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Abstract

We propose a bootstrap local bandwidth selector for additive models.
The selector is derived from a bootstrap approximation of the conditional
mean squared error, based on a wild bootstrap resampling scheme over
the estimated residuals. The selector is computed exactly (without in-
volving Monte Carlo approximations) and in practice can be evaluated
for many additive estimation methods, including backfitting (bivariate),
marginal integration and mixed methods. We study the consistency of
the bootstrap approximation and also carry out an empirical simulation
study to explore the performance of the proposed selector in comparison
with others, considering estimation with backfitting. The graphical tool
SiZer Map enables us to make meaningful comparisons between local and
global selectors.

Key Words: Wild Bootstrap, Smoothing Parameter, Backfitting, Marginal
Integration.

1. INTRODUCTION

Additive models in nonparametric regression were first suggested by Friedman
and Stuetzle (1981) and were popularised by Hastie and Tibshirani (1990).
This additive modelling provides an elegant solution to the so called curse of
dimensionality, which arises with all the multivariate extensions of smoothing
techniques (kernel regression, local linear regression, etc.). In fact, the problem
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can be avoided by separating the effect of each covariate Xd over the response
variable, Y , as additive models do by considering the following regression model,

Y = α +
D∑

d=1

md(Xd) (1)

where α is a constant term and {md, d = 1, . . . , D} denotes a set of unknown
univariate functions (called component functions). Moreover, studies by Stone
(1985, 1986) reveal that such additive models can be estimated by achieving
the univariate convergence rate, this being independent of the fixed number of
covariates involved.

The backfitting algorithm for estimating additive models (Buja, Hastie and
Tibshirani, 1989) is widely accepted because of its straightforward implementa-
tion and intuitive definition. However the theoretical properties of backfitting
estimates are poorly understood because of their iterative origin. These theo-
retical difficulties have motivated the development of other estimation methods
in recent years. An alternative estimation method, which has received consid-
erable interest, is that of the marginal integration, introduced by Linton and
Nielsen (1995). Far from competing against the above powerful techniques,
the latter seeks to achieve the best solution by combining their good features.
Thus, Linton (1997) and Kim, Linton and Hengartner (1999) proposed such
mixed methods, using starting estimations provided by the marginal integra-
tion, within the backfitting algorithm. The estimators thus derived are more
efficient than those obtained by applying pure backfitting. Sperlich, Linton and
Härdle (1999) carried out an interesting comparative study between the two
techniques, showing that, in general, neither can be definitively considered su-
perior to the other; their behaviour depends on the model considered and even
on the estimation point inside the estimation interval. Backfitting performs bet-
ter at boundary points and also when the correlation between the covariates is
high. Many of the theoretical problems of backfitting were solved by Opsomer
and Ruppert (1997), who considered local polynomial smoothers in a bivariate
context. The well-known properties of these smoothers make it possible to de-
rive the asymptotic properties of backfitting solutions and, moreover, to provide
explicit expressions for them. A multivariate extension of the asymptotic prop-
erties of backfitting estimators was derived by Opsomer (2000), but this author
did not provide explicit expressions for them such as were given for the bidi-
mensional situation. Instead, a recursive expression for the additive smoother
was proposed, which was useful for these asymptotic purposes.

The advantages of using local polynomial smoothing are not restricted to
backfitting algorithms; Severance-Lossin and Sperlich (1997) proved the con-
sistency and derived the asymptotic properties of the estimators by marginal
integration when these smoothers are involved. Furthermore, the estimators
are robust for choosing bandwidths, and also reduce bias and thus the mean
squared error.

The choice of smoothing parameter (or parameters) becomes a crucial tech-
nical problem in nonparametric and semiparametric regression, because of its
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direct repercussion on the behaviour of smoothers. For additive models (1) es-
timated by a backfitting procedure, it features bandwidth selectors based on
crossvalidation or generalized crossvalidation (Kauermann and Opsomer, 2004),
and also a simple selector called rule of thumb proposed by Linton and Nielsen
(1995). Besides these automatic selectors, others proposed have been based
on plug-in methodology; see, for example, Opsomer and Ruppert (1998) and
Severance-Lossin and Sperlich (1997).

Crossvalidation selectors are attractive due to their simplicity and intuitive
definition, but they suffer from two main disadvantages (as described by Op-
somer and Ruppert, 1998) that have been widely investigated and accepted not
only in additive modelling but in the general context of nonparametric curve
estimation. From a theoretical perspective, crossvalidation provides estimators
with a convergence rate that is limited to OP (n−1/10), for the unidimensional
case; moreover, they have a high sample variability (Härdle, Hall and Marron,
1988). Besides, in practice and from a computational point of view, cross-
validation is too expensive. Many authors, including Gu and Wahba (1988),
have developed more efficient variants, but even with these improvements, the
procedure requires a long time because of the considerable number of additive
fittings.

By contrast, plug-in methodologies for selecting smoothing parameters re-
quire us to obtain theoretical expressions (normally asymptotic) of the bias and
the variance of regression estimators. Such expressions are not always available
and achieving them can be difficult because of the very definition of estima-
tors, as happens when they derive from iterative processes such as a backfitting
algorithm. In addition, these asymptotic expressions are restricted to severe
theoretical conditions on the model, its design and of course they must be valid
for large sample sizes.

On the other hand, both automatic selectors and plug-in selectors choose
smoothing parameters by minimizing error criteria such as MASE (mean aver-
aged squared error), MISE (mean integrated squared error) and ASE (averaged
squared error). The global nature of these measures leads to smoothing param-
eter values being constant over the whole estimation interval.

Local bandwidth selectors for nonparametric smoothers provide notable im-
provements in the estimation of surfaces by achieving a major adaptation to the
subjacent features of data (Fan and Gijbels, 1995, introduced such a local selec-
tor for univariate local polynomial smoothers based on plug-in ideas). We have
no information about their use for nonparametric estimating additive models.
For semiparametric additive models only, the paper by Opsomer and Ruppert
(1999) defined a bandwidth selector that extended the local one proposed by
Ruppert (1997). Nevertheless, any simple local selectors, like the local version of
the crossvalidation selector proposed by Vieu (1991), for a unidimensional non-
parametric regression context, can be easily adapted to the settings assumed in
the present paper. Without assuming additivity, González-Manteiga, Mart́ınez-
Miranda and Pérez-González (2004) adapted local crossvalidation for selecting
bandwidths in order to estimate bidimensional regression surfaces by local linear
smoothers in their simulations.
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Another outstanding tool for selecting bandwidths, in nonparametric curve
estimation, is the bootstrap methodology. For additive modelling (or general-
ized additive models), many papers have used bootstrap for constructing con-
fidence intervals for regression surfaces (Kauermann and Opsomer, 2003; Kim,
Linton and Hengartner, 1999), and for solving tests (Sperlich, Tjφstheim and
Yang, 2002, formulated tests for detecting interactions between covariates by
using wild bootstrap; also Yang, Sperlich and Härdle, 2003, used wild boot-
strap for testing parametric models). In these papers, wild bootstrap is applied
to resample the regression residuals when the marginal integration procedure is
considered, under both additive models and generalized additive models with a
known link. In the same context, Dalelane (1999) and Härdle, Huet, Mammen
and Sperlich (2001) (for generalized additive models) derive the consistency of
the wild bootstrap procedure.

In the present paper, we propose an estimation of the conditional mean
squared error, based on wild bootstrap, for the problem of estimating a D-
variate additive model. The bootstrap approximation arises from this general
multidimensional context, while the available explicit expressions for backfit-
ting estimators involving local linear smoothers (as proposed by Opsomer and
Ruppert, 1997), for the bivariate case, allow us to compute the bootstrap ap-
proximations exactly, in practice. It also happens when marginal integration
and also other mixed methods are considered. The key for this lies in the linear
form of the estimators over the responses (m̂(x) =

∑n
i=1 wi(x)Yi), which lead

to the following simple expressions for the conditional bias and variance:

B(m̂(x)) =
n∑

i=1

wi(x)m(Xi) − m(x),

V(m̂(x)) =
n∑

i=1

w2
i (x)σ2(Xi).

(2)

This property allows us to compute in a straightforward way the exact ex-
pressions of the proposed bootstrap approximations, without needing Monte
Carlo approximations, which would involve considerable computational cost.

Such a bootstrap approximation of the conditional mean squared error en-
ables us to define a local bandwidth selector which can be extended immediately
to other estimation techniques, like marginal integration and methods which
combine marginal integration with backfitting. Note that, in such cases, the
consistency of wild bootstrap was derived by Dalelane (1999) and Kim et al.
(1999), respectively. Moreover, since the derivation of exact explicit expressions
of bootstrap approximations is based on the linearity of regression estimators, in
these cases the local bootstrap bandwidth selector obtained could be calculated
again, without involving Monte Carlo techniques.

This suggestion for bootstrap estimation follows the same methodology as
was proposed by González-Manteiga, Mart́ınez-Miranda and Pérez-González
(2004) for the multivariate local linear estimator. These authors obtained a
selector which performed very well in estimating regression surfaces. In the
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additive modelling we assume, the local bootstrap selector again performs very
well, as shown in the simulation experiments described.

The remainder of this paper is structured as follows: the next section de-
scribes the notation and preliminary definitions. Section 3 contains the resam-
pling mechanism for constructing the bootstrap approximation of the condi-
tional mean squared error and the definition of the local bootstrap bandwidth
selector. By assuming different additive estimation methods, we calculate exact
expressions of bootstrap bias and variance, and also demonstrate the consis-
tency of bootstrap. Section 4 describes a simulation study for exploring the
finite sample properties of the bootstrap approximations. The exploratory tool,
called SiZer Map, introduced by Chaudhuri and Marron (1999) and adapted to
additive models by Raya-Miranda, Mart́ınez-Miranda and González-Carmona
(2002), is used in this section to evaluate the behaviour of the proposed band-
width selector. SiZer allows us to make meaningful comparisons with other
well-known selectors. In Section 5, some conclusions are drawn, and finally the
proofs are briefly summarized.

2. NOTATION AND PRELIMINAR DEFINITIONS

Let us assume that

Yi = α +
D∑

d=1

md(Xdi) + εi, i = 1, . . . , n, (3)

where {(X1, Y1), . . . , (Xn, Yn)}, with Xi = (X1i, . . . , XDi)T , is a set of inde-
pendent and identically distributed random variables as a R

D+1-valued variable
(X, Y ). The residuals, εi, are independent and identically distributed with mean
0 and different variances, σ2 (Xi). To ensure the identifiability of the compo-
nent functions, md(·), we include the intercept, α, and assume E[md(Xdi)] = 0
(d = 1, . . . , D).

Let f(x) denote the density of vector X and fd(xd) (d = 1, . . . , D), the
marginal densities.

2.1. Estimation by Backfitting

Let Y = (Y1, . . . , Yn)T and X = (X1, . . . ,Xn)T . We write the vectors of the
additive functions at the observation points as md = (md(Xd1), . . . , md(Xdn))T ,
d = 1, . . . , D. Under the additive regression model (3) represents the n × n
smoother matrix with respect to the dth covariate vector as Sd. The component
functions, md, can be estimated nonparametrically at the observation points by
solving the following system of normal equations

I S1 · · · S1

S2 I · · · S2

...
...

. . .
...

SD SD · · · I




m1

m2

...
mD

 =


S1

S2

...
SD

Y (4)
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The backfitting algorithm (Buja, Hastie and Tibshirani, 1989) provides an it-
erative solution of (4). When a bivariate additive model is assumed and the
smoother matrices Sd are based on local polynomial regression estimators, Op-
somer and Ruppert (1997) derived explicit expressions of the backfitting estima-
tors. We show these expressions in the following by introducing this additional
notation:

For any bidimensional point of estimation, x = (x1, x2)T , let sT
d,xd

represent
the equivalent kernels for the local polynomial regression at xd with a degree pd

(d = 1, 2). These equivalent kernels can be written as

sT
d,xd

= eT
1

(
XT

xd
Wxd

Xxd

)−1
XT

xd
Wxd

where the pd + 1-dimensional vector eT
1 = (1, 0, . . . , 0), the matrix

Wxd
= diag

{
1
hd

K

(
Xd1 − xd

hd

)
, . . . ,

1
hd

K

(
Xdn − xd

hd

)}
,

for a kernel function K and the Vector of smoothing parameters h = (h1, h2)T ,
and

Xxd
=

 1 (Xd1 − xd) · · · (Xd1 − xd)pd

...
...

. . .
...

1 (Xdn − xd) · · · (Xdn − xd)pd

 . (5)

Let the smoother matrices be Sd with the rows being the equivalent kernels
at the observations, Xdi (i = 1, . . . , n; d = 1, 2), respectively. We define the
vector of fitted values at the observation points as

m̂ = α̂ + m̂1 + m̂2,

with the constant α being estimated by Y, and m̂d (d = 1, 2) being the solutions
to the set of estimating equations(

I S∗
1

S∗
2 I

)(
m̂1

m̂2

)
=
(

S∗
1

S∗
2

)
Y,

where S∗
d =

(
I − 11T /n

)
Sd (d = 1, 2) and 1 is the n-valued vector (1, . . . , 1)T .

In such a bivariate context, the backfitting algorithm gives the solutions with
the following explicit expressions:

m̂1 =
{
I − (I − S∗

1S
∗
2)

−1 (I − S∗
1)
}

Y ≡ W1Y

m̂2 =
{
I − (I − S∗

2S
∗
1)

−1 (I − S∗
2)
}

Y ≡ W2Y
(6)

provided the inverses also exist.
For m̂ we have

m̂ =
{
11T /n + 2I − (I − S∗

1S
∗
2)

−1 (I − S∗
1) − (I − S∗

2S
∗
1)

−1 (I − S∗
2)
}

Y ≡ WY.
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For simplicity, we assume y = 0 = α̂ in the following.
The estimation (6) at any estimation point, x = (x1, x2)T , can be obtained

simply by applying another step of the backfitting algorithm, which yields the
following expressions:

m̂(x) = m̂1(x1) + m̂2(x2)
.= m̂BA

h (x) (7)

where
m̂1(x1) = sT

1,x1
(Y − m̂2) = sT

1,x1
(Y − W2Y) (8)

and similarly

m̂2(x2) = sT
2,x2

(Y − m̂1) = sT
2,x2

(Y − W1Y), (9)

with W1 and W2 having been defined in (6). Thus, the estimator is linear over
the responses with weights being explicitly written by

wBA
i (x,h) = sT

1,x1
(I − S∗

2S
∗
1)

−1 (I − S∗
2) + sT

2,x2
(I − S∗

1S
∗
2)

−1 (I − S∗
1) , (10)

for each estimation point, x.

2.2. Marginal Integration and mixed methods

The marginal integration method described by Linton and Nielsen (1995) and
Hengartner (1996) among others, estimates each component md(·) by integrat-
ing a pilot multivariate smoother of m(·) involving a D − 1-dimensional proba-
bility measure. The so-called empirical marginal integration estimator is defined
by means of a D-dimensional Nadaraya-Watson estimator, as follows:

Let us consider the partition Xi ≡ (Xdi,X−d,i) where X−d,i is the D − 1-
dimensional vector defined by removing Xdi from Xi. By analogy, x ≡ (xd,x−d).
The multivariate Nadaraya-Watson’s estimator is given by

m̃(x) =
1

nhD

n∑
i=1

KD

(
x − Xi

h

)
Yi

f̂(x)

where KD(t1, . . . , tD) =
∏D

d=1 K(td) with K(·) a scalar kernel, h a scalar band-
width, and f̂(·) an estimator of the density f(·).

Thus, the empirical marginal integration estimator of the d-th component,
md(·), is computed by

γ̂d(xd) = n−1
n∑

j=1

m̃(xd,X−d,j)
.=

n∑
i=1

wdIM
i (xd, h)Yi,

with weights

wdIM
i (xd, h) = n−2h−Df̂(x)

−1
n∑

j=1

K

(
xd − Xdj

h

)
KD−1

(
X−d,i − X−d,j

h

)
.

(11)
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The additive reconstruction is then

m̂IM (x) =
D∑

d=1

γ̂d(xd) =
n∑

i=1

{
D∑

d=1

wdIM
i (xd, h)

}
Yi

.=
n∑

i=1

wIM
i (x, h)Yi

.= m̂IM
h (x).

(12)

Kim et al. (1999) proposed an efficient oracle estimator which was defined
by inserting the empirical marginal integration estimator (12) into a backfitting
algorithm but taking one step only. To define this estimator, first the adjusted
responses are constructed by

Y 2−step
di = Yi −

D∑
j �=d

γ̂j(Xji, h0) (13)

with h0 being a pilot scalar bandwidth. Now we apply the univariate local
polynomial smoother of the pairs {(Xdi, Y

2−step
di ), i = 1, . . . n} to estimate the

d-th component, md, which can be written as

m̂2−step
d (xd) =

n∑
i=1

wLP
i (xd, hd)Y

2−step
di , (14)

where hd is a scalar bandwidth, and the weights wLP
i are those associated to

the univariate local polynomial smoother (of degree pd), i.e.,

wLP
i (xd, hd) = eT

1

(
XT

xd
W̃xd

Xxd

)−1

×
× [1, (Xdi − xd), . . . , (Xdi − xd)p]T Khd

(Xdi − xd)1Xdi∈Son

with a boundary correction that also affects the elements of W̃xd
, by defining

sets Son =
{
x ∈ R

D : bd + h0 ≤ xd ≤ bd − h0, d = 1, . . . , D
}

(where bd and bd

are, respectively, the lower and upper bounds of the support of Xdi, which for
simplicity is assumed to be rectangular).

By substituting (13) in (14) we obtain

m̂2−step
d (xd) =

n∑
i=1

wdOR
i (xd, hd, h0)Yi

with

wdOR
i (xd, hd, h0) = wLP

i (xd, hd)−
n∑

l=1

wLP
l (xd, hd)

D∑
j=1(j �=d)

wjIM
i (Xjl, h0). (15)

Thus the additive estimator given by Kim et al. (1999) can be written in a
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linear way over the responses as follows:

m̂2−step(x) =
n∑

i=1

{
D∑

d=1

wdOR
i (xd, hd, h0)

}
Yi

.=
n∑

i=1

wOR
i (x,h, h0)Yi

.= m̂2−step
h,h0

(x),
(16)

with a D-dimensional vector of bandwidths h = (h1, . . . , hD)T and also a scalar
bandwidth h0.

2.3. The local error criterion

To evaluate the additive estimation procedures, we consider the local error cri-
terion, named the conditional Mean Squared Error (MSE) and which is given
by

MSE (x;h) = EY |X
[
{m̂ (x) − m (x)}2

]
, (17)

where h is the vector of smoothing parameters involved in the estimation m̂(x).
Under the above defined error criterion, we can now define the optimum

theoretical local vector of smoothing parameters, denoted by hopt(x), as follows:

hopt(x) = arg min
h

MSE(x;h), (18)

for each estimation point, x.

3. WILD BOOTSTRAP FOR ADDITIVE MODELS

3.1. Bootstrapping the conditional Mean Squared Error

The bootstrap methodology known as wild bootstrap has been shown to per-
form well in estimating a nonparametric regression model in a situation of hete-
rocedasticity as is assumed in this paper (3). Wild bootstrap was introduced by
Wu (1986) in the context of linear regression models and has recently been used
by González-Manteiga et al. (2004) in the context of multivariate local linear
regression, in order to introduce a local multivariate-bandwidth selector. The
resampling mechanism considered here follows the same guidelines as those that
inspired the methodology proposed by these authors, but assumes additivity in
the multivariate regression model.

Let us consider the following resampling scheme:

i) Estimate the residuals by ε̂i = Yi − m̂0(Xi), where m̂0 represents a pilot
additive estimator of the regression function.

ii) Generate the bootstrap residuals, ε∗i , i = 1, ..., n, verifying E∗ [ε∗i ] = 0,
E∗ [ε∗2i

]
= ε̂2

i and E∗ [ε∗3i

]
= ε̂3

i .

iii) Draw the bootstrap sample as
{(

XT
i , Y ∗

i

)}
, defining the bootstrap re-

sponses as Y ∗
i = m̂0(Xi) + ε∗i , i = 1, ..., n.
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iv) Calculate the bootstrap additive estimator, m̂∗(·), based on the bootstrap
sample generated in the previous step.

Under such specifications, the bootstrap approximation of the conditional
mean squared error on each estimation point x is defined by

MSE∗ (x) = E∗
[
(m̂∗ (x) − m̂0 (x))2

]
. (19)

Remark 1 The resampling mechanism is defined for any additive estimator
(such as those defined in section 2) and considers within the pilot estimator,
m̂0(·), a pilot vector of smoothing parameters, g, a different one from that in-
volved in the fourth step, denoted by h. Thus the bootstrap approximation (19)
is denoted by MSE∗(x;h,g) in the following.

Remark 2 A similar bootstrap method was defined by Kim et al. (1999) for
their efficient oracle estimator (16) but involving in the first step a pilot estima-
tor like m̂0(x) ≡ m̂2−step

h,h0
(x) involving a vector bandwidth h different from the

one considered in the estimator introduced in the third step (used to build the
bootstrap responses) which are denoted by g. Moreover, the same pilot scalar
bandwidth, h0 (involved in the empirical marginal integration estimator) is ap-
plied for all the estimators used. With such a mechanism, these authors proved
the consistency of bootstrap for defining bootstrap confidence intervals for the re-
gression function. The authors also concluded that a pilot bandwidth g of larger
order than n−1/(2q+1) (with q a measure of the smoothness of m) is needed.
These oversmoothing conditions for the pilot estimator will be necessary again
for consistency when backfitting estimators are involved (see Theorem 1).

The above proposed bootstrap approximation (19) allows us to define a
bandwidth selector that is local, i.e., that is a function of the estimation point,
x, because of the locality of the measure of error considered.

Let us define the bootstrap local bandwidth selector as the function

h∗
boot (x) = arg min

h
MSE∗(x;h,g) (20)

on a given estimation point, x.

3.2. Exact expressions for bootstrap approximations

The bootstrap methodology and the approximations derived are defined in
the general D-dimensional additive regression context and for any estimation
method, and they are accessible in practice by following such a resampling
method and by considering the Monte Carlo approximations as usual. Never-
theless, many of these estimation methods allow us to compute exact expressions
that are available (in practice) for the bootstrap approximation (19), without
considering those computationally expensive procedures.

In the following, we derive these exact expressions for three methods defined
in section 2 and also study the consistency of the bootstrap mechanism.
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3.2.1. Backfitting with D = 2

The exact expressions available (in practice) for the backfitting regression es-
timators, introduced by Opsomer and Ruppert (1997) for the bivariate case
(when local linear smoothers are involved), given at (6), allowed us to prove the
consistency of the bootstrap approximation (19), and also to obtain an expres-
sion that can be evaluated (in practice), by computing, exactly, the expectation
over the resampling distribution. Thus it is possible to achieve the practical im-
plementation of the proposed local bootstrap bandwidth selector (20) without
involving Monte Carlo approximations.

Assume the bidimensional regression context and the backfitting regression
estimates considered by these authors, as described in Section 2. In the following
we give a result which establishes the consistency of the bootstrap approximation
(19) in such a context. For this purpose, we first introduce some additional
notation and formulate a set of assumptions.

Associated to the kernel function, K, the j-th moment is defined by µj(K) =∫
ujK(u)du, and the quantity R(K) =

∫
K(u)2du.

Assumptions:

A1. The kernel K is bounded and continuous, it has compact support and its
first derivative has a finite number of sign changes over its support. Also,
µj(K) = 0 for all odd j, µ2(K) �= 0.

A2. The densities f , f1, f2 are bounded and continuous, have compact support
and their first derivatives have a finite number of sign changes over their
supports. Also, fd(xd) > 0 (d = 1, 2) for all x = (x1, x2)t ∈ supp(f) and

sup
{∣∣∣∣ f(x1, x2)

f1(x1)f2(x2)
− 1

∣∣∣∣ , (x1, x2)t ∈ supp(f)
}

< 1. (21)

A3. As n → ∞, hd → 0 and nhd/logn → ∞ (d = 1, 2). Analogous for g1 and
g2.

A4. For each point x ∈ supp(f), the function σ2 is strictly positive and con-
tinuously differentiable, the densities f , fd (d = 1, 2) and the regression
function m are twice continuously differentiable.

A5. The function ν4 (x) = E
[
Y 4 | X = x

]
is uniformly bounded on x.

A6. hdg
−1
d → 0 (d = 1, 2) as n → ∞.

The condition (21) in assumption A2 allows us to obtain an asymptotic
representation of the weights of the backfitting regression estimator (7). The
asymptotic representation is based on lemmas 3.1 and 3.2 in Opsomer and Rup-
pert (1997) and is shown in the following preliminary result:
Lemma 1. Under assumptions A1 to A3, the backfitting estimator involving
local linear smoothers (7) admits an asymptotic approximation given by
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m̂BA
h (x) ≈ n−1f−1

1 (x1)
n∑

i=1

Kh1(X1i − x1)Yi + n−1f−1
2 (x1)

n∑
i=1

Kh2(X2i − x2)Yi

+oP (n−1h−1
1 ) + oP (n−1h−1

2 ) + oP (n−2h−1
1 h−1

2 ),
(22)

on each estimation point x.
Now let us establish the consistency of the proposed bootstrap approxima-

tion.
Theorem 1. Under assumptions A1–A6, the bootstrap approximation MSE∗

is consistent in the interior of supp(f), i.e.,

MSE∗(x;h,g) − MSE(x;h) → 0

in probability.

Remark 3 The expression (22) implies that, from an asymptotic perspective,
the effects of each covariate can be considered separately, and so the estimator
is defined as a sum of univariate local linear regression estimators (note that it
is necessary to add the estimation of constant α to these weights if noncenter-
ing additive models are considered). This feature allows us to demonstrate the
consistency in a way similar to that used by González-Manteiga et al. (2004).

Remark 4 Condition A6 means that the bootstrap approximation must involve
a vector of pilot bandwidths oversmoothing the regression function. This char-
acteristic appears again for bootstrap approximation in another context, in fact,
when unidimensional Nadaraya-Watson regression estimators are considered,
Härdle and Marron (1991) impose an order of n−1/9 for the pilot bandwidth.
In the multivariate context, González-Manteiga et al. (2004) generalize this
requirement to the order n−1/(8+D), considering local linear regression.

Remark 5 (Exact expression of bootstrap MSE) The simple resampling
distribution considered by wild bootstrap allows straightforward calculation of
the expectation E∗, to derive exact expressions for the bootstrap mean squared
error approximation. These exact expressions avoid the need to use Monte Carlo
techniques that would involve very long computing times, especially considering
point approximations as proposed here. Next, we derive these exact expressions.

Consider a decomposition of the conditional mean squared error into a bias
component given by

B∗
h,g (x) = E∗ [m̂BA∗

h (x)
]− m̂BA

g (x) ,

called the bootstrap bias, and the above-mentioned bootstrap variance:

V∗
h,g (x) = Var∗

(
m̂BA∗

h (x)
)
.

12



Using the linearity of the bias and the variance (2) the bootstrap bias can be
written as

B∗
h,g (x) =

n∑
i=1

wBA
i (x,h) m̂BA

g (Xi) − m̂BA
g (x) , (23)

and the bootstrap variance as

V∗
h,g (x) =

n∑
i=1

wBA
i (x,h)2

(
Yi − m̂BA

g (Xi)
)2

. (24)

The following equivalent expressions can be obtained by using matrix notation,
substituting the expressions for the weights (10):

B∗
h,g (x) = n−1

(
1 + sT

1,x1,h1
(I − S∗

2S
∗
1)

−1 (I − S∗
2) +

+sT
2,x2,h2

(I − S∗
1S

∗
2)

−1 (I − S∗
1)
)

M̂g−
−n−1

(
1 + sT

1,x1,g1
(I − S∗

2S
∗
1)

−1 (I − S∗
2) +

+ sT
2,x2,g2

(I − S∗
1S

∗
2)

−1 (I − S∗
1)
)
Y

V∗
h,g (x) = n−2

(
1 + sT

1,x1,h1
(I − S∗

2S
∗
1)

−1 (I − S∗
2) +

+ sT
2,x2,h2

(I − S∗
1S

∗
2)

−1 (I − S∗
1)
)

Σg×
×
(
1 + sT

1,x1,h1
(I − S∗

2S
∗
1)

−1 (I − S∗
2) +

+sT
2,x2,h2

(I − S∗
1S

∗
2)

−1 (I − S∗
1)
)

where

M̂g =

 α̂ + m̂1;g1 (X11) + m̂2;g2 (X21)
...

α̂ + m̂1;g1 (X1n) + m̂2:g2 (X2n)

 and Σg = diag (ε̂i) .

Remark 6 (Bootstrap bandwidth selector) The above obtained exact ex-
pressions (23) and (24) can be used to calculate the proposed local bootstrap
bandwidth selector (20). With these expressions, the selector is intuitive and
simple to calculate in practice. Furthermore, the computational implementa-
tion of the selector in empirical studies is not very expensive in comparison
with other bootstrap versions based on the Monte Carlo technique, and also in
comparison with other local bandwidth selectors such as one based on crossvali-
dation that was introduced by Vieu (1991). More details about comparisons and
computational times are given with the simulation experiments described below.

3.2.2. Marginal integration and mixed methods

By arguments similar to those applied to the backfitting estimators above, the
bootstrap approximation (19) can be evaluated exactly in practice, when the

13



empirical marginal integration estimator (12) and the efficient oracle estimator
(16) are used within the resampling mechanism described above. The expres-
sions are similar to (23) and (24) for bootstrap bias and variance, respectively,
but involving the corresponding new weights ((11) and (16)), i.e.,

B∗
h,g (x) =

n∑
i=1

wIM
i (x, h) m̂IM

g (Xi) − m̂IM
g (x) ,

and

V∗
h,g (x) =

n∑
i=1

wIM
i (x, h)2

(
Yi − m̂IM

g (Xi)
)2

,

for the empirical marginal integration, with scalar bandwidths h and g. For the
efficient oracle estimator of Kim et al. (1999),

B∗
h,g,h0

(x) =
n∑

i=1

wOR
i (x,h, h0)m̂

2−step
g,h0

(Xi) − m̂2−step
g,h0

(x) ,

V∗
h,g,h0

(x) =
n∑

i=1

wOR
i (x,h, h0)2

(
Yi − m̂2−step

g,h0
(Xi)

)2

,

with vector bandwidths h,g and a scalar bandwidth h0. Kim et al. (1999) gave
efficient guidelines for implementing the estimators and weights involved, thus
enabling straightforward computation of the above proposed bootstrap selector,
in practice, again for these additive estimation methods.

4. EMPIRICAL STUDY WITH BACKFITTING

Let us now investigate the performance of the proposed bootstrap approxima-
tion of the conditional mean squared error and the local bootstrap bandwidth
selector based on it, in order to estimate additive models like (1) by backfitting.
A notable element in this process is the graphical analysis made using SiZer
Map, the graphical tool introduced by Chaudhuri and Marron (1999) for a uni-
dimensional context. SiZer Map was extended and adapted to be applied to the
estimation of nonparametric additive models, like those assumed in this paper,
by Raya-Miranda et al. (2002).

Our objective is to evaluate the behaviour of certain bandwidth selectors,
including local and global selectors, in order to make an adequate comparison.
Therefore, we compare the above proposed local bootstrap selector with others
that have been suggested for solving the estimation problem considered here.
The global selectors evaluated were the plug-in selector and one based on cross-
validation (both proposed by Opsomer and Ruppert, 1998). In addition to the
proposed bootstrap selector, we considered two local selectors: the theoretical
optimum bandwidth defined in (18), and a local crossvalidation bandwidth se-
lector which was defined by adapting it to the context that Vieu (1991) proposed
for a unidimensional situation.
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The local bootstrap bandwidth selector requires the choice of a pilot band-
width parameter, g. For this purpose, we can use a methodology analogous
to that followed by González-Manteiga et al. (2004) when a linear local mul-
tivariate estimator is involved, and by Härdle and Marron (1991) in a simpler
context. However, when backfitting estimators are involved, serious theoretical
difficulties arise. Indeed, the asymptotics involved become extremely complex
and treatable, meaningful expressions cannot be obtained. In our calculations
we consider the pilot bandwidths obtained by a global crossvalidation selector.

4.1. Simulated additive models

We consider three additive models with component functions and design distri-
butions specified as follows:
Model 1

m1 (x1) = 1 − 6x1 + 36x2
1 − 53x3

1 + 22x5
1

and
m2 (x2) = sin (5πx2) .

The explicative variables were generated from independent normal distributions
with mean 0.5 and variance 1/9.
Model 2

m1 (x1) =
1
2
sin (πx1)

and
m2 (x2) = sin (4πx2) .

The explicative variables are again considered to be independent but to be
generated from a uniform distribution in the interval [0, 1].
Model 3

m1 (x1) = x2
1

and
m2 (x2) = x2

2.

with the same design distribution as was defined for Model 2.
For all models, the residuals were generated from a distribution normal with

mean zero and constant variance of 0.25. The sample size was n = 100, and 100
repetitions of each model were made.

The local linear smoother involved in the backfitting algorithm was calcu-
lated with a gaussian kernel, K (x) = (2π)(−1/2) exp

(−x2/2
)
. The resultant

backfitting estimator was evaluated on a grid of 10× 10 equally spaced estima-
tion points (denoted by ngrid the size of the grid).

4.2. Bootstrap approximation of MSE and bootstrap bandwidth se-
lector

We now analyse the finite-sample behaviour of the bootstrap approximation,
MSE∗(x;h,g), as a function of x. For this purpose, we find the proximity
between this bootstrap approximation and the theoretical surface, MSE(x;h),
over the grid of estimation points defined for the three models.
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Thus we have implemented the exact expressions of the bootstrap bias and
the bootstrap variance defined in (23) and (24), respectively, and the equivalent
expression for (17) given by

MSE(x;h) = Bh(x)2 + Vh(x),

with bias and variance components defined in (2).
Figures 1, 2 and 3 represent the surfaces obtained for bootstrap MSE∗ and

the theoretical MSE (both evaluated on their respective minimisers over h, and
the crossvalidation bandwidth for the pilot g involved in the bootstrap). These
figures also show the corresponding bandwidth surfaces provided by the boot-
strap selector, i.e., the components of h∗

boot(·), and of the optimum bandwidth,
hopt(·) (both being considered as functions of x and evaluated over the grid).

Note that the bootstrap and the theoretical surfaces are close in all cases,
which points to the good performance of the bootstrap approximation. The sur-
faces become approximately overlapped at the interior of the estimation interval
considered.

4.3. SiZer Map for exploring the behaviour of several bandwidth
selectors

SiZer Map is a graphical tool for exploring the features of the data set which
support the estimation curve problem. By using different colours (or different
tones of grey for black and white versions), we can show the significant increase
or decrease of the target curve, considering different smoothing levels. In this
paper, SiZer allows us to evaluate the behaviour of several bandwidth selectors,
by visualizing their position inside the colour space defined by this curve.

SiZer was first proposed by Chaudhuri and Marron (1999), in a univariate
context, to determine the significance of the features of a target curve, such
as peaks and valleys, by considering a family of smoothers, {m̂ (x;h) : h ∈
[hmin, hmax]}. The procedure involves the construction of confidence intervals
for the derivative, m′ (x;h), at the space defined by the smoothing parameter, h.
Over the localization space defined by x and h, the figure shows the performance
of the estimated curves by means of different colours: blue (black, for black and
white versions) if the derivative is significantly positive; red (dark grey) is the
derivative is significantly negative, and purple (light grey) if the derivative is
not significantly nonzero. The lightest grey zones indicate smoothing parameter
values that are too small and which invalidate the calculation of the estimated
curve, i.e., the number of observations that fall within each local window is
insufficient for estimation.

The confidence intervals for the derivative are computed by

m̂′ (x;h) ± q

√
V̂ar (m̂′ (x;h)),

where the quantile, q, is obtained by normal approximation or bootstrap tech-
niques (see Chaudhuri and Marron (1999) for more details).

The range of bandwidths, [hmin, hmax], can be defined in different ways,
the usual method being to choose a range that is wide enough to show the
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Figure 1: The top panels show the mean squared error surfaces for model 1: the
bootstrap approximation (left) and the theoretical surface (right). The panels
at the bottom represent the two components, bootstrap bandwidth (left) and
optimal bandwidth (right).
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Figure 2: The top panels show the mean squared error surfaces for model 2: the
bootstrap approximation (left) and theoretic surface (right). The panels at the
bottom represent the two components, bootstrap bandwidth (left) and optimal
bandwidth (right).
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Figure 3: The top panels show the mean squared error surfaces for model 3: the
bootstrap approximation (left) and theoretic surface (right). The panels at the
bottom represent the two components, bootstrap bandwidth (left) and optimal
bandwidth (right).
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subjacent characteristics in each zone of the data set space, by using the family
of smoothers.

Therefore, it is necessary to derive an expression for m̂′ (x;h) and also for
V̂ar (m̂′ (x;h)), so that they can be calculated in an efficient way (in compu-
tational terms) by speeding map construction. In this respect, the most usual
procedure is to use wrapping techniques such as the binning method (Fan and
Marron, 1994), whose main purpose is to reduce the number of kernel evalua-
tions, on the basis of the similarity between many of these.

The extension of SiZer Map to a multidimensional context presents serious
difficulties, even with regard to the graphical representation of the maps. One
simple solution is to consider additive models, because these allow us to con-
sider the effect of each covariate separately. Following this idea, an immediate
extension to an additive model would be to construct as many SiZer Maps as
there are covariates.

This reasoning inspired the work of Raya-Miranda et al. (2002), and is the
basis of the exploratory study described in this paper. Let us now present some
definitions and expressions included in this study.

Consider a family of backfitting estimators for an additive model such as the
one considered in this paper, {m̂ (x;h) : hd ∈ [hd,min, hd;max] , 1 ≤ d ≤ D}, and
define confidence intervals for the component functions, m̂′

d (xd;hd). The dth
curve shows the features of the md component by means of different colours, in
a similar way to that adopted for the univariate context.

The confidence intervals for the derivative of the dth component are written
as

m̂′
d (xd;hd) ±

√
V̂ar (m̂′

d (xd;hd)).

Raya-Miranda et al. (2002) provide more details about the expressions of
m̂′

d (xd;hd) and V̂ar (m̂′
d (xd;hd)), and also for the binned approximations that

are considered.
Figures 4 to 8 show the SiZer Maps for the three simulated additive models.

Each figure consists of two types of curve, the so called Family Plot and the
SiZer Map, both being constructed for each component in the model. Family
Plot allows us to compare different choices of smoothing levels for estimating the
components. Since separate figures are shown for each component function, the
different curves in a component are given by changing its smoothing level, and so
it is necessary to set the smoothing parameter value for the other component, or
to define a Family Plot in a three dimensional space. In this paper, for reasons
of simplicity, we have assumed the same smoothing level for the components,
but trials were carried out to demonstrate the validity of such a restriction; in
fact, other choices offered equivalent results (see figure 6).

The blue curves represent the estimates at different smoothing levels (the
number of levels plotted can be chosen by the user, but the Matlab function
gpanal, given by Marron (1997, 1998) considers eleven in a logarithmic scale).
Besides these choices of the smoothing parameter, the figures include estimates
using various, specific parameters; the black curve is associated to the local
bootstrap selector proposed in this paper; the blue one represents the optimal
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theoretical bandwidth (also local); the red curve is the estimation with a local
crossvalidation bandwidth; green shows the global plug-in selector, and yellow
is used to plot estimations with a global crossvalidation bandwidth.

In the figure described as SiZer Map, the horizontal axis represents the
range of the given covariate, and the smoothing levels are shown on the vertical
axis (in a logarithmic scale). Here, we have considered the same smoothing
level for the two additive components. The figure shows curves associated to
particular choices of bandwidths, both local and global. The solid black line
represents the plug-in selector and the dashed one shows a global crossvalidation
bandwidth. The solid white curve is the local bootstrap bandwidth, the white
dotted curve is associated to the optimal theoretical bandwidth (local), and the
white dashed curve represents a local crossvalidation bandwidth (this selector
has been evaluated only for model 1 because of the considerable computational
time needed for its calculation; trials were carried out for the other models,
showing a similar behaviour).

The 100 replicas carried out on each model would provide 100 SiZer Maps.
In order to summarize them by eliminating the sample effect, the following pro-
cedure has been established: assign the colours for the maps at each localization
point when the conditions defining these colours (defined before) occur for at
least a given percentage of replicas. By following this idea, we considered several
percentage values to obtain an adequate comparison and to draw useful con-
clusions about the problem of how to replicate the maps. Here, we include two
percentages for model 1, i.e., 75% (figure 4) and 95% (figure 5). The appearance
of the maps (for both the percentages and the other values tested) was similar
for purposes of exploration and so we only include the 75% for the remaining
simulated models (figures 7 and 8).

Figure 6 shows the SiZer Map for model 1, with the particular feature that
the plug-in bandwidth is used for the other component (not plotted on the
map). This figure shows that the restriction of taking the same smoothing level
for both components does not hide any of the information provided by the maps.

All of the maps show that the selectors evaluated, both local and global
methods, move with the localization falling inside the resolution levels, thus
enabling us to detect the most significant characteristics of the estimated com-
ponents. The greatest differences can be observed when components with a high
degree of curvature are estimated. In these cases, the local optimum moves from
the lowest resolution levels at the peaks and in the valleys, to higher levels at
more linear zones of the components. This also happens at boundaries, probably
in an attempt to obtain enough observations for the purpose of estimation. The
local bootstrap selector moves with localizations located very close to the opti-
mum, but local crossvalidation adapts to data by choosing very low smoothing
levels.

Models with low curvature, as is the case in model 3, can be satisfactorily
estimated by considering global selectors, such as the plug-in selector considered
here, or the crossvalidation selector. Here, SiZer Map shows the proximity of all
the selectors (both global and local) but the small variations, which the local
bootstrap and optimum describe, provide more irregular estimates, as shown in
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the following section.
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Figure 4: SiZer Map for model 1. The colours were chosen by checking the usual
conditions for at least 75% of the replicas.

4.4. Estimated regression surfaces

In this section we evaluate the performance of the additive backfitting estimates
with local bootstrap bandwidths. For this purpose, we make comparisons with
other well-known selectors by using a measure of the estimation error versus
the estimation interval. The calculated measure was the so called Integrated
Squared Error (ISE), which is defined for each replica (r), by

ISE (r) =
1

ngrid

ngrid∑
k=1

(m̂ (zk) − m (zk))2 ,

where {zk : k = 1, . . . , ngrid} denotes the grid of estimation points used.
Figure 9 shows the surfaces estimated for each model simulated. The den-

sities of ISEs (computed for the estimates with all the bandwidth selectors
considered and the three simulated models) are plotted in figure 10.
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Figure 5: SiZer Map for model 1. The colors have been chosen by checking the
usual conditions for at least 95% of the replicas.
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Figure 6: SiZer Map for model 1 with a fixed (plug-in) bandwidth for the
other (non plotted) component. The colours were chosen by checking the usual
conditions for at least 75% of the replicas.
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Figure 7: SiZer Map for model 2. The colours were chosen by checking the usual
conditions for at least 75% of the replicas.
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Figure 8: SiZer Map for model 3. The colours were chosen by checking the usual
conditions for at least 75% of the replicas.

26



Model 1 Model 2

Model 3

Figure 9: Estimated regression surfaces with local bootstrap bandwidth param-
eters.
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Figure 10: ISE density. For each model, the curves represent this measure when
each of the bandwidth selectors compared are used.
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Note the proximity of the ISE curves for the local bootstrap bandwidth and
the optimal theoretical bandwidth, for all the models simulated. Indeed, these
local selectors provide additive estimations which perform considerably better
than those associated to global bandwidths, like the one obtained using plug-in
and crossvalidation selectors, when models 1 and 2 are considered. For model
3, the behaviour of the selectors is similar but features the large tails associated
to the global selectors (thus leading to large errors). This also happens with the
local crossvalidation selector evaluated on model 1.

Also shown are the box-plots associated to ISE values for each selector, see
figure 11. Here we can observe the high variability of local crossvalidation in the
replicas (as expected, because of the known low convergence rate), in comparison
with the homogeneous values provided by local bootstrap for model 1. Again,
it is interesting to observe the behaviour of global selectors compared with the
local ones for model 3, this difference being clearly apparent in the figure. Of
course, the low curvature of the regression surface yields benefits when what
is considered is a constant smoothing level with many outliers (which do not
appear associated to the local selectors).

4.5. Discussion

The empirical study performed reveals the good behaviour of the wild bootstrap
methodology for bandwidth selection purposes when backfitting estimators are
considered. The proposed bootstrap estimates are easy to implement and the
local bandwidth selector that is derived does not require lengthy computational
times, in comparison with other local versions such as the local crossvalidation
tested here. Indeed, the crossvalidation selector requires a high number of esti-
mates and the calculation process becomes very slow because of the backfitting
algorithm involved. Besides these computational problems, the crossvalidation
selector at some localizations chooses bandwidths that are too small and which
produce high variability in the estimated regression surface; moreover, in some
cases it is impossible to compute estimates. Analogous similarities and prob-
lems were pointed out by González-Manteiga et al. (2004) for the case of the
multivariate local linear smoother. The superiority of local selectors over global
selectors in general is again apparent, moreover, when the data describe surfaces
with a high degree of curvature.

SiZer Map provides an intuitive space which is adequate for interpreting and
visualizing the performance of bandwidth selectors. As Chaudhuri and Marron
(1999) observed, local selectors provide estimates which adapt very well to data
and can capture the most significant features of the subjacent surfaces. As
a general conclusion, all the maps show that the proposed bootstrap selector
closely follows the local optimum, while local crossvalidation locates always
below, at undersmoothing levels.

5. CONCLUDING REMARKS

We propose a new bandwidth selector for nonparametric additive modelling, one
that is based on bootstrap estimates of the conditional mean squared error and
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error measure when each of the bandwidth selectors compared are used.
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varies with the localizations of surfaces. The selector does not require complex
asymptotic expressions of the error criterion (the conditional MSE) and is not
derived by assuming strict conditions for the model and the sample sizes, as is
the case with those selectors based on plug-in methodologies. In addition, the
bootstrap selector can be easily evaluated in practice for additive estimation
methods, including bivariate backfitting, general D-variate marginal integra-
tion and efficient mixed methods such as the one proposed recently by Kim
et al. (1999). The difficulties in extending the selector to D-variate (D > 2)
backfitting arise from the theoretical difficulties pointed out by Opsomer and
Ruppert (1997), who, for such a situation, proposed a plug-in selector, assum-
ing independent covariates. The bootstrap estimates are calculated without
involving Monte Carlo approximations, and so the bootstrap selector has a low
computational cost in comparison with other local methods like crossvalidation.

The local selector produces a good imitation of the local optimum, as shown
in the empirical studies described in this paper, and is a serious competitor to
other selectors proposed, including those based on plug-in methodologies and
the classical selectors based on crossvalidation (both global and local versions).
Comparisons made with SiZer Map reveal interesting characteristics about the
behaviour of local selectors versus the global ones. Global and local selectors
provide different patterns of performance, depending on the most significant
features of the surfaces to be detected by the estimation method in question.

APPENDIX: SKETCH OF PROOFS

Proof of Lemma 1. From expressions (8) and (9), by substituting the matrices
W1,W2 given by (6), the additive components m̂1(x1) and m̂2(x2) can be
written as:

m̂1(x1) = sT
1,x1

(I − S∗
2S

∗
1)

−1((I − S∗
2)Y and

m̂2(x2) = sT
2,x2

(I − S∗
1S

∗
2)

−1((I − S∗
1)Y.

By considering asymptotic representations of the before involved inverses as well
as matrices S∗

1 and S∗
2, by following the lemmas 3.1 and 3.2 in Opsomer and

Ruppert (1997), it follows:

m̂1(x1) = sT
1,x1

[
I + O(11T /n

]
(I − S2 + 11T /n + o(11t/n))Y

≡ w1(x1)Y.
(25)

Again, using asymptotic representations but for elements of S2 and s1,x1 , first
the elements of the matrix I − S2 + 11T /n can be expressed as:

1 − n−1f−1
2 (Xi2)Kh2(0) + n−1 + op(n−1h−1

2 ) if i = j and
1 − n−1f−1

2 (Xi2)Kh2(0) + n−1 + op(n−1h−1
2 ) if i �= j,

for each i, j = 1, . . . , n. And by simple calculations the elements of w1(x1) (25)
can be approximated (here it’s been used the latest approximation in assumption
A2) by

n−1f−1
1 (x1)n−1Kh1(Xi1 − x1) + op(n−1h−1

1 ) + op(n−1h−1
2 h−1

1 )− op(1) + o(n−1)
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for 1 ≤ i ≤ n. Analogous calculations for the second component complete the
proof of the lemma. �
Proof of Theorem 1. The proof follows analogous steps to proof of Theorem 1
in González-Manteiga et al. (2004). Thus, we consider the usual decomposition
of MSE in (17) into bias term, Bh (x) and a variance term, Vh (x), and also
for the bootstrap approximation, the bootstrap bias, B∗

h,g (x) in (23) and the
bootstrap variance, V∗

h,g (x) in (24). We’ll prove that the difference between
each term and its bootstrap approximation tends to zero in probability:

Consider first the difference between biases, the consistency of backfitting
estimators gives that this difference is asymptotically equivalent to the sum of
two terms which are denoted and defined by

T1,1 =
n∑

i=1

wi (x,h) wi (Xi,g) (m (Xi) − Yi) (26)

T1,2 =
∑
i�=j

wi (x,h) wj (Xi,g) (m (Xi) − Yj) (27)

with wi (·, ·) defined in (10). Lemma 1 gives the following asymptotic approxi-
mation for them:

wi (x,h) ≈ n−1f−1
1 (x1) Kh1 (Xi1 − x1) + n−1f−1

2 (x2) Kh2 (Xi2 − x2) (28)

which yields equivalent expressions for terms (26) and (27), which will be de-
noted by T̃1,1 and T̃1,2, respectively.

Now, since term T̃1,1 has mean zero and variance

O
(
n−3(h1h

−1
2 + h−1

1 h2)2(g−1
1 + g−1

2 )2
)
,

by applying Markov’s inequality

T̃1,1 = Op

(
n−3/2(h1h

−1
2 + h−1

1 h2)(g−1
1 + g−1

2 )
)

.

Similarly for second term it’s been computed its expectation, yielding o (1),
and its variance being O

(
n−2(h−1

1 h2 + h1h
−1
2 )(g−1

1 g2 + g1g
−1
2 )

)
.

Again Markov’s inequality gives that

T̃1,2 = Op

(
n−1(h−1

1 h2 + h1h
−1
2 )1/2(g−1

1 g2 + g1g
−1
2 )1/2

)
.

Now consider the difference between variances:

V∗
h,g (x) − Vh (x) =

n∑
i=1

wi (x,h)2
(
ε2
i − σ2 (Xi)

)
+

+
n∑

i=1

wi (x,h)2 (m̂g (Xi) − m (Xi))
2 −

− 2
n∑

i=1

wi (x,h)2 εi (m̂g (Xi) − m (Xi)) =

=ϑ1 + ϑ2 − 2ϑ3,
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and operate separately on each term ϑi, i = 1, 2, 3 in a similar way that used
before with the biases. We prove that the expectation of the first term vanishes
and the variance is O(n−3(h−1

1 + h−1
2 )4h1h2), therefore ϑ1 = Op(n−3/2(h−1

1 +
h−1

2 )2(h1h2)1/2).
By developing the square in the second term, it can be separate into a sum

of the terms (an U -statistics with order two and other with orden three) given
by:

ϑ2,1 =
∑n

i=1 wi (x,h)2 wi (Xi,g)2 (Yi − m (Xi))
2 +

+
∑

i�=j wi (x,h)2 wi (Xi,g)2 (Yj − m (Xi))
2

and

ϑ2,2 =
n∑

i=1

wi (x,h)2
∑
j �=l

l,j �=i

wj (Xi,g) wl (Xi,g) (Yj − m (Xi)) (Yl − m (Xi)) .

Analogous arguments and similar calculations to the before performed yield that

ϑ2 = Op

(
n−5/2

(
h−1

1 + h−1
2

)2 (
g−1
1 + g−1

2

)2
h1h2

)
+

+Op

(
n−7/2

(
h−1

1 + h−1
2

)2 (
g−1
1 + g−1

2

)2
(h1h2)1/2

)
.

Finally operate on third term and obtain that

ϑ3 = Op

(
n−5/2

(
h−1

1 + h−1
2

)2 (
g−1
1 + g−1

2

)
(h1h2)1/2

)
+

+Op

(
n−2

(
h−1

1 + h−1
2

)2 (
g−1
1 + g−1

2

)
(h1h2g1g2)1/2

)
,

completing the proof of theorem.�
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(2004), “The choice of smoothing parameter in nonparametric regression
through wild bootstrap”, Computational Statistics and Data Analysis, 47,
487–515.

[8] Gu, C. and Wahba, G. (1988), “Minimizing GCV/GML scores with mul-
tiple smoothing parameters via the Newton method”, SIAM Journal on
Scientific and Statistical Computing, 12, 383–398.
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