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Abstract

Statistical methods generating sparse models are of great value in
the gene expression field, where the number of covariates (genes) under
study moves about the thousands, while the sample sizes seldom reach
a hundred of individuals. For phenotype classification, we propose dif-
ferent lasso logistic regression approaches with specific penalizations for
each gene. These methods are based on a generalized soft–threshold
(GSoft) estimator. We also show that a recent algorithm for convex
optimization, namely the cyclic coordinate descent (CCD) algorithm,
provides with a fast way to solve the optimization problem posed in
GSoft. Results are obtained for simulated and real data. The leukemia
and colon datasets are commonly used to evaluate new statistical ap-
proaches, so they come in useful to establish comparisons with simi-
lar methods. Furthermore, biological meaning is extracted from the
leukemia results, and compared with previous studies. In summary,
the approaches presented here give rise to sparse, interpretable mod-
els, competitive with similar methods developed in the field.

1 Introduction

Advent of high–dimensional data in several fields (genetics, text categoriza-
tion, combinatorial chemistry,. . . ) is an outstanding challenge for statistics.
Gene expression data is the paradigm of high–dimensionality, usually com-
prising thousands (p) of covariates (genes) for only a few dozens (n) of sam-
ples (individuals). Feature selection in regression and classification is then
fundamental to get interpretable, understandable models, which might be of
use to the field. First approaches to this problem [19, 20, 32, 46] were based
∗Manuel Garcia–Magariños and Anestis Antoniadis contributed equally to this work.
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on filtering to select a subset of covariates related with the outcome, usu-
ally a binary response. Nevertheless, common methods developed nowadays
search for variable selection and classification carried out in the same step.
Sparse models are needed to account for high–dimensionality (the p >> n
problem) and strong correlations between covariates.

Penalized regression methods have received much attention over the past
few years, as a proper way to get sparse models in those fields with large
datasets. Lasso [43] was originally proposed for linear regression models,
and subsequently adapted to the logistic case [39, 41]. Lasso applies a l1
penalization that, as opposed to ridge regression [21], gives rise to sparse
models, ruling out the influence of most of the covariates on the response.
Consistency properties of lasso for the linear regression case have been full
well studied [29, 34, 36, 51, 52]. An evolution of lasso that allows for specific
penalizations in the l1 penalty (adaptive lasso) is developed in [53]. Lasso
has been also adapted to work with categorical variables [2, 4, 35, 49] and
multinomial responses [30]. Other penalized regression methods include
bridge estimators [13], which replace the l1 penalization with lq penalization,
being 0 < q < 1, and the elastic net [54], that penalizes by means of a
linear combination of l1 and l2 penalties. Consistency studies about bridge
and elastic net can be found in [22] and [6], respectively. Application of
both approaches to high–dimensional genetic data is carried out in [33].
Optimization of the lasso log–likelihood function is also an important subject
of study [31, 40], as a result of the non–differentiability problems of the l1
penalty around zero.

In this study, we adopt an adaptive lasso logistic regression approach
based on the generalized soft–threshold estimator (GSoft) [28]. A theoret-
ical connection between existence of solution in GSoft and convergence of
the cyclic coordinate descent (CCD) algorithm [50] is established, allowing
the solutions obtained with the latter to take advantage of the asymptotic
properties of the former. We try different vectors Γ for the specific penal-
ization of each covariate (gene) and some consistency results [24] are shown
for each one. Extensive comparisons with similar approaches are carried out
using simulated and real microarray data.

The rest of this paper is organized as follows: a short introduction about
the CCD algorithm, GSoft and some of its asymptotic properties is given
in Section 2, together with the theoretical connection between both and the
three different Γ choices for the specific penalizations. Some consistency
results for each one are added. Results of simulated and real data are shown
in Section 3. Simulations include approximations of the variance–covariance
matrix for the estimated coefficients. Real data includes leukemia [17] and
colon [1] datasets. Finally Section 4 is devoted to conclusions, and the
Appendix contains the proof of Theorem 2.
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2 Methods

Our aim is to learn a binary gene expression classifier yi = f(xi) from a
set D = {(x1, y1), . . . , (xn, yn)} of independent and identically distributed
observations. In each sample i, the vector

xi =

xi1...
xip

 ∈ Rp (1)

comprises gene expression measurements. The n × p design matrix is then
X = (xj , j ∈ {1, . . . , p}) where the xj ’s represent the expression measure-
ments of gene j along the entire set of samples. The vector of binary re-
sponses

y =

y1
...
yn

 (2)

informs about membership (+1) or nonmembership (-1) of the sample to the
category. The logistic regression model with vector of regression coefficients
β ∈ Rp assumes that

P (yi = 1|xi) =
1

1 + exp(−x′iβ)
. (3)

Adopting a generalized linear model framework, the associated linear pre-
dictor η is defined as

η = Xβ =

x
′
1β
...

x
′
nβ,

 where X =

x
′
1
...

x
′
n

 and β =

β1
...
βp

 . (4)

The decision of whether to assign the i sample to the category or not is
usually accomplished by comparing the probability estimate with a threshold
(e.g. 0.5). Consequently, minus the log–likelihood function is

L(β) =
n∑
i=1

ln
[
1 + exp(−yix

′
iβ)
]

(5)

The lasso like logistic estimator β̂ with specific penalizations for each
covariate is then given by the minimizer of the function
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L1(β) = L(β) + λ

p∑
j=1

γj |βj | (6)

where λ is a common nonnegative penalty parameter and the vector Γ =
(γ1, . . . , γp) with nonnegative entries penalizes each coefficient. The stan-
dard lasso regularization [43] takes γj = 1 ∀j. Minimization of these ob-
jective functions makes use of their derivatives. We refer to the gradient of
L(β) as the score vector whose components are defined by:

sj(β) =
∂L(β)
∂βj

(7)

The negative Hessian with respect to the linear predictor η is defined as

H(η) = −∂
2L(η)
∂η∂η′

(8)

The basic requirement for the weights γj is that their value should be
large enough to get β̂j = 0 if the true value βj is zero, and small otherwise.
Obtaining of a sparse, interpretable model is of paramount importance in
those areas where the number of variables usually outperforms the sample
size (p >> n problem). The choice of the Γ vector is therefore essential to
get an accurate estimator β̂.

2.1 Cyclic coordinate descent (CCD) algorithm

The choice of a proper algorithm to solve the minimization of (6) is a
main issue, as it needs to be capable of dealing with the problem of non–
differentiability of the absolute value function around zero. Furthermore,
efficiency of the algorithm is fundamental, given the high–dimensionality of
the problems at hand.

A number of different algorithms have been developed to obtain the opti-
mum for the objective function. In [16] a “Split-Bregman” method is applied
to solve L1-regularized problems, while in [47] an algorithmic framework for
minimizing the sum of a smooth convex function with a nonsmooth non-
convex one is proposed. A similar algorithm is used in [27] to obtain the
solution for the SCAD estimator in high–dimensions. Two new approaches
are developed in [40], together with a comparative study. An efficient algo-
rithm is carried out in [31], using LARS [11] in each iteration. A local linear
approximation (LLA) algorithm was recently proposed by [55], while [45] de-
veloped a method of least squares approximation (LSA) for lasso estimation,
making use of the LARS algorithm.
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Finding the estimate of β is a convex optimization problem. The cyclic
coordinate descent algorithm is based on the CLG algorithm of Zhang and
Oles [50]. An exhaustive description of the algorithm is beyond the scope of
this paper, and interested readers are referred to the detailed description in
[15]. The basis of all cyclic coordinate descent algorithms is to optimize with
respect to only one variable at the time while all others are held constant.
When this one–dimensional optimization problem has been solved, opti-
mization is performed with respect to the next variable, and so on. When
the procedure has gone through all variables it starts all over with the first
one again, and the iterations proceed in this manner until some pre–defined
convergence criterion is met. The one–dimensional optimization problem is
to find βnewj , the value for the j–th parameter that maximizes the penalized
log–likelihood assuming that all other βj ’s are held constant. In the end,
the update equation for βj becomes

βnewj =


βj −∆j if ∆vj < −∆j

βj + ∆vj if −∆j ≤ ∆vj < ∆j

βj + ∆j if ∆j < ∆vj

where the interval (βj−∆j , βj+∆j) is an iteratively adapted trust region for
the suggested update ∆vj . The width of this interval is determined based
on its previous value and the previous update made to βj . The suggested
update is given by

∆vj = −sj(β)− λγjsign(βj)
Q(βj ,∆j)

(9)

The essential idea in CCD is Q(βj ,∆j) to be an upper bound on the
second derivative of L1(β) in the interval around βj :

∂2L1(β)
∂β2

j

=
n∑
i=1

x2
ijexp(−yix

′
iβ)[

1 + exp(−yix
′
iβ)
]2 (10)

The function Q(βj ,∆j) is given by the expression:

Q(βj ,∆j) =
n∑
i=1

x2
ijF (yix

′
iβ,∆jxij) (11)

with the function F being defined by

F (B, δ) =
{

0.25 if |B| ≤ |δ|
[2 + exp(|B| − |δ|) + exp(|δ| − |B|)]−1 otherwise.

(12)
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A proof of Q being an upper bound in the aforementioned interval is
straightforward. Advantages of CCD can be summarized in efficiency of
the algorithm, stability and ease of implementation. Efficiency is due to
several factors: CCD works following a cycling procedure along the coeffi-
cients. From a certain iteration, CCD only visits the active set, reducing
considerably its computational demands. Implementation has been carried
out by means of the R package glmnet. This approach is explained in [14],
where it is proved to be faster than its competitors.

2.2 GSoft

The generalized soft–threshold estimator or GSoft [28] is claimed to be a
compromise between approximately linear estimators and variable selection
strategies for high dimensional problems. Our interest in GSoft lies in the
fact that once a solution β exists, a bunch of asymptotic properties can
be derived. The next theorem from [28] establishes necessary and sufficient
conditions for the existence of such solution.

Theorem 1. The following set of conditions is necessary and sufficient for
the existence of an optimum β̂ of L1(β)

(a)
|sj (β) | ≤ λγj if βj = 0
sj (β) = λγj if βj > 0
sj (β) = −λγj if βj < 0

 (13)

(b)

X
′
λH (η)Xλ is positive definite, (14)

where Xλ retains only those columns (covariates) xj of X fulfilling |sj(β)| =
λγj, that is, Xλ = (xj , |sj(β)| = λγj).

2.2.1 Approximation of the covariance matrix for the estimated
coefficients.

Approximations to the variance–covariance matrix of β̂ have to deal with
the non–differentiability problem of the penalization term around |βj | = 0.
This fact is solved by taking a differentiable approximation a(βj , δ) to the
absolute value function, obtained by smoothing it around zero

a(βj , δ) =

{
|βj | if |βj | > δ
(β2

j +δ2)

2δ if |βj | ≤ δ
, (15)

with δ > 0 and satisfying limδ→0a(βj , δ) = |βj |.
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So an approximation can be constructed from the well–known sandwich
form developed in [25]

Vδ(β̂) =
{
H(β̂) + λΓG

(
β̂, δ

)}−1
Var

{
s(β̂)

}{
H(β̂) + λΓG

(
β̂, δ

)
)
}−1

(16)

where H(β̂) is the negative Hessian of L but now as a function of β̂ and G is
the diagonal matrix made up of the second derivatives of the approximations
a(βj , δ):

G(β, δ) = diag
(
I {|β1| ≤ δ}

δ
, . . . ,

I {|βp| ≤ δ}
δ

)
(17)

In these conditions it is clear that, when δ → 0, the diagonal elements of
the matrix G(β̂, δ) corresponding to βj = 0 tend to ∞, making the covari-
ance matrix Vδ(β̂) become singular in the limit. So regularity conditions of
the asymptotic theory are not fulfilled with GSoft when any of the coeffi-
cients take the value zero. This is a major concern, since it is just one of
the desirable characteristics in a proper variable selection method.

GSoft solves this problem developing an estimator of the covariance ma-
trix that smooths the discontinuity in G(β̂, δ) when δ → 0 by means of
approximating using the expectation of G and a continuous variable (e.g.
normal) with mean in β̂. The estimator is

V̂ (β̂j) =
{
H(β̂) + λΓG∗

(
β̂, σ̂

)}−1
F̂ (β̂)

{
H(β̂) + λΓG∗

(
β̂, σ̂

)}−1
(18)

where

G∗
(
β̂, σ

)
= diag

{
2
σ1
ϕ(β̂1/σ1), . . . , 2

σp
ϕ(β̂p/σp)

}
(
σ̂2

1, . . . , σ̂
2
p

)
= diag

[
H(β̂)−1F̂ (β̂)H(β̂)−1

]
ϕ density function of the normal distribution

(19)

Anyhow, the main point to get a well established approach to the real
variance–covariance matrix is to use an accurate estimator F̂ of the Fisher
matrix given by

F (η) = −E
{
∂L(η)
∂η∂η′

}
(20)

Firstly, we made use of the approach carried out in [3]. Nevertheless,
after some tests we realized that such a choice really underestimates the true
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variance–covariance values. Our solution consists of rescaling this matrix
multiplying it by a factor equal to the number p of variables in the model.
So

F̂ (β̂) = I(β̂) =
p[∂2L(β̂)/∂βiβj ]

n
(21)

Goodness–of–fit for this estimator is discussed in the results section.

2.3 Connection GSoft - CCD algorithm

The main aim of this article is to establish a theoretical connection between
the convergence of the CCD algorithm and the existence of an optimum for
the objective function with GSoft. This theoretical connection is established
by the next theorem (proof in the Appendix).

Theorem 2. The following two statements are equivalent:
(1) The CCD algorithm for the lasso case converges.
(2) An optimum for the objective function under the terms of the theorem
in [28] exists.

In this way, positive results of convergence obtained with the CCD algo-
rithm can take advantage of the asymptotic properties of GSoft. Similarly,
solutions obtained with GSoft are consistent in the way proved in [35].

2.3.1 Choice of Γ

As we mentioned above, we use a global threshold λ together with a vec-
tor of specific thresholds Γ = (γ1, . . . , γp) corresponding to the coefficients
β1, . . . , βp of each variable in the model. In this study, we will evaluate the
performance of three different choices for the Γ vector:

1. γj =
√

var(xj). This is one of the choices carried out in [28]. As a
consequence, we will refer to it as γ–Klinger. Adjusting the thresholds
like this is equivalent to standardization.

2. γj = 1

|βridge
j |

. Ridge logistic regression was performed on data with

a small global threshold λ0, obtaining coefficients βridge
j 6= 0, ∀j =

1, . . . , p. This choice is related to penalize according to the importance
of the variable in ridge, and it is based on a special case of the adaptive
lasso [53]. This choice will be designated as γ–ridge.

3. γj = 1
|βlasso

j | . Lasso logistic regression was performed on data with

a small global threshold λ0 and without using specific thresholds γ.
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Obviously, some coefficients βlasso
j will take zero values. In this case,

these variables are excluded from the final model, which is equivalent
to take γj =∞. It will be named as γ–lasso.

2.3.2 Consistency results.

Variable selection consistency results in lasso can be found in the recent
related literature. Oracle property [12] for the adaptive lasso in linear re-
gression models is proved in [23]. Consistency results shown here are based
on the subsequent adaptation of these results to the logistic case, carried
out in [24], for the γ–lasso, there called iterated lasso.

The number of covariates p will be taken as a function of sample size,
so the notation pn will be used. For a set of indices B ⊆ {1, . . . , pn} we
consider XB = (xj , j ∈ B) and CB = X

′
BXB/n. From them we define:

c(m) = min|B|=mmin‖v‖=1v
′
CBv (22)

c(m) = max|B|=mmax‖v‖=1v
′
CBv (23)

The Sparse–Riesz Condition (SRC) [51] is satisfied by the covariance
matrix X with rank q and spectrum bounds 0 < c∗ < c∗ <∞ if

c∗ < c(q) < c(q) < c∗ (24)

Let us take the subset of indices with true nonzero coefficients B0 =
{j, βj 6= 0}. Let kn = |B0| and mn = pn− kn be the number of nonzero and
zero coefficients, respectively, and bn1 = minj∈B0 |βj |, bn2 = maxj∈B0 |βj | the
minimum and the maximum of the true nonzero coefficients. Let us assume
the following conditions:

(i) Bounds for the true coefficients and the covariates:

(i1) For some constant 0 < b <∞, it is fulfilled that bn2 < b.

(i2) For some constant M > 0, it is fulfilled that |xij | < M for all
i ∈ {1, . . . , n}, j ∈ {1, . . . , pn}.

(ii) The design matrix X satisfies the SRC with bounds {c∗, c∗} and rank
qn = M1n

2/λ2
0 being M1 a positive constant.

(iii) When n→∞, the following convergence is satisfied
√

ln kn
bn1
√
n

+
√
nln mn

λrn
+
λ
√
kn

nbn1
→ 0 (25)

where rn is the order of consistency at zero [24] of the primary lasso
estimator.
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Under (i)–(iii) it has been proved that

P (sign(β̂) = sign(β))→ 1 (26)

where the sign function is now taken in a slightly different way than in (9):
sign(θ1, . . . , θp) = (sign(θ1), . . . , sign(θp)) and

sign(t) =


−1 if t < 0
0 if t = 0
1 if t > 0

so nonzero coefficients are correctly selected with γ–lasso with probability
converging to one. From the same assumptions a result for the asymptotic
distribution of the estimated nonzero coefficients of β̂ wih respect to the
true ones β can be constructed. The following definitions are needed:

βB0
= (βj , j ∈ B0)

′
(27)

β̂B0
= (β̂j , j ∈ B0)

′
(28)

xiB0 = (xij , j ∈ B0)
′

(29)

ε = (ε1, . . . , εn)
′

(30)

ΣB0 =
1
n
X
′
B0
DXB0 (31)

where εi = yi − (2P (yi = 1|xi)− 1) and D is the diagonal matrix composed
by the products of the logistic probabilities of case and control in each
individual sample. Then, for s2

n = σ2α
′
Σ−1
B0
α with α any vector of length kn

fulfilling ‖α‖ ≤ 1, the following asymptotic property is satisfied by logistic
lasso estimators β̂ with the γ–lasso choice:

√
n

sn
α
′
(β̂B0

− βB0
) =

∑n
i=1 εiα

′
Σ−1
B0

xiB0√
nsn

+ op(1)→D N(0, 1) (32)

whenever λ
√
kn√
n
→ 0.

These two results, (26) and (32), together mean the γ–lasso choice has
the asymptotic oracle property. The proof can be found in [24], which also
refers to the proof for the linear case in [23]. A careful study of both proofs
is enough to realize that only minor changes in the assumptions have to
be applied to transfer the oracle property to the γ–ridge choice of specific
penalizations.

When γ–Klinger penalizations are selected, this is equivalent to stan-
dardization, as proved in [28]. Therefore, only usual consistency lasso re-
sults [24, 35] can be proved in this case, and oracle property does not hold.
An upper bound for the number of estimated nonzero coefficients in lasso is
given in [24]. There, it is proved that the dimension of the model selected
by lasso is directly proportional to n2 and inversely proportional to λ.
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3 Results.

3.1 Simulated data.

We have simulated two scenarios with binary response according to one of
the examples in [26]. In both of them, the response follows:

P (y = 1|x) =
1

1 + exp(−x′β)

and the complementary probability for y = −1. This example has been
adapted to two specifical scenarios carried out in [45] (Simulation 1) and
[55] (Simulation 2), with the aim of comparing our results with those ob-
tained there. Furthermore, a third bunch of simulations have been developed
following [26]. We have also used the scenario in [55] to obtain the results
of approximation of variance as explained in the last section.

3.1.1 Simulation 1.

Our aim is to compare our results with those obtained with the least squares
approximation (LSA) estimator. Comparisons with the results of the Park
and Hastie (PH) algorithm of [38] shown in [45] are also established. The
model is 9–dimensional with coefficients β = (3, 0, 0, 1.5, 0, 0, 2, 0, 0)

′
. The

components of xi are standard normal and the correlation between each
pair of variables xj1 and xj2 is fixed to 0.5|j1−j2|. The sizes of the training
samples are n = 200 and n = 400, and 500 simulation replications have been
obtained each time. The BIC criterion is used to obtain the best solution
for LSA and PH, while for the choice of λ in our models, we follow a slightly
different approach. As choosing the λ giving rise to the smallest error rate
(ER) does not necessarily produce a sparse model, we take the largest λ
having an error rate smaller than minλER+ 2 ∗ sd(ER). Results are shown
in Table 1. From now on, lasso logistic regression will be referred with the
abbreviation LLR.

The different estimators are compared in terms of model size (MS) and
percentage of correct models identified (CM). Unlike [45], here we will not
use the relative model error as a comparative measure, since it puts too
much weight to the model error without penalty. Besides, in problems in-
volving large amounts of noise, detection of the variables associated with
the response is much more important than precise estimation of the true
coefficients. Results obtained with our models are slightly better than those
in [45], despite improvement of the results of LSA and PH seemed to be
highly difficult. Comparisons between the different choices for the Γ vector
are favorable to γ–ridge and γ–lasso, as the γ–Klinger seems to be more
imprecise than those two regarding detection of the correct model. This

11



Sample Estimation MS CM
size Method Mean (SE) Mean (SE)

200 LLR γ–Klinger 3.266 (0.025) 0.762 (0.019)
LLR γ–ridge 2.896 (0.025) 0.812 (0.017)
LLR γ–lasso 2.96 (0.028) 0.798 (0.018)

LSA 3.178 (0.026) 0.798 (0.018)
PH 3.272 (0.033) 0.716 (0.020)

400 LLR γ–Klinger 3.046 (0.011) 0.956 (0.009)
LLR γ–ridge 2.964 (0.021) 0.860 (0.016)
LLR γ–lasso 2.982 (0.022) 0.902 (0.013)

LSA 3.130 (0.018) 0.888 (0.014)
PH 3.092 (0.023) 0.846 (0.016)

Table 1: True model detection results. Comparison between our models and
those in [45] is established in the same terms as there.

imprecision grows when sample size decreases, until reaching the standard
of LSA and PH.

3.1.2 Simulation 2.

Comparisons with the one–step sparse estimates developed in [55] are carried
out, along with the SCAD and the other variable selection models used there.
The second model is 12–dimensional with β = (3, 1.5, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0)

′
,

while x is obtained as in Simulation 1, but with one important difference:
variables with even index are translated to binary according to their sign.
Size of the training sample is n = 200 and 1000 replicated datasets were
obtained. Choice of the optimal λ for our models is carried out in a similar
way to Simulation 1, but taking the largest λ having an error rate smaller
than minλER+ 0.2 ∗ sd(ER). Results are shown in Table 2.

Same terms as in [55] are used: columns ‘C’ and ‘IC’ measure the av-
erage number of nonzero coefficients correctly estimated to be nonzero and

Proportion of
Method C IC Under-fit Correct-fit Over-fit

LLR γ–Klinger 2.84 1.68 0.16 0.14 0.70
LLR γ–ridge 2.77 0.82 0.22 0.40 0.37
LLR γ–lasso 2.71 0.71 0.29 0.40 0.31

one-step SCAD 2.95 0.82 0.051 0.565 0.384
one-step LOG 2.97 0.61 0.029 0.518 0.453
one-step L0.01 2.97 0.61 0.028 0.516 0.456

SCAD 2.92 0.51 0.076 0.706 0.218
P-SCAD 2.92 0.5 0.079 0.707 0.214

AIC 2.98 1.56 0.021 0.216 0.763
BIC 2.95 0.22 0.053 0.800 0.147

Table 2: True model detection results. Comparison between our models and
those in [55] is established in the same terms as there.
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the average number of zero coefficients incorrectly estimated to be nonzero,
respectively; “Under–fit” and “Over–fit” show the proportion of models ex-
cluding any nonzero coefficients and including any zero coefficients through-
out the 1000 replications, respectively. “Correct–fit” shows the proportion
of correct models obtained.

Our methods show a worse behaviour than those in [55]. After some
tests (results not shown) we realized that the reason was that they suffer
a lot from the presence of binary variables. This is not a major concern,
since our aim was to apply these methods to gene expression data, where
all the variables move in a continuous way. Therefore, with the intention of
testing them in a continuous environment, conditions in [26] were replicated.
These conditions are the same as in Simulation 1 but the correlation between
variables is now fixed to ρ = 0.25 and ρ = 0.75. Sample size was also fixed
to n = 200. Results are shown in Table 3.

ρ = 0.25 ρ = 0.75
Method C I C I

LLR γ–Klinger 5.96 0.034 5.562 0.326
LLR γ–ridge 5.9 0.166 5.912 0.778
LLR γ–lasso 5.9 0.176 5.916 0.76

New 5.922 0 5.534 0.222
LQA 5.728 0 4.97 0.090
BIC 5.86 0 5.796 0.304
AIC 4.93 0 4.86 0.092

Table 3: True model detection results. Comparison between our models and
those in [26] is established in the same terms as there.

Optimal λ is chosen as in Simulation 1. “C” and “I” measure the av-
erage number of coefficients correctly and incorrectly set to zero, respec-
tively. Comparisons are made with a new proposed algorithm in [26], a
local quadratic approximation (LQA) algorithm developed in [12] and best
subset variable selection using BIC and AIC scores. Competitive results are
obtained with respect to the procedure in [26]. The best variable selection
is obtained using BIC. The results obtained with the γ–Klinger are similar
to the ones with γ–ridge and γ–lasso.

3.1.3 Approximation of variance.

Covariance matrix estimation for the estimated coefficients have been ob-
tained according to the approach previously explained. The same model
as in Simulation 2 has been used, without the translation to binary (for
simplicity). In Figure 1 the behaviour of variance estimation for β1 = 3,
β2 = 1.5 and β3 = 0, respectively, is shown in comparison with the true
variance, as a function of λ. The estimation, obtained as the median on
1000 replications, fits almost perfectly to the variance except for small devi-
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Figure 1: Variance estimation (in red) for the estimated values of β1, β2

and β3 in Simulation 2 according to the estimator (18) with F̂ taken as
in (21). True variance (in black) was approximated by means of recursive
simulation–estimation. Variance is displayed as a function of the penalty
parameter λ.

ations when λ approachs zero (maximum likelihood estimator), as the true
variance increases enormously.

3.2 Real data.

The leukemia dataset [17] has been used on countless occasions through
the gene expression literature. It comprises gene expression data for 72
bone marrow and peripheral blood samples (47 cases of acute lymphoblastic
leukemia (ALL) and 25 cases of acute myeloid leukemia (AML)) in 7129
genes. Initially [17] the total sample was divided into a training sample (38
bone marrow samples) and a test sample (34 bone marrow and peripheral
blood samples).

The colon dataset was analyzed initially by [1]. As leukemia, it is an-
other commonly used dataset in genomic studies. A number of 62 samples
(40 tumors and 22 controls) were measured in 2000 human genes. Ab-
solute measurements from Affymetrix high–density oligonucleotide arrays
were taken for each sample in each gene in both datasets. Here, we have
worked with data in two different ways. On one side, we have carried out
preprocessing steps (P) following [10], (i) thresholding of the measurements,
(ii) filtering of genes, (iii) base 10 logarithmic transformation. On the other,
we have also tried our models over the raw data (RD). With preprocessing,
leukemia and colon datasets reduce their dimensionality to 3571 and 1225
genes, respectively.
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Leukemia Test error SD Genes

RD-γ Klinger 0.062 (0.044) 67 (of 7129)
RD-γ Zou 0.064 (0.039) 11 (of 7129)

RD-γ Lasso 0.102 (0.055) 6 (of 7129)
P-γ Klinger 0.079 (0.032) 16 (of 3571)

P-γ Zou 0.067 (0.030) 5 (of 3571)
P-γ Lasso 0.064 (0.028) 5 (of 3571)

Table 4: Test error and sparsity results for the leukemia dataset.

As a result of combining these two ways to deal with data with the three
different choices for γ, we have six different models. Table 4 shows the results
for the leukemia dataset. To obtain accurate and precise measures for the
error and its standard deviation, we split 50 times the set of 72 samples into
a training set of 38 samples and a test set of 34 samples. We also record the
number of genes with non-zero coefficient for the optimal lambda, in terms
of cross–validation (CV) error.

Table 5 shows the results for the colon dataset. The 62–sample has been
randomly splitted 50 times into a training subsample of 50 observations and
a test subsample of 12 observations.

When looking for other error test results obtained with different meth-
ods, it is common and correct to think that leukemia and colon datasets
have been often used in the scientific literature since its appearance years
ago. Nevertheless, it is difficult to find a fair comparison between methods,
since each author uses a different way to obtain an error measure. Some of
them only focus on a leave–one–out cross–validation rate (too optimistic);
others center on the same data subdivision carried out by [17]; finally, the
fairest way to know the real performance of each method is to randomly
split the total sample N times into two disjoint samples, training and test.
Table 6 compare our best results with those from methods obtaining their
error rate following the latter way.

Comparisons with the following methods have been established. In [5], a
CART-based method is developed to discover the emerging patterns inside
the set of variables. BagBoosting [8] is a combination of bagging and boost-
ing, two ensemble learning algorithms, applied to stumps, decision trees with
only one split and two terminal nodes. Different algorithms are presented

Colon Test error SD Genes

RD-γ Klinger 0.195 (0.130) 10 (of 2000)
RD-γ Zou 0.147 (0.116) 17 (of 2000)

RD-γ Lasso 0.200 (0.128) 9 (of 2000)
P-γ Klinger 0.152 (0.096) 11 (of 1225)

P-γ Zou 0.182 (0.111) 15 (of 1225)
P-γ Lasso 0.215 (0.133) 10 (of 1225)

Table 5: Test error and sparsity results for the colon dataset.
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Dataset Method Test error

Leukemia Our best 0.062
CART-Fisher [5] (*) 0.024–0.050
BagBoosting [8] (**) 0.0408

Pelora [9] (**) 0.0569
Wilma [9] (**) 0.0262
Forsela [9] (**) 0.0415
PLS [37] (***) 0.033–0.047
PCA [37] (***) 0.039–0.108

Colon Our best 0.147
CART-Fisher [5] (*) 0.128–0.234
BagBoosting [8] (**) 0.161

Pelora [9] (**) 0.1571
Wilma [9] (**) 0.1648
Forsela [9] (**) 0.1381

Table 6: Test error rates obtained using different methods from the scientific
literature for the leukemia and colon datasets. (*) In each random split, 10
observations in the test set. (**) In each random split, 2/3 of the data to
the training set, 1/3 of the data to the test set. (***) In each random split,
1/2 of the data to the training set, 1/2 of the data to the test set.

in [9]. Pelora is a penalized logistic regression method. Forsela is similar
to Pelora, but making a search of single genes instead of groups, Wilma [7]
shares some characteristics with Pelora, but suffers from a few limitations
[9]. [37] uses dimension reduction through partial least squares (PLS) and
principal component analysis (PCA), classifying with discriminant analysis.
Our error results are only slightly worse than the others for the leukemia
dataset, and among the best for colon. In any case, all the error rates are
quite similar. Many of the methods we compare with stand out for group-
ing genes ([5], [37], Pelora and Wilma in [9]) in one way or another. Gene
preselection is carried out by means of preexisting methods in [5] and [8].
Our logistic lasso methods neither makes use of grouping or gene prese-
lection nor it is necessary to select a lot of different parameters, as in [5],
appart from the penalty λ. Moreover, its sparsity (see Tables 4 and 5) and
the interpretability associated with it are merits not fulfilled by these other
methods.

Gene expression data is seen as the paradigm of the case n << p, as
Affymetrix or oligonucleotide arrays map large parts of the human genome
while only tens or hundreds of individuals are sampled. This situation makes
most of traditional statistical methods inapplicable, so new variable selection
approaches had to be developed to deal with this curse of dimensionality
problem. Lasso selects a group of p

′ ≤ n genes with high importance in the
classification of samples, and assign a zero coefficient to the rest. Use of the
CCD algorithm to solve the optimization problem is highly desirable, as it
provides with the global solution of GSoft in the fastest way.
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In a more biological way, we have also studied which genes are more
related with the ALL/AML status in leukemia. Observations of the genes
with nonzero coefficients for each model have been carried out. As expected,
some recurrences have been found in the six different models. Table 7 shows
those genes appearing more frequently.

The fact that some genes are discovered in some models and not in oth-
ers can be explained from the correlations between them. These correlations
arise as a result of co–inheritance of nearby genes throughout generations.
For instance, gene M19507 takes a nonzero coefficient with all but two of
the models, and gene M92287 takes nonzero coefficients only in these two
models. If we take a careful look to the correlation between them, we de-
tect it as abnormally high. A correlation study between all the genes with
nonzero coefficient in any of the models has been carried out. With the aim
of knowing the real significance of each correlation value, we have obtained
a significance value as the proportion of values, in a set of 10000 random
correlations between pairs of genes from the entire dataset, higher than
the correlation. This way, significance of the correlation M19507–M92287
is 0.0558; the one between M84526–Y00787 is 0.048, which explains why
they are partly complementary. Significances of correlations between gene
Y00787 and the last eight genes in Table 7 are also very low, as they are
detected specifically in those two models where Y00787 is not. In a similar
way, pairwise correlations in this 8–gene group are often high. Complemen-
tarity in the detection by the different models emphasizes one of the biggest
problems of lasso selection, also marked in [54]: when there is a group of
significan variables with high pairwise correlation lasso selects only one, and
does not care which one.

A bunch of articles can be found in the gene expression literature look-
ing for the genes associated with the ALL/AML status. It is expected that
exists some kind of intersection between the sets of genes given by the dif-
ferent studies. First five genes in the relation of Table 7 (M27891, M19507,
M84526, Y00787 and M92287) are also discovered in [32], being M27891 the
one showing the strongest association with disease, as happens here. Three
of the four genes pointed out in [18] (U82759, HG1612 and X95735) are also
discovered here. On the other hand, coincidences with the list given in [44]
are more limited.

4 Conclusion.

We study lasso logistic regression by means of a generalized soft–threshold
(GSoft) estimator. An equivalence between existence of a solution in GSoft
and convergence of the CCD algorithm to the same solution is given. An
approximation of the covariance matrix for the estimated coefficients β̂ based
on the GSoft approach produces very accurate results. The CCD algorithm
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Genes RD-γ Klinger RD-γ Zou RD-γ Lasso P-γ Klinger P-γ Zou P-γ Lasso

M27891 X X X X X X
M19507 X X X X
M84526 X X X X
Y00787 X X X X
M92287 X X
U05255 X X
M17733 X X
M63138 X X
M96326 X X
L07633 X X
U82759 X X
HG1612 X X
M13690 X X
M23197 X X
X95735 X X
Y07604 X X
X85116 X X

Table 7: Genes with nonzero estimated coefficients in the different models for
the leukemia dataset. Here we show the seventeen ones which are detected
in more than one model.

is fast, stable and efficient, and allows different kinds of implementations.
Efficiency of the optimization algorithm is a main issue nowadays, as the
datasets used in many fields (text categorization, image processing,. . . ) have
extraordinary high dimensions.

We tried different options for the vector Γ of specific penalizations in
GSoft. Some of them are based in the variability shown by each covari-
ate, while others depend on previous application of penalized regression
approaches to data. Their consistency properties follow from appropriate
developments in the recent literature.

Finally, we applied these methods to simulated and real gene expression
data. The same simulations carried out in other studies were used here, in
order to provide honest and fair comparisons. Common real gene expression
datasets, like leukemia or colon, allow us to know the ability of these methods
to detect genes related with the disease or trait under study. The penalized
regression approaches performed in this work are expected to give rise to
sparse models, where only a very small percentage of covariates (genes) have
weight in classification/prediction.

Appendix. Proof of theorem 2

The log–likelihood functions in logistic regression and in lasso logistic re-
gression with specific penalizations are given in (5) and (6), respectively.
The first partial derivatives or score functions are:
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sj(β) =
n∑
i=1

−yixij
1 + exp(yix

′
iβ)

(33)

The definition of the ∆vj for the lasso case in [15], applied on a penalized
regression problem with specific penalizations for each variable, is given in
(9). For ease of notation, we will use here S instead of sign(βj). We will
base the entire proof in the steps and the notations used in Figures 4 and 5
in [15]. Many of the terms used there will be repeated here. To clarify the
notation, we will use βj for the true value of the coefficients and β(I)

j for the
value of the jth coefficient in the iteration I of the CCD algorithm.

We will begin proving the equivalence for the case βj = 0, and then we
will move to the more general case of βj > 0 (analogous proof for βj < 0).

Case βj = 0.

(1)⇒ (2)
We assume that the CCD algorithm, as explained in [15], converges.

Therefore, from a certain iteration I we have β(I)
j = 0 and ∆v(I)

j = 0. The
CCD algorithm tries then to improve the objective function value searching
in the positive and the negative direction, so:

{
S = 1 and ∆v(I+1)

j ≤ 0 ⇔ sj(β)− λγj ≤ 0
S = −1 and ∆v(I+1)

j ≥ 0 ⇔ sj(β) + λγj ≥ 0

}
⇔ (34)

{
sj(β) ≤ λγj
−sj(β) ≤ λγj

}
⇔ (35)

⇔ |sj(β)| ≤ λγj (36)

(2)⇒ (1)
We assume now that the necessary and sufficient conditions for conver-

gence in the GSoft theorem are fulfilled. That implies, for βj

|sj(β)| ≤ λγj

We need to bear in mind also that the initial value for βj in the CCD
algorithm is β(0)

j = 0. In this situation and from the definitions of the CCD
algorithm for the lasso case, we have that

• if we try S = 1 (positive direction) then ∆v(0)
j ≤ 0 and positive direc-

tion failed.

• if we try S = −1 (negative direction) then ∆v(0)
j ≥ 0 and negative

direction failed.

19



Therefore, following the steps of the CCD algorithm for the lasso case,
this means we take ∆v(0)

j = 0, as both directions failed, and then

∆βj = min
(
max(0,−∆j),∆j

)
= min

(
0,∆j

)
= 0 (37)

and the CCD algorithm converges.

Case βj > 0 (the proof is analogous for βj < 0).

(1)⇒ (2)
Let us suppose that sj(β) 6= λγj and we will try to show that this gives

rise to a contradiction. As the true βj is positive and the CCD algorithm
converges, from any iteration I we will have βJj > 0 for all iteration J > I,
so S = 1 and ∆vJj 6= 0 following the definition in (9). This way, for any
positive constant k,

∆β(J)
j = min

(
max(∆v(J)

j ,−∆(J)
j ),∆(J)

j

)
6= 0 ⇒ (38)

⇒ ∆(J+1)
j = max

(
2|∆β(J)

j |,
∆

(J)
j

2

)
> k > 0 (39)

and this happens for every iteration J > I, which enters in contradiction
with the convergence of the CCD algorithm to βj .

(2)⇒ (1)
We assume now that necessary and sufficient conditions for convergence

in the GSoft theorem are fulfilled; let us suppose that the CCD algorithm
converges to a different “solution” β̄ 6= β with β̄j 6= βj .

In such case, as the conditions in (a) in the GSoft theorem determine
an unique solution, it has to be sj(β̄) 6= λγj ; then ∆v(J)

j 6= 0, for all J > I

with I ∈ N and therefore ∆β̄j does not converge to 0, which means the CCD
algorithm does not converge either, and we have reached a contradiction.

We have not mentioned or used anywhere in the proof the condition
about the positive definite nature of the matrix X

′
λH(η̂)Xλ. So we have to

prove this condition is also fulfilled when the CCD algorithm converges. We
will prove this by reductio ad absurdum.

Let us assume that X
′
λH(η̂)Xλ is not definite positive. As Xλ is a com-

plete matrix, this implies that H(η̂) is not definite positive, and therefore

−H(η̂) (Hessian) is not definite negative
∂L1(β̂)
∂βj

= 0 for all j ∈ {1, . . . , p}

}
(40)

and therefore the estimated linear predictor η̂ cannot be a maximum of the
objective function in [28], which means β̂ is not a minimum of the objective
function in [15] and the CCD algorithm does not converge (contradiction).
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