) for
further discussion of superellipses and their properties.

The supports limited by these curves for r = 1 and r = 2 are invariant by erosion upon
an homothecy (the sets fulfilling this condition are called “resilient to erosion” in Pegden
(2011)). Thus we are under the assumptions of Theorem 1 in Berrendero, Cuevas and
Vázquez-Grande (2006) for the DB test, so that the distribution of Y R = D(X, ∂S)/R
under the null hypothesis is totally known (it is a beta distribution β(1, 2)) and we
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may perform a classical one-sample Kolmogorov-Smirnov test of goodness of fit to that
distribution.

For other values of r, the set S does not fulfill the mentioned shape restriction and the
distribution of Y is derived in practice by a Monte Carlo mechanism; see the description
of the implementation of the test in Section 2. Moreover, the non-normalized distances
Yi in the DB test are approximated numerically, since there is not a close form solution
for the distance to the Lamé curve when r = 3 or r = 4, see Rosin and West (1995).
For the DBU test we use as estimator Sn both the convex hull of the sample H(Xn) and
the λ-convex hull of the sample Cλ(Xn) (with λ = 1). This corresponds to take C in the
the null hypothesis (1) to be the class of compact convex sets or the class of compact
λ-convex sets, respectively.

Table 1: Empirical significance level of the DBU test and DB test over 5000 uniform
samples of size n = 50, 100, 200 on the supports S =

{

(x, y) ∈ R
2 : |x|r + |y|r ≤ 1

}

for
different values of r. The nominal values are 0.05, 0.1. For the DBU test, we consider
Sn = H(Xn) and Sn = Cλ(Xn) with λ = 1.

DBU test DBU test DB test
Sn = H(Xn) Sn = Cλ(Xn)

α 0.05 0.1 0.05 0.1 0.05 0.1

r = 1 n = 50 0.0436 0.0868 0.0422 0.0860 0.0460 0.0896
n = 100 0.0414 0.0888 0.0406 0.0858 0.0408 0.0834
n = 200 0.0492 0.0962 0.0476 0.0960 0.0418 0.0864

r = 2 n = 50 0.0474 0.0906 0.0400 0.0866 0.0472 0.0940
n = 100 0.0416 0.0828 0.0452 0.0920 0.0450 0.0934
n = 200 0.0510 0.0934 0.0490 0.0966 0.0522 0.1018

r = 3 n = 50 0.0502 0.0974 0.0482 0.0932 0.0500 0.0954
n = 100 0.0468 0.0902 0.0442 0.0902 0.0472 0.0938
n = 200 0.0480 0.0998 0.0510 0.1016 0.0444 0.0890

r = 4 n = 50 0.0416 0.0820 0.0376 0.0790 0.0414 0.0834
n = 100 0.0448 0.0920 0.0432 0.0880 0.0428 0.0846
n = 200 0.0470 0.0946 0.0468 0.0908 0.0344 0.0718

A case with non-connected support

Let S be the set in Figure 2, which is not convex but λ-convex for λ = 2. Table 2
gives the outputs corresponding to the empirical significance level obtained (as an average

12



0 2 4 6

−
3

−
2

−
1

0
1

2
3

Figure 2: Non-convex support S = B(x, 1) ∪B(y, 1), with x = (0, 0) and y = (6, 0). The
set S is not convex but λ-convex for λ = 2.

over 10000 independent runs) with the DBU test and the DB test intended for nominal
significance levels α = 0.05, 0.1.

Table 2: Empirical significance level of the DBU test and DB test over 10000 uniform
samples of size n = 50, 100, 200, 500 on S in Figure 2. The nominal values are 0.05, 0.1.
For the DBU test, we consider Sn = Cλ(Xn) with λ = 2.

DBU test DB test
Sn = Cλ(Xn)

α 0.05 0.1 0.05 0.1

n = 50 0.0433 0.0860 0.0480 0.0981
n = 100 0.0472 0.0933 0.0437 0.0922
n = 200 0.0439 0.0934 0.0417 0.0889
n = 500 0.0466 0.0967 0.0495 0.0948

Some results in R
3

We have also studied the behavior in terms of significance level of the DB test and
DBU test in R

3. The algorithms are essentially the same as those described in Section 2.
Table 3 gives the outputs corresponding to the empirical significance level obtained (as
an average over 10000 independent runs) with the DBU test and the DB test intended
for nominal significance levels α = 0.05, 0.1. Sample sizes are n = 50, 100, 200, 500. The
considered supports are the unit cube S = [0, 1]3 and unit ball S = B(0, 1) in R

3. Since
both supports are invariant by erosion upon an homothecy we perform for the DB test a
classical one-sample Kolmogorov-Smirnov test of the null that the distribution function

13



of the random variable Y R = D(X, ∂S)/R is a beta distribution with parameters a = 1
and b = 3. For the DBU test, we restrict ourselves to the case where the support S is
assumed to be convex and is estimated through the convex hull of the sample H(Xn).

Table 3: Empirical significance level of the DBU test and DB test over 10000 uniform
samples of size n = 50, 100, 200, 500 on S = [0, 1]3 and S = B(0, 1) in R

3. The nominal
values are 0.05, 0.1. For the DBU test, we consider Sn = H(Xn).

DBU test DB test
Sn = H(Xn)

α 0.05 0.1 0.05 0.1

S = [0, 1]3 n = 50 0.0399 0.0831 0.0483 0.0969
n = 100 0.0434 0.0886 0.0423 0.0872
n = 200 0.0468 0.0916 0.0487 0.0950
n = 500 0.0470 0.0938 0.0483 0.0956

S = B(0, 1) n = 50 0.0378 0.0798 0.0480 0.0972
n = 100 0.0453 0.0886 0.0488 0.0968
n = 200 0.0449 0.0909 0.0433 0.0872
n = 500 0.0510 0.0970 0.0507 0.0948

4.2 Power study

As for the power study we have considered two different models in the choice of the
alternative distribution.

Contamination model

The sample points are drawn from a random variable whose distribution is given by
a mixture of type (1 − ǫ)U(S) + ǫU(S \ S0), where S =

{

(x, y) ∈ R
2 : |x|r + |y|r ≤ 1

}

for r = 3 and S0 denotes a set like S with the same centre and area µ(S)/2. We have
taken ǫ = 0.1, 0.2, 0.3, see Figure 3. We have compared the performance of the DBU
test to that of the EMS test (based on multivariate spacings) by Berrendero, Cuevas and
Pateiro-López (2011). The corresponding outputs are summarized in Table 4.

Neyman-Scott clustering alternatives

This is a typical deviation from the uniformity assumption, often considered in the
theory of point processes. Under this model the sample tends to provide “clustered”
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Figure 3: Random samples of size n = 200 from mixtures of type (1−ǫ)U(S)+ǫU(S\S0),
where S =

{

(x, y) ∈ R
2 : |x|r + |y|r ≤ 1

}

for r = 3 and S0 denotes a set like S with the
same centre and area µ(S)/2. Left, ǫ = 0.1. Center, ǫ = 0.2. Right, ǫ = 0.3.

observations. For the simulated samples each cluster consist of m points, generated from
the uniform distribution on a disc of radius r. The corresponding outputs are summarized
in Table 5.

The support estimator used in the second column of Table 4 and in Table 5 is Sn =
Cλ(Xn) with λ = 1.

4.3 Conclusions

1. The results in Tables 1 and 2 show that the DBU test succeeds in preserving
the significance level (though it tends to be slightly conservative). The cost of
estimating the support (pointed out by the difference observed with the DB test,
where the support is known) turns out to be moderate and quite affordable in
statistical terms.

2. Note that the asymptotic validity of the DBU test in the tri-dimensional case is
not covered by our theoretical results in Section 3 (which apply only for d = 2).
However, the outputs in Table 3 suggest that the method could work even in this
case. A new, quite different, theoretical approach would be needed in this case, as
the arguments in Section 3 rely essentially on the assumption d = 2.

3. The power results in Tables 4 and 5 show also a foreseeable behavior: the procedure
works efficiently for detecting “contaminated” distributions but it is much less
powerful for Neyman-Scott alternatives. Again, the loss of efficiency associated with
the estimation of the support is surprisingly low. As mentioned in the Introduction,
the “spacing-based” EMS procedure (see Berrendero, Cuevas and Pateiro-López
(2011) for details) can be thought as complementary to the DBU test. The EMS
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Table 4: Empirical powers over 5000 runs of the DBU test, EMS test and DB test.
The underlying distributions are contaminated uniforms (1− ǫ)U(S)+ ǫU(S \S0), where
S =

{

(x, y) ∈ R
2 : |x|r + |y|r ≤ 1

}

for r = 3 and S0 denotes a set like S with the same
centre and area µ(S)/2. The significance level is 0.05.

DBU test DBU test DB test EMS test
Sn = H(Xn) Sn = Cλ(Xn)

ǫ = 0.1 n = 50 0.0646 0.0598 0.1078 0.0130
n = 100 0.1042 0.0974 0.1716 0.0404
n = 200 0.2028 0.1934 0.3112 0.0566

ǫ = 0.2 n = 50 0.1438 0.1168 0.2584 0.0212
n = 100 0.3346 0.2990 0.4786 0.0638
n = 200 0.6110 0.5844 0.7778 0.0992

ǫ = 0.3 n = 50 0.3218 0.2570 0.5118 0.0374
n = 100 0.6598 0.6178 0.8176 0.1126
n = 200 0.9456 0.9338 0.9852 0.1910

Table 5: Empirical powers of the uniformity tests under study over 5000 runs of sample
size n = 100 and n = 200 from Neyman-Scott clustering alternatives. Each cluster consist
of m points, generated from the uniform distribution on a disc of radius r.

DBU test DB test EMS test

r = 0.05 m = 5 n = 100 0.6174 0.4946 0.9790
n = 200 0.5608 0.4976 0.9976

r = 0.05 m = 10 n = 100 0.9030 0.7556 0.9994
n = 200 0.8504 0.7560 1.0000

r = 0.1 m = 5 n = 100 0.3458 0.3668 0.7952
n = 200 0.3338 0.3670 0.8442

r = 0.1 m = 10 n = 100 0.5784 0.5822 0.9828
n = 200 0.5404 0.5746 0.9970

test is suitable for alternative hypothesis that provide “clustered” observations but
it is less powerful for “contamination models”, where the DBU test shows a clear
superiority. The slight loss of power observed when increasing the sample size in
some cases in Table 5 may be explained by the dependence of the observations
generated from the Neyman-Scott model.

5 Appendix: Generation of uniform samples on Sn

The uniformity test for the case of an unknown support S is based on the statistic

D∗
n =

√
n‖F∗

n − F̂‖,
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Figure 4: Uniform sample Xn in B(0, 1) in R
3 of size n = 500 (left). Convex hull H(Xn)

and uniform sample generated on H(Xn) of size m = 2000 (right).

being F̂ the distribution of the random variable Ŷ = D(X̂, ∂Sn), where X̂ is uniform
on Sn. Since F̂ is unknown, this distribution is derived in practice by a Monte Carlo
mechanism. A large number of iid uniform observations X̂i, i = 1, . . . ,m are drawn on Sn.
The empirical distribution corresponding to the sample Ŷi = D(X̂i, ∂Sn), i = 1, . . . ,m
is used as an approximation for F̂ .

Uniform samples on H(Xn).
Assume that we choose as estimator Sn = H(Xn). The problem of how to generate

uniform random vectors on the convex hull of a set of points in R
2 is well-known. Note

that this is a particular case of uniform random generation on a convex polygon in the
plane, which is solved by means of triangulation. See Devroye (1986) for a description of
the algorithm. The procedure in R

3 is similar. In this case, we partition the convex hull of
the sample into tetrahedra by means of the Delaunay triangulation of the sample, which
can be computed in R by means of the library geometry, see Grasman and Gramacy
(2010). To generate a point uniformly in the triangulated polyhedron, we first sample
one of the tetrahedra with probabilities proportional to their volumes and then we sample
a point uniformly in the selected tetrahedron. The generation of uniform random vectors
in a tetrahedron is a particular case of the generation of uniform random vectors in a
simplex for dimension d = 3. See Figure 4.

Uniform samples on Cλ(Xn).
Assume now that Sn = Cλ(Xn). In order to generate uniform samples on Cλ(Xn)

we proceed as follows: first, we generate a large sample of uniform observations in the
convex hull H(Xn). Note that the λ-convex hull is contained in the convex hull. Then,
we remove the points that belong to any of the balls defining the complement of the
alpha convex hull. The resulting sample is uniform in Cλ(Xn), see Figure 5.
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Figure 5: In blue, uniform sample in Cλ(Xn). The sample is obtained from uniform
observations (in green) in the convex hull H(Xn) after removing the sample points that
belong to any of the balls defining the complement of the λ-convex hull (balls in dashed
line).
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