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Abstract

Simulation of spatial random fields realizations is often needed, not only in
practical works, but also in order to illustrate statistical techniques. In this
work, we focus our attention on non-conditional spectral simulation methods.
In particular, we revise the Fourier Integral Method and propose a modification
which exhibits a better performance, both for discrete and continuous spatial
processes. Besides, the extension of time series simulation methods to the spatial
setting merits a closer examination. By a simulation study, we show the good
performance of the Modified Fourier Integral Method and highlight some of the
problems of the direct extension of time series simulation procedures to higher
dimensions.

1 Introduction

In most applied works in spatial statistics, one can not avoid the use of sim-
ulation techniques for spatial (lattice or geostatistical) dependent data. Spa-
tial random fields simulation has been an important research topic in spatial
statistics. In geostatistical context, Gaussian process generation, with a cer-
tain covariance structure, can be done using the Cholesky factorization of the
variance-covariance matrix (e.g. Cressie (1993), pp.201-203), but such a fac-
torization may be computationally expensive. The most well-known method
for generating a multidimensional stationary process, avoiding the factorization
of the variance-covariance matrix, is the Turning-Bands method (e.g. Chilès
and Delfiner (1999), pp.472-477). The success of this method relies on the fact
that it simplifies the multidimensional simulations to the one-dimensional case.
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None of these methods need regularly spaced observations. For regularly-spaced
observations with Gaussian correlations, Martin (2000) obtains the theoretical
autoregressive and moving-average representations. This decomposition allows
for the exact simulation of a set of observations, given a certain vector of inno-
vations. The author also points out that the moving-average form is preferable
for simulation but autoregression and moving-average coefficients are difficult
to approximate.

In lattice data context, Moura and Balram (1992) consider the problem of
generating a non-causal Gaussian-Markov random field defined on finite lattices.
The characterization of the field structure is not given in terms of its covariance
matrix, but on its potential or precision matrix (the inverse of the covariance
matrix). A recursive structure is developed for this type of processes, consisting
of two equivalent one-sided representations obtained by the Cholesky factoriza-
tion of the potential matrix. Also based on the potential or precision matrix,
Rue (2001) proposes an algorithm which takes advantages of the Markov prop-
erties of the field, applying numerical techniques for sparse matrices.

The methods presented above, both for geostatistical or lattice data con-
texts, involve the covariance matrix. An alternative to these techniques is spec-
tral simulation, which has been widely use in engineering. On this context
Shinozuka (1971) proposes a method for simulating multivariate and multidi-
mensional random processes, with a specified spectral density. Another method
for generating a stationary random field with an imposed model of covariance
function, is the so-called Fourier Integral Method (Borgman et al. (1984), Pardo-
Igúzquiza and Chica-Olmo (1993), Yao (1998) and Yao (2004)). For instance,
Pardo-Igúzquiza and Chica-Olmo (1993) describe this algorithm in the multi-
dimensional case and their results are compared with Shinozuka’s method, in
one-dimension, and with Turning-Bands in two and three dimensions. One of
the main advantages of these methods is their computational efficiency, since the
computations involved can be done using the Fast Fourier Transform algorithm.

We may be interested in the simulation of spatial processes realizations, with
a certain covariance (known or unknown) structure. If our aim is to obtain a
realization of a spatial process from which we have a set of observations and
the underlying covariance function is not known, we must estimate first the
covariance from these data (fitting a valid covariogram model). However, in
many situations, one only needs to simulate statistics related to the dependence
structure of the process. For instance, simulate covariance or spectral density
estimators, in order to make inference on these functions. Concretly, one may
be interested in approximating the distribution of the classical nonparametric
estimator of the spectral density, the periodogram (or different estimators de-
rived from this one). In this case, it is worth it to have an adequate method for
generating periodogram values.

Different Bootstrap approaches, based on resampling the periodogram, have
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been proposed in time series analysis. Franke and Härdle (1992) introduce a
bootstrap technique for kernel spectral estimates, considering the periodogram
as the response in an approximate multiplicative regression model. This method
is extended in Dahlhaus and Janas (1996) for ratio statistics and Whittle esti-
mates, also for time series. In the same one-dimensional context, Paparoditis
and Politis (1999) proved a local Bootstrap method to be consistent for ker-
nel estimates, ratio statistics and Whittle estimates. A more complex proce-
dure is given in Kreiss and Paparoditis (2003), where the authors propose a
combination of time domain parametric and frequency domain non parametric
Bootstrap. Instead of considering periodogram values, Fan and Zhang (2004)
propose a parametric method for generating log-periodogram values, regarding
the fact that the log-periodogram can be obatined as the response in an ad-
ditive regression model. Extensions of these methods to the multidimensional
setting must be done carefully. Apart from some challenges in the theoretical
developments, the results obtained from straightforward extensions may not be
as satisfactory as in the one-dimensional case, as we will show in a simulation
study. Another difficulty that we find when constructing simulation methods
for spatial process is the continuous character of geostatistical data. In this
case, the aliasing problem arises.

In this paper, we revise the Fourier Integral Method and propose a modi-
fication which allows for considering an additional source of variability that is
not captured by the original algorithm (e.g. Pardo-Igúzquiza and Chica-Olmo
(1993)). Considerations on the discrete or continuous character of the process
are also made. The paper is organized as follows. In Section 2, we give an
overview on spatial spectral techniques, paying special attention to spectral
simulation techniques. In Section 3, we revise the Fourier Integral Method and
propose a modified method. In Section 4, we present a simulation study.

2 Background. Spatial Spectral Techniques

Let’s Z denote a zero-mean stationary spatial process, observed on a region
D ∈ R

2. The covariance function of the process Z is defined by:

C(u) = E (Z(s) · Z(s + u)) s, s + u ∈ D ⊂ R
2. (1)

Any stationary process admits a representation in terms of a Fourier-Stieltjes
integral (e.g. Yaglom (1987), Grenander (1981)),

Z(s) =

∫

R2

eisT
λY(dλ), (2)

where Y is a orthogonal random measure (see Yaglom (1987), pp.98-100), s ∈ D,
and T denotes the transpose operator. From this representation, the covariance
function can be written as:

C(u) = E(Z(s)Z(s + u)) =

∫

R2

eiuT
λF (dλ), (3)
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where the spectrum F is obtained from:

E(Y(dλ)Yc(dλ)) = F (dλ), (4)

and Yc stands for the congujate of Y. If H has a spectral density with respect
to the Lebesgue measure, this density f can be seen as the Fourier Transform
of the covariance function:

f(λ) =
1

(2π)2

∫

R2

e−iuT
λC(u)du. (5)

Distributional characteristics of the process can be both interpreted from the
spatial or from the spectral domain.

If Z is defined over a continuum (Z takes values on any location s ∈ D, that
is, geostatistical context), the spectrum lies on λ = (λ1, λ2) ∈ R

2. For a discrete
process (D is a discrete set of points), we can define the spectrum bounded
in Π2 = [−π, π] × [−π, π]. In practice, we may aim to recover the spectrum
of a continuous process from a discrete realization and therefore, despite the
frequency band is the whole space R

2, the frequency behaviour we can recover
is restricted to Π2

∆ = [−π/∆1, π/∆1]× [−π/∆2, π/∆2], where ∆j is the spacing
between neighbouring coordinates in the corresponding direction. This effect is
known as aliasing. The aliased spectral density is defined by:

f∆(λ) =
∞
∑

m1=−∞

∞
∑

m2=−∞

f

(

λ1 +
2π

∆1
m1,λ2 +

2π

∆2
m2

)

. (6)

It is important to note that in the discrete case the aliasing problem does
not arise (f∆(λ) ≡ f(λ)). Spectral simulation techniques, as well as most
part of the spectral theory for spatial processes, are based on generalizations of
spectral procedures for time series. Therefore, the extension of one-dimensional
algorithms must be made carefully, regarding the possible continuous character
of the spatial process. Consider the process Z observed at locations on a regular
grid:

D = {0, . . . ,∆1(n1 − 1)} × {0, . . . ,∆2(n2 − 1)}
and denote by N = n1n2 the number of observations. The classical estimator
for the spectral density is the spatial periodogram:

I(λk) =
∆1∆2

(2π)2N

∣

∣

∣

∣

∣

∣

n1−1
∑

j1=0

n2−1
∑

j2=0

Z(sj)e
−iλT

k sj

∣

∣

∣

∣

∣

∣

2

, (7)

with sT
j = (sj1 , sj2) where sjl

= ∆ljl; jl = 0, . . . , nl − 1, l = 1, 2. The
periodogram usually computed at the set of bidimensional Fourier frequencies
λ

T
k = (λk1

, λk2
) where:

λkl
=

2πkl

∆lnl
; kl = 0,±1, . . . ,±[(nl − 1)/2], l = 1, 2. (8)

4



Spatial periodogram properties have been studied by Stein (1995) and Fuentes
(2002) for the geostatistical case. The discrete parameter case can be studied
as a straightforward extension from the one-dimensional context (see Brillinger
(1981)). In the discrete case, the asymptotic expected value of the periodogram
at a frequency λ is the spectral density at this frequency. In the continous case,
this expected value is the aliased version of the spectral density f∆. Though the
periodogram is an asymptotically unbiased estimator of the spectral density, it
is not consistent.

The spatial periodogram (7) can be written in terms of the sample autoco-
variances, Ĉ(uj) as:

I(λk) =
∆1∆2

(2π)2

n1−1
∑

j1=1−n1

n2−1
∑

j2=1−n2

Ĉ(uj)e
−iλT

k uj , (9)

where

Ĉ(uj) =
1

N

n1−|j1|
∑

k1=0

n2−|j2|
∑

k2=0

Z(sk)Z(sk+|j||), (10)

|j| = (|j1|, |j2|), uT
j = (uj1 , uj2), ujl

= ∆ljl; jl = 1−nl, . . . , nl−1, l = 1, 2.

In practice, the periodogram is usually computed from equation (7), using an
FFT algorithm and with corresponding frequencies given in (8). Nevertheless,
from this frequency set it is not possible to recover the complete set of sample
covariances {Ĉ(uj) : jl = 0, . . . , nl − 1, l = 1, 2} (see e.g. Priestley (1981), pp.
577-579, for more details on the one-dimensional case). Therefore, it may be
preferable to compute the periodogram at a larger set of frequencies, given by
λ

T
k = (λk1

, λk2
):

λkl
=

2πkl

∆l(2nl − 1)
; kl = 0,±1, . . . ,±(nl − 1), l = 1, 2. (11)

In order to use an FFT algorithm, it would be necessary to obtain a (2n1−1)×
(2n2 − 1) dataset by zero padding. One could find in the literature different
expressions for the Fourier frequency set. With representation (11), the Fourier
frequencies are symmetric in Π2

∆ and the boundary is never reached (avoiding
some complications).

Assume that the set of observations can be represented in the following way:

Z(sj) =

∞
∑

k=−∞

∞
∑

l=−∞

aklε(s1 − ∆1k, s2 − ∆2l), (12)

where
∑

a2
kl < ∞ and the innovation variables ε come from a white noise

process. For example, this representation holds for any stationary Gaussian
process with absolutely continuous spectral density. Then (as an extension of
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Theorem 10.3.1 in Brockwell and Davis (1991), pp.346-347), the periodogram
can be written as:

I(λk) = f∆(λk)Wk + R∆
N (λk) (13)

where the Wk’s are independent identically distributed random variables with
standard exponetial distribution and R∆

N (λk) is uniformly bounded by OP(N−1/2 log N)
(following Kooperberg et al. (1995)). The idea of a Bootstrap technique for re-
sampling the periodogram in time series context (e.g. Franke and Härdle (1992))
comes from model (13). Ignoring the residual term R∆

N (λk) leads to a represen-
tation of the periodogram as the response in a multiplicative regression model.
Applying logarithms in (13), we have

Yk = m(λk) + zk + r∆
k (14)

where m = log f∆ denotes the log-spectral density, Yk is the log-periodogram
value at a Fourier frequency λk and

r∆
k = log

[

1 +
R∆

N (λk)

f∆(λk)Wk

]

. (15)

The variables zk are independently and identically Gumbel(0, 1) distributed.
The expected value for this variables is the Euler constant E(zk) = −0.57721
and the variance is V ar(zk) = π2/6.

Fan and Zhang (2004) propose a Bootstrap method for resampling log-
periodogram values, based on model (14). The simulated log-periodogram val-
ues at the Fourier frequencies λk are obtained as:

Y ∗
k = mθ̂(λk) + z∗k, (16)

where mθ̂ is a parametric estimator of the log-spectral density and z∗k are in-
dependent random realizarions of a Gumbel(0, 1) distribution. This parametric
estimator of the log-spectral density is obtained by maximizing the log-likelihood
function associated with (14) when ignoring the residual term r∆

k . Proceeding
in such a way, a source of variability in the periodogram scale is removed, given
by R∆

N (λk), and part of the uncertainty given by the Wk variables. In fact,

the parametric estimator θ̂ is the Whittle estimator (Whittle (1954)). For time
series processes, this estimator shows good properties, but for dimension higher
or equal to 2, Whittle estimates are inconsistent (Guyon (1982)): for dimen-
sion d = 2, there is a bias of order N−1/2. This bias can be corrected using a
unbiased covariance estimator (see Guyon (1982)), by tapering techniques (see
Dahlhaus and Künsch (1987)) or by Bootstrap methods (see Crujeiras et al.

(2006)).

Apart from the estimation problem, even when considering the theoretical
spectral density, the results obtained with simulation methods based on (14), ig-
noring r∆

k , may not be satisfactory in the multidimensional case. Similar results
are obtained from simulation methods based on (13) when ignoring R∆

N (λk).
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3 The Modified Fourier Integral Method

Any stationary random field admits the Fourier-Stieltjes representation (2), as
we have already commented, and this fact is the key point in spectral simulation.
This continuous integral can be approximated by a Discrete Fourier Transform.
Considering a regular grid with {0, . . . ,m1 − 1} × {0, . . . ,m2 − 1} observations
(for simplicity, assume that m1 and m2 are odd), we can define:

J(λk) =
1

M

m1−1
∑

j1=0

m2−1
∑

j2=0

Z(sj)e
−iλT

k sj , (17)

where M = m1m2 y λkl
= 2πkl

∆lml
, kl = 0, . . . ,ml−1, l = 1, 2. The observations of

the process in the grid points, can be recovered by an Inverse Fourier Transform:

Z(sj) =

m1−1
∑

k1=0

m2−1
∑

k2=0

J(λk)eiλT
k sj . (18)

The J(λk) are complex random variables:

J(λk) = U(λk) + iV (λk),

verifying J(λm−k) = J(λ−k) = J(λk)c, or equivalently, its real and imaginary
parts verify:

U(λm−k) = U(λ−k) = U(λk),

V (λm−k) = V (λ−k) = −V (λk).

Asymptotic properties for U and V have been studied in Brilinger (1974) (as
an extension of Theorem 4.4.2 in Brillinger (1981)), for the particular case of
∆1 = ∆2 = 1. Under the assumption that well separately values of the process
are weakly dependent (a kind of mixing condition), it can be proved that as-
ymptotically :

(i) U(λk) and V (λj) are independent.

(ii) U(λk) and U(λj) are independent, for k 6= ±j. This assertion also holds
for V .

(iii) E(U(λk)) = E(V (λk)) = 0, for λk 6= 0 and E(U(0)) = E(Z(s)) (note
that V (0) = 0).

(iv) V ar

(√

M∆1∆2

(2π)2
U(λk)

)

=
f∆(λk)

2
, for λk 6= 0. This assertion also holds

for V . Besides, for the origin, V ar

(√

M∆1∆2

(2π)2
U(0)

)

= f∆(0).

In terms of the discrete approximation (17):

V ar

(
√

M∆1∆2

(2π)2
|J(λk)|

)

= f∆(λk).
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(v) U(λk) and V (λk) are asymptotically Gaussian distributed.

Taking into account (i) − (v), it is possible to generate Z(sj) values from
equation (18), by simulating U(λk) and V (λk) variables from the (asymptotic)
normal distribution. In this case, the variance can be approximated by:

σ2
k = V ar (|J(λk)|) ≈ (2π)2

M∆1∆2
f∆(λk). (19)

From another point of view, we could consider (18) as the mechanism which
generates the process. Therefore, we would have a circular process:

Z(sm−j) = Z(s−j) = Z(sj) = Z(sm+j),

and, assuming that this process is also stationary, its covariogram satisfies:

C∗(um−j) = C∗(u−j) = C∗(uj). (20)

In this situation, it is easy to see (for instance, in Priestley (1981), pp. 258-261,
for the one-dimensional case) that:

σ2
k = V ar (|J(λk)|) =

1

M

m1−1
∑

j1=0

m2−1
∑

j2=0

C∗(uj)e
−iλT

k uj . (21)

Note that, asymptotically, C∗(uj) = C(uj). Most spectral simulation algorithms
are based on this result, aproximating σ2

k by the discrete Fourier transform of the
covariances (symmetrized in such a way that (20) holds). It may be also taken
into account that the covariances of the original process may not be valid for a
circular process. This fact may result in negative approximations of the vari-
ances σ2

k. In practice, negative estimations are normally set to zero, although
better results may be expected when considering (19). Further comments on
this problem are given at the end of this section.

In any of the spectral simulation methods based on (18), since the covari-
ances verify (20), if we want to obtain a sample on a n1×n2 grid that reproduces
a certain covariance structure, data must be generated on a m1 ×m2 grid with
ml ≥ 2nl − 1, l = 1, 2. For simplicity, we consider ml = 2nl − 1, for l = 1, 2,
although ml may be preferably fixed to larger values (more details will be given
at the end of the section).

A spectral simulation algorithm, called the Fourier Integral Method (FIM),
has been proposed for the simulation of stationary processes with a certain
dependence structure. Originally introduced in Borgman et al. (1984), this
algorithm was extended to higher dimensions in Pardo-Igúzquiza and Chica-
Olmo (1993). Yao (1998) adapts this method for conditional simulation. Given
a certain covariance structure (or a variogram model), the algorithm proposed
by these authors is as follows:
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1. Use the variogram or covariogram model to compute discrete covariances
C(uj), for j1 = 0, . . . , n1 − 1 and j2 = 0, . . . , n2 − 1.

2. Compute the discrete Fourier transform of {C∗(uj)}, defined by C∗(uj) =
C(uj) if jl ≤ nl and C∗(um−j) = C(uj) otherwise, and obtain the discrete
density spectrum (21). If negative values are obtained, these values are
often set to zero.

3. Draw random phases φ(λk), from a uniform distribution in [0, 2π]. To
obtain real values, phases must be symmetric: φ(λk) = −φ(λ−k)

4. Build the Fourier coefficients as J(λk) =
√

σ2
ke−iφ(λk), for k 6= 0 and

J(λ0) =
√

2σ2
0 cos(λ0).

5. Perform the Fast Fourier Transform (18) to get the simulated Z(sj) values.

6. Take a subgrid of (n1 × n2) observations (and compute the periodogram
for these data, if that is the case).

Notice that, with this algorithm, the source of variability in the simulated
dependence structure comes only from Step 6. For example, if one computes the
periodogram with the complete set of data, no variations in the periodogram
values will be found.

We revise the Fourier Integral Method, introduced above, considering an
additional source of variability in the frequency domain. We introduce in the
amplitudes of the Fourier coefficients an exponential variable, as it is suggested
in the representation of the periodogram (13). The Modified Fourier Integral
Method (MFIM) is as follows:

1. Compute the approximation of the spectral variances σ2
k. This could be

done by different ways:

(a) Proceed as in Steps 1 and 2 from FIM algorithm.

(b) Use the asymptotic approximation (19).

(c) Combine (a) and (b) (for instance use (21) and if negative values are
obtained, replace them by (19)).

2. Draw random phases φ(λk), from a uniform distribution in [0, 2π]. To
obtain real values, phases must be symmetric: φ(λk) = −φ(λ−k)

3. Build the Fourier coefficients as J(λk) =
√

σ2
kWke−iφ(λk), for k 6= 0 and

J(λ0) =
√

2σ2
0W0 cos(λ0), where the variables {Wk} are independent

and randomly sampled from a standard exponential distribution Wk ∼
Exp(1).

4. Perform the Fast Fourier Transform (18) to get the simulated Z(sj) values.
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5. Take a subgrid of (n1 × n2) observations (and compute the periodogram
for these data, if that is the case).

By the following theorem, given by Box and Muller (1958), it is easy to
show that the realizations of the spectral process J(λk) drawn fron the MFIM
method verify the asymptotic conditions of independence, normal distribution,
zero mean and variance given in (iv) for its real and imaginary parts.

Theorem 1 Let A1 and A2 be independent random variables, U(0, 1) distrib-

uted. Consider the random variables:

B1 = (−2 log A1)
1/2 cos(2πA2),

B2 = (−2 log A1)
1/2 sin(2πA2).

Then, B1 and B2 are independent random variables, N(0, 1) distributed.

Since A1 ∼ U(0, 1), the transformed variable − log A1 follows a standard
exponential distribution, Exp(1), which coincides with the distribution of the
Wk variables involved in MFIM method. Taking random amplitudes

√

σ2
kWk,

gives zero mean Gaussian variables with variance σ2
k/2. The computational ef-

ficiency in the generation of the Fourier coefficients can be improved, avoiding
the computation of sines and cosines, by considering a similar approximation to
that in Ross (1997), pp.74-75.

This method provides realizations of a Gaussian process, which could be
done by directly simulating Gaussian variables. For instance, in Chilès and
Delfiner (1999) (pp.496-498) the algorithm for simulating a unidimensional spa-
tial process (based on the aproximation (21)) is thoroughly described. It is
important to note that this alogrithm is based on the approximation of a sta-
tionary circular process, which is equivalent to the circular embedding method
described by Dietrich and Newsam (1997). The advantage of considering an
algorithm based on the Box-Muller representation, makes easier the extension
of this method to non-Gaussian cases (see Cressie (1993), p.205).

From Theorem 1.5.5 in Muirhead (1982), it can be seen that if J is spherically
distributed, then the random phases are uniformly distributed on Π2 and the
distribution of J is characterized by the distribution of the amplitudes in the
following way:

f|J|2(y) = Cy−1/2h(y) and fJ(z) = Ch(z2), (22)

where fJ denotes the univariate the density of the real and imaginary part
of J(λk). We could consider for example the generation of scaled Student’s t
random variables with p degrees of freedom (p > 2), which corresponds with
uniformly distributed random phases on Π2 and squared random amplitudes
W 2

k with density:

f|J|2(y) =
Γ
(

p+1
2

)√
p − 2

Γ
(

p
2

)
√

πp2

y−1/2

(

1 + p−2
p y
)

p+1

2

, y > 0. (23)
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As we have already noticed, in order to simplify the description of the algo-
rithms, we take ml = 2nl −1, l = 1, 2, although ml may be better fixed to other
values. The discrete density spectrum (21) does not take into account the covari-
ances for all possible lags. Thus, negative estimates for the spectral variances σ2

k

may be obtained. This may happen when the range of the spatial dependence
is large, compared with the simulation grid size. If the covariogram has a finite
range r, this truncation problem can be avoided by chosing (ml − 1)∆l ≥ 2r.
In case the covariogram has a non-finite range, the truncation problem persists
no matter now large ml are taken. If that is the case, it may be better to select
(ml − 1)∆l ≥ 2r∗, where r∗ denotes the practical range (see also Chilès and
Delfiner (1999), pp.500-501 for different approaches).

The opposite case is related to the aliasing phenomena, which appears when
the spectral density of a continuous spatial process presents significative side
lobes outside Π2

∆. In order to avoid inconvenients derived from the aliasing
problem, the spacing in the simulation grid may be reduced, and consider
∆∗

l = ∆l/pl, n∗
l = plnl, with integer pl > 1. Proceeding in this way, the

last subsampling step in the algorithms should be modified and one from each
pl simulated values should be taken in l dimension.

From a computational point of view, it may be interesting to modify the ml

values, in order to take advantage of the FFT algorithm we chose. An option
could be to consider any modification of the Cooley-Tukey algorithm (e.g. FFT-
PACK library, http://www.netlib.org/fftpack/), which is most efficient when m1

and m2 are each products of small prime factors. If ml, l = 1, 2, satisfy this con-
dition, then the computational effort is proportional to M log(M). Therefore,
ml values should be approximated to the higher closest k-smooth number (with
prime factors ≤ k), where k is a small integer number (e.g. k = 5 corresponds
to Hamming numbers or ugly numbers). Other authors consider ml = 2nl,
l = 1, 2, which may be a good option if nl are smooth numbers. If ml are not
chosen carefully, the FFT algorithm may require M2 operations.

One must be careful in the construction of the Fourier coefficients. With an
odd numer of Fourier frequencies, the Fourier coefficiente at the origin is real and
in all the other frequencies we have complex coefficients. If ml is even, then the
frequency ± π

∆l
is reached. The algorithms described above should be adapted

in a suitable way to this situation. The Fourier coefficients corresponding to
frequencies with both components multiples of π

∆l
must be handled in the same

way as the origing, with real coefficients.

4 Simulation Study

This section is devoted to two simulation studies. The first part shows an
example of discrete spatial process and the second part is concerned with geo-
statistical data generation, both under Gaussian distribution.
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In the lattice context, we consider a particular case of linear-by-linear process:
the doubly-geometric process, namely BAR(1) (see Martin (1979)). 10000 gen-
erations of the process are drawn in a 20 × 20 regular grid. We compare the
results obtained with those produced by methods for generating linear-by-linear
processes (see Alonso et al. (1996)), the FIM, the MFIM proposed in this work
and an extension of a simulation algorithm from time series. In this case, we
generate log-periodogram values from equation (16), with mθ the theoretical log-
spectral density, following Fan and Zhang (2004). We will call this procedure
Log-Periodogram Simulation method (LPS). This procedure will be equivalent
to generate periodogram values from representation (13), ingoring R∆

N (λk).

As a represenative of geostatistical processes, we consider Gaussian spatial
process with Matérn spectral density (see Stein (1999)). For certain smoothness
and range parameters, the covariances of this model are not valid for a circular
process. Therefore, we may obtain negative approximations for the spectral
variances σ2

k. For the MFIM algorithm, we observe better results when consid-
ering option (c) in Step 1, although option (a) provide quite similar results. In
this case, we take Cholesky’s factorization method as reference (benchmark).

Mean Error, Mean Square Error and Whittle Error surfaces are computed in
order to compare the performance of the log-periodogram as an estimator of the
log-spectral density, when data are provided by different simulation procedures.

For B simulated samples, Mean, Mean Square and Whittle Errors of the
log-periodogram as an estimate for the log-spectral density are given by (24),
(25) and (26), respectively.

ME(mθ(λk), Yk) = 1
B

∑B
b=1(mθ(λk) − Y b

k ); (24)

MSE(mθ(λk), Yk) = 1
B

∑B
b=1(mθ(λk) − Y b

k )2, (25)

WE(mθ, Yk) = 1
B

∑B
b=1(Y

b
k − mθ(λk) − eY b

k−mθ(λk)). (26)

These three surfaces are compared when data are generated by traditional
methods, FIM and MFIM. Besides, we also compare the results when log-
periodogram values are obtained by LPS.

4.1 Bidimensional autoregresive process.

For the linear-by-linear BAR(1) model, realizations can be obtained from the
following formula:

Z(i, j) = β1Z(i − 1, j) + β2Z(i, j − 1) − β1β2Z(i − 1, j − 1) + ε(i, j) (27)

12



where ε(i, j) are independent, identically distributed Gaussian random variables,
with zero-mean and variance σ2

ε . Parameters α and β must be in [0, 1) to
guarantee stationarity. Using the expasion of Z in terms of the innovations ε,

Z(i, j) =
∞
∑

k=0

∞
∑

l=0

βk
1βl

2ε(i − k, j − l). (28)

The log-spectral density for an BAR(1) process, with autoregression parameters
β1 = β2 = 0.5 is given shown in Figure 1.

The periodogram of observations from a BAR(1) process can be decomposed
as in (13). A method for generating this process is proposed in Alonso et al.

(1996). For i = 2, . . . , n1 and j = 2, . . . , n2, a realization from a bidimensional
autoregresive process, in a regular grid D = {1, . . . , n1} × {1, . . . , n2} can be
obtained by computing, for i = 2, . . . , n1 and j = 2, . . . , n2 :

Z(i, j) = β1Z(i − 1, j) + β2Z(i, j − 1) − β1β2Z(i − 1, j − 1) + ε(i, j)

Z(i, 1) = β1Z(i − 1, 1) + ε(i, 1)

Z(1, j) = β2Z(1, j − 1) + ε(1, j)

Z(1, 1) = ε(1, 1)

where

ε(i, j) ∼ N(0, σ2)

ε(i, 1) ∼ N(0, (1 − β2
1)−1σ2)

ε(1, j) ∼ N(0, (1 − β2
2)−1σ2)

ε(1, 1) ∼ N(0, (1 − β2
1)−1(1 − β2

2)−1σ2)

and all the inputs are assumed to be jointly independent.

For a 20 × 20 regular grid simulation, in terms of Mean Error (Figure 2),
both FIM and MFIM show a good behaviour, although MFIM is slightly bet-
ter. The log-periodogram values from LPS do not capture all the variability.
In Figure 2, the loss of variability in the LPS method is clear. Recall that this
method ignores the term r∆

k in the representation of the log-periodogram (14).
This term can be considered proportional to the inverse of the spatial spectral
density, represented in Figure 1. Removing the term r∆

k provoques the lost of
the lobes that appear in the Mean Error surfaces for the other methods. This
behaviour is also shown in Figure 3, in Mean Square Error terms. The Mean
Square Error surface obtained by LPS simulations shows an almost constant
shape.

For Whittle’s Error (Figure 4), LPS exhibits a good behaviour. This fact
is not surprising because the log-periodogram values are computed from a re-
gression model which also provides the log-likelihood. Results obtained from

13



Figure 1: Log-spectral density of an BAR(1), with β1 = β2 = 0.5.

Table 1: Summary statistics.

Mean Error Linear MFIM FIM LPS

Mean -0.5100 -0.5120 -0.4823 -0.5762
20 × 20 Median -0.5107 -0.5109 -0.4816 -0.5748

St.dev. 0.0964 0.0967 0.0898 0.0682
Mean -0.5457 -0.5460 -0.5167 -0.5774

50 × 50 Median -0.5458 -0.5461 -0.5165 -0.5775
St.dev. 0.0369 0.0368 0.0345 0.0261

Mean Square Error

Mean 1.8533 1.8578 1.7698 1.9739
20 × 20 Median 1.8362 1.8414 1.7549 1.9599

St.dev. 0.2827 0.2804 0.2726 0.2343
Mean 1.8839 1.8836 1.7955 1.9789

50 × 50 Median 1.8829 1.8414 1.7931 1.9772
St.dev. 0.1088 0.1099 0.1056 0.0899

Whittle Error

Mean 1.5754 1.5766 1.5474 1.5764
20 × 20 Median 1.5740 1.5748 1.5456 1.5757

St.dev. 0.0589 0.0579 0.0554 0.0425
Mean 1.5723 1.5720 1.5431 1.5774

50 × 50 Median 1.5719 1.5719 1.5427 1.5773
St.dev. 0.0222 0.0226 0.0212 0.0164
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LPS MFIM

Linear-by-linear FIM

Figure 2: Mean Error surfaces for BAR(1) process, with parameters β1 =
β2 = 0.5. Linear-by-linear: simulation method in Alonso et al. (1996); FIM:
Fourier Integral Method; MFIM: Modified Fourier Integral Method; LPS: Log-
Periodogram Simulation method.

data generated by FIM do no capture all the variability in terms of the log-
periodogram. MFIM still shows a good behaviour, similar to LPS. Table 1
shows summary statistics (mean, median and standard deviation) for a 20× 20
and a 50 × 50 regular grid simulation. These statistics are obtained from 1000
simulations. LPS simulations are not affected by the sample size. Although
results from FIM are slightly better for the 50× 50 sample, the performance of
this method is not as good as the MFIM version.
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LPS MFIM

Linear-by-linear FIM

Figure 3: Mean Square Error surfaces for BAR(1) process, with parameters
β1 = β2 = 0.5. Linear-by-linear: simulation method in Alonso et al. (1996);
FIM: Fourier Integral Method; MFIM: Modified Fourier Integral Method; LPS:
Log-Periodogram Simulation method.

4.2 Matérn spectral density family.

A broad class of spectral densities (and corresponding autocovariance functions)
is the so called Matérn class (Stein (1999)). The general form for a density
belonging to this class is:

f(λ) = φ(α2 + |λ|2)−ν−1/2, where ν > 0, φ > 0, α > 0, (29)

and corresponding covariance function

C(h) =
φπ1/2

2ν−1Γ(ν + 1/2)α2ν
(α|h|)νKν(α|h|), (30)

where Kν is a modified Bessel function. The parameter ν controls the degree of
smoothness of the function. For ν = 1/2, the covariance function corresponds to
a Exponential model, and in the limit case (ν → ∞), it approaches the Gaussian
covariance function.

In Tables 2 and 3 we show summary statistics for the Mean, Mean Square
and Whittle’s errors for the log-periodogram as an estimator of the log-spectral
density. Simulations were carried out considering a Matérn model, with smooth-
ness parameter ν = 0.5 and different autocorrelation ranges. In order to make
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LPS MFIM

Linear-by-linear FIM

Figure 4: Whittle’s Error surfaces for BAR(1) process, with parameters β1 =
β2 = 0.5. Linear-by-linear: simulation method in Alonso et al. (1996); FIM:
Fourier Integral Method; MFIM: Modified Fourier Integral Method; LPS: Log-
Periodogram Simulation method.

results comparable, we have consider ranges of the 50% and 80% of the side-
length of the grid. FMIM shows slightly better results for a 20×20 regular grid,
and its performance improves for 50 × 50 simulations.

In Figures 5 and 6 we show the Mean Square Error surfaces for the esti-
mation of the log-spectral density, by Cholesky factorization, FIM, MFIM and
LPS methods, with smoothness parameters ν = 0.05 and ν = 0.05, respectively.
The most relevant differences are found around the origing. The peaks near
frequencies with components ±π appear because the covariances obtained are
not valid for a circular process.

An advantage of the MFIM method for geostatistical process simulation is its
low computational cost, compared with classical procedures, such as Cholesky’s
method. For example, the computation time in a Pentium IV (2.6 Ghz), for the
simulation a 50× 50 regular grid using Cholesky factorization, is 28.19 seconds,
approximately. The same simulation using MFIM takes 0.01 seconds.
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Table 2: Summary statistics. Matern spectral density: ν = 0.5, α = 80%N .

Mean Error Cholesky MFIM FIM LPS

Mean 0.3319 0.3445 0.3783 -0.5773
20 × 20 Median 0.3226 0.3333 0.3729 -0.5759

St.dev. 0.1453 0.1417 0.1262 0.0613
Mean 0.2685 0.2763 0.3052 -0.5771

50 × 50 Median 0.2589 0.2671 0.2989 -0.5772
St.dev. 0.0826 0.0784 0.0706 0.0251

Mean Square Error

Mean 1.9102 1.9209 1.8983 1.9787
20 × 20 Median 1.8863 1.8973 1.8846 1.0699

St.dev. 0.2538 0.2511 0.2281 0.2110
Mean 1.7870 1.8016 1.7810 1.9785

50 × 50 Median 1.7681 1.7858 1.7728 1.9767
St.dev. 0.1516 0.1476 0.1325 0.0871

Whittle Error

Mean 2.6621 2.6975 2.6691 1.5776
20 × 20 Median 2.4958 2.5269 2.5757 1.5771

St.dev. 0.6159 0.6217 0.4791 0.0384
Mean 2.6228 2.6649 2.6422 1.5772

50 × 50 Median 2.4705 2.5169 2.5597 1.5771
St.dev. 0.5522 0.5419 0.4273 0.0158
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Table 3: Summary statistics. Matern spectral density: ν = 0.5, α = 50%N .

Mean Error Cholesky MFIM FIM LPS

Mean 0.2708 0.2728 0.3033 -0.5773
20 × 20 Median 0.2652 0.2644 0.2999 -0.5759

St.dev. 0.1313 0.1303 0.1178 0.0613
Mean 0.2330 0.2353 0.2643 -0.5771

50 × 50 Median 0.2257 0.2281 0.2600 -0.5772
St.dev. 0.0753 0.0726 0.0659 0.0251

Mean Square Error

Mean 1.8706 1.8650 1.8334 1.9787
20 × 20 Median 1.8561 1.8496 1.8231 1.9699

St.dev. 0.2241 0.2194 0.2038 0.2110
Mean 1.7983 1.8028 1.7744 1.9785

50 × 50 Median 1.7839 1.7902 1.7668 1.9767
St.dev. 0.1282 0.1151 0.0726 0.0871

Whittle Error

Mean 2.3919 2.3903 2.3629 1.5776
20 × 20 Median 2.3126 2.3037 2.3152 1.5771

St.dev. 0.3598 0.3616 0.2863 0.0384
Mean 2.4330 2.4412 2.4184 1.5772

50 × 50 Median 2.3373 2.3483 2.3639 1.5771
St.dev. 0.3700 0.3625 0.2906 0.0158
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LPS MFIM

Cholesky FIM

Figure 5: Mean Square Error. 20 × 20 grid, ν = 0.5, α = 50%N . Cholesky:
Cholesky factorization method; FIM: Fourier Integral Method; MFIM: Modified
Fourier Integral Method; LPS: Log-Periodogram Simulation method.
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LPS MFIM

Cholesky FIM

Figure 6: Mean Square Error. 20 × 20 grid, ν = 0.05, α = 50%N . Cholesky:
Cholesky factorization method; FIM: Fourier Integral Method; MFIM: Modified
Fourier Integral Method; LPS: Log-Periodogram Simulation method.
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