

UNIVERSIDADE DE

SANTIAGO DE COMPOSTELA

DEPARTAMENTO DE

ESTATÍSTICA E INVESTIGACIÓN OPERATIVA

Utilities for Statistical Computing in Functional Data Analysis:

The R Package fda.usc

M. Oviedo de la Fuente, M. Febrero-Bande

Report 11-02

Reports in Statistics and Operations Research

Utilities for Statistical Computing in Functional Data Analysis:

The R Package fda.usc

Manuel Oviedo de la Fuente Manuel Febrero-Bande

Department of Statistic and Operations Research
University of Santiago of Compostela

Spain, May 2011

Abstract

This paper is devoted the R package fda.usc which includes some utilities for functional data
analysis. This package carries out exploratory and descriptive analysis of functional data
analyzing its most important features such as depth measurements or functional outliers de-
tection, among others. The R package fda.usc also includes functions to compute functional
regression models, with a scalar response and a functional explanatory data via nonparametric
functional regression, basis representation or functional principal components analysis. There
are natural extensions such as functional linear models and semi-functional partial linear mod-
els, which allow non functional covariates and factors and make predictions. The functions of
this package complement and incorporate the two main references of functional data analysis:
The R package fda and the functions implemented by [Ferraty and Vieu (2006)].

Keywords: functional data regression, representation of functional data, nonparametric kernel
estimation, depth measures, outlier

1 Introduction

The technological progress has led to the development of new, quick and accurate measurement
procedures. As a consequence, further possibilities for obtainig experimental data are now
available and some classical paradigms must be revised. For example, it is now possible (and
even frequent) to find problems where the number of data is greater than the number of
variables. In many areas it is common to work with large databases, which increasingly often
these observations of a random variable taken over a continuous interval (or in increasingly
larger discretizations of the continuous interval).
For example, in fields such as spectroscopy, the measurement result is a curve that, at least,
has been evaluated in 100 points. This type of data, which we call functional data arise
naturally in many disciplines. In economics, one could consider curves intra-day stock quotes.
In environmental studies, one could find continuous measurements of atmospheric monitoring
networks. It is also well-known the importance of functional data in image recognition or
spatio temporal information.

1

Undoubtedly, package fda ([Ramsay et al. (2010)]) is a basic reference to work in R program-
ming environment ([R Development Core Team(2011)]) with functional data. The book by
is well-known referencein this field, [Ramsay and Silverman (2005)] has helped to popularize
the statistical techniques for functional data. All the techniques included are restricted to the
space of L2 functions (the Hilbert space of all square integrable functions over a certain in-
terval). The book by [Ferraty and Vieu (2006)] is another important reference incorporating
non-parametric approaches as well as the us of other theoretical tools such as seminorms and
small ball probabilities. These authors are part of the French group STAPH maintaining the
page http://www.lsp.ups-tlse.fr/staph/ where R software can be downloaded. Other
functional data packages that can be useful for representing functional data are: The package
rainbow ([Shang and Hyndman (2010)]) for functional data display and outlier detection,
the package fds ([Hyndman and Shang (2010a)]) with functional data sets and the package
ftsa ([Hyndman and Shang (2010b)]) for functional time series analysis.
The aim of the package fda.usc is to provide broader, flexible tool for the analysis of functional
data. Therefore, we propose an integration of the work on nonparametric functional methods
implemented by [Ferraty and Vieu (2006)] those from the group of the University of Santiago
de Compostela (USC), thus complementing and extending some of the functions of package
fda.
In Section 2.1 we introduce a new R class for functional data: “fdata”. Section 2.2 describes
the functional representation of an object of class “fdata” by basis representation or ker-
nel smoothing. Section 2.3 is focused in normed and semi-normed functional spaces and in
how the metrics and semimetrics can be used as measures of proximity between functional
data. Section 2.4 is concerned with the concept of statistical depth for functional data see
[Cuevas et al. (2007)]. These depth measures are useful to define location and dispersion mea-
sures, for classification and for outlier detection [Febrero-Bande et al. (2008)] (Section 2.6).
Section 3 is devoted to functional regression models with scalar response from different per-
spectives: Parametric, using basis representation (Section 3.1, 3.2 and 3.3), nonparametric,
using smoothing kernel (Section 3.4) and semi-parametric combines both (Section 3.5). The
Section 3.6 summarizes the functional regression models using a classical example to show the
capabilities of the package fda.usc. Finally, Section 4 discuss the most important feature of
the package.

2 Functional Data: Definition and descriptive analysis

After a brief introduction of the state of the art in functional data, we describe the most
important features, procedures and utilities of the new package.

2.1 Functional Data Definition: The new R class fdata

A functional variable X is just a random variable taking values in a function space E . Thus,
a functional data set is just a sample {X1, . . . ,Xn} (also denoted X1(t), . . . , Xn(t) when con-
venient) drawn from a functional variable X . Usually E is assumed to be a normed or semi-
normed metric space...(completar definicion)
The first obstacle that we will always have when analyzing functional data is to find an ade-
quate representation for the data. Typically, the functional data set {X1, . . . ,Xn} is evaluated
on a number of discretization points {t1, . . . , tm} that can be observed in a non-equispaced
way.

2

http://www.lsp.ups-tlse.fr/staph/

850 900 950 1000 1050

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

5.
5

Wavelength (mm)

Ab
so

rb
an

ce
s

850 900 950 1000 1050
−0

.0
2

−0
.0

1
0.

00
0.

01
0.

02
0.

03
0.

04
0.

05

Wavelength (mm)

d(
Ab

so
rb

an
ce

s,1
)

Figure 1: Spectrometric curves (left panel): curves with Fat¡20% (red lines) and curves with
Fat≥20% (blue lines). Corresponding spectrometic curves after first order differencing (right
panel).

The fda.usc package avoids the basis transformation performed by the fda package and define
an object called fdata as a list of the following components:

• data: Typically a matrix of (n,m) dimension which contains a set of n curves discretized
in m points or argvals.

• argvals: Locations of the discretization points, by default: {t1 = 1, . . . , tm = m}.

• rangeval: Range of discretization points, by default: range(argvals).

• names: Optional list with three components: main, an overall title, xlab, a title for
the x axis and ylab, a title for the y axis.

All the methods in the package can work with the new class fdata that only uses the evalua-
tions at the discretization points. There is no need to represent the functional data in a basis
object. Also, some basic operations to handle this new class are introduced: “+”, “-”, “*”,
“/”, “[]”, “==”, is.fdata(), c(), dim(), ncol(), nrow().
The representation of a functional dataset should be consistent with the physical interpre-
tation of the phenomenon being described. The tecator dataset (data(”tecator”)) has
two components. The first component, tecator$absorp.fdata, includes the curves of ab-
sorbance for the analysis of pieces of meat stored in the format of class fdata. Each curve
consists of a m=100-channel absorbance spectrum measured along the discretized points:
argvals={t1 = 850, . . . , tm = 1050}. The second component, tecator$y, it is a data-frame
including Fat, Water and Protein contents of each spectrometric curve obtained by an ana-
lytical chemical processing. The tecator dataset presents interesting features and it is a well
known example in Functional Data Analysis (FDA), therefore we have incorporated into the
package (available at http://lib.stat.cmu.edu/datasets/tecator).

3

http://lib.stat.cmu.edu/datasets/tecator

In this package, many utility functions are incorporated to work with the new class fdata, as
for example plot(). The following code displays the absorbance curves in function of the fat
content, (see Figure 1).

R> library("fda.usc")

R> data("tecator")

R> names(tecator)

[1] "absorp.fdata" "y"

\end{CodeOutput}

\begin{CodeInput}

R> absorp <- tecator$absorp.fdata

R> Fat20 <- ifelse(tecatoryFat < 20, 0, 1) * 2 + 2

R> plot(tecator$absorp.fdata, col = Fat20)

When analyzing functional data it is important to choose the space where the data must
be considered. For example, in left panel of Figure 1, the spectrometric curves are plotted
showing with different colors the fat content. This representation which implicitly assumes a
L2 space, is not related with the information of fat content. In other words, the vertical shift
of these curves has no special relation with the fat content. So, if we are interested in the
relationship between the spectromectric curve and the fat content, probably another choice
of functional space would be more advisable as for example, that shown in the right panel of
Figure 1 with the first derivative of the spectrometric curves.
In this case, the distances between curves are given by the semi-norm of the derivative
(

d(f, g) =
√

∫

T (f
′(t)− g′(t))2dt

)

instead of the norm as in the case of the L2 space . To cal-

culate the derivative of a functional data the fdata.deriv() function has been implemented,
which compute the derivative many argument by different methods. If method = ”bspline”,
”exponential”, ”fourier”, or ”‘monomial” is selected, the command calculates the deriva-
tive of the fdata object using deriv.fd{fda}. If method=”fmm”, ”periodic”, ”natural”
or ”monoH.FC” is selected, the splinefun{stats} function is employed. Raw derivation
could be applied with method=”diff”, but this is not recommended when the values are not
equally spaced o with sparse data.

R> absorp.d1 = fdata.deriv(absorp, nderiv = 1 , method = "bspline")

R> plot(absorp.d1, col = Fat20)

2.2 Functional data representation: Smoothing

The first step in a functional data analysis maybe the data representation. If we assume that
our functional data Y (t) is observed through the model: Y (ti) = X(ti) + ǫ(ti) where the
residuals ǫ(t) are independent from X(t), we can get back the original signal X(t) using a
linear smoother,

x̂ =
n
∑

i=1

sijyi or x̂ = Sy

where sij is the weight that the point tj gives to the point ti and yi = X(ti), xi = X(ti).
In the package two procedures have been implemented for this purpose. The first one is the
representation in a L2 basis (or penalized basis) and the second one is based on the smoothing
kernel methods.

4

a) Basis representation. A curve can be represented by a basis when the data are assumed
to belong to L2 space. A basis is a set of known functions {φk}k∈N that any function could
be arbitrarily approximated by a linear combination of a sufficiently large number K of these
functions, (see page 43 and 44 of [Ramsay and Silverman (2005)]).
The procedure approximates a function X(t) by using a fixed truncated basis expansion in
terms of K known basis functions,

X(t) =
∑

k∈N

ckφk(t) ≈
K
∑

k=1

ckφk(t) = cTΦ (1)

The projection (or smoothing) matrix is given by: S = Φ(ΦTWΦ)−1ΦTW , with degrees of
freedom of the fit df(ν) = trace(S(ν)) = K.
If smoothing penalization is required, also a parameter λ will be provided and in this case the
projection matrix S is: S = Φ(ΦTWΦ+ λR)−1ΦTW , where R is the penalization matrix.
This package also includes the function create.basis-name.basis(). Also, the function
fdata2fd() converts an object of class fdata in to an object of class fda using the basis
representation shown in 1. Inversely, the function fdata() converts data object of class: fda,
fds, fts, sfts or another format (vector, matrix, data.frame) to an object of class fdata.

R> class(absorp.fd <- fdata2fd(absorp, type.basis= "fourier", nbasis= 15))

[1] "fd"

R> class(absorp.fdata <- fdata(absorp.fd))

[1] "fdata"

The choice of the parameter number of basis elements that of and the most appropriate basis
for the observed data is also crucial and, in principle, there is no universal rule that would
enable an optimal choice. The decision on what basis to choose should be based on the
objective of the study and on the data. For example, is common to use the “fourier” basis
for periodic data, and “bspline” basis for non-recurrent data. Among the different selection
criteria to select the parameter ν = (K,λ), we have implemented the two: Cross Validation
(CV) and Generalized Cross Validation (GCV). The purpose of the function min.basis()
is to represent the functional data in terms of a (truncated) expansion with respect to a
given basis of functions in the corresponding space. Such expansions depend on a parameter
ν = (K,λ), where K is the number of basis functions used in the truncated expansion and λ is
the penalization parameter. They are both chosen by cross-validation procedures, as follows:

Cross-validation : CV (ν) =
1

n

n
∑

i=1

(

yi − r̂ν
−i(xi)

)2
w(xi) (2)

where r̂ν
−i(xi) indicates the estimator based on leaving out the i pair (xi, yi) and w(xi) is the

weight of data x at point ti. This criterion is implemented by the function CV.S().

Generalized Cross-validation : GCV (ν) =
1

n

n
∑

i=1

(

yi − r̂νi (xi)
)2
w(xi)Ξ(ν) (3)

where Ξ(ν) denotes the type of penalizing function.

5

Generalized Cross-Validation criteria is implemented in GCV.S() function with the following
types of Ξ(ν) functions: Generalized Cross-validation (GCV), Akaike’s Information Criterion
(AIC), Finite Prediction Error (FPE), Shibata’s model selector (Shibata) or Rice’s bandwidth
selector (Rice), see [Härdle (1990)].

b) The nonparametric methodology, and in particular, the kernel method, can also be used
to represent functional data. Now, the nonparametric smoothing of functional data is given
by the smoothing matrix S:

sij =
1

h
K

(

ti − tj
h

)

Different types of kernels K() are considered in the package: Gaussian, Epanechnikov, Tri-
weigth, Uniform, Cosine or other user-defined (see help(Kernel)).
The min.np() function returns the “optimal” value h.opt of the smoothing parameter ν with
respect to the cross-validation crietria 2 and 3). Among other features, the package fda.usc
allows calculate the smoothing matrix S by: Nadaraya-Watson method (S.NW), K-nearest
neighbors method (S.KNN) or local linear regression method (S.LLR), see [Wasserman (2006)].
The min.np() function returns the “optimal” value h.opt of the smoothing parameter ν
that best represents the functional data x̂ = r̂νn(x) =

∑n
i=1 si(x)Yi for a range of values of

bandwidth ν using the validation criteria shown above, (Equation 2 and 3).

Let us know consider, for ilustration purposes, the Phoneme) Dataset data(”phoneme”)1

see, e.g. [Ferraty and Vieu (2006)]. The phoneme$classlearn object contains 250 speech
frames with class membership: “aa” (1), “ao” (2), “dcl” (3), “iy” (4) and “sh” (5). From each
speech frame, a log-periodogram of length 150 have been stored in phoneme$learn which
is used as learning sample. The goal is to predict the class membership phoneme$classtest
using the test sample phoneme$test.
In the following example (see belowR code), phoneme$learn is smoothed usingmin.basis()
and min.np() functions. In the left panel of Figure 2, the GCV criterion is drawn in function
of the number of bspline basis elements ν1 = nbasis and penalizing parameter ν2 = λ using
min.basis() function. In the right panel of Figure 2, the GCV criterion is drawn in function
of the bandwidth ν = h using the function min.np().

R> data("phoneme")

R> learn <- phoneme$learn

R> l <- c(0, 2^seq(-2, 9, len = 30))

R> nb <- seq(7, 31, by = 2)

R> out0 <- min.basis(learn, lambda = l, numbasis = nb)

The minimum GCV (GCV.OPT=611.4684) is achieved with

the number of basis (numbasis.opt=27)

and lambda value (lambda.opt=81.27995)

R> out1 <- min.np(learn, Ker = Ker.epa)

The minimum GCV (GCV.OPT=621.0195) is achieved with

the h value (h.opt=6.3131)

R> out2 <- min.np(learn, type.S = S.LLR)

The minimum GCV (GCV.OPT=663.8132) is achieved with

the h value (h.opt=8.8826)

1This dataset includes the changes introduced in the file

http://www.math.univ-toulouse.fr/staph/npfda/npfda-phondiscRS.txt.

6

http://www.math.univ-toulouse.fr/staph/npfda/npfda-phondiscRS.txt

GCV criteria by min.basis()

Number of basis

La
mb

da

 62
0

 64
0

 640

 66
0

 68
0

 70
0

 72
0

 760

10 15 20 25 30

0
10

0
20

0
30

0
40

0
50

0

5 10 15 20 25
60

0
70

0
80

0
90

0
10

00
11

00
12

00

GCV criteria by min.np()

Bandwidth (h) values

GC
V

cri
ter

ia

Ker.epa−S.NW

Ker.norm−S.LLR

Figure 2: GCV criteria as a function of the number of bspline basis elements and the
penalizing parameter λ (left panel). GCV criteria as a function of bandwidth parameter
(right panel): Normal kernel and local linear smoothing matrix (blue line); Epanechnikov
kernel and Nadaraya-Watson smoothing matrix (green line).

0 50 100 150

12
14

16
18

Phoneme curve[11]

frequencies

log
−p

eri
od

og
ram

s

Bspline basis

Ker.epa−S.NW

Ker.norm−S.LLR

Figure 3: Phoneme curve[11]: Observed (black solid line), smoothed by 27 bspline basis
and λ = 81.28 (red dashed line), smoothed by Epanechnikov kernel and Nadaraya-Watson
smoothing matrix with bandwidth h = 8.88 (green dotted line) and smoothed by normal
kernel and local linear smoothing matrix with bandwidth h = 6.31 (blue dashed line).

7

Figure 3 shows the 11th curve of phoneme$learn and three smooth representations of the
curve.

2.3 Measuring distances

It is difficult to find the best plot given a particular functional dataset because the shape of
the graphics depends strongly on the chosen proximity measure. As shown in Figure 1, the
plot of X(t) against t is not necessarily the most informative and maybe another can allow us
to extract much information from functional variables. This package collects several metric
and semimetric functions which allow us to extract as much information possible as from the
functional variable.
The spaces for functional data are the complete metric spaces where only the notion of dis-
tance between elements of the space is given. If the metric d is asociatted with a norm
(so that d(X(t), Y (t)) = ‖X(t)− Y (t)‖ we have a normed space (or a Banach space). In
some important cases the norm ‖.‖ is associated with an inner product , .〈〉 in the sense that

‖X‖ = 〈X,X〉1/2. A complete normeds pace (Banach space) whose norm derives from an
inner product is called a Hilbert space. The best known example is the space L2 [a, b] of real
square-integrable functions de
ned on [a, b] with 〈f, g〉 =

∫ b
a fg.

〈x, y〉 = (1/4)(‖x+ y‖2 − ‖x− y‖2). A complete space with an inner product is called a
Hilbert space which is a special kind of Banach spaces where ‖X(t)‖ =

√

〈X(t), X(t)〉.
Utilities for computing distances, norms and inner products are included in the package. For
example, a collection of semimetrics proposed by [Ferraty and Vieu (2006)]: semimetric.der-
iv(), semimetric.fourier(), semimetric.hshift(), semmimetric.mplsr() and semmime-
tric.pca() have been included, see help(semimetric.NPFDA). If we focused on Lp spaces
(the set of functions whose absolute value raised to the p-th power has finite integral), met-
ric.lp() uses Simpson’s rule to compute distances between elements, norm.fdata() computes
the norm and, specifically for L2, inprod.fdata() calculates the inner product between ele-
ments of the space.
The procedures of the package fda.usc including the argument metric allow us the use of
metric or semimetrics functions implemented or other user defined with the only restriction
that the first two arguments belong to the class fdata.
In the next example, the distances beetwen some training sample curves of phoneme data
(phoneme$learn) are calculated by a metric function: metric.lp(), and several semimetrics
functions: semimmetric.basis() based on their bspline expansion, semmimetric.pca()
based on the functional principal components analysis method and semmimetric.mplsr()
based on the partial least squares method. Figure 4 shows the dendograms for a selection of
11 curves of class (3) (corresponding to the indices from 110 to 120 curves) and 11 curves
of class (5) (from 220 to 230). This example can be understood as a classification problem
in which the goal is to classify the curves in 2 classes. Let us note that in this example the
semimmetric.mplsr() function (which uses memberclass information) is the only one that
properly classifies the 22 curves.

R> glearn = phoneme$classlearn

R> mdist1 <- metric.lp(learn)

R> mdist2 <- semimetric.basis(learn, type.basis1 = "fourier")

R> mdist4 <- semimetric.pca(learn, learn)

R> mdist5 <- semimetric.mplsr(learn, learn, q = 3, class1 = glearn)

8

3 3 3
3 3 3

3
3 3

5 5 5 5 3 3 5 5 5 5
5

5 510
20

30
40

50
60

70
metric.lp using L2

hclust (*, "complete")
Class of each leaf

He
igh

t

3 3 3 3 3 3 3 3 3 5 5 5 5 3 3 5 5
5

5 5 5 50
10

20
30

40
50

60
70

semimetric.basis with fourier basis

hclust (*, "complete")
Class of each leaf

He
igh

t

3 3 3 3 3
3

3 3 3 5 5 5
5 5 5 5 5 5 5

3
3 5

0
20

40
60

80
100

120
140

semimetric.pca with 2 pc

hclust (*, "complete")
b

He
igh

t

5
5

5 5
5 5 5 5
5 5 5
3 3

3 3
3 3

3 3 3 3 30.0
0.5

1.0
1.5

semimetric.mplsr

hclust (*, "complete")
Class of each leaf

He
igh

t

Figure 4: Dendograms for 22 phoneme curves: Dendogram using L2 metric metric.lp() (top
left), dendogram using L2 metric with bspline basis representation semimetric.basis() (bot-
tom left), dendogram using 2 principal components semimetric.pca() (top right) and den-
dogram using a semi-metric based on the partial least squares method semimetric.mplsr()
(bottom right).

2.4 Exploring Functional Data

Any statistical study should begin with an exploratory stage. In fda.usc, the usual tools for
summarize functional data are included: func.mean(), func.var() and pc.svd.fdata() for
computing the mean, the marginal variance and principal eigenfunctions. The output of this
tools is always an object of class fdata. Different depth notions have been proposed in the
literature, with the aim of measuring how deep is a data point in the sample. In univariate
data, the median would typically be the deepest point of clouds of points. Although there
are more depth measures, this package includes those that are contained in the work of
[Cuevas et al. (2007)]:

• depth.FM(): The depth measure is based on the median, [Fraiman and Muniz (2001)].

• depth.mode(): The depth measure is based on how densely surrounded the curves are
respect to a metric or a semimetric distance, [Cuevas et al. (2007)].

• depth.RP(): The depth measure is calculated through random projections (RP) based
on the Tukey depth, [Cuevas et al. (2007)].

• depth.RPD(): The depth measure is calculated through random projections of the
curves and their derivatives, [Cuevas et al. (2007)].

All depth functions implemented return:

• median: Deepest curve.

• lmed: Index of the deepest curve.

9

850 900 950 1000 1050

2.
6

2.
8

3.
0

3.
2

3.
4

3.
6

Centrality measures (15% trimmed mean)

Wavelength (mm)

Ab
so

rb
an

ce
s

mean

trim.FM

trim.mode

trim.RP

850 900 950 1000 1050

2.
6

2.
8

3.
0

3.
2

3.
4

3.
6

Centrality measures (median)

Wavelength (mm)

Ab
so

rb
an

ce
s

mean

med.FM

med.mode

med.RP

850 900 950 1000 1050

0.
10

0.
20

0.
30

Dispersion measures

Wavelength (mm)

Ab
so

rb
an

ce
s

var
trimvar.FM
trimvar.mode
trimvar.RP

0.0 0.2 0.4 0.6 0.8 1.0

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

FM depth vs mode depth

mode depth

FM
 d

ep
th

Figure 5: Descriptive statistics for Tecator dataset based on depth: 15%-trimmed mean
(top left), medians (top right), dispersion measures (bottom left) and FM depth versus mode
depth (bottom right).

• mtrim: Mean of (1− α)% deepest curves.

• ltrim: Index of (1− α)% deepest curves.

• dep: Depth of each curve.

An interesting application of the proposed depth measures is their use as measures of central
tendency and/or dispersion. The top row of Figure 5 displays the α-trimmed means (top
left) and the medians (top right). The bottom row of Figure 5 shows the marginal vari-
ance using trimmed subsets (bottom left), and the depths calculated by depth.FM() and
depth.mode() (bottom right).

R> plot(func.mean(absorp), main = "Centrality measures (15% trimmed mean)",

+ ylim = c(2.6, 3.6))

R> lines(func.trim.FM(absorp, trim = 0.15), col = 2)

R> lines(func.trim.mode(absorp, trim = 0.15), col = 3, lty = 3)

R> lines(func.trim.RP(absorp, trim = 0.15), col = 4, lty = 4)

R> plot(func.mean(absorp), main = "Centrality measures (median)",

+ ylim = c(2.6,3.6))

R> lines(func.med.FM(absorp), col = 2)

R> lines(func.med.mode(absorp), col = 3, lty = 3)

R> lines(func.med.RP(absorp), col = 4, lty = 4)

R> plot(func.var(absorp), main = "Dispersion measures", ylim = c(.07,.31))

R> lines(func.trimvar.FM(absorp, trim = 0.15), col = 2)

R> lines(func.trimvar.mode(absorp, trim = 0.15), col = 3, lty = 3)

10

850 900 950 1000 1050

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

5.
5

Wavelength (mm)

Ab
so

rb
an

ce
s

original curves

mean

bootstrap curves IN

850 900 950 1000 1050
2.

0
2.

5
3.

0
3.

5
4.

0
4.

5
5.

0
5.

5

Wavelength (mm)

Ab
so

rb
an

ce
s

original curves

FM trim 25%

bootstrap curves IN

Figure 6: Bootstrap replications of spectrometric curves: Using the mean statistic (left) and
using the 25%-trimmed mean statistic with FM depth (right).

R> lines(func.trimvar.RP(absorp, trim = 0.15), col = 4, lty = 4)

R> out.FM = depth.FM(absorp, trim = 0.1, draw = FALSE)

R> out.mode = depth.mode(absorp, trim = 0.1, draw = FALSE)

R> plot(out.mode$dep, out.FM$dep, main = "FM depth vs mode depth",

+ xlab = "mode depth", ylab = "FM depth")

In the previous code we have employed some shortcut functions as follows:

• For central trend: func. {centr} . {depth},

• For dispersion measures (or marginal variability measures): func.trimvar. {depth}

where centr = {med, trim} indicates whether it is used the median or trimmed mean and
depth = {FM,mode,RP,RPD} indicates the type of depth used.

2.5 Bootstrap replications as dispersion measures

The dispersion of a location statistic for functional data can be estimated by smoothed boot-
strap, [Cuevas et al. (2006)]. The fdata.bootstrap() function allows us to define a statis-
tic calculated on the nb resamples, control the degree of smoothing by smo argument and
represent the confidence bands with level α. The statistic used by default is the mean
func.mean() but also other depth-based functions can be used (see help(Descriptive)).
The confidence bands are drawn as those resamples which are within a given distance from
the estimator, see Figure 6.

R> out.boot1=fdata.bootstrap(absorp,statistic=func.mean,nb=1000,draw=TRUE)

R> out.boot2=fdata.bootstrap(absorp,statistic=func.trim.FM,nb=1000,draw=TRUE)

11

2.6 Functional Outlier Detection

In order to identify outliers in functional datasets, [Febrero-Bande et al. (2008)] make use on
the factthat depth and outlyingness are inverse notions, so that if an outlier is in the dataset,
the corresponding curve will have a significantly low depth. Therefore, a way to detect the
presence of functional outliers is to look for curves with lower depths. Two procedures for de-
tecting outliers are implemented: the first one is based on weighting outliers.depth.pond()
and the second one isbased on trimming outliers.depth.trim().

In the following example we use (data(”poblenou”)) that collects 127 curves of NOx levels
measured every hour {ti}0:23 by a control station in Poblenou in Barcelona (Spain). This
dataset is used by [Febrero-Bande et al. (2008)] as an illustration of the outliers detection
procedures. Figure 7 shows the result of applying the outliers detection method based on trim-
ming outliers.depth.trim with mode depth for the case of working days and non-working
days.

R> data("poblenou")

R> nox <- poblenou$nox

R> nb = 20

R> dd <- as.integer(poblenoudfday.week)

R> working = poblenou$nox[poblenou$df$day.festive == 0 & dd < 6]

R> nonworking = poblenou$nox[poblenou$df$day.festive == 1 | dd > 5]

R> out = outliers.depth.trim(nonworking, dfunc = depth.RP, nb = nb,

+ smo = 0.1, trim = 0.06)

R> out2 = outliers.depth.trim(working, dfunc = depth.FM, nb = nb,

+ smo = 0.1, trim = 0.06)

3 Functional regression models

A regression model is said to be “functional” when at least one of the involved variables
(either a regressor variable or the output variable) is functional. This section is devoted to
all the functional regression models where the response variable is scalar and at least, there
is one functional covariate. For illustration, we will use the Tecator dataset to predict the fat
contents from the absorbance as a functional covariate X(t)=X and the water contents as a
non functional covariate (Z=Water). We will use the first 129 curves to fit the model. The
last 86 records will be used to check the predictions. The explanatory variables to introduce
in the models are: The curves of absorbance X as functional data or one of its two first
derivatives (X.d1,X.d2) and/or water content (Water) as non functional variable.

R> ind = 1:129

R> tt = absorp[["argvals"]]

R> y = tecatoryFat[ind]

R> X = absorp[ind,]

R> X.d1 = fdata.deriv(X, nbasis = 19, nderiv = 1)

R> X.d2 = fdata.deriv(X, nbasis = 19, nderiv = 2)

In the following sections, regression methods implemented in the package are presented and
illustrated with examples for estimating the Fat content of the Tecator dataset. Finally, we
show in Section 3.6 a summary of the prediction methods.

12

0 5 10 15 20

0
20

0
40

0
NOx − Working days

Time (hours)

mg
lm

3

0 5 10 15 20

0
20

0
40

0

NOx − Non working days

Time (hours)

mg
lm

3

Figure 7: NOx levels measured by a control station split into two groups (grey lines):
Working days (top) and non-working days (bottom). The red lines correspond to days detected
as otuliers. The considered periods are 03/18/2005 and 04/28/2005 for working days and
03/19/2005 and 04/30/2005 for non-working days.

3.1 Functional linear model with basis representation: fregre.basis()

In this section we will assume a functional linear model of type:

yi = 〈X, β〉+ ǫi =

∫

T
Xi(t)β(t)dt+ ǫi (4)

where 〈·, ·〉 denotes the inner product on L2 and ǫi are random errors with mean zero and
finite variance σ2.
[Ramsay and Silverman (2005)] model the relationship between the scalar response and the
functional covariate by basis representation of the observed functional data X(t) and the
unknown functional parameter β(t). The functional linear model in Equation 4 is estimated
by the expression:

ŷi =

∫

T
Xi(t)β(t)dt ≈ CT

i ψ(t)φ
T(t)b̂ = X̃b̂ (5)

where X̃i(t) = CT
i ψ(t)φ

T(t), and b̂ = (X̃TX̃)−1X̃Ty and so, ŷ = X̃b̂ = X̃(X̃TX̃)−1X̃Ty =
Hy where H is the hat matrix with degrees of freedom: df = trace(H).

If we want to incorporate a roughness penalty λ > 0 then the above expression is now:
ŷ = X̃b̂ = X̃(X̃TX̃+ λR0)

−1X̃Ty = Hy where R0 is the penalty matrix.
fregre.basis() function computes functional regression between functional explanatory vari-
able and scalar response using basis representation. This function is presented as an alter-
native to the function fRegress() of fda package because it allows covariates of class fdata

13

and other class format as matrix or data.frame. The function also gives default values to
arguments basis.x and basis.b for representation on the basis of functional data X(t) and
the functional parameter β(t), respectively. In addition, the function fregre.basis.cv() uses
validation criteria defined in Section 2.2 by argument type.CV to estimate the number of
basis elements or the penalized parametrer (λ) that best predicts the response.
Going on with the example, the next code illustrates how to estimate the fat contents (y=Fat)
using a training sample of absorbances curves X.

R> rangett <- absorp[ind,][[‘‘rangeval’’]]

R> basis1 = create.bspline.basis(rangeval = rangett, nbasis = 17)

R> basis2 = create.bspline.basis(rangeval = rangett, nbasis = 7)

R> res.basis0=fregre.basis(X, y, basis.x = basis1, basis.b = basis2)

-Call: fregre.basis(fdataobj = X, y = y, basis.x = basis1, basis.b = basis2)

-Coefficients:

(Intercept) X.bspl4.1 X.bspl4.2 X.bspl4.3 X.bspl4.4 X.bspl4.5

18.24 47.89 -53.79 31.75 -15.48 16.21

X.bspl4.6 X.bspl4.7

-20.50 18.76

-R squared: 0.9367377

-Residual variance: 10.72561

The fitted object contains useful information as the smoothing parameter (ν), the degrees
of freedom (df), the residual variance (S2

R): S2
R =

∑n
i=1 (yi − ŷi)

2 /(n − df) (an unbiased
estimator of σ2), the coefficient of determination (R2) or the hat matrix (H). This information
is used in summary.fregre.fd() and print.fregre.fd() to show summaries of the functional
regression fitted model, see Figure 8.

R> summary(res.basis0)

*** Summary Functional Data Regression with representation in Basis ***

Call:

fregre.basis(fdataobj = X, y = y, basis.x = basis1, basis.b = basis2)

Residuals:

Min 1Q Median 3Q Max

-10.5079 -1.8778 0.0192 2.5561 5.5249

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 18.2357 0.2883 63.242 < 2e-16 ***

X.bspl4.1 47.8937 4.7485 10.086 < 2e-16 ***

X.bspl4.2 -53.7862 6.5834 -8.170 3.43e-13 ***

X.bspl4.3 31.7550 7.8395 4.051 9.06e-05 ***

X.bspl4.4 -15.4777 7.1935 -2.152 0.0334 *

X.bspl4.5 16.2149 9.5483 1.698 0.0920 .

14

10 30 50

0
10

20
30

40
50

R−squared= 0.94

Fitted values

y

10 30 50

−1
0

−5
0

5

Residuals vs fitted.values

Fitted values
Re

sid
ua

ls

43
44

10 30 50

0.0
0.5

1.0
1.5

Scale−Location

Fitted values

St
an

da
rdi

ze
d r

es
idu

als

4344

0.05 0.15 0.25

0
20

40
60

80
12

0

Leverage

Leverage

Ind
ex

.cu
rve

s

3435

8689

−2 0 1 2

−1
0

−5
0

5
Residuals

Theoretical Quantiles

Sa
mp

le
Qu

an
tile

s

−1
0

−5
0

5

Residuals

Figure 8: Summary plots for fitted object (res.basis0) from a functional linear model with
basis representation (fregre.basis()).

X.bspl4.6 -20.5031 11.5959 -1.768 0.0796 .

X.bspl4.7 18.7593 9.2149 2.036 0.0440 *

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 3.275 on 121 degrees of freedom

Multiple R-squared: 0.9367,Adjusted R-squared: 0.9331

F-statistic: 256 on 7 and 121 DF, p-value: < 2.2e-16

-Names of possible atypical curves: 43 44

-Names of possible influence curves: 34 35 86 89

3.2 Functional linear model with functional principal components basis:
fregre.pc()

Similarly, [Cardot et al. (1999)] used a basis of functional principal components to represent
the functional dataX(t) and the functional parameter β(t) in the so-called functional principal
components regression (FPCR).
Now, the estimation of β can be made by a few principal components (PC) of the functional
data and the integral can be aproximated by:

ŷi =

∫

T
Xi(t)β(t)dt ≈

kn
∑

k=1

γikn β̂kn (6)

15

where, β̂(1:kn) =

(

γT
.1y
nλ1

, . . . ,
γT
.kn

y

nλkn

)

and γ(1:kn) is the (nxkn) matrix with kn principal compo-

nents estimation of β scores and λi the eigenvalues of the PC.

The model of Equation 6 is expressed as: ŷ = Hy

where H =

(

γ.1γT
.1y

nλ1
, . . . ,

γ.knγ
T
.kn

y

nλkn

)

with degrees of freedom: df = trace(H) = kn.

We have implemented the functional principal regression in the function fregre.pc(). The
call for Tecator example is shown below:

R> res.pc0=fregre.pc(X,y,l=1:6)

For the fitted object of fregre.pc() function, the function summary.fregre.fd() also shows:

• Variability of explicative variables explained by Principal Components.

• Variability for each principal components -PC-.

3.2.1 How to select kn: fregre.pc.cv()

The novelty of the procedure used in fregre.pc.cv() is that the algorithm selects the principal
components that best estimated the response. The selection is done by cross-validation (CV)
or Model Selection Criteria (MSC). Finally, the regression model is fitted using the best
selection of Functional Principal Components.

• Predictive Cross-Validation: PCV (kn) =
1
n

∑n
i=1

(

yi −
〈

Xi, β̂(−i,kn)

〉)2
,

criteria=“CV”

• Model Selection Criteria: MSC(kn) = log

[

1
n

∑n
i=1

(

yi −
〈

Xi, β̂(i,kn)

〉)2
]

+ pn
k
n

pn = 2, criteria=“AIC”
pn = 2n

n−kn−2 , criteria=“AICc”

pn = log(n)
n , criteria=“SIC”

pn = log(n)
n−kn−2 , criteria=“SICc”

where criteria is an argument of the function fregre.pc.cv() that controls the type of vali-
dation used in the selection of the smoothing parameter kn.

R> res.pc2 = fregre.pc.cv(X.d2, y, kmax = 8)

R> res.pc2$pc.opt

Var1 Var2 Var3 Var4 Var5

1 2 7 3 6

R> res.pc2$MSC

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

[1,] 2.874226 2.395084 2.140198 2.138155 2.136051 2.147605 2.184047 2.221696

attr(,"names")

[1] "PC1" "PC2" "PC7" "PC3" "PC6" "PC8" "PC4" "PC5"

16

3.2.2 Functional influence measures: influence.fdata()

This section focuses on how to identify influential observations in the FLM discussed in the
previous sections. [Febrero-Bande et al. (2010)] studied three statistics for measuring the in-
fluence: Cook Prediction Distance (CPi), Cook Estimation Distance (CEi) and Peña Distance
(Pi), respectively.

1. The functional Cook’s measure for prediction (CPi) allows to detect observations whose
deletion may entail important changes in the prediction of the rest of the data. It is
defined as follows:

CPi =
(ŷ − ŷ−i)

T (ŷ − ŷ−i)

S2
R

where ŷ−i is the prediction of the response y excluding the i -th observation (Xi, yi) in
the estimation.

2. The functional Cook’s measure for estimation (CEi) allows to detect observations whose
deletion may entail important changes in the estimation.

CEi =

∥

∥

∥
β̂ − β̂−i

∥

∥

∥

2

S2

R

n

∑kx
k=1

1
λk

where β̂−i is the estimator of the parameter β excluding the i -th observation (Xi, yi) in
the process.

3. The functional Peña’s measure for prediction (Pi) allows to detect observations whose
prediction is most affected by the deletion of other data.

Pi =
(ŷi − ŷ(−1,i), ..., ŷi − ŷ(−n,i))

T (ŷi − ŷ(−1,i), ..., ŷi − ŷ(−n,i))

S2
RHii

where ŷ(−h,i) is the i -th component of the prediction vector ŷ(−h) for h = 1, ..., n.

Once estimated the functional regression model with scalar response (by fregre.pc() or fre-
gre.basis()), the influence.fdata() function is used to obtain the influence measures, see
Figure 9.
[Febrero-Bande et al. (2010)] propose to approximate quantiles of the above statistics by
means of a procedure which uses smoothed bootstrap samples of the set of observations of the
above statistics. This package includes the above procedure in influence.quan() function.
When the goal is to make inferences about the functional parameter and not on influence mea-
sures, one advantag derived from this procedure is that the calculation takes the mue.boot
curves of the functional parameter β in the functional Cook’s measure for estimation. How-
ever, this procedure has a very high computation time. In order to reduce the computational
time we have created the fregre.bootstrap() function.

17

CPi

0.00 0.01 0.02 0.03

0.0
0.5

1.0
1.5

2.0

0.0
0

0.0
1

0.0
2

0.0
3

CEi

0.0 0.5 1.0 1.5 2.0 1.0 2.0 3.0 4.0

1.0
2.0

3.0
4.0

Pi

Figure 9: Influence measures for Tecator dataset calculated from fitted model (res.pc0):
Matrix of scatterplots for Distance Cook Prediction (CPi), Distance Cook Estimation (CEi)
and Peña Distance (Pi).

R>fregre.bootstrap(res.basis1,nb=100,kmax.fix=TRUE,alpha=.99)

R>fregre.bootstrap(res.pc0,nb=100,kmax.fix=TRUE,alpha=.99)

In Figure 10 are plotting the bootstrap confidence band for the β̂ (blue line) with level of
(1− α)%. For the two fitted models (basis and PC), with 100 β̂∗ curves, 99 curves belonging
to the confidence band are drawn in gray and the curve fell outside the band is drawn in
red. The effect of β is significative (different from 0) for different wavelength, although these
values are different depending on model.

R> res.infl=influence.fdata(res.pc0)

R> res.quan<-influence.quan(res.pc0,res.infl,mue.boot=500,kmax.fix=TRUE)

R> plot(res.quan$betas.boot,col="grey")

R> lines(res.pc0$beta.est,col=2,lwd=2)

3.3 Functional linear model with functional and non functional covariate:
fregre.lm()

This section is presented as an extension of the previous linear regression models. Now, the
scalar response Y is estimated by more than one functional covariate Xj(t) and also more
than one non functional covariate Zj . The regression model is given by:

yi = α+ β1Z
1
i + · · ·+ βpZ

p
i +

∫

T1

X1
i (t)β1(t)dt+ · · ·+

∫

Tf

Xq
i (t)βq(t)dt+ ǫi (7)

where Z =
[

Z1, · · · , Zp
]

are the non functional covariates and X(t) =
[

X1(t1), · · · , X
q(tq)

]

are the functional covariates.

18

850 900 950 1000 1050

−2
0

0
20

40
60

Basis

Wavelength (mm)

Ab
so

rba
nc

es

850 900 950 1000 1050
−1

0
−5

0
5

10
15

20

PC

Wavelength (mm)

Ab
so

rba
nc

es

Figure 10: Estimated regression function β̂ joint with a 99% bootstrap confidence band by:
fregre.basis (left) and fregre.pc (rigth).

The functional linear model 7 is estimated by the expression:

ŷ = X̃b = X̃(X̃TX̃)−1X̃Ty = Hy

where X̃ =
[

Z1, · · · , Zp, (C1)Tψ(t1)φ
T(t1), · · · , (C

q)Tψ(tq)φ
T(tq)

]

The arguments are as follows:

• formula: A symbolic description of the model to be fitted.

• data: List containing the variables in the model. The first item in the data list is a
“data.frame” called df with the response and non functional explanatory covariates.
Functional covariates (“fdata” or “fd” class) are introduced in the following items in
the data list.

• basis.x: List with a basis object for every functional covariate.

• basis.b: List with a basis object for estimating the functional parameter β.

For the Tecator data example, the content of Fat is estimated from the second derivative of
absorbances curves X.d2 and the content of Water by fregre.lm() function.

R> ind <- 1:129

R> dataf = as.data.frame(tecator$y[ind,])

R> newdataf = as.data.frame(tecator$y[-ind,])

R> ldata = list(df = dataf, X = X, X.d1 = X.d1, X.d2 = X.d2)

R> f2 = Fat ~ Water + X.d2

R> basis.x1 = list(X.d2 = basis1)

R> basis.b1 = list(X.d2 = basis2)

R> res.lm2 = fregre.lm(f2, ldata, basis.x = basis.x1, basis.b = basis.b1)

[1] "Non functional covariate: Water"

[1] "Functional covariate: X.d2"

19

3.4 Nonparametric functional regression model: fregre.np()

An alternative to model of Equation 4 is the nonparametric functional regression studied by
[Ferraty and Vieu (2006)]. In this case, the regression model is written as

yi = r(Xi(t)) + ǫi, (8)

where the unknown smooth real function r is estimated using kernel estimation by means of

r̂(X) =

∑n
i=1K(h−1d(X,Xi))yi

∑n
i=1K(h−1d(X,Xi))

where K is an asymmetric kernel function, h is the smoothing parameter and d is a metric or
a semimetric.
This procedure is implemented in the fregre.np() function and some of its arguments are:

• Ker: Type of asymmetric kernel function, by default asymmetric normal kernel.

• metric: Type of metric or semimetric, by default L2 (metric.lp(...,p=2)).

• type.S: Type of smoothing matrix S, by default Nadaraya Watson (S.NW()).

Again, the function fregre.np.cv() is used to choose the smoothing parameter h by the
validation criteria described in Section 2.2.

• type.CV: Type of validation criterion, by default GCV criterion (GCV.S()).

The code for the Tecator example is:

R> fregre.np(X, y, metric = semimetric.deriv, nderiv = 1)

-Call: fregre.np(fdataobj = X, y = y, metric = semimetric.deriv, nderiv = 1)

-Bandwidth (h): 0.07296407

-R squared: 0.985607

-Residual variance: 3.810363

3.5 Semi-functional partially linear model (SFPLM): fregre.plm()

An extension of the nonparametric functional regression models is the semi-functional partial
linear model proposed in [Aneiros-Pérez and Vieu (2006)]. This model uses a non-parametric
kernel procedure as that described in Section 3.4. The output y is scalar. A functional
covariate X(t) and a multivariate non functional covariate Z are considered.

y = r(X(t))+

p
∑

j=1

Zjβj + ǫ (9)

The unknown smooth real function r is estimated by means of

r̂h(t) =

n
∑

i=1

wn,h(t,Xi)(Yi − ZT
i β̂h)

20

where Wh is a weight function: wn,h(t,Xi) = K(d(t,Xi)/h)∑n
j=1

K(d(t,Xj)/h)
with smoothing parameter

h, an asymmetric kernel K and a metric or semimetric d. In fregre.plm() by default Wh

is a functional version of the Nadaraya-Watson-type weights (type.S=S.NW) with asym-
metric normal kernel (Ker=AKer.norm) in L2 (metric=metric.lp with p=2). The un-
known parameters βj for the multivariate non functional covariates are estimated by means

of β̂j = (X̃T
h X̃h)

−1X̃T
h X̃h where X̃h = (I − Wh)X with the smoothing parameter h and

the identity matrix I. The errors ǫ are independent, with zero mean, finite variance σ2 and
E[ǫ|Z1, . . . , Zp, X(t)] = 0.
Coming back to the example of Section 3.3, the fitted model for the case of a real variable
Z=Water and the second derivative of the absorbance curves (X.d2) as functional covariate
can be obtained by:

R> fregre.plm(f2, ldata, Ker = AKer.epa, type.S = S.KNN)

-Call: fregre.plm(formula = f2, data = ldata, Ker = AKer.epa, type.S = S.KNN)

-Coefficients:

Estimate Std. Error t value Pr(>|t|)

Water -9.634e-01 3.748e-02 -2.571e+01 3.018e-24

-Bandwidth (h): 9

-R squared: 0.994232

-Residual variance: 1.256837

3.6 Prediction methods for functional regression model fits: fregre.fd(),
fregre.lm() and fregre.plm()

Once the model is estimated we can obtain predictions model object by means of:

• predict.fregre.fd() corresponds to the model fitted from the functions fregre.pc(),
fregre.np() or fregre.basis().

• predict.fregre.lm() corresponds to the model fitted from the function fregre.lm().

• predict.fregre.plm() corresponds to the model fitted from the function fregre.plm().

A sample test of the last 86 curves of absorbances (or one of the two first derivatives) can be
used to predict the Fat content, as follows:

R> newy = matrix(tecatoryFat[-ind], ncol = 1)

R> newX = absorp[-ind,]

R> newX.d1 = fdata.deriv(absorp[-ind,], nbasis = 19, nderiv = 1)

R> newX.d2 = fdata.deriv(absorp[-ind,], nbasis = 19, nderiv = 2)

R> res.basis2 = fregre.basis.cv(X.d2, y, type.basis = "fourier")

R> pred.basis2 = predict.fregre.fd(res.basis2, newX.d2)

R> res.pc1 = fregre.pc.cv(X.d1, y, 8)$fregre.pc

R> pred.pc1 = predict.fregre.fd(res.pc1, newX.d1)

R> res.np2 = fregre.np.cv(X.d2, y, metric = semimetric.fourier)

R> pred.np2 = predict(res.np2, newX.d2)

21

pred.basis2 pred.pc1 pred.np2 pred.lm1 pred.plm1

−1
0

−5
0

5
10

Figure 11: Boxplot of predicted residuals: fregre.basis(), fregre.pc(), fregre.np(), fre-
gre.lm() and fregre.plm() (left to right).

We provide below the complete code for the best prediction of the fat content with the
procedures fregre.lm() and fregre.plm() using the non functional covariate Water.

R> newldata = list(df = newdataf, X = newX, X.d1 = newX.d1, X.d2 = newX.d2)

R> f1 = Fat ~ Water + X.d1

R> basis.x1 = list(X.d1 = basis1)

R> basis.b1 = list(X.d1 = basis2)

R> res.lm1 = fregre.lm(f1, ldata, basis.x = basis.x1, basis.b = basis.b1)

[1] "Non functional covariate: Water"

[1] "Functional covariate: X.d1"

R> pred.lm1 = predict.fregre.lm(res.lm1, newldata)

R> res.plm1 = fregre.plm(f1, ldata, Ker = AKer.tri, type.S = S.KNN)

R> pred.plm1 = predict.fregre.plm(res.plm1, newldata)

The boxplots of predicted residuals for each procedure are shown in Figure 11.
We make predictions for the rest of models fitted in this paper (code not shown). Following
the ideas by [Aneiros-Pérez and Vieu (2006)], we calculated the mean square error of pre-

diction (MEP): MEP =
(

∑n
i=1 (yi − ŷi)

2 /n
)

/ (V ar (y)), which is used for comparing the

predictions of different fitted models. Table 1 resumes the statistics of the fitted models and
their predictions.

22

Function df R2 S2
R MEP

fregre.basis(X,Fat) 8 0.937 10.726 0.0544

fregre.basis.cv(X.d2,Fat) 12 0.962 6.613 0.0485

fregre.pc(X.d1,Fat) 7 0.947 8.928 0.0502

fregre.pc(X.d2,Fat) 7 0.943 9.626 0.0521

fregre.lm(Fat X.d1+Water) 9 0.987 2.149 0.0096

fregre.lm(Fat X.d2+Water) 7 0.986 2.412 0.0119

fregre.np(X.d1,Fat) 39.4 0.981 4.239 0.0287

fregre.np(X.d2,Fat) 39.9 0.990 2.361 0.0243

fregre.plm(Fat X+Water) 20.0 0.984 3.049 0.0178

fregre.plm(Fat X.d1+Water) 38.5 0.994 1.314 0.0093

fregre.plm(Fat X.d2+Water) 36.3 0.995 1.107 0.0114

Table 1: Results for functional regression models. df degrees of freedom, S2
R residual variance,

R2 R-squared and MEP mean square error of prediction.

4 Conclusion

The package fda.usc presented in this paper is the result of the integration of our codes
with other procedures from different authors, such as the package fda or the functions from
STAPH group.
One major advantage of this software is to avoid the need of a basis representation of functional
data. Using the new class fdata, the proposed methods can represent the functional data
using discretized versions in a given grid of points.
This package includes most of the methods recently developed for Exploratory Functional
Data Analysis and for Functional Regression with scalar response.
The fda.usc package also incorporates other utilities for statistical computing within the field
of Functional Data Analysis (FDA). Some useful additions are:

• Functional Generalized Linear Models (FGLM): fregre.glm().

• Functional Generalized Additive Models (FGAM): fregre.gsam() and fregre.kgam().

• Functional ANOVA: anova.RPm().

• Functional Supervised Classification : classif.kernel.fd().

• Functional Non-Supervised Classification : kmeans.fd().

• Other utilities and auxiliary functions, as the cond.F() function that calculates the
conditional distribution function of a scalar response with functional data.

Finally, the fda.usc package is an attempt to get an integrated framework for FDA. It is
under continuous development therefore updates will be available in CRAN (see the NEWS
file). Further information is also available at the project website whose URL is given in the
DESCRIPTION file.

23

Acknowledgments

This work was supported by grants MTM2008-03010 from the Ministerio de Ciencia e Inno-
vación, 10MDS207015PR from the Xunta de Galicia and GI-1914 MODESTYA-Modelos de
optimización, decisión, estad́ıstica y aplicaciones.

References

[Aneiros-Pérez and Vieu (2006)] Semi-Functional Partial Linear Regression. Statist. Probab.
Lett., 76(11), 1102–1110. ISSN 0167-7152.

[Cardot et al. (1999)] Functional Linear Model. Statist. Probab. Lett., 45(1), 11–22.

[Cardot et al. (2003)] Spline Estimators for the Functional Linear Model. Statistica Sinica,,
13, 571–591.

[Crainiceanu and Goldsmith (2010)] Bayesian functional data analysis using winbugs Journal
of Statistical Soft, 32(11).

[Cuesta et al. (2010)] A simple multiway ANOVA for functional data. Test., 19(3), 537–557.

[Cuevas et al. (2006)] On the Use of the Bootstrap for Estimating Functions with Functional
Data. Comput. Statist. Data Anal., 51(2), 1063–1074.

[Cuevas et al. (2007)] Robust Estimation and Classification for Functional Data via
Projection-Based Depth Notions. Comput. Statist., 22(3), 481–496.

[Escabias et al. (2005)] Modeling environmental data by functional principal component lo-
gistic regression. CEnvironmetrics, 16(1), 95–107.

[Escabias et al. (2007)] Functional PLS logit regression. Computational Statistics and Data
Analysis, 51, 4891–4902.

[Febrero-Bande et al. (2010)] Measures of Influence for the Functional Linear Model with
Scalar Response. J. Multivariate Anal., 101(2), 327–339.

[Febrero-Bande et al. (2008)] Outlier Detection in Functional Data by Depth Measures, with
Application to Identify Abnormal NOx Levels. Environmetrics, 19(4), 331–345.

[Ferraty and Vieu (2006)] Nonparametric Functional Data Analysis. Springer Series in Statis-
tics. Springer-Velag, New York. Theory and practice.

[Fraiman and Muniz (2001)] Trimmed Means for Functional Data. Test, 10(2), 419–440.

[Goldsmith et al. (2011)] Penalized Functional Regression. Journal of Computational and
Graphical Statistics.

[Härdle (1990)] Härdle W (1990). Applied Nonparametric Regression, volume 19 of Econo-
metric Society Monographs. Cambridge University Press, Cambridge.

[Hyndman and Shang (2010a)] fds: Functional Data Sets. R package version 1.6.,
http://cran.r-project.org/package=fds.

24

http://cran.r-project.org/package=fds

[Hyndman and Shang (2010b)] ftsa: Functional Time Series Analysis. R package version
2.6., http://cran.r-project.org/package=ftsa.

[Martens and Naes (1989)] Multivariate calibration. New York: Wiley

[McCullagh and Nelder (1989)] Generalized Linear Models. Second ed. London: Chapman
and Hall

[Morgan and Smith (1992)] P A note on Wadleys problem with overdispersion. Applied
Statistics, 41, 349–354.

[Müller and Stadtmüller (2005)] Generalized functional linear models. Ann. Statist.., 33,
774–805.

[Mevik and Wehrens (2007)] The pls Package: Principal Component and
Partial Least Squares Regression in R. R package version 2.1.0.,
http://cran.r-project.org/package=pls. Journal of Statistical Software, 18(2),
1–24.

[Preda et al. (2007)] PLS classification of functional data. Comput. Stat, 22(2), 223–235.

[R Development Core Team(2011)] R Development Core Team (2011). R: A Language and
Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna,
Austria. ISBN 3-900051-00-3. http://www.R-project.org/.

[Ramsay and Silverman (2002)] Applied Functional Data Analysis: Methods and case studies.
Springer Series in Statistics. Springer-Verlag, New York.

[Ramsay and Silverman (2005)] Functional Data Analysis. Springer Series in Statistics, sec-
ond edition. Springer-Velag, New York.

[Ramsay et al. (2010)] fda: Functional Data Analysis. R package version 2.2.6.,
http://cran.r-project.org/package=fda.

[Reis et al. (2010)] refund: Regression with Functional Data. R package version 0.1.3.,
http://cran.r-project.org/package=refund.

[Shang and Hyndman (2010)] Rainbow: Rainbow Plots, Bagplots and Boxplots for Func-
tional Data. R package version 2.3.4., http://cran.r-project.org/package=rainbow.

[Venables and Ripley (2002)] Modern applied statistics with S. New York: Springer-Verlag.

[Wasserman (2006)] All of Nonparametric Statistics. Springer Texts in Statistics. Springer-
Velag, New York.

25

http://cran.r-project.org/package=ftsa
http://cran.r-project.org/package=pls
http://www.R-project.org/
http://cran.r-project.org/package=fda
http://cran.r-project.org/package=refund
http://cran.r-project.org/package=rainbow

Reports in Statistics and Operations Research

2005

05-01 SiZer Map for Evaluating a Bootstrap Local Bandwidth Selector in

Nonparametric Additive Models. M. D. Martínez-Miranda, R. Raya-Miranda, W.

González-Manteiga and A. González-Carmona.

05-02 The Role of Commitment in Repeated Games. I. García Jurado, Julio González

Díaz.

05-03 Project Games. A. Estévez Fernández, P. Borm, H. Hamers.

05-04 Semiparametric Inference in Generalized Mixed Effects Models. M. J.

Lombardía, S. Sperlich.

2006

06-01 A unifying model for contests: effort-prize games. J. González Díaz.

06-02 The Harsanyi paradox and the "right to talk" in bargaining among coalitions. J. J.

Vidal Puga.

06-03 A functional analysis of NOx levels: location and scale estimation and outlier

detection. M. Febrero, P. Galeano, W. González-Manteiga.

06-04 Comparing spatial dependence structures. R. M. Crujeiras, R. Fernández-Casal,

W. González-Manteiga.

06-05 On the spectral simulation of spatial dependence structures. R. M. Crujeiras, R.

Fernández-Casal.

06-06 An L2-test for comparing spatial spectral densities. R. M. Crujeiras, R.

Fernández-Casal, W. González-Manteiga.

2007

07-01 Goodness-of-fit tests for the spatial spectral density. R. M. Crujeiras, R.

Fernández-Casal, W. González-Manteiga.

07-02 Presmothed estimation with left truncated and right censores data. M. A. Jácome,

M. C. Iglesias-Pérez.

07-03 Robust nonparametric estimation with missing data. G. Boente, W. González-

Manteiga, A. Pérez-González.

07-04 k-Sample test based on the common area of kernel density estimators. P.

Martínez-Camblor, J. de Uña Álvarez, N. Corral-Blanco.

07-05 A bootstrap based model checking for selection-biased data. J. L. Ojeda, W.

González-Manteiga, J . A. Cristobal.

07-06 The Gaussian mixture dynamic conditional correlation model: Bayesian

estimation, value at risk calculation and portfolio selection. P. Galeano, M. C.

Ausín.

2008

08-01 ROC curves in nonparametric location-scale regression models. W. González-

Manteiga, J. C. Pardo Fernández, I. Van Keilegom.

08-02 On the estimation of α-convex sets. B. Pateiro-López, A. Rodríguez-Casal.

2009

09-01 Lasso Logistic Regression, GSoft and the Cyclyc Coordinate Descent Algorithm.

Application to Gene Expression Data. M. García-Magariños, A. Antoniadis, R.

Cao, W. González-Manteiga.

2010

10-01 Asymptotic behaviour of robust estimators in partially linear models with

missing responses: The effect of estimating the missing probability on simplified

marginal estimators. A. Bianco, G. Boente, W. González-Manteiga, A. Pérez-

González.

10-02 First-Price Winner-Takes-All Contents. J. González-Díaz.

10-03 Goodness of Fit Test for Interest Rate Models: an approach based on Empirical

Process. A. E. Monsalve-Cobis, W. González-Manteiga, M. Febrero-Bande.

2011

11-01 Exploring wind direction and SO2 concentration by circular–linear density

estimation. E. García–Portugués, R.M. Crujeiras, W. González–Manteiga.

11-02 Utilities for Statistical Computing in Functional Data Analysis: The R Package

fda.usc. M. Oviedo de la Fuente, M. Febrero-Bande

Previous issues (2001 – 2003):

http://eio.usc.es/reports.php

mailto:manuel.garcia.magarinos@usc.es
mailto:Anestis.Antoniadis@imag.fr
mailto:Anestis.Antoniadis@imag.fr
mailto:rcao@udc.es
mailto:wenceslao.gonzalez@usc.es

	treport2011_11_28.pdf
	1 Introduction
	2 Exploring Functional Data: definition, representation and description
	2.1 Functional Data Definition
	2.2 Functional data representation: smoothing
	2.3 Measuring distances
	2.4 Exploring Functional Data
	2.5 Functional Depth in Bootstrap replications
	2.6 depth measures II

	3 Functional regression models
	3.1 fregre.basis
	3.2 fregre.pc
	3.2.1 fregre.pc
	3.2.2 fregre.pc

	3.3 fregre.lm
	3.4 fregre.np
	3.5 fregre.plm
	3.6 fregre.plm

	4 Conclusion
	References

