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Abstract

We consider a so called generalized partially linear model including random
effects in the linear part. For these kind of models we first propose an estimator
combining likelihood approaches for mixed effects models with kernel methods.
Next we introduce different tests that allow to choose between a parametric and
the semiparametric mixed effects model, following the methodology of Härdle,
Mammen and Müller (1998). To this end we also discuss some bootstrap proce-
dures to simulate the critical values. Various alternatives and extensions to other
semiparametric models are discussed. We prove consistency and give asymptotic
theory for all our methods. Finally, a simulation study is provided in order to
see the performance of our methods, in particular the tests.1
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1 Introduction

In the last decade linear random effect models have attracted an increasing attention as
an effective tool for either reducing the dimensionality of a high-dimensional regression
problem or to increase the efficiency of statistical inference, when the not explained
heterogeneity can be partly classified (therefore one often speaks also of cluster-specific
intercepts). They are an extension of linear regression models that allow for the in-
corporation of random effects. In this formulation, the probability distribution for the
multiple measurements has the same form for each individual, but the parameters of
that distribution vary over individuals. The simplest model includes a single random
component or intercept that varies between clusters of observations and induces de-
pendence within these clusters. Random effects models are also useful for modeling
panel data or grouped cross-sectional data where the responses for the same person or
group cannot be assumed to be independent after conditioning on exogenous variables.
In the grouped cross-sectional case the clusters could be households, schools, hospitals,
firms, geographical entities (here is included all small-area literature, see below). Also,
we can find applications of linear random effect models in the analysis of longitudinal
data sets, see e.g. Laird and Ware (1982).

Similarly to the usual linear models, these linear random or also called mixed effects
models have then been extended to generalized mixed effect models. They are com-
monly defined by

G {E [Ydj|ud,Xdj]} = X t
djβ + ud, d = 1, . . . , D; j = 1, . . . , nd,

with G(·) being a known link function, Ydj the dependent variable, Xdj some
observable regressors, and ud unobservable cluster-specific effects for which we can
only estimate a reduced number of parameters. In practice, they are treated like
random effects and only its variance will be estimated to improve inference on β.
Due to its above mentioned effectiveness this kind of model today is broadly applied
in different fields of statistical analysis. Overviews of this vast topic are provided by
Searle, Casella, and McCulloch (1982), Vonesh and Chinchilli (1997), Pinheiro and
Bates (2000), Verbeke and Molenberghs (2000), McCulloch and Searle (2001). Further
examples and explanations, but in particular different ways of the nontrivial problem
of implementation are provided, among others, by Fahrmeir and Tutz (2001), Diggle,
Tawn and Moyeed (2002), and most recently by Skrondal and Rabe-Hesketh (2005).
We also want to mention the extension to nonlinear parametric models with random
effects. They are always straight forward as long as we assume to know the distribution
of the random parts and stick to conditional maximum likelihood methods, see e.g.
Kuhn and Lavielle (2005).

A particular research area that is of strong public interest but almost unthinkable with-
out the techniques of mixed models is the statistical analysis in small areas. “Small
area” may refer to a small geographical region (states, provinces, school districts, health
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service areas) or a particular group obtained by a cross-classification of various de-
mographic factors such as age, gender, race, etc. Small area statistics are needed
in regional planning and fund allocation in many government programs, so e.g. EU-
ROSTAT is demanding since 2003 from the EU states providing statistics for its so
called small areas (provinces, districts, departments, etc.), examples of major small
area estimation programs in the United States include Census Bureau’s Small Area
Income and Poverty Estimates program, the Bureau of Labor Statistics’ Local Area
Unemployment Statistics program, and the National Agricultural Statistics Service’s
County Estimates Program. See Ghosh and Rao (1994) and Rao (2003) for a thorough
review of different small area estimation techniques. In the exclusively model-based
framework there is some interesting research done using Bayes methodology (see e.g.
Malec, Sedransk, Moriarity, and LeClere 1997; Ghosh, Natarajan, Stroud, and Car-
lin, 1998; Butar and Lahiri, 2003) or using frequentist methodology (Prasad and Rao,
1990; Jiang and Lahiri, 2001; Jiang, 2003; Das, Sedransk, Moriarity, and LeClere, 2004;
González-Manteiga, Lombard́ıa, Molina, Morales, and Santamaŕıa, 2005).

Still quite recently, mixed effect models have entered the world of non- and semi-
parametric statistics. A first, rather appealing step was to consider the smoothing
parameters of spline or sieve estimators as random effects; further extensions followed
immediately, see Ruppert, Wand and Carroll (2003) or Wand (2003) who takes a gen-
eral look on smoothing in mixed models. So far this research concentrates mainly on
the challenging development of feasible algorithms for non- and semiparametric mixed
models using spline methods. Kneip, Sickles and Song (2005) provide a series estima-
tor and its asymptotic theory for a partial linear model with time varying individual
effects, what is a particular case but falls clearly in the class of semiparametric mixed
effects models. However, in the most cases of the so far existing literature, asymptotic
theory is missing. The same holds for theory based suggestions for model specification
tests in (generalized) mixed models. In particular, at least to our knowledge, mixed
models have so far not been combined with kernel smoothing methods. Although often,
spline methods are preferred due to its easy handling and implementation in the one
dimensional or additively one dimensional case, a major part of the existing asymptotic
theory for non- and semiparametric statistics is based on kernel smoothing methods.
Notice that the notation “semiparametric mixed effects models” is also used in the
literature where only the assumption of having normal distribution of the error terms
and / or of the random effects is relaxed.

This article is aimed to show how the combination of kernel based methods and mixed
effects models can open a huge variety of statistical methods for the analysis of high
dimensional data and enrich the inference e.g. in small areas. We consider a so called
generalized partially linear model (see e.g. Severini and Staniswalis, 1994) but including
now random effects. This results in a model of the form

G (E[Ydj|ud, T dj,Xdj]) = m(T dj) + X t
djβ + ud, d = 1, . . . , D; j = 1, . . . , nd, (1)

where D is the number of random factors and n =
∑D

d=1 nd is the sample size. As
above, for unit j of factor d, let Ydj ∈ IR be the dependent variable, Xdj ∈ IRp
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and T dj ∈ IRq being the covariates. We restrict the random effects ud to be variables
with zero mean and constant variance σ2

u, assuming that u1, . . . , uD are independent.
Again, the function G(·) is a (known) link function and g(·) its unique inverse function.
An extension to the case where G(·), respectively g(·) depend on unknown parameters
will be discussed. Finally, m : IRq → IR is a nonparametric smooth function that can
also be modelled additively or multiplicatively. Let us denote by

ηdj = G (E[Ydj|ud,T dj,Xdj])

the partial linear predictor and by

µdj = E[Ydj|ud, T dj,Xdj] = g
(
m(T dj) + X t

djβ + ud

)

the conditional expectation. Under this setup, let Y be the n×1 vector with elements
Ydj, X be the p×n matrix with rows Xdj and u = (u1, . . . , uD)t be the D×1 vector
of random effects. Let us define the D × n matrix Z = diag{1t

nd
, d = 1, . . . , D},

where 1a denotes a column vector of ones with size a. Let µ = E[Y |u, T ,X] be
the conditional mean vector with elements µdj, Σ = V ar[Y |u, T , X] the conditional
covariance matrix, which is diagonal with elements σdj, and V = V ar[Y |T ,X]. In
abuse of notation, we denote the vectors and matrices in bold letters. Then, in matrix
notation, the linear predictor is η = m(T ) + X tβ + Ztu.

Later, we will discuss alternatives and extensions, i.e. easily available generalizations,
of model (1). The estimation of such a model without a nonparametric part is well
studied and its literature on it has been discussed already above. When m(·) is included
but not ud, then the estimation and testing is well studied, too. Severini and Wong
(1992) and Severini and Staniswalis (1994) studied intensively the asymptotic theory for
kernel based quasi and profiled likelihood estimators of these kinds of models. Hastie
and Tibshirani (1990) provided useful algorithms, and Müller (2001) a comparative
study and survey of existing estimation methods in those models.

For the parametric part, inference can be derived directly from the asymptotic theory
(if provided). For the nonparametric part m(·) statistical inference is much more
sophisticated in theory and unfortunately also in practice. Therefore, a first step
should be to check whether such an effort is justified. This means to test m(·) for
significant nonlinearity. An extension to significant deviation of m(·) from a fixed
polynomial structure is obvious.

In order to do so, we propose a test of the parametric hypothesis

H0 : m(T ) = c + T tγ vs H1 : m(T ) 6= c + T tγ (2)

for any γ and c, i.e. a generalized linear mixed effects model versus the semipara-
metric alternative (1). For the case of having no random effects, such a test has been
introduced by Härdle, Mammen and Müller (1998). See this paper also for further
references. It turns out that their theory carries over to our mixed effects model. This
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holds also true for the (nonparametric) bootstrap we will use to obtain reasonable crit-
ical values for the test statistic. Finally, extensions to related bootstrap tests in these
kind of models, like proposed most recently by Härdle, Huet, Mammen, and Sperlich
(2004) or Rodŕıguez-Póo, Sperlich, and Vieu (2005) are obvious then, too.

Our test is also of particular interest in small areas statistics, where ud is the ran-
dom factor referring to the small area d = 1, · · · , D. Inferences from model-based
estimators refer to the distribution implied by the assumed model. Therefore, model
selection and validation play a vital role in this type of estimation. If the assumed
models do not provide a good fit to the data, the model-based estimators will be model
biased which can lead to (sometimes completely) erroneous inferences. However, the
hypothesis testing in the general mixed model framework for the small areas inference
has been scarcely investigated. So e.g. Jiang and Lahiri (2001) study a generalization
of the Pearson’s χ2 goodness-of-fit test, which is applied to a real data example with
geographical small areas; Zhu and Fung (2004) investigate the test for heteroscedastic-
ity under the framework of a semiparametric mixed model, which is illustrated with
the analysis of a longitudinal study.

The rest of the paper is organized as follows. In Section 2 we introduce the estimators
for the semiparametric model (1), i.e. the parametric counterpart of the null hypoth-
esis H0, together with its asymptotic properties. In Section 3 we first introduce an
estimator of the parametric model that is convoluted with a kernel and will be used in
the test statistic to account for the bias the semiparametric alternative suffers from.
Then, some test statistics and a bootstrap procedure will be introduced and discussed,
again together with its asymptotic behaviors. Several alternative tests and bootstrap
procedures, mainly modifications, as well as extensions to other models and test prob-
lems are discussed in Section 4. A simulation study in Section 5 shows the excellent
performance of the test even for moderate sample sizes. The lists of assumptions are
deferred to Section 6.

2 Estimating the Semiparametric Model

The aim is to study the relationship between a dependent variable Y ∈ IR and a set of
explanatory variables (T ,X), T ∈ IRq and X ∈ IRp, taking into account the influence
of a random factor ud that we suppose to have N(0, σ2

u) distribution (d = 1, · · · , D). In
this work we stick to the particular case σ2

dj := σ2
e for all d = 1, . . . , D, j = 1, . . . , nd;

being θ = (σ2
u, σ

2
e) the vector of variance components. Suppose we have a sample of n =∑D

d=1 nd replicates {(Ydj,T dj, Xdj)}d=1,··· ,D;j=1,··· ,nd
and the conditional distribution of

Y given the random effects u but also T and X, belongs to the family with density
{f(Y |u, T ,X; m, δ) : δ ∈ ∆,m(T ) ∈M}, where m(·) is an unknown smooth function
that takes values in M∈ IR and δ = (β,θ) ∈ ∆, both compact; Xdj ∈ X and T dj ∈ T
are also assumed to be from compact sets X ⊂ IRp and T ⊂ IRq. Further, p(u; σ2

u)
denotes the density of the random effects.
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Call fy(·) the density of Y conditioned on T ,X only. Then, one has

fy(Y |T ,X; m, δ) =

∫
f(Ydj|u, T dj, Xdj; m, δ)p(u|σ2

u)du, (3)

so that taking the logarithm would provide us with a possible likelihood function, see
e.g. McCulloch, Searle (2001) how this works out for the fully parametric case. By
f(·|·) and p(·|·) we denote the corresponding conditioned density functions relative to
f(·) and p(·).
Alternatively, if we wish to predict simultaneously β and the random effects u =
(u1, . . . , ud)

t we could look e.g. at the posterior density

fδ(β, u|Y, T ,X; m,σ2
u) =

∏D
d=1

∏nd

j=1 f(Ydj|ud,T dj,Xdj; m, δ)
∏D

d=1 p(ud|σ2
u)∫ ∫ ∏D

d=1

∏nd

j=1 f(Ydj|ud,T dj, Xdj; m, δ)p(ud|σ2
u)dudβ

(4)

so that the part to maximize is proportional to the numerator, see Fahrmeir, Tutz
(2001) for details. Breslow and Clayton (1993) derived a penalized quasi likelihood
(PQL) that is based on this criterium and combine it with the idea of profiled likeli-
hood to get simultaneously estimates for the variance components. González-Manteiga,
Lombard́ıa, Molina, Morales, and Santamaŕıa (2005) start also with the PQL but esti-
mate the variance components from a linearized version of the generalized linear model,
going back to an idea of Schall (1991). For simplification let us denote by l(Y ; m, δ)
the log density, whatever the density function under consideration is. E.g., following
the idea of maximizing the posterior mode, one would consider

ϕ1(Y ; m, δ) =
D∑

d=1

nd∑
j=1

log f(Ydj|ud,T dj,Xdj; m, δ) , (5)

ϕ2(u; σ2
u) =

D∑

d=1

log p(ud; σ
2
u) (6)

and
ϕ(Y , u; m, δ) = ϕ1(Y ; m, δ) + ϕ2(u; σ2

u) . (7)

For getting an estimator of the nonparametric one first has to fix a point t0 on which
we aim to estimate m(·) and then takes the empirical counterpart of

E
[
log f(Y |u, T ,X; m, δ) + log p(u; σ2

u)|T = t0

]

what can be written in terms of

ϕs(Y ; m, δ) =
D∑

d=1

nd∑
j=1

Kh (t0 − T dj) log f(Ydj|ud,T dj,Xdj; m(t0), δ) + ϕ2(u; σ2
u) ,(8)

where Kh(·) is a q-dimensional product kernel function, h = (h1, . . . , hq) the corre-
sponding bandwidth vector and t0 the fixed value. This is also called the smoothed
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likelihood function and is only used to incorporate the nonparametric part. Note that
the conditioning on T has no impact on ϕ2 ; that is why we do not convolute that
part with the kernel function. Alternatively, we define also the simplified smoothed
likelihood

ϕss(Y ; m, δ) =
D∑

d=1

nd∑
j=1

Kh (t0 − T dj) log f(Ydj|ud,T dj,Xdj; m(t0), δ) , (9)

skipping ϕ2(ud; σ
2
u) from ϕs. We will see later why this might be useful. Analogously

one defines likelihoods (5) to (9) based on (3). We have recalled here the version of
objective functions based on the Breslow, Clayton (1993) approach only because it is,
to our knowledge, the most popular one in practice.

We now have to combine the existing fully parametric likelihood approaches for random
effect models with the semiparametric regression problem. In the following, we denote
the considered log likelihood by ϕ(Y ; m, δ) . For this we will use the well known
method of profiled likelihood to estimate the parameter δ. This is, let λδ denote a
least favorable curve in M to take into account the nuisance parameter m(·) when
estimating δ, and let λ̂δ an estimator of λδ. If λ̂δ is a valid estimator for our least

favorable curve, then the δ̂ that maximizes ϕ(Y , u; λ̂δ, δ) is asymptotically efficient.
To be a valid estimator for λδ, Severini and Wong (1992) [in the following SW92] have
given sufficient conditions, i.e. their so called Conditions NP, p.1779 - 1780. In the
same paper they give also conditions in a rather general context that guarantee that
maximizing the log likelihood convoluted with a kernel, i.e. the empirical version of
E[ϕ(Y ; m, δ)|T = t0] is such a valid estimator of the least favorable curve. Let us
denote this convoluted or smoothed likelihood by ϕs(Y ; m, δ), compare with equation
(8). Rodŕıguez-Póo, Sperlich, Vieu (2003) finally proved this for the particular case we
need here (but they do it in a different context2).

Summarizing, we propose
Procedure A.

1. For a value t0 and fixed δ we estimate m(t0) as the solution of the problem

m̌δ = argmax
{m∈M}

ϕs(Y ; m, δ).

2. We estimate δ (together with predictors û or not) as the solution of the problem

δ̂ = argmax
δ

ϕ(Y ,u; m̌δ, δ), (10)

2They consider the problem of estimating arbitrarily separable function with possibly limited de-
pendent variables but do not discuss the inclusion of random effects.
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3. With the estimators obtained in steps 1 and 2, we set finally m̂ = m̌ˆδ
.

This procedure is suitable for the case D tending to ∞ with rate O(n) as it is typically
assumed e.g. in small area statistics. Alternatives that are interesting in practice, in
particular for D relatively small, are discussed in Section 4. Clearly, in Procedure A
as well as in the alternative procedures, the first steps are performed in order to get
estimators for the least favorable curve. Suppose the first step provides such a valid
estimator m̌δ of the least favorable curve in the sense of SW92 (Conditions NP).
Then, a direct consequence of Propositions 1 and 2 of SW92 is:

Corollary 1. Assume that assumptions [A.1] to [A.3] from the Appendix hold. Let δ̂
be the log likelihood estimate as given in step 2 of Procedures A. Then, as n =

∑D
d=1 nd

tends to infinity √
n(δ̂ − δ0)

d−→ N
(
0, I−1

δ

)
,

where Iδ is the (marginal) Fisher information matrix, i.e.

Iδ = ET

{
EX,u,T

[
∂

∂δ
l (Y ; m, δ)

∂

∂δt l (Y ; m, δ)

]
− EX,u

[
∂

∂δ
l (Y ; m, δ)

∂

∂m
l (Y ; m, δ) |T

]

× EX,u

[(
∂

∂m
l(Y ; m, δ)

)2

|T
]−1

EX,u

[
∂

∂m
l (Y ; m, δ)

∂

∂δt l (Y ; m, δ) |T
] 


 , (11)

where EA[·] is the expectation with respect to the variable A. Further, l (Y ; m, δ) =
log f(Y |u, T , X; m, δ) + log p(u; σ2

u) and

∂

∂δ
l (Y ; m, δ) =

(
∂

∂β1

l (Y ; m, δ) , · · · ,
∂

∂βp

l (Y ; m, δ) ,
∂

∂σ2
u

l (Y ; m, δ) ,
∂

∂σ2
e

l (Y ; m, δ)

)t

.

As can be observed from this result, the semiparametric estimator achieves the semi-
parametric efficiency bound (see Newey, 1990, 1994). The asymptotic variance could
be approximated with the aid of the Hessian matrix that one obtains as a by-product
from the maximum likelihood estimation. Note further that our model restrictions do
not contain any information about a possible dependence structure between X and T .

Remark 1. If we assume to have a link g(·) being the identity function, i.e.

Ydj = m(T dj) + X t
djβ + ud + εdj, d = 1, . . . , D, j = 1, . . . , nd;

with ud defined as above and εdj ∈ N(0, σ2
e) , we would get for the variance of β̂, the

Fisher information

Iβ = ET

{
X tV −1X − E[X|T ]tV −1E[X|T ]

}

= ET

{
(X − E[X|T ])tV −1(X − E[X|T ])

}

what e.g. equals the variance of Robinson (1988) in the simple partial linear model.
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Certainly, our proposal (step 1 of Procedure A) is not the only valid one but is given for
simplicity as it corresponds to the ones (each one in a different, particular context) of
SW92, Severini, Staniswalis (1994), Rodŕıguez-Póo, Sperlich, Vieu (2003) and others.

Corollary 2. Suppose assumptions [A.1] - [A.3], [B.1] - [B.3] and [N.1] - [N.2] from
the Appendix hold. Then maximizing the smoothed likelihood as given in step 1 of
Procedure A provides a valid estimator of the least favorable curve.

In many practical examples this proposal yields the Nadaraya Watson smoother. Note
however, that Fan, Heckman, Wand (1995) discuss in detail the extension to local
polynomial smoother and its advantages. That paper and the above mentioned provide
us also the asymptotic distribution of the final nonparametric estimate. Note that, due
to the faster rate of convergence, the randomness of the parametric estimators does
not affect (asymptotically) the nonparametric estimate. To this aim, define hprod =∏q

j=1 hj and hmax = max1≤j≤q hj.

Corollary 3. With the same conditions as in Corollary 2, t0 being from the interior
of the support of T , p(·) its density function, and n =

∑D
d=1 nd going to infinity, we

have

√
nhprod (m̂(t0)−m(t0)−Bm(t0))

d−→ N (0, V arm(t0)) ,

with

V arm (t0) =

∫
K(t)2dt

p(t0)H ′ (m(t0), δ0)
, (12)

H ′ (m(t0), δ0) = E

[
∂

∂m
l (Y ; m, δ0)

2 |T = t0

]
(13)

and Bm(t0) = O(h2
max) being the bias.

If the conditional distribution of Y belongs to the exponential family, H ′(·) simplifies
to

H ′(m(t0), δ0) = E
[
g′(X tβ0 + Ztu + m(t0))

2
]
V ar [Y |u, t0,X]−1

what gives an asymptotic variance of the form

∫
K(t)2dt p−1(t0) V ar [Y |u, t0,X] g′

(
X tβ0 + Ztu + m(t0)

)−2
.

As for the test statistic only the variance is of interest, we discuss here only the bias
one gets when using in step 3 of Procedure A a local linear maximum likelihood, see
Fan, Heckman, Wand (1995) for details. Then the bias of Corollary 3 is

Bm(t0) =
1

2
ht diag

(
∂2

∂t2m(t0)

)
hµ2(K) + op(1) ,
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with diag
(

∂2

∂t2 m(t0)
)

being a diagonal matrix with the main diagonal of the Hessian

matrix of m(·), and µ2(K) is implicitly defined by
∫

tttK(t)dt = µ2(K)I with I being
the identity matrix. Unfortunately, as can be seen in the very same paper (p. 144),
the bias of the local constant estimator is much more complex.

Finally, let us add two more remarks.

First, often we find in the literature of (generalized) linear mixed models the so called
REML and / or Moment estimation methods to get unbiased estimators for the vector
of variances θ. For the Moment Methods one needs to know the degrees of freedom
one looses by estimating β and m(·). Unfortunately, for m(·) this information is not
exactly available. The REML does not work here neither, because the idea is based
on the possibility of applying a linear mapping L with LX = 0 so that the variances
can be estimated from the linearly transformed data without getting distorted by X,
respectively the estimation of β. In other words, such a linear mapping applied onto
the data corrects automatically for the degrees of freedom. However, in our case one
would need a linear mapping such that also m(T ) vanishes. This, in general, is not
available or would reduce the degrees of freedom to almost zero. This is why these
alternatives are not feasible in this context.

Second, it might be worth to study more in detail the implementation of these estima-
tion procedures. However, as can be seen e.g. in Fahrmeier, Tutz (2001) this is a topic
on its own already in the fully parametric case. Often, it depends on the particular
situation (model, number of random effect, etc.) what kind of implementation is the
less costly and / or most efficient one. It would be for example interesting to study
extensions of the EM-algorithm to our context, something that is clearly beyond the
scope of this paper.

3 Testing the Parametric versus the Semiparamet-

ric Model

We now turn to the testing problem H0 : m(t) = c + ttγ vs. H1 : m(t) 6= c + ttγ.
Our test statistic is based on a direct comparison of the semiparametric estimate with
the corresponding estimate in the parametric model. First of all note that for this
purpose it is certainly enough to have

sup
t0∈T

|m̂(t0)−m(t0)| = Op

(√
log n

nhprod

)
.

It follows from Lemma 1 of Rodŕıguez-Póo, Sperlich, Vieu (2005) that this holds for
our estimator introduced in Section 2.

Under the null hypothesis we have ηdj = c + T t
djγ + X t

djβ + ud , so the estimation
problem is purely parametric. It certainly should be based on the same likelihood
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functions as in the semiparametric case, i.e. be based on the same objective function.
Set in the following γt

c = (c, γt). The estimators for this model are denoted by

(γ̃c, ũ, δ̃) = argmax
{γc,u,δ}

ϕp(Y ; γc, δ),

where ϕp denotes the fully parametric log likelihood. Then, following the arguments
of Härdle, Mammen, Müller (2002), a direct comparison of m̂(T ) with c̃ + T tγ̃ may
be misleading, because m̂(·) has a smoothing bias which is typically non negligible.
To avoid this effect, we add a bias to c̃ + T tγ̃ that will compensate for the bias of
m̂(T ):

Procedure B.

1. We build the artificial data set: {Ỹdj,T dj, Xdj} with

Ỹdj = g(c̃ + T t
djγ̃ + X t

djβ̃ + ũd),

the parametric fit of µdj = E[Ydj|ud,T dj,Xdj] .

2. Repeat only the nonparametric step from Procedure A but replacing all paramet-
ric unknowns by their estimates δ̃ (and eventually ũ). E.g., using the likelihood
(8) or (9) one would set

m̃(t0) = argmax
{m∈M}

ϕs(Ỹ ; m, δ̃),

or m̃(t0) = argmax
{m∈M}

ϕss(Ỹ ; m, δ̃) respectively.
(14)

3. The resulting estimators we use for the direct comparison with its semiparametric
analog are therefore (m̃, ũ, δ̃).

Then, under H0 : m(t) = c + ttγ, one will get |m̃(t) − [c̃ + ttγ̃ + Bm(t)]| = op(1),
where Bm(t) is the bias of m̂(t), and therefore |m̂(t)− m̃(t)| = op(1).

A most traditional testing approach would be based on the likelihood ratio. But
this test does not work because m̂ and δ̂ were calculated with different likelihood
functions (smoothed and unsmooothed functions), see Härdle, Mammen, Müller (1998).
Therefore we consider weighted and unweighted squared differences.

R1w =
D∑

d=1

nd∑
j=1

H
(
m̂(tdj), δ̂

) [
m̂(tdj)− m̃(tdj) + X t

dj(β̂ − β̃)
]2

π(tdj) , (15)

or just

R1 =
D∑

d=1

nd∑
j=1

[
m̂(tdj)− m̃(tdj) + X t

dj(β̂ − β̃)
]2

π(tdj) , (16)
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with π(·) being a weight function chosen by the empirical researcher and

H (m(tdj), δ) =
∂

∂m
l (Ydj; m, δ)2 .

Note that this test statistic comes close to the likelihood ratio comparing the deter-
ministic parts of the indices weighted by something proportional to the variance of
{m̂(tdj)− m̃(tdj)}. Further, the covariances between the {m̂(tdj)− m̃(tdj)} are asymp-
totically negligible for different observations of tdj. Due to this fact, the asymptotic
distribution of our test statistic can be concluded from Härdle, Mammen, Müller (1998)
and summarized as follows:

Corollary 4. Under the hypothesis m(t) = c + ttγ , the previous assumptions and
[A.4], it holds that

v−1(R1w − b)
d−→ N(0, 1) , (17)

with b = h−1
prod

∫
K(t)2dtE[π(T )p−1(T )]+o(1) and v2 = 2h−1

prod

∫
K(2)(t)2dtE[π(T )2p−1(T )] .

Here, K(2) refers to a two-fold convolution of kernel K.

If we skip the weighting with H(·) in the test statistic, bias and variance will become

b = h−1
prod

∫
K(t)2dtE

[
E[H−1(m(T ), δ0)π(T )p−1(T )

]
+ o(1)

and

v2 = 2h−1
prod

∫
K(2)(t)2dtE

[
H−2(m(T ), δ0)π(T )2p−1(T )

]
.

These asymptotic expressions, however, are unknown expressions in the asymptotic
distribution. In practice, even though we can substitute most of the unknowns by
estimates, the asymptotics do not come even close to the real finite sample distribution.
Therefore we propose to use bootstrap procedures which allow us to simulate the critical
value. The first one, Procedure C, is a purely parametric bootstrap. Alternatives are
discussed in Section 4.

Procedure C.

1. From the sample, calculate a consistent estimator θ̂ = (σ̂2
u, σ̂

2
e) of θ = (σ2

u, σ
2
e).

2. Generate a vector w1 containing D independent copies of a variable w1 with
E[w1] = 0 and E[w2

1] = 1 with subexponential tails; that is, for a constant C1 it
holds that E[exp{|w1|/C1}] ≤ C1 (c.f. [A.4]). Construct the vector u∗ = σ̂uw1

such that the mean vector is 0D and the variance covariance matrix is Σ̂u = σ̂2
uID.

3. Generate a vector w2 containing n independent copies of a variable w2 with
E[w2] = 0 and E[w2

2] = 1 with subexponential tails (c.f. [A.4]). Construct the
vector e∗ = σ̂ew2, which is independent of u∗, such that the mean vector is 0n

and the variance covariance matrix is Σ̂ = σ̂2
eIn.

12



4. Under H0 true, set

Y ∗
dj = g

(
T t

djγ̃ + X t
djβ̃ + u∗d

)
+ e∗dj, d = 1, · · · , D, j = 1, · · · , nd.

5. Calculate the test statistic R∗
1 (R∗

1w respectively) from the bootstrap sample
(Y ∗, X,T ).

Again, applying quasi likelihood estimation allows to relax the distribution assumptions
up to exponential families. Then, Procedure C is a version of wild bootstrap, which
has been introduced by Wu (1986) (see also Beran 1986; Mammen 1992) and was first
proposed by Härdle and Mammen (1993) in nonparametric setups. Liu (1988) studied
the wild bootstrap under regression models with non-i.i.d. observations (e.g. taking
Σ = σ2

eA
−1 with matrix of weights A = diag(a11, · · · , aDnD

)), fulfills in addition to
the conditions E[w•] = 0, E[w2

•] = 1 also condition E[w3
•] = 1, in order to obtain the

second order properties of Wu’s bootstrap.

The computation of quantiles of the distributions of Rl (l = 1w, 1) can be done by
Monte Carlo: generate B independent sets of bootstrap samples (Y ∗(b),X,T ), b =
1, · · · , B. The (1−α) quantiles of the distributions Rl can be estimated by the {[(1−
α)B] + 1}th order statistic of R

∗(b)
l = R∗

l (Y
∗(b),X, T ) (b = 1, · · · , B).

Theorem 1 shows that the bootstrap procedure works.

Theorem 1. Under the assumptions of Corollary 4, it holds for l = 1w, 1, that

dk

(
F ∗

R∗l
, FRl

)
−→ 0.

Where FRl
is the distribution of Rl, F ∗

R∗l
is the conditional distribution of R∗

l (given the

sample), and dk is the Kolgomorov distance, which is defined as

dk(ν, τ) = sup{t∈IR}|ν(X ≤ t)− τ(X ≤ t)|
for two probability measures ν and τ on the real line.

Proof. The consistency of bootstrap methods is proved by imitation (for a general
discussion of the validation of bootstrap methods see Shao and Tu (1995, pp.76)). One
proceeds as in Härdle, Mammen and Müller (1998, see proof of their Theorem 2 in
Appendix), taking into account the asymptotics results of the previous section and
that |Y ∗

dj| has a bounded conditional Laplace transform (in a neighborhood of 0). For
more details see Mammen and van de Geer (1997, Section 5); these authors studied
the asymptotic distribution of the parametric component of a regression model using
wild bootstrap.

Thus, for l = 1w, 1, it holds that

dk

(
F ∗

R∗l
, N(b, v2)

)
−→ 0,

in probability, with b and v2 introduced in Corollary 4. 2
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4 Alternatives and Extensions

4.1 Estimation for “small” D

Even though the following differentiation is not necessary, let us distinguish the case
with D → ∞ where u = (u1, u2, . . . , uD) becomes therefor an infinite dimensional
vector, and the case where D is small relatively to n. A particular case is when D is
fixed, i.e. u is a finite dimensional vector. As has been seen above, concerning theory
Procedure A is valid for any case. In practice, however, one has the problem that one
has either to integrate over all u , see equation (3) or to calculate û simultaneously
(e.g. to get σ2

u). This can only be avoided in particular situations like in simple linear
models with a perfectly known variance matrix. In case of prediction, especially in
small area statistics, one is interested in û in any case. When we have to (or want
to) calculate also the û , the likelihood functions are commonly based on the PQL
approach, and one would replace Procedure A by

Procedure D.

1. For fixed (u, δ) we estimate m(t0) as the solution of the problem

m̌
(u,δ)

= argmax
{m∈M}

ϕss(Y ; m, δ) .

2. We calculate (u, δ) as the solution of the problem

(û, δ̂) = argmax
{u,δ}

ϕ(Y , u; m̌δ, δ). (18)

3. With the estimators obtained in steps 1 and 2, we set finally m̂ = m̌
(
ˆδ,û)

.

This can simplify calculations a lot but can be a harder problem than the first one
when D converges to infinity without any restrictions. To apply standard theory it
is necessary to assume D to be fixed (D of order o(n) might do). In that case the
statements of Corollary 1 to 3 hold also for Procedure D. Whether it is preferable to
work with Procedure A or D will depend on the particular context.

4.2 Alternative Tests Statistics

Although we think the test statistic R1w is the most natural approach, we would like
to add two more statistics that are very much related to the first one.

Recalling the likelihood ratio comparing the full indices weighted by something pro-
portional to the variance of {m̂(tdj)− m̃(tdj)} we propose a first alternative:

R2w =
D∑

d=1

nd∑
j=1

H
(
m̂(tdj), δ̂

) [
m̂(tdj)− m̃(tdj) + X t

dj(β̂ − β̃) + ûd − ũd

]2

π(tdj) ,(19)
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with π(·) being a weight function as before. This statistic comes close to the one
of Härdle, Mammen, Müller (1998). Obviously, including the random effects yields a
quite interesting alternative to R1w when the target of the analysis is to find the better
prediction model.

Remember that the random effects are supposed to be independent of X and T
but only correct for the mean in each subset indexed by the same d (e.g. being from
the same area). Consequently including them now in R2w will not affect systematically
the (squared) differences under consideration. Intuitively, the test statistics R1w and
R2w should test exactly the same. However, it is an important modification because
the handling of the asymptotic distribution is straight forward for R1w, whereas the
distribution of ûd respectively ũd gets rather cumbersome when D goes to infinity.

A very simple test statistic would be to reduce the prior versions to (weighted) differ-
ences of the m(·) estimates only:

R3w =
D∑

d=1

nd∑
j=1

H
(
m̂(tdj), δ̂

)
[m̂(tdj)− m̃(tdj)]

2 π(tdj) , (20)

R3 =
D∑

d=1

nd∑
j=1

[m̂(tdj)− m̃(tdj)]
2 π(tdj) . (21)

Even though the asymptotic distribution is the same as for R1 , respectively R1w

(i.e. the statements of Corollary 4 hold also for R3 and R3w), in finite samples we
expect a different performance when the impact of the regressors X and T are
related (existence of concurvity).

We conclude with the remark that the bootstrap procedure discussed in the last section
as well as the ones that will be discussed next is valid for all of these test statistics.

4.3 Alternative Bootstrap Procedures

In case we face a model with additive error terms we could consider the following
alternative. In Procedure C we have made use of the homoscedasticity assumption
estimating σε and using it for the generation of the bootstrap samples. Often, in
practice some extreme values make the test quite conservative as they produce rather
huge estimates of σε. In case of additive errors one can circumvent this problem by
using the wild bootstrap typically used when the assumption of homoscedasticity is
dropped:

Procedure E.

1. From the sample, calculate a consistent estimator σ̂2
u of σ2

u.
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2. Generate a vector w1 containing D independent copies of a variable w1 with
E[w1] = 0 and E[w2

1] = 1 with subexponential tails. Construct the vector u∗ =
σ̂uw1 such that the mean vector is 0D and the variance covariance matrix is
Σ̂u = σ̂2

uID.

3. Generate a vector w2 containing n independent copies of a variable w2, which is
independent of the random variable w1, with E[w2] = 0 and E[w2

2] = 1, and that
fulfills for a constant C2 that |w2| ≤ C2 (a.s.). Construct the vector e∗ = êw2,

with the residual vector ê = Y − g
(
T tγ̂ + X tβ̂ + û

)
.

4. Under H0 true, set

Y ∗
dj = g

(
T t

djγ̃ + X t
djβ̃ + u∗d

)
+ e∗dj, d = 1, · · · , D, j = 1, · · · , nd.

5. Calculate the test statistic under consideration from the bootstrap sample (Y ∗,X,T ).

Let us also consider the special situation of the logistic semiparametric mixed model.
For this we recommend the following parametric bootstrap, which is a modification of
the resampling methods discussed so far:

Procedure F.

1. From the sample, calculate a consistent estimator σ̂2
u of σ2

u.

2. Generate a vector w1 containing D independent copies of a variable w1 with
E[w1] = 0 and E[w2

1] = 1 with subexponential tails. Construct the vector u∗ =
σ̂uw1 such that the mean vector is 0D and the variance covariance matrix is
Σ̂u = σ̂2

uID.

3. Under H0 true, generate observations by generating values of a binomial distrib-
ution with sizes ndj and probabilities

p∗dj =
exp{T t

djγ̃ + X t
djβ̃ + u∗d}

1 + exp{T t
djγ̃ + X t

djβ̃ + u∗d}
, d = 1, · · · , D, j = 1, · · · , nd.

4. Calculate the test statistic under consideration from the bootstrap sample (Y ∗,X,T ).

Finally, note that the statement of Theorem 1 holds also for these bootstrap types.
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4.4 Extensions to other Models and Hypothesis

So far we have introduced the generalized partial linear model for mixed effects and
given some bootstrap based test statistics for testing linearity of the nonparametric
part. As the estimation technique is based on the well studied semiparametric profiled
likelihood approach, our method can extended, quite straight forwardly, to similar
models who’s analysis is based on the same methodology. In particular we are thinking
of introducing random effects in

• generalized partially linear single-index models

E[Y |X, T ] = g
{
X tβ + m(T tγ)

}
(22)

see Carroll, Fan, Gijbels, Wand (1997)

• generalized additive partially linear models

E[Y |X,T ] = g

{
X tβ +

p∑

k=1

mk(Tk)

}
, Tk ∈ IR (23)

see Härdle, Huet, Mammen, Sperlich (2004). They actually also allow for intro-
ducing nonparametric interaction terms of the form mkl(Tk, Tl).

• semiparametric separable models

E[Y |X, T ] = gθ {X, m1(T1),m2(T2), . . . , mp(Tp)} , Tk ∈ IR , (24)

where g(·) is allowed to depend on a vector of unknown parameter θ. The
estimation of those models have been introduced by Rodŕıguez-Póo, Sperlich,
Vieu (2003).

In all these models it is obvious now how to estimate extensions where also random
effects enter (linearly). Further, Härdle, Huet, Mammen, Sperlich (2004) give a large
bunch of bootstrap based tests for analyzing model (23). In particular, they provide
statistics for testing mk(·) for any given parametric structure, testing for interaction,
and testing the link specification. They also construct uniform confidence bands for
each function mk(·).

Note that these tests have important application in small area estimation. Consider
e.g. the nested-error regression type models of Battese, Harter and Fuller (1988), where
Ydj is the target character for the j’th sample unit in the d’th area (domain) sample:

E[Ydj|ud, Xdj, T dj] = g
{
m(T dj) + X t

djβ + ud

}
d = 1, . . . , D; j = 1, . . . , nd

or the Fay-Herriot type model (1979), assuming that the sample mean ȳd is related
with the area mean µd = m(T d) + X t

dβ + ud via

E[ȳd|ud, Xd,T d] = g
{
m(T d) + X t

dβ + ud

}
d = 1, . . . , D.

These models have been studied so far only for the case of linearity of m(·).
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5 Finite Sample Performance

As discussed in the previous sections, there exist already a large amount of papers con-
sidering the estimation of semiparametric mixed effects models for different smoothers,
implementations, and likelihoods. Therefore, we concentrated here once more on the
testing part and stick to a relatively easy to estimate model. Instead, we will inten-
sively study the effect of using different bootstrap procedures, modified test statistics,
(slightly) different smoothers, different bandwidths, etc. as well as on the effect of
facing different data generating processes. For all this we studied the first error type
and the power having only samples of moderate size.

The data generating process was

ydj = 1 + (1− a )tdj + a sin(πtdj) + βtxdj + ud + εdj , (25)

for d = 1, . . . , D, , j = 1, . . . , nd, where βt = (2, 1) , (tdj,x
t
dj) ∈ IR3 i.i.d., ud ∼ N(0, 1)

i.i.d., and εdj ∼ N(0, 0.25) i.i.d., where N(µ, σ2) is the normal distribution with mean
µ and variance σ2. We simulated the case where a is running from 0 (giving the
null hypothesis model) to 0.5 to study the error of the first and second type. Further,
for the explanatory variables (tdj,x

t
dj) we simulated three different (always random)

designs; first U [0, 2]3, then normal with mean 1.0, variance 0.6 but uncorrelated, and
finally normal with mean 1.0, variance 0.6 but covariance 0.15. This has been done
as it is well known that non- and semiparametric inference unfortunately is strongly
affected by the experimental design; in our context it obviously is of special interest
to see the (expected) loss in power when we change from uncorrelated to correlated
designs. Note that they all have the same mean, but in case of normal distribution
about 10 to 20% of the observations fall outside of the [0, 2]3 cube. We studied two
sample sizes, n = 100 and n = 200. When n = 100 we set D = 10 with n1 to nD equal
to 5, 7, 8, 9, 10, 10 ,11, 12, 13, and 15. For n = 200 we set D = 20 and each of the nd

from above occurs twice. We used always B = 500 bootstrap replications to calculate
the critical values of the test statistic.

The test statistics have been implemented first with a Nadaraya Watson smoother.
Even though this smoother suffers from boundary effects, we did neither boundary
corrections nor any trimming, i.e. we set π(t) = 1 throughout; instead, we trusted
in the ability of the bootstrap procedures to replicate these effects adequately. The
literature on bandwidths selection for nonparametric (kernel) estimation is abundant
but it is also well known that the optimal bandwidth for testing has a faster rate,
i.e. should be undersmoothing in practice. Although the cross validation bandwidth
is asymptotically optimal for estimation rather then for testing, to our experience
it behaves pretty well for testing problems with finite samples since it has indeed the
tendency to somewhat undersmooth. Alternatively, there exists an increasing literature
on adaptive testing, i.e. choosing a bandwidth that maximizes the power of the test.
However, these methods, so far only available for some particular testing problems, are
rather expensive with respect to implementation and computational time. An approach
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that could probably be extended to our testing problem has been recently proposed by
Rodŕıguez-Póo, Sperlich, and Vieu (2005) and is based on the idea of Spokoiny (2001).
The results presented in this chapter are calculated with bandwidths h = h0/n

2/9

where h0 = 1.0, 1.5, and 2.0 respectively.

Although both bootstrap procedures are implemented (C and E), in the following are
given only the results for Procedure C. As we face simulated data without extreme
values or outliers it is clear that the procedure making use of the homoscedasticity
(i.e. Procedure C) is superior and gives always somewhat better results. The power
loss when using Procedure E was in our simulations between 5 to 15%.

Let us start with a comparison of the different proposed test statistics. As in (25) the
canonical link function is the identity function, the test statistics Rjw and Rj coincide
(for j = 1, 3). It remains therefore to compare R1 with R2 and R3.

R2 R1 R3

h0 1.0 1.5 2.0 1.0 1.5 2.0 1.0 1.5 2.0
U [0, 2]3 p .485 .510 .534 .481 .501 .526 .484 .498 .518

1% .010 .004 .000 .012 .002 .002 .010 .002 .004
5% .070 .050 .022 .068 .052 .024 .066 .058 .026
10% .108 .096 .054 .110 .098 .072 .116 .098 .084

N(0, 0.75) p .495 .560 .607 .491 .554 .600 .488 .557 .599
Cov = 0.0 1% .010 .002 .002 .014 .004 .002 .014 .002 .002

5% .064 .034 .014 .066 .034 .014 .068 .034 .016
10% .120 .060 .050 .120 .066 .052 .120 .070 .052

N(0, 0.75) p .503 .594 .647 .502 .588 .639 .502 .585 .631
Cov = .15 1% .014 .002 .002 .014 .002 .002 .016 .004 .004

5% .070 .018 .018 .078 .028 .016 .070 .022 .014
10% .122 .066 .032 .130 .066 .034 .116 .066 .032

Table 1: The p-values (p) and first error type at 1, 5, and 10% level for the different
tests using Nad.-Wat., parametric bootstrap (Procedure C), n = 100, D = 10.

In Table 1 are given the real rejection levels for different nominal levels under the
null hypothesis of linearity of m(·), i.e. setting a = 0 in (25), calculated from 500
simulation runs. As expected, depending on the bandwidth, the rejection levels vary
somewhat but due to the implemented bias reduction (compare discussion in Section 3,
Procedure B) this test tends to under-reject for small samples, i.e. to be conservative
instead of being too liberal. In any case, we cannot detect any clear differences between
R1, R2, and R3 in the sense that one of them would in general be more correct than
the other.

To study the power performance of these test statistics we let a in model (25) run
from 0 to 0.5 determining the real rejection levels for the different a ∈ [0, 0.5] based
on 100 simulation runs. In Figure 1 are plotted the power functions of the three tests
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Figure 1: Comparing the powers of R2 (solid), R1 (dotted) and R3 (dashed) with
n = 100 for different designs using Nadaraya Watson smoother.

(solid line for R2, dotted for R1 and dashed for R3). From these plots we can draw
several conclusions. First, the tests do hardly differ, so for further investigations it does
not matter whether we consider R1, R2 or R3. Second, obviously, even for this rather
small sample size of only 100 (D = 10) observations our tests work quite well detecting
already moderate deviations from the null hypothesis. Third, the loss of power caused
by introducing correlation in the design is moderate but, at lease visually, evident. The
case study with uniform design does, maybe surprisingly, not better than the one with
normally uncorrelated distributed regressors but even worse. This is probably due to
the larger support even though the observations are rather sparse outside the [0, 2]3

cube.

R2 R1

n = 100 n = 200 n = 100 n = 200
h0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0
p .499 .501 .513 .514 .495 .495 .511 .511
1% .010 .016 .004 .004 .006 .012 .002 .004
5% .068 .060 .034 .040 .070 .060 .038 .042
10% .108 .100 .086 .086 .114 .096 .086 .086

Table 2: R1 and R2, Uniform design (uncorrelated), Local Linear Smoother, p-
values (p) and first error type at level α% for bootstrap (Procedure C).

20



n=100

0 0.1 0.2 0.3 0.4 0.5
a

0
0.

2
0.

4
0.

6
po

w
er

 a
t 1

%

n=100

0 0.1 0.2 0.3 0.4 0.5
a

0.
2

0.
4

0.
6

0.
8

po
w

er
 a

t 1
0%

n=200

0 0.1 0.2 0.3 0.4 0.5
a

0
0.

2
0.

4
0.

6
0.

8
1

po
w

er
 a

t 1
%

n=200

0 0.1 0.2 0.3 0.4 0.5
a

0
0.

2
0.

4
0.

6
0.

8
1

po
w

er
 a

t 1
0%

Figure 2: Comparing the power of R2 when using Nadaraya
Watson smoother (solid) vs Local Linear smoother (dotted)
for different sample size, always uniform design.

The estimation procedure has been implemented with Nadaraya Watson as well as
with Local Linear smoother. We next study whether and how the performance of the
test changes, maybe improves. On the one hand the main advantage of the local linear
smoother is its strong reduction of boundary effects which are certainly more serious for
the uniform design when changing from Nadaraya Watson to Local Linear smoothing.
On the other hand a local linear smoother is unbiased under the null hypothesis of
linearity what should, at least for increasing sample size, make it clearly superior over
the Nadaraya Watson approach. For these two reasons we concentrate on the uniform
design and compare their performances also for n = 200, D = 20. First let us have a
look on the error of the first type, see Table 2. As we had serious numerical problems
for h0 = 1.0, i.e. got too many zero - weights, we give only results for h0 = 1.5 and 2.0
respectively. As can be seen, the Local Linear based test is much more robust against
bandwidths choice although we have to admit that in our small simulation study it is
slightly too liberal for the nominal 5% rejection level, compare with Table 1. Turning
now to the power study, see Figure 2, we can only state a clear improvement for the
case n = 100, D = 10 at the nominal 1% level. Here, all plots refer to results using
bandwidths h0 = 1.5. Certainly, also for the other cases we see the power functions
of the Local Linear based test is located above its competitors, but only a little bit
and this having already started from a higher (real) rejection level under the null.
Nevertheless, together with the results on the first error type we conclude that a Local
Linear based test should be given preference if the additional computational cost is
low.
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Figure 3: Comparing the power of R2 when n = 100, D = 10 (solid) vs n = 200,
D = 20 (dotted) for different designs using Nadaraya Watson smoother.

In the above mentioned study on Local Linear smoother we have also seen that dou-
bling the sample size already improves a lot the power performance. Although this
is expected from asymptotic theory, have in mind that the results are of asymptotic
nature and especially for very small samples the real improvement is often stronger
than the theoretical convergence rate would make us expect. In Figure 3 we directly
compare the power functions given n = 100, D = 10 vs n = 200, D = 20 for all de-
signs but concentrate again on the test R2 with Nadaraya Watson based smoother and
bandwidths h0 = 1.5/n2/9. We see a quite strong improvement, most evident for the
uniform design. Having in mind the complexity of the model, the small deviation from
the null hypothesis, and the moderate sample size, the power performance is amazing.

As can be suspected already from the section where we have introduced the estimator,
but also thinking of the bootstrap procedure, the computational cost of our procedure is
high. Even though it could be argued that spline smoothers can be implemented more
efficiently than kernel based smoother (in the one dimensional case), the reason why our
method is so expensive is not the smoothing but the different iterations. Therefore,
when we come to the bootstrap, in the original (i.e. correct) algorithm there does
not exist one “final” smoothing matrix that simply could be applied to all bootstrap
responses Y ∗. It is clear that the variance as well as the bias of the test statistic is
dominated by the nonparametric part, and only in higher order terms by û and β̂
(respectively γ̂) whereas σ̂u, σ̂ε only influence the weighting (for β̂, γ̂ and for the test
statistic). We therefore implemented a simplified version of the bootstrap where for
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Nadaraya Watson Local Linear
n = 100 200 100 200

U [0, 2]3 p .503 .564 .516 .550
1% .022 .008 .034 .002
5% .072 .026 .078 .026
10% .108 .054 .118 .070

N(0, 0.75) p .576 .572 .501 .530
Cov = 0.0 1% .004 .004 .028 .014

5% .032 .028 .080 .052
10% .054 .060 .128 .092

N(0, 0.75) p .612 .610 .480 .524
Cov = .15 1% .002 .004 .020 .014

5% .018 .026 .078 .060
10% .052 .054 .126 .102

Table 3: Simplified Version, R2 only, p-values (p) and first error type at level α%
for parametric bootstrap (Procedure C), always h0 = 1.5.
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Figure 4: Comparing the power of R2 calculated by original (solid) vs calculated by
simplified algorithm (dotted), always using Nadaraya Watson smoother, n = 200 with
different designs.

the estimation of the parameter only the last iteration is repeated inside the Newton-
Raphson method, using the variance estimates obtained from the original sample. We
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only iterate between the estimation of β and m(·). We found that the computational
time decreased almost exponentially (depending on the sample size). However, not
surprisingly, there is some loss in exactness and power. Our final simulation study is
dedicated to this simplified version. In Table 3 is given the error of the first type for
R2, both smoothers (Nadaraya Watson and Local Linear), different sample sizes and all
designs. We see that when we use this simplified version for sample size n = 100 (D =
10), to hold the level, a somewhat larger bandwidths is needed than for the original
algorithm, compare with Table 1. However, for n = 200, D = 20 the simplified version
works as good as the original one. This is underpinned also in the power study, see
Figure 4. The power functions hardly differ, i.e. the power loss due to simplification is
clearly negligible. This weapons us with a quite potential approximation that is rather
useful for large samples, higher dimensional nonparametric parts, or if one wishes to
do many bootstrap replications. Why extensions to higher dimensional nonparametric
parts can be rather interesting has been seen in the previous section.

6 Technical Assumptions

First, let us introduce some more notation. We define

Dµxa(x) =
∂|µx|

∂x1
µ1 , · · · , ∂xk

µk
a(x),

being µx a k-vector of nonnegative integer constants, |µx| =
∑k

j=1 µj and a(x) ∈ IRk

any function. We denote by Drm,sδ

m,δ (Y ) = DrmDsδ l(Y ; m, δ) and by f
(rm,sδ)
mδ (y, u, x|t)

the conditional density of Drm,sδ

m,δ (Y ) given T = t. Let us define for each δ ∈ ∆ and
t ∈ T

h(δ,m, t) = E[l(Y ; m, δ)|T = t] (26)

and m̄δ(t) the solution to
∂

∂m
h(δ,m, t) = 0 , (27)

with respect to m for each fixed δ and t. Remember that l (Y ; m, δ) = log f(Y |u, T ,X; m, δ)
+ log p(u; σ2

u).

Let us write down the conditions for the case when we consider the family of density
functions {f(·|u, t,x; m, δ) : δ ∈ ∆,m ∈M} . Then, we assume that they satisfy the
following conditions:

A.1 For fixed but arbitrary (m1, δ1) ∈M×∆, let

ρ(m, δ) =

∫
l(y; m, δ)f(y|u, t,x; m1, δ1)dy ,

with (m, δ) ∈M×∆. If δ 6= δ1 then ρ(m, δ) < ρ(m1, δ1).
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A.2 The matrix Iδ is positive definite for all δ ∈ ∆ and m ∈M.

A.3 Assume that for vectors |rm| ≤ 4 and |sδ| ≤ 4 such that |rm| + |sδ| ≤ 4 the
function DrmDsδ l(Y ; m, δ) exists for almost all Y . Further, assume that

E
{
supδsupm|DrmDsδ l(Y ; m, δ)|2} < ∞ .

A.4 The Laplace transform E[exp{t|Ydj|}] is finite for t > 0 small enough.

The condition [A.2] and [A.3] are usual in likelihood related problems. E.g. [A.3] allows
differentiation and integration to be interchanged when differentiating

ρ(m, δ) =

∫
l(y; m, δ)f(y|u, t, x; m1, δ1)dy .

The condition [A.4] is essential for the asymptotic expansions of Corollary 4, see Mam-
men and van de Geer (1997).

Next, we need to include some smoothness assumptions that are necessary because of
the use of nonparametric smoothing methods:

B.1 For each δ ∈ ∆ and t ∈ T ,

sup{δ,m,t}|DrmDsδDzth(δ,m, t)| < ∞

for 2 ≤ |rm| ≤ 4, |sδ| ≤ 2, |xt| ≤ 1, and |rm|+ |sδ|+ |xt| ≤ 4.

B.2 The solution to (27), m̄δ(t) , is unique and for any constant ε > 0 there exists
another ν > 0 such that

supδsupt

∣∣∣∣
∂

∂m
h(δ, m̄δ(t), t)

∣∣∣∣ ≤ ν

implies that
supδsupt

∣∣m̄δ(t)−mδ(t)
∣∣ ≤ ε .

B.3 Assume that

(a) E[supmsupδ|Drm,sδ

m,δ (Y )|] < ∞ for |rm| ≤ 5 and |sδ| ≤ 3 ,

(b) for some even integer ξ ≥ 10 it holds that supmsupδE[|Drm,sδ

m,δ (Y )|q] < ∞
for |rm| ≤ 3 and |sδ| ≤ 4,

(c) supmsupδsup{y,u,t,x}|f (rm,sδ)
mδ (y, u, x|t)| < ∞ for |rm| ≤ 4 and |sδ| ≤ 3,

(d) supt|Dxtp(t)| < ∞ and supmsupδsup{y,u,t,x}|Dxtfmδ(y, u, x|t)| < ∞ for
|xt| ≤ a + 2,

(e) and 0 < inf{t∈T }p(t) < sup{t∈T }p(t) < ∞.
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The assumptions [B.1] - [B.3] are sufficient to guarantee that the nonparametric esti-
mator from step 1 of Procedures A and B fulfill sup{t0∈T }|m̂(t0)−m(t0)| = op(n

−1/4),
and thus it is estimator of least favorable curves.

Finally, we also need to impose some conditions on the kernel function K(·) and the
bandwidth h :

N.1 Function K(·) is a bounded kernel of order a with compact support, and
supz |DtzK(z)| < ∞ for |tz| ≤ a + 2 .

N.2 The bandwidth vector h is of order O(n−α), 1/(4a) < α < (ξ − 3)/4q(ξ + 6)
such that a/q > (ξ − 3)/(ξ + 6) with ξ from [B.3] b).

Note that as Rodŕıguez-Póo, Sperlich, Vieu (2003) we consider here the use of higher
order kernels to allow for higher dimensions of t. Else, one could substitute conditions
[N.1], [N.2] by the ones of SW92 in Lemma 8 and 9.
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