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ABSTRACT

The aim of this work is to establish statistical methodology in order
to analyze changes in the dependence structure for different spatial
processes or for a process observed on a regular grid at different time
moments. We propose a test statistic for testing the hypothesis
H0 : f1 = . . . = fL, where each fl denotes the spectral density
of each process, for l = 1, . . . , L. The test is based on a Cramer-
von-Mises functional type test introduced in (Vilar-Fernández and
González-Manteiga (2004)) for the regression context. A simulation
study and real data application are also provided.
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1 Introduction

Many authors have studied the problem of modelling the dependence structure
of spatial data, from both parametric and non-parametric approaches. This
problem can be focused from the spatial domain, taking the variogram or the
covariogram as the target function. On goodness-of-fit testing for dependence
structures, Diblasi and Bowman (2001) propose a test for independence and
Maglione and Diblasi (2004) extend the former technique for choosing a valid
model for a variogram, based on smoothed versions of the observed variables.
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ativa. Facultade de Matemáticas. Campus Sur. C.P. 15782. Santiago de Compostela (Spain).
Phone number: +34981563100-13216. Fax number: +34981597054. †E-mail address: wences-
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The techniques mentioned above consider the dependence modelled through the
covariogram or the variogram. An alternative to these techniques is to descr-
bie the dependence structure using the spectral density (the Fourier Transform
of the covariance function). Spectral techniques are a broadly used tool in
time series analysis. Despite its extension to higher dimension problems is not
straightforward, this approach is gaining acceptance in spatial data analysis.
The spatial periodogram is a non-parametric estimator of the spatial spectral
density. It inherits all the properties of the time periodogram (asymptotically
unbiasedness and independence) in a natural way. In the spatial setting, Fuentes
(2002) considered this approach for modelling non-stationary spatial dependence
structure.

Considering this spectral scheme, Crujeiras et al. (2006) provide two test sta-
tistics, using distances on the spectral and on the log-spectral domain. These
testing goodness-of-fit testing techniques take advantage of the representation
of the spatial periodogram as the response variable in a multiplicative regression
model. By a logarithmic transform, the spatial log-periodogram can be written
as the exogenous variable in a regression model, where the regression function
is the log-spectral density.

In a quite related goodness-of-fit context, King et al. (1991) study the problem
of comparing two regression curves under independence and Gaussian errors.
The general case of comparing L ≥ 2 regression curves is studied in Dette and
Neumeyer (2001). In Vilar-Fernández and González-Manteiga (2004), the au-
thors provide a goodness-of-fit technique for testing the equality of regression
curves, under fixed design and dependent errors. Based on the ideas in Vilar-
Fernández and González-Manteiga (2004), the goal of our work is to provide a
test statistic for testing the hypothesis that the spectral densities of L obser-
vations of a spatial random process are equal. In spatial statistics, the design
points for different realizations of a process are, in many cases, the same. For
instance, when these realizations represent the evolution of a biomonitoring
process along time. In this setting, it is not unreasonable to assume that obser-
vations are taken on the same set of locations, along time.

On this scope, Zhu et al. (2002) establish a statistical methodology to analyze
changes in the spatial cumulative distribution function (SCDF), over time. Un-
der shrinking asymptotics (a mixture between increasing and infilling domain
asymptotics), following (Lahiri (1999)), the authors prove asymptotic normal
distribution of two test statistics, for comparing two time moments. The first
statistic is based on the difference between the empirical versions of the SCDF.
The second statistic is a weighted integrated squared difference between the
empirical counterparts of the SCDF. Both testing techniques are devoted to the
detection of differences over time, but not specifically focused on the detection
of changes in the dependence structure, as it is our purpose.

Besides, when studying spatio-temporal processes, it may be interest to check
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whether spatial dependence remains invariant along time, that is, the process is
temporally stationary. With the testing technique we propose, we can check if
simple spatio-temporal models can be used to model the dependence structure
in the data.

The application of our technique is related to biomonitoring studies. Biomon-
itoring studies have been hold over the last years in order to determine levels
of heavy metal concentration all over Europe. The accumulation of heavy met-
als over large areas and long time periods may cause chronic damage to living
organisms and it must be thoroughly controlled. In the particular case of Gali-
cia (NW Spain), mosses have been used as biomonotors (see Fernandez et al.

(2000)). Our main concern is the study of Mercury concentrations.

This paper is organized as follows. In Section 2 we provide some background
on spatial spectral methods and nonparametric regression. In Section 3, we
introduce the test statistic and discuss its application in practice. In Section 4,
we provide some simulation results in order to check the performance of the test
and Section 5 is devoted to real data application. A brief summary and some
discussion are given in Section 6.

2 Some background.

Let Zl be a zero mean second-order stationary spatial process, observed on
a regular grid Dl, for l = 1, . . . , L. That is, {Zl(s), s ∈ Dl = al +D}, with
D = {1, . . . , d1}×{1, . . . , d2}. The case a1 = . . . = aL implies that the processes
are observed on the same grid of locations. Denote by Nd = d1d2 the number
of points in any of the grids Dl, with l = 1, . . . , L. The covariance function of
the processes are defined by:

Cl(u) = E(Zl(s), Zl(s + u)), s,u ∈ Z
2. (1)

Assuming that
∑

u
|Cl(u)| < ∞, by Khinchin’s theorem (e.g. Yaglom (1987)),

the covariance function of a stationary random process can be written, for l =
1, . . . , L as:

Cl(u) =

∫

Π2

e−iuT
λfl(λ)dλ, Π2 = [−π, π] × [−π, π] (2)

where fl, the spectral density, is bounded and continuous for all l and T denotes
the transpose operator.

The classical nonparametric estimator of the spectral density is the peri-
odogram, which is given by:

Il(λk) =
1

(2π)2Nd

∣∣∣∣∣
∑

s∈Dl

Zl(s)e
−isT

λk

∣∣∣∣∣

2

, (3)
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where sT λk denotes the scalar product in R
2. The periodogram is usually

computed at the set of bidimensional Fourier frequencies, λT
k

= (λk1
, λk2

):

λki
=

2πki

di
, ki = 0,±1, . . . ,±ni = ⌊

di − 1

2
⌋, i = 1, 2 (4)

and denote by N = (2n1 + 1)(2n2 + 1) the number of Fourier frequencies. The
periodogram (3) can be also written in terms of the sample covariances as:

Il(λk) =
1

(2π)2

∑

u∈U

Ĉl(u)e−iuT
λk , l = 1, . . . , L (5)

where U = {u = (u1, u2);ui = 1 − di, . . . , di − 1, i = 1, 2} and the sample
covariances, for Zl with l = 1, . . . , L, are given by:

Ĉl(v) =
1

Nd

∑

s∈Dl(v)

Zl(s)Zl(s + v), Dl(v) = {s ∈ Dl; s + v ∈ Dl}. (6)

We will suppose that the spatial process Zl can be represented as:

Zl(s) =

∞∑

j=−∞

∞∑

k=−∞

ψl
jkεl(s1 − j, s2 − k), (7)

where the error variables εl are independent and identically distributed as
N(0, σ2

εl
), for l = 1, . . . , L. Note that any Gaussian stationary process can

be represented as in (7). Then, the corresponding spectral density fl can be
written as:

fl(λ) = |Al(λ)|
2
fεl

(λ), λ ∈ Π2 (8)

where fεl
(λ) =

σ2
εl

(2π)2
and

Al(λ) =

∞∑

j=−∞

∞∑

l=−∞

ψl
jke

−i(j,k)λ, (j, k)λ = jλ1 + kλ2.

In this case, the periodogram for each process Zl, with l = 1, . . . , L, admits the
following representation:

Il(λk) = fl(λk)V l
k

+Rl
N (λk), (9)

where the variables V l
k

are i.i.d. standard exponential distributed, and V l
k

and

V l′

k
, with l 6= l′ are also independent. The residual term RN (λk) is uniformly

bounded (see Crujeiras et al. (2006)). Applying logarithms in (9) we have:

Y l
k

= ml(λk) + zl
k

+ rl
k
, l = 1, . . . , L (10)

where ml = log fl is the log-spectral density, the variables zl
k

= log V l
k

are i.i.d.
with density function h(x) = ex−ex

, and the residual term rl
k

is given by:

rl
k

= log

(
1 +

Rl
N (λk)

fl(λk)V l
k

)
.
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Our main purpose is to test whether the spatial spectral densities are the
same, or equivalently, in terms of the spatial log-spectral densities:

H0 : m1 = . . . = mL,

Ha : ml 6= mj , for some l 6= j.
(11)

In this context, the comparisson can be made by considering nonparametric
estimators of the spatial log-spectral densities. Several nonparametric estima-
tors of the spatial log-spectral density could be obtained considering a smoothed
combination of log-periodogram values, that is:

m̂l(λk) =
∑

i

W l
i
(λk)Y l

i
. (12)

The weights W l
i

can be defined as Gasser-Muller weights, for instance:

W l
i
(λ) = |H|−1/2

∫

Ai

K(H−1/2(λ − µ))dµ, (13)

where K is a bidimensional kernel function, H is a bidimensional bandwidth
matrix and the integration region is given by:

Ai = [ai1−1, ai1 ] × [ai2−1, ai2 ], λi ∈ Ai, ∪iAi = A, Ai ∩Aj = ⊘, i 6= j.

The sets Ai in the partition of A must be Jordan measurable and maxi µ(Ai) =
O(N−1) (see Müller (1988)). Another options are Priestley-Chao weights:

W l
i
(λ) =

π2

N
KH(λ − λi) =

π2

N |H|1/2
K(H−1/2(λ − λi)), (14)

and Nadaraya-Watson weights:

W l
i
(λ) =

KH(λ − λi)∑
i
KH(λ − λi)

=
K(H−1/2(λ − λi))∑
i
K(H−1/2(λ − λi))

. (15)

Another alternative consists of considering a local-linear estimator for the
spatial log-spectral density. A pilot local-linear estimator for ml(λ), with λ =
(λ1, λ2)

T , is obtained by multivariate local linear least squares regression by
minimizing:

∑

k



Y l
k
− (β0, β10, β01)




1

λ1 − λk1

λ2 − λk2








2

KH(λ − λk), (16)

and the nonparametric estimator is given by m̂l(λ) = β̂0, where (β̂0, β̂10, β̂0,1)
is the argument that minimizes expression (16).

The previous expressions for a nonparametric estimator of the log-spectral
density come from the nonparametric regression context. Back to model (10),
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and taking into account the distribution of the error variables zl
k
, the log-

likelihood associated with this model, ignoring the term rl
k
, is given by:

∑

k

(
Y l
k
−ml(λk) − eY l

k
−ml(λk)

)
, l = 1, . . . , L. (17)

From a nonparametric approach, consider the estimator obtained for the spatial
log-spectral density ml by a multidimensional local linear kernel estimator. For
x ∈ R

2, we approximate ml(λk) by the plane al + bT
l (λk − x). Therefore, a

local log-likelihood function based on (17) is given by:

∑

k

(
Y l
k
− al − bT

l (λk − x) − eY l

k
−al−b

T

l
(λk−x)

)
KH(λk − x), l = 1, . . . , L

(18)
and take the maximum local log-likelihood estimator m̂l(x) of ml(x) as âl in

the maximizer (âl, b̂l) of (18). These nonparametric estimators are used to il-
lustrate the simulation study and the real data application.

In some cases, we may know some features of the dependence structures. For
instance, by applying a goodness-of-fit test as those proposed in Crujeiras et al.

(2006), before testing the equality of the spatial spectral densities, we could
assess whether the spectral densities belong to the same parametric family. In
that case, the testing problem would be stated as:

H0 : θ1 = . . . = θL,

Ha : θl 6= θj , for some l 6= j,
(19)

with mθl
= log fθl

, l = 1, . . . , L and fθl
∈ FΘ, where FΘ denotes a parametric

family of spectral densities.

3 A new test for comparing spatial log-spectral

densities.

As we have already commented in the introduction, Zhu et al. (2002) develop
hypothesis testing methods to detect a difference in a spatial random process,
at two different time points. The testing techniques are based on the SCDF.
This random function provides a spatial statistical summary of the random field
and it is defined as:

F∞,Z(z;R) =
1

|R|

∫

R

1(Z(s) ≤ z)ds, (20)

where {Z(s), s ∈ R}, with s a continuous spatial index, R ⊂ R
d, |R| denotes the

volume of R and 1 is the indicator function. For a finite sample of the process
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{Z(s1), . . . , Z(sN )}, the empirical counterpart of the SCDF in (20), namely the
empirical cumulative distribution function (ECDF) is given by:

FN,Z(z;R) =
1

N

N∑

i=1

1(Z(si) ≤ z). (21)

In Lahiri (1999), theoretical results on the SCDF are given, considering a
shrinking asymptotic framework (Cressie (1993), pp.100-101). With the mo-
tivation of detecting changes or trends in ecological resources over time, and
for the particular case of two time points, the authors derive the large-sample
distribution of a normalized test statistic based on the difference of the two
ECDFs. A second procedure quantifies the change using a weighted integrated
squared difference between the SCDFs.

In the spatial context, we do not know more references on this topic of spatial
processes comparison. In our case, we are interested in detecting changes on
the dependence structure and, for that purpose, we will consider a spectral
approach.

3.1 The test.

Consider the following test statistic, based on a L2-distance:

Q =

L∑

l=2




l−1∑

j=1

(∫

Π2

(m̂l(λ) − m̂j(λ))
2
ω(λ)dλ

)

 , (22)

where ω is a weighting function in Π2. This weighting function ω is chosen
in such a way the edge effect on the estimation is avoided. In our context,
we consider a weighting function that filters frequencies around the origin and
those one with components near to 2πni

di
. Besides, it is in these cases where the

log-periodogram values may present a higher variability. This edge-effect bias
is also corrected by the local linear estimator.

For simplicity, consider the testing problem H0 : m1 = m2 vs. Ha : m1 6=
m2. In the general case of L processes, we proceed similarly. Assume that both
Z1 and Z2 have been observed on grids with the same design. This implies
that the corresponding Fourier frequencies are the same in both cases. Using
Riemann approximation, Q can be approximated by Q̂, which is given by:

Q̂ =
(2π)2

N

∑

k

(m̂1(λk) − m̂2(λk))
2
ω(λk). (23)

In order to perform the test in practice, the distribution of the test statistic
under the null hypothesis H0 is needed. The asymptotic behaviour of Q̂, under
H0, could be establish but usually, the convergence of this type of test statistic
to its limit distribution is slow (see, for instance, some works in the regression
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setting as Härdle and Mammen (1993)). Therefore, this distribution must be
approximated by simulation. For that purpose, it is necessary to obtain an
estimation of the spatial log-spectral density under H0 : m1 = m2 = m. In the
case we consider, the design points (that is, the grid of Fourier frequencies) are
the same, and we could build a pilot estimator of the log-spectral density under
H0, namely m̂, as an average of the log-periodograms:

Ỹk =

(
Y 1
k

+ Y 2
k

)

2
. (24)

If our null hypothesis can be relaxed by the fact that fθ1
, fθ2

∈ FΘ, as in
problem (19), then, an estimation of the log-spectral density under H0 : mθ1

=
mθ2

= mθ can be given by a parametric estimator mθ̂. The parameter vector θ
can be estimated, under H0, by a Whittle log-likelihood approach:

θ̂ = arg max
θ

∑

k

(
Ỹk −mθ(λk) − eỸk−mθ(λk

)
. (25)

Whittle estimators are not consistent for dimensions higher or equal to two,
and in the case of dimension two, these estimators show a non negligible bias.
Different alternatives to achieve consistency in this estimation procedure can be
found in Guyon (1982), Dahlhaus and Künsch (1987) or Crujeiras et al. (2006).

In order to compute the test statistic (23), we must fix a bandwidth ma-
trix H. The selection of the bandwidth matrix parameter is a crucial step
in nonparametric estimation and testing. Nevertheless, the choice of optimal
bandwidth matrices in multidimensional testing problems remains unsolved and
usually, the standard approach consists of examining the behaviour of the test
over a range of bandwidths.

Instead of trying a range of bandwidths, an automatic bandwidth selection
criteria could be also used. For instance, we could take an optimal bandwidth
matrix for the estimation problem, under H0.

Since log-periodogram values are asymptotically independent, for a large
enough sample, we may expect good approximations of Ĥ by using a cross-
validation criteria. For the testing problem (19), the bandwidth matrix Ĥ may
be selected such that:

Ĥ = arg min
H

∑

k

(
m̂−k(H,λk) −mθ̂(H,λk)

)2
, (26)

where m̂−k(H, ·) is the nonparametric estimator of the spatial log-spectral den-
sity obtained when ignoring the frequency λk for obtaining the nonparametric
estimator of m at this frequency.
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In the nonparametric testing problem (11), the bandwidth matrix could be
obtained from:

Ĥ = arg min
H

∑

k

(
m̂−k(H,λk) − Ỹk

)2

. (27)

3.2 Bootstrap procedure for calibrating p-values.

Consider the testing problem (19). This a priori information will simplify the
algorithm for callibrating the p-value of the test in practice. An estimation of
the test statistic, under H0, can be given by a Monte Carlo approach. In order
to calibrate the p-value of the test statistic Q̂, the following algorithm can be
employed in practice.
Algorithm 1.

Step 1. Compute the observed test statistic Q̂obs.

Step 2. Draw two random samples of size d1 × d2, with the log-spectral density
under H0, that is, mθ̂.

Step 3. Compute the test statistic for these generated random samples Q̂(b).

Step 4. Repeat Step 1 and Step 2 B times and obtain the tests statistic Q̂(1), . . . , Q̂(B).

Step 5. Compute the p-value of the test statistic as the percentage of bootstrap
replicates {Q̂(1), . . . , Q̂(B)} that exceed the observed value Q(obs).

In this algorithm, a parametric estimation of the spatial log-spectral density
is needed in Step 2. This parametric estimator is usually obtained by a Whittle-
log likelihood approach given in (25).

Also in Step 2, in order to generate a random sample from a spatial process
with a certain spatial spectral density, one could use an specific algorithm, for
instance, when we consider linear-by-linear process (see Section 4). When an
specific algorithm is not available, then we must use a standard technique for
the simulation of spatial processes. In this case, Cholesky factorization based
method (see Cressie (1993), for example) could be used. Another alternative is
spectral simulation procedures, as the Modified Fourier Integral Method (Cru-
jeiras and Fernández-Casal (2006)).

3.3 A completely nonparametric Bootstrap procedure for

calibrating p-values.

In the nonparametric testing problem, when we ignore whether the spectral den-
sities belong to the same parametric familiy, a totally nonparametric algorithm
for approximating the p-value of the test must be considered.
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Algorithm 2.

Step 1. Compute the observed test statistic Q̂obs.

Step 2. Draw two random samples of size Nd, with the log-spectral density under
H0 : m1 = m2 as follows:

2.a Obtain a non parametric estimation m̂ of the log-spectral density.
For example compute the log-periodograms, taking the average at
each frequency (as in (24)) and smooth this average to get Ỹ s

k
(see

Robinson (2006)).

2.b Apply the Inverse Fourier Transform on Ĩs(λk) = eỸ s

k and get an
estimation of the covariance function Ĉ(u), with u ∈ {u = (u1, u2) :
u1 = 1 − d1, . . . , d1 − 1, u2 = 1 − d2, . . . , d2 − 1}.

2.c Obtain two realizations of the process, on a grid of size Nd, from the
estimated covariances, Ĉ.

Step 3. Compute the test statistic for these generated random samples Q̂(b).

Step 4. Repeat Step 1 and Step 2 B times and obtain the tests statistic Q̂(1), . . . , Q̂(B).

Step 5. Compute the p-value of the test statistic as the percentage of bootstrap
replicates {Q̂(1), . . . , Q̂(B)} that exceed the observed value Q̂(obs).

In Step 2.a we must take into account that, in order to generate a sample on
a grid {1, . . . , d1}× {1, . . . , d2} the covariances Ĉ(u) must cover a wider grid of
size {1, . . . , k1} × {1, . . . , k2}, with ki = 2di − 1, i = 1, 2 (see Priestley (1981)).
Therefore, the spectrum must be computed in a finner grid of frequencies. In
Step 2.c, under the assumption of Gaussian data, Cholesky factorization method
could be applied.

These algorithms can be easily generalized to the general case of checking
for differences within a collection of L > 2 processes, or L > 2 observations of
the same process.

4 Simulation results.

We illustrate the performance of the test statistic considering a particular class
of spatial processes, the bidimensional autoregressive process (from now on
BAR(1)):

Zl(i, j) = βl
1Z(i− 1, j) + βl

2Z(i, j − 1)− βl
1β

l
2Z(i− 1, j − 1) + εl(i, j), l = 1, 2,

(28)
where εl(i, j) are independent identically distributed Gaussian random variables,
with zero mean and variance σ2

εl
. This is a particular case in the class of linear-

by-linear processes, introduced by Martin (1979), also known as the doubly-
geometric process. Parameters βl

1 and βl
2, for l = 1, 2, belong to [0, 1) in order
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α = 0.01 α = 0.05 α = 0.10

β1 = β2 = (0.0, 0.0) 0.010 0.050 0.093

β1 = β2 = (0.3, 0.3) 0.007 0.033 0.076

β1 = β2 = (0.6, 0.6) 0.010 0.041 0.081

β1 = β2 = (0.9, 0.9) 0.048 0.107 0.193

Table 1: Size of the test, with Algorithm 1. 20×20 grid. βj parameter vector,
in model (28), for the sample from Zj , j = 1, 2. Significance level α.

to guarantee stationarity. The spectral densities corresponding to Z1 and Z2

are given by:

fl(λ) =
σ2

ε

(2π)2
·

1

1 + (βl
1)

2 − 2βl
1 cos(λ1)

·
1

1 + (βl
2)

2 − 2βl
2 cos(λ2)

, l = 1, 2.

(29)
In order to study the performance of the test, in terms of size and power, we

consider different values for βl
1 and βl

2, from 0.0 (corresponding to the case of
independence) to 0.9. One thousand replicates of the process are generated on
a 20× 20 regular grid. Random sample generations of this process are obtained
as in Alonso et al. (1996).

We set the null hypothesis that Z1 and Z2 are BAR(1) processes with the
same dependence structure, that is, testing problem (19). Therefore, Algorithm

1 is implemented in this case. A multiplicative Epanechnikov bidimensional
kernel is considered. The weighting filters the frequencies near the origin and
those with the largest components, in order to avoid the edge effect. The band-
width parameter is chosen using the cross-validation criteria (26). We consider
diagonal bandwidth matrices, whose elements are proportional to the spacing
between frequencies, that is:

H = r · diag

(
2π

n1
,
2π

n2

)
. (30)

The nonparametric estimator for the spatial log-spectral density is obtained
from the local-linear method, specified in equation (16).

The size of the test is shown in Table 1, at three different significance levels:
0.01, 0.05 and 0.10. βj = (βj

1, β
j
2), for j = 1, 2, denote the parameters in Z1 and

Z2, respectively. The percentage of rejections of the test statistic is computed
from 1000 simulations. Some results on the power of the test are shown in Table
2. The test shows a good behaviour in all cases.

When no a priori knwoledge on the form of the spectral densities is avail-
able, then Algorithm 2 must be implemented. Under the same conditions on the
size of the grid, kernel function, bandwidth selection and number of Bootstrap
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α = 0.01 α = 0.05 α = 0.10

β1 = (0.0, 0.0),β2 = (0.05, 0.05) 0.015 0.054 0.112

β1 = (0.0, 0.0),β2 = (0.1, 0.1) 0.017 0.065 0.133

β1 = (0.0, 0.0),β2 = (0.2, 0.2) 0.067 0.196 0.293

β1 = (0.0, 0.0),β2 = (0.3, 0.3) 0.290 0.550 0.670

β1 = (0.0, 0.0),β2 = (0.6, 0.6) 0.990 0.990 1.000

β1 = (0.0, 0.0),β2 = (0.9, 0.9) 1.000 1.000 1.000

β1 = (0.3, 0.3),β2 = (0.6, 0.6) 0.220 0.500 0.590

β1 = (0.3, 0.3),β2 = (0.9, 0.9) 0.910 0.980 0.990

β1 = (0.6, 0.6),β2 = (0.9, 0.9) 0.200 0.380 0.520

Table 2: Power of the test, with Algorithm 1. 20 × 20 grid. βj parameter
vector, in model (28), for the sample from Zj , j = 1, 2. Significance level α.

α = 0.01 α = 0.05 α = 0.10

β1 = β2 = (0.0, 0.0) 0.014 0.049 0.095

β1 = β2 = (0.3, 0.3) 0.011 0.046 0.102

β1 = β2 = (0.6, 0.6) 0.015 0.056 0.099

β1 = β2 = (0.9, 0.9) 0.057 0.131 0.210

Table 3: Size of the test, with Algorithm 2. 20×20 grid. βj parameter vector,
in model (28), for the sample from Zj , j = 1, 2. Significance level α.

replicates, we run new simulations. In this case, Z1 and Z2 are simulated from
model (28) but we do not use the fact that both spectral densities belong to the
same family.

Results of the test, using the completely nonparametric algorithm, are given
in Table 3 and 4. Apparently, the nonparametric algorithm provides as good
results as the parametric one, both in terms of size and power. The behaviour
in terms of power for the nonparametric algorithm, in a 40× 40 regular grid, is
shown in Table 5.

5 Real data application.

The use of mosses as biomonitors has been proved to be a useful way of de-
termining levels of atmospheric deposition since the uptake of heavy metals in
mosses occurs mainly from this source. This biomonitoring technique was de-
veloped in the 1960s and since then it has been used to determine heavy metal
deposition both in large scale studies in different countries or in areas close to
industrial zones. This technique was first used in Galicia (NW Spain) in 1995
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α = 0.01 α = 0.05 α = 0.10

β1 = (0.0, 0.0),β2 = (0.05, 0.05) 0.015 0.054 0.109

β1 = (0.0, 0.0),β2 = (0.1, 0.1) 0.015 0.069 0.130

β1 = (0.0, 0.0),β2 = (0.2, 0.2) 0.074 0.207 0.317

β1 = (0.0, 0.0),β2 = (0.3, 0.3) 0.326 0.579 0.700

β1 = (0.0, 0.0),β2 = (0.6, 0.6) 0.994 0.999 1.000

β1 = (0.0, 0.0),β2 = (0.9, 0.9) 1.000 1.000 1.000

β1 = (0.3, 0.3),β2 = (0.6, 0.6) 0.252 0.489 0.638

β1 = (0.3, 0.3),β2 = (0.9, 0.9) 0.927 0.983 0.995

β1 = (0.6, 0.6),β2 = (0.9, 0.9) 0.265 0.469 0.590

Table 4: Power of the test, with Algorithm 2. 20 × 20 grid. βj parameter
vector, in model (28), for the sample from Zj , j = 1, 2. Significance level α.

α = 0.01 α = 0.05 α = 0.10

β1 = (0.0, 0.0),β2 = (0.05, 0.05) 0.034 0.112 0.192

β1 = (0.0, 0.0),β2 = (0.1, 0.1) 0.202 0.390 0.518

β1 = (0.0, 0.0),β2 = (0.2, 0.2) 0.910 0.974 0.988

Table 5: Power of the test, with Algorithm 2. 40 × 40 grid. βj parameter
vector, in model (28), for the sample from Zj , j = 1, 2. Significance level α.
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(Fernandez et al. (2000)), in order to establish a sampling network which allows
the whole area to be monitored, following the Scandinavian programme of bio-
monitoring using moss. In 2004, samples of two types of mosses, Scleropodium

purum and Hypnum cupressiforme were collected on a grid with 148 points.
Concentrations of different heavy metals were analyzed, but we will focus our
attention on Hg (Mercury).

Mercury is not a common element in earth’s crust. However, since mercury
does not blend geochemically with elements in the crustal mass, Hg ores can
be highly concentrated. Besides, Hg is a bioaccumulative toxin and it is eas-
ily absorbed through the skin, respiratory and gastrointestinal tissues, so the
exposure to high Hg concentrations produces toxic effects on human beings.
Hg depositions are typically associated with chlor-alkali plants and electricity
stations. In the particular case of Galicia, there exist two power plants in the
N and a chlor-alkali plant in the SW.

In 2004, measurements of Hg (in parts per billion) were taken in March and
September, on a regular grid over Galicia. Our maing goal is to check whether
the dependence structure in the data observed in March and September is the
same. In this case, we consider two nonparametric estimators for the spatial
log-spectral density. First, we consider a local linear estimator, given by (16).
Secondly, the Whittle estimator from (18) is used. The kernel function is a mul-
tiplicative Epanechnikov kernel and the weighting function is chosen to avoid
the edge-effect. The algorithm for approximating the p-value of the test statistic
is the nonparametric Bootstrap method in Section 3.2.
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Figure 1: Left panel: histogram of Hg concentrations in March. Right panel:
histogram of log(Hg) concentrations in March.

Figure 1 show the histograms of the concentrations of Hg in March (left
panel) and the logarithmic transformation of the data (right panel). Similar
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Figure 2: Left panel: test statistics. Right panel: p-values. Solid line: based on
the local linear estimator (16). Dashed line: based on local loglikelihood esti-
mator (18). Dotted line: significance level 0.05. r denotes the scaling parameter
in (30).

results are obtained for data collected in September. In Figure 2 we show the
values of the tests (right panel) and the corresponding p-values (left panel) along
a range of bandwidths. There is no evidence that the dependence structure in
Hg concentrations has changed from March to September. In Figure (3), we
show the results of the tests and the corresponding p-values when applying a
logarithmic transform to the data.

6 Summary and discussion.

We propose a testing technique to check whether the spectral densities of L
observations of a spatial random process are equal. As a particular case, one
could also checked in observations of a process over L time moments exhibit the
same dependence structure.

The technique is based on a weighted L2 distance between nonparametric
estimators of the log-spectral densities. These nonparametric estimators can be
smoothed versions of the log-periodogram values, using classical weights from
nonparametric regression as Gasser-Muller or Nadaraya-Watson. On this con-
text, we consider a local linear least squares estimator of the log-spectral density.
Since log-periodogram values are not normally distributed, least squares meth-
ods may not be suitable and a better estimator could be obtained by local
log-likelihood maximization, as in (18). Nevertheless, from our experience, we
can say that tests based on local linear least squares or tests based on local
log-likelihood estimators show a similar behaviour.

In order to approximate the p-value of the test in practice, we provide an

15



2 4 6 8 10

0
2

4
6

8
10

12
14

r

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

r

Figure 3: Left panel: test statistics. Right panel: p-values. Solid line: based on
the local linear estimator (16). Dashed line: based on local loglikelihood esti-
mator (18). Dotted line: significance level 0.05. r denotes the scaling parameter
in (30).

algorithm based on a Bootstrap approach. In the case that the dependence
structures of the L observed processes belong to a parametric family, the algo-
rithm for approximating the p-value of the test can be simplified by the use of
the Modified Fourier Integral Method for spatial processes simulation. When
there is no a priori knowledge on the form of the spectral densities, a completely
nonparametric algorithn is also provided. In the simulation study, considering
the local-linear nonparametric estimator of the log-spectral density, we can see
that the performance of the test is satisfactory, both in terms of size and power.

Finally, the motivation behind the development of this technique is to detect
changes in the dependence structure of heavy metal concentrations in mosses.
For the particular case of Hg concentrations, measures taken in March 2004 and
September 2004 have been compared. There is no significance of a change in
the pattern of dependence between these two periods. Therefore, if we were in-
terested in adjusting a spatio-temporal model to this process, we could consider
a time-stationary depedence model. See, for instance Fernández-Casal et al.

(2003).
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