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1 Introduction

An important problem in spatial statistic is modeling the dependence structure of spatial
data, both from parametric and nonparametric approaches. This problem can be focused
from the spatial domain, where the variogram or the covariogram are the functions that
describe the dependence. From this point of view, on goodness-of-fit testing for dependence
structures, Diblasi and Bowman (2001) propose a test for independence and Maglione and
Diblasi (2004) extend the former technique for choosing a valid model for a variogram, based
on smoothed versions of the observed variables.

Spectral techniques constitute an alternative way for studying dependent data and this
methodology has been broadly used in time series analysis (e.g. Priestley (1981)). Despite
the extension of these techniques to multidimensional settings is not straightforward, this
approach is gaining acceptance in spatial data analysis. From this point of view, the target
function is no longer the variogram or the covariogram, but the spatial spectral density. The
classical nonparametric estimator for the spectral density is the periodogram. Its extension
to the spatial context has been studied by Fuentes (2002).

Under this spectral scheme, Crujeiras et al. (2006b) provide two testing techniques for
goodness-of-fit testing, using distances on the spectral and on the log-spectral domain. These
test statistics take advantage of the representation of the spatial periodogram as the response
variable in a multiplicative regression model. By a logarithmic transform, the spatial log-
periodogram can be written as the exogenous variable in a regression model, where the
regression function is the log-spectral density.

In the goodness-of-fit for regression models literature, King et al. (1991) study the prob-
lem of comparing two regression curves, using linear smoothers, under independendent and
Gaussian errors. The general case of comparing L ≥ 2 regression curves is studied in Dette
and Neumeyer (2001), under heterocesdastic errors. In Vilar-Fernández and González-
Manteiga (2004), the authors provide a procedure for testing the equality of regression
curves, under fixed design and dependent errors. Based on the ideas in Vilar-Fernández
and González-Manteiga (2004), the goal of our work is to provide a test for testing the hy-
pothesis that the spectral densities of L observed realizations of spatial random process are
equal, without specifying a parametric model. For that purpose, we consider a Cramer-von-
Mises type functional, as in Dette and Neumeyer (2001) and Vilar-Fernández and González-
Manteiga (2004).

As a particular case, this technique allows to detect changes on the dependence structure
of a process observed at different time moments. This capacity makes the technique relevant
when studying spatio-temporal processes. Invariance of the spatial dependence along time
makes feasible the use of stationary spatio-temporal dependence models (e.g. Fernández-
Casal et al. (2003)).

This paper is organized as follows. In Section 2 we provide some background on spatial
spectral methods and nonparametric regression. In Section 3, we study the asymptotic
distribution of the test under the null hypothesis and under local alternatives.
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2 Some background on spectral techniques and non-

parametric regression.

Let Zl be a zero mean second-order stationary spatial process, observed on a regular grid Dl,
for l = 1, . . . , L. That is, {Zl(s), s ∈ Dl = al +D}, with D = {1, . . . , d1} × {1, . . . , d2}. The
case a1 = . . . = aL implies that the processes are observed on the same grid of locations.
Denote by Nd = d1d2 the number of points in any of the grids Dl, with l = 1, . . . , L. The
covariance function of the processes are defined by:

Cl(u) = E(Zl(s), Zl(s + u)), s,u ∈ Z
2. (1)

Assuming that
∑

u |Cl(u)| <∞, by Khinchin’s theorem (e.g. Yaglom (1987)), the covariance
function of a stationary random process can be written, for l = 1, . . . , L as:

Cl(u) =

∫

Π2

e−iuT
λfl(λ)dλ, Π2 = [−π, π] × [−π, π] (2)

where fl, the spectral density, is bounded and continuous for all l and T denotes the trans-
pose operator.

The classical nonparametric estimator of the spectral density is the periodogram, which
is given by:

Il(λk) =
1

(2π)2Nd

∣∣∣∣∣
∑

s∈Dl

Zl(s)e
−isT

λk

∣∣∣∣∣

2

, (3)

where sT
λk denotes the scalar product in R

2. The periodogram is usually computed at the
set of bidimensional Fourier frequencies, λ

T
k = (λk1

, λk2
):

λki
=

2πki

di
, ki = 0,±1, . . . ,±ni = ⌊di − 1

2
⌋, i = 1, 2 (4)

and denote by N = (2n1 + 1)(2n2 + 1) the number of Fourier frequencies. The periodogram
(3) can be also written in terms of the sample covariances as:

Il(λk) =
1

(2π)2

∑

u∈U
Ĉl(u)e−iuT

λk , l = 1, . . . , L (5)

where U = {u = (u1, u2);ui = 1− di, . . . , di − 1, i = 1, 2} and the sample covariances, for Zl

with l = 1, . . . , L, are given by:

Ĉl(v) =
1

Nd

∑

s∈Dl(v)

Zl(s)Zl(s + v), Dl(v) = {s ∈ Dl; s + v ∈ Dl}. (6)

Assume that the spatial processes Zl, l = 1, . . . , L can be represented as:

Zl(s) =

∞∑

j=−∞

∞∑

k=−∞
ψl

jkεl(s1 − j, s2 − k), (7)

where the error variables εl are independent and identically distributed (i.i.d.) as N(0, σ2
εl

),
for l = 1, . . . , L. Note that any Gaussian stationary process can be represented as in (7).
Then, the corresponding spectral density fl can be written as:

fl(λ) = |Al(λ)|2 fεl
(λ), λ ∈ Π2 (8)
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where fεl
(λ) =

σ2
εl

(2π)2
and

Al(λ) =
∞∑

j=−∞

∞∑

l=−∞
ψl

jke
−i(j,k)λ, (j, k)λ = jλ1 + kλ2.

In this case, the periodogram for each process Zl, with l = 1, . . . , L, admits the following
representation:

Il(λk) = fl(λk)V l
k +Rl

N (λk), (9)

where the variables V l
k are i.i.d. standard exponential distributed, and V l

k and V l′

k , with
l 6= l′ are also independent. The residual term Rl

N (λk) is uniformly bounded (see Crujeiras
et al. (2006b)). Applying logarithms in (9) we have:

Y l
k = ml(λk) + zl

k + rl
k, l = 1, . . . , L (10)

where ml = log fl is the log-spectral density, the variables zl
k = log V l

k are i.i.d. with density
function h(x) = ex−ex

, and the residual term rl
k is given by:

rl
k = log

(
1 +

Rl
N (λk)

fl(λk)V l
k

)
.

Several nonparametric estimators of the spatial log-spectral density could be obtained
considering a smoothed combination of log-periodogram values, that is:

m̂l(λk) =
∑

i

W l
i (λk)Y l

i . (11)

The weights W l
i can be defined as Gasser-Muller weights, for instance:

W l
i (λ) = |H|−1/2

∫

Ai

K(H−1/2(λ − ν))dν, (12)

where K is a bidimensional kernel function, H is a bidimensional bandwidth matrix and the
integration region is given by:

Ai = [ai1−1, ai1 ] × [ai2−1, ai2 ], λi ∈ Ai, ∪iAi = A, Ai ∩Aj = ⊘, for i 6= j.

The sets Ai in the partition of A must be Jordan measurable and maxi µ(Ai) = O(N−1)
(see Müller (1988)). Other options are Priestley-Chao weights:

W l
i (λ) =

π2

N
KH(λ − λi) =

π2

N |H|1/2
K(H−1/2(λ − λi)), (13)

or Nadaraya-Watson weights. Another alternative consists of considering a local-linear es-
timator for the spatial log-spectral density. All these weights, under a fixed design setting,
are asymptotically equivalent.

3 Asymptotic Analysis

Consider {Zl(s), s ∈ Dl}, with l = 1, . . . , L, L realizations of a spatial stochastic process
(for instance, realizations taken on L time moments) or L realizations of different spatial
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processes. Our main purpose is to test whether the dependence structure of {Zl, l = 1, . . . , L}
is the same. In terms of the log-spectral densities ml, the testing problem can be written
as:

H0 : m1 = . . . = mL,
Ha : ml 6= mj , for some l 6= j.

(14)

In this context, the comparison can be made by considering nonparametric estimators of the
spatial log-spectral densities. Consider the following test statistic, based on a L2-distance:

Q =

L∑

l=2




l−1∑

j=1

(∫

Π2

(m̂l(λ) − m̂j(λ))
2
ω(λ)dλ

)

 , (15)

where ω is a positive, bounded weight function with support Π2. This weight function is
usually chosen to avoid edge-effects. In the spectral context, this function can be chosen in
order to filter frequencies where the periodogram presents higher variability, as the origin
or those frequencies with π-valued components.

A1 The spatial processes Zl can be represented as in (7) and

∑

i

∑

j

|i|1/2|j||ψl
ij | ≤ ∞ and

∑

i

∑

j

|i||j|1/2|ψl
ij | ≤ ∞.

A2 The spectral densities are non-vanishing:

inf
λ∈Π2

fl(λ) > 0, for l = 1, . . . , L.

A3 We consider Gasser-Muller type weights, given by (12), or Priestley-Chao weights,
given by (13). Besides, W 1

i = . . . = WL
i .

A4 The bidimensional kernel function K is continuously differentiable, with compact sup-
port and

∫
K2(u)du <∞.

A5 The bidimensional bandwidth matrix, H satisfies N |H|1/2 → ∞, as N → ∞, with
n1, n2 → ∞ and n1/n2 → c, for some constant c.

Consider first the testing problem H0 : m1 = m2 vs. Ha : m1 6= m2 and assume that
both Z1 and Z2 have been observed on grids with the same design. This implies that the
corresponding Fourier frequencies are the same in both cases. By Riemann’s approximation,
Q can be approximated by:

Q̂ =
(2π)2

N

∑

k

(m̂1(λk) − m̂2(λk))
2
ω(λk). (16)

Theorem 1. Assume conditions (A1)-(A5) hold. Then, under the null hypothesis that
H0 : m1 = m2, we have that, as N → ∞:

√
N |H|1/2

(
Q̂− 1

12N |H|1/2
CKIω

)
→ N(0, σ2

Q̂
), (17)

in distribution, with

CK =

∫
K2(u)du, Iω =

∫
ω(v)dv and the asymptotic variance is
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σ2
Q̂

=
1

72

∫
(K ∗K)2(u)du

∫
ω(v)dv,

where ∗ denotes the convolution operator.

Also in this context of comparing two dependence structures, consider that the null
hypothesis is false and assume that:

m1(λ) −m2(λ) = CNp(λ), (18)

where p(λ) is a non-zero function. We will see that the test statistic Q̂ allows for detecting
local alternatives at a distance of order N−1/2|H|−1/8.

Theorem 2. Assume conditions (A1)-(A5) hold. Then, if (18) holds and C2
N = (N2|H|1/2)−1/2,

we have that, as N → ∞:

√
N |H|1/2

(
Q̂− 1

12N |H|1/2
CKIω

)
→ N

(∫
p2(v)ω(v)dv, σ2

Q̂

)
,

in distribution, with CK , Iω and σ2
Q̂

as in Theorem 1.

Theorems 1 and 2 can be generalized for stationary random fields on R
d, under a similar

asymptotic framework, assuming that the sampling grid increases at the same rate in all
directions. A d-variate kernel function K satisfying condition A4 and a d-dimensional band-
width matrix H, satisfying condition A5 must be considered. The corresponding asymptotic
mean and variance in (17) are given by:

π2−d

3 · 2d

1

N |H|1/2
CKIω, and

σ2
Q̂,d

=
π4−2d

9 · 22d−1

∫
(K ∗K)2(u)du

∫
ω(v)dv,

where the weighting funcion ω is now defined on Πd = [−π, π]d. Thus, in the particular
case of d = 1, we provide a testing technique for comparing spectral densities in time series
context. In this case, we have a scalar bandwidth parameter h, which plays the role of H1/2

in the general dimension setting.

If the spatial process Zl are observed on regular grids with different sizes, then the cor-
responding frequency spectrum is not the same. The asymptotic behaviour of Q̂ could be
determined following similar arguments to those in (Vilar-Fernández and González-Manteiga
(2004), Theorem 3), under some conditions on the asymptotic rates of the samples.

In order to apply this test statistic in practice, bootstrap algorithms jointly with a cross-
validation bandwidth selection method, have been provided in Crujeiras et al. (2006a). A
completely nonparametric bootstrap procedure is proposed, although in case the spectral
densities to be tested belong to the same parametric family, this algorithm can be simplified.

In the regression context, Zhang and Dette (2004) consider three major types of nonpara-
metric regression test, among them, the Cramer-von-Mises test we consider in this work.
The L2-test result the most powerful, from a local asymptotic point of view.
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4 Appendix

Let’s introduce the following notation. Consider the following regression model:

Y l∗
k = ml(λk) + zl∗

k , l = 1, 2. (19)

where Y l∗
k = Y l

k − C0 − rl
k, and zl∗

k = zl
k − C0, where C0 = E(zl

k) is the Euler constant.
Denote by m̂l

∗
the nonparametric estimator of ml as in (11) for (19) equation and denote

by

Bl
k =

∑

j

Wj(λk)rl
j, l = 1, 2.

Lemma 1. The test statistic Q̂ can be decomposed in three addends:

Q̂ = Q̂1 + Q̂2 + Q̂3,

where

Q̂1 =
(2π)2

N

∑

k

(m̂1
∗
(λk) − m̂2

∗
(λk))2ω(λk),

Q̂2 =
(2π)2

N

∑

k

(B1
k −B2

k)2ω(λk),

Q̂3 = 2
(2π)2

N

∑

k

(m̂1
∗
(λk) − m̂2

∗
(λk))(B1

k −B2
k)ω(λk).

Proof. It is straightforward from the definitions of the non parametric estimator in regression
model (19) and Bl

k, for l = 1, 2.

Lemma 2. Under conditions (A1)-(A5) and under H0, we have that:

Q̂2 = OP

(
log2N

N2|H|1/2

)
and Q̂3 = OP

(
log2N

N

)
.

Proof. Q̂2 can be decomposed as:

Q̂2 =
(2π)2

N

∑

k

∑

j

W 2
j (λk)(r1j − r2j )

2ω(λk)

+
(2π)2

N

∑

k

∑

i

∑

j6=i

Wj(λk)Wi(λk)(r1j − r2j )(r
1
i − r2i )ω(λk)

= Q̂2,1 + Q̂2,2.

By a Taylor expansion on the residual part rl
j around 0, for l = 1, 2:

rl
j = −Rl

N (λj)

fl(λj)Vj

− 1

2(1 + xj)2

(
Rl

N (λj)

fl(λj)Vj

)2

,

where xj ∈
(

0,
Rl

N (λj)

fl(λj)Vj

)
. Since,

max
j

|Rl
N (λj)| = OP(N−1/2 logN),
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for l = 1, 2, just following Kooperberg et al. (1995), the Lagrange remainder in the Taylor

expansion, denoted by LRl
j can be uniformly bounded by OP

(
log2 N

N

)
. Then, under the null

hypothesis, Q̂2,1 can be decomposed as Q̂2,1 = Q̂1
2,1 + Q̂2

2,1 + Q̂3
2,1, where

Q̂1
2,1 =

(2π)2

N

∑

k

∑

j

W 2
j (λk)

(
R2

N (λj)

f(λj)V
− R1

N (λj)

f(λj)V

)2

ω(λk), (20)

Q̂2
2,1 =

(2π)2

N

∑

k

∑

j

W 2
j (λk)(LR2

j − LR1
j )

2ω(λk), (21)

and

Q̂3
2,1 = 2

(2π)2

N

∑

k

∑

j

W 2
j (λk)

(
R2

N (λj)

f(λj)V
− R1

N (λj)

f(λj)V

)
(LR2

j − LR1
j )ω(λk). (22)

Let’s find a bound for Q̂2
2,1 in (21), the addend involving the Lagrange remainders.

Q̂2
2,1 =

(2π)2

N

∑

k

∑

j

W 2
j (λk)(LR1

j − LR2
j )

2ω(λk)

= OP

(
log4N

N2

)
(2π)2

N

∑

k

∑

j

1

N2|H|K
2(H−1/2(λk − λj))ω(λk)

= OP

(
log4N

N2

)
(2π)2

N




∑

k

∑

j6=k

1

N2|H|K
2(H−1/2(λk − λj))ω(λk) +

∑

k

1

N |H|K
2(H−1/20)ω(λk)





= OP

(
log4N

N4|H|1/2

)
+ OP

(
log4N

N2

)
(2π)2

N3|H|
∑

k

∑

j6=k

K2(H−1/2(λk − λj))ω(λk)

≤ OP

(
log4N

N4|H|1/2

)
+ OP

(
log4N

N2

)
(2π)2

N2|H| max
k

∑

j6=k

K2(H−1/2(λk − λj))

= OP

(
log4N

N3|H|1/2

)
,

where the last inequality follows from maxk ω(λk) ≤ c, for some constant c. Following
similar arguments as above, we will found bounds for Q̂2,1 and Q̂2,3. For Q̂1

2,1 in (20):

Q̂1
2,1 =

(2π)2

N

∑

k

∑

j

W 2
j (λk)

(
R2

N (λj)

f(λj)V
− R1

N (λj)

f(λj)V

)2

ω(λk)

= Q̂1,1
2,1 + Q̂1,2

2,1 + Q̂1,3
2,1

where

Q̂1,1
2,1 =

(2π)2

N

∑

k

∑

j

W 2
j (λk)

(
R1

N (λj)

f(λj)V

)2

ω(λk),

Q̂1,3
2,1 = 2

(2π)2

N

∑

k

∑

j

W 2
j (λk)

R1
N (λj)

f(λj)V

R2
N (λj)

f(λj)V
ω(λk)
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and Q̂1,2
2,1 is the similar to Q̂1,1

2,1, but replacing each R1
N (λj) for R2

N (λj). We will find a bound

for Q̂1,1
2,1.

Q̂1,1
2,1 ≤ (2π)2

N
N max

j

(
R1

N (λj)

f(λj)V

)2∑

j

∑

k

W 2
j (λk)ω(λk)

= OP

(
log2N

N

)∑

j

∑

k

1

N2|H|K
2(H−1/2(λk − λj))ω(λk)

= OP

(
log2N

N2|H|1/2

)
.

Similar computations lead to the same bound for the other addends. Let’s find a bound
for the third addend, Q̂3

2,1 in (22):

Q̂3
2,1 = 2

(2π)2

N

∑

k

∑

j

W 2
j (λk)

(
R1

N (λj)

f(λj)V
− R2

N (λj)

f(λj)V

)
(LR2

j − LR1
j )ω(λk)

= OP

(
logN

N1/2

)
OP

(
log2N

N

)
(2π)2

N

∑

j

∑

k

1

N2|H|K
2(H−1/2(λk − λj))ω(λk)

= OP

(
log3N

N5/2|H|1/2

)
.

Therefore,

Q̂2 ≤ OP

(
log2N

N2|H|1/2

)
.

Finally, Q̂3 can be written as:

Q̂3 = 2
(2π)2

N

∑

k

(m̂1(λk) − m̂2(λk)) (B1
k −B2

k)ω(λk)

≤ 2max
k

|B1
k −B2

k|
(2π)2

N

∑

k

∑

j

Wj(λk)(Y 1
j − Y 2

j )ω(λk)

≤ OP

(
logN

N1/2

)
max

j
|Y 1

j − Y 2
j |

(2π)2

N

∑

k

∑

j

1

N |H|1/2
K(H−1/2(λk − λj))ω(λk)

= OP

(
log2N

N

)

since H0 : m1 = m2 implies that Y 1
j − Y 2

j = r1j − r2j , for every Fourier frequency.

Lemma 3. Under conditions (A1)-(A5) and under H0, we have that

√
N |H|1/2

(
Q̂1 −

1

12N |H|1/2
CKIω

)
→ N(0, σ2

Q),

in distribution, where CK , Iω and σ2
Q̂

as in Theorem 1.
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Proof. Define the following random variables Λk = z1∗
k − z2∗

k , with E(Λk) = 0, E(Λ2
k) = π2

3

and Cov(Λk,Λj) = 0 for j 6= k. The statistic Q̂1 can be decomposed in two addends as

Q̂1 = Q̂1,1 + Q̂1,2, where :

Q̂1,1 =
(2π)2

N

∑

k

∑

j

W 2
j (λk)Λ2

jω(λk), Q̂1,2 =
(2π)2

N

∑

k

∑

j

∑

i6=j

Wj(λk)Wi(λk)ΛjΛiω(λk).

Define

bi,j =
(2π)2

N

∑

k

Wi(λk)Wj(λk)ω(λk).

Then:
Q̂1,1 =

∑

j

bj,jΛ
2
j , and Q̂1,2 =

∑

i6=j

bi,jΛiΛj.

First, we will study the behaviour of Q̂1,1. For simplicity, consider Priestley-Chao weights.
Taking expectations and using Riemann’s approximation, it is easy to see that:

E(Q̂1,1) ≈
1

12

1

N |H|1/2

∫
ω(v)dv

∫
K2(u)du. (23)

Let’s check the order of the variance of Q̂1,1. Denote by c2 = V ar(Λ2
j ) This variance can be

computed taking into account that:

V ar(Q̂1,1) =
(2π)4

N6|H|2 c2
∑

j

α2
j , αj =

∑

k

K2(H−1/2(λk − λj))ω(λk).

Then,

V ar(Q̂1,1) = c2
(2π)4

N6|H|2
∑

k

ω(λk)
∑

k′

ω(λk′)
∑

j

K2(H−1/2(λk − λj))K
2(H−1/2(λk′ − λj))

which can be approximated, using a changes of variable and Riemann’s sums, by:

V ar(Q̂1,1) ≈ C2
Kc2

1

N4|H|
∑

k

ω(λk)
∑

k′

ω(λk′) = O
(

1

N2|H|

)

Therefore, applying Markov’s inequality, it follows that:

Q̂1,1 =
1

12N |H|1/2
CKIω + OP

(
1

N |H|1/2

)
.

Besides, E(Q̂1,2) = 0 since Λi and Λj are uncorrelated, for i 6= j and its variance is given
by:

V ar(Q̂1,2) =
∑

i6=j

∑

u 6=v

bijbuvE(ΛiΛjΛuΛv), (24)

since i 6= j, E(ΛiΛj) = E(Λi)E(Λj) = 0. The same applies for u 6= j. For E(ΛiΛjΛuΛv) to
be different from zero, one of these two conditions must hold: i = u and j = v or i = v and
j = u. Then:

V ar(Q̂1,2) =
∑

i

∑

j6=i

bij
∑

u

∑

u 6=v

buvE(ΛiΛjΛuΛv)

= 2
∑

i

∑

j6=i

b2ijE(Λ2
i )E(Λ2

j ) =
2π4

9

∑

i

∑

j6=i

b2ij.

10



Consider the following approximation for the product of two bij coefficients:

bijbuv ≈ 1

N4|H|K ∗K(H−1/2(λi − λj))ω(λi)K ∗K(H−1/2(λu − λv))ω(λu).

Then,

V ar(Q̂1,2) ≈
2π4

9

∑

i

∑

j6=i

1

N4|H| (K ∗K)2(H−1/2(λi − λj))ω
2(λi)

≈ 1

72

1

N |H|1/2

∫
(K ∗K)2(u)du

∫
ω(v)dv.

Therefore, the asymptotic variance of Q̂ is given by:

σ2
Q̂

= lim
N→∞

N2|H|1/2σ2
Q̂1,2

=
1

72

∫
(K ∗K(u))

2
du

∫
ω2(v)dv.

In order to prove the asymptotic normal distribution of Q̂1,2, we will apply Theorem 5.2

in de Jong (1987). For that purpose, we must write Q̂1,2 as a quadratic form, namely

Q̂1,2 =
∑

i,j ai,jXiXj , where i and j are one-dimensional indexes and Xi are i.i.d. random
variables with zero mean and unit variance.

First, define a new subindex for the Fourier frequencies λk, with k = (k1, k2) and kl =
0,±1, . . . ,±nl, for l = 1, 2. Consider λk = λk′ where k′ = (k′1, k

′
2), with k′l = 1, . . . , κl =

2nl + 1, in such a way that k′l = kl + n1 + 1 for l = 1, 2. Denote by MN×N the space of
square matrix with size N . The new coefficients, with one dimensional indexes, are given
by the following matrix:

A = (aij) , A ∈ MN×N ,

and each entry of this matrix is defined by aij = π√
3
bij and aii = 0, where the bidimensional

indexes are given by:

i = (i1, i2) = (k, k0), if (k − 1)κ2 ≤ i ≤ kκ2 and i = (k − 1)κ2 + k0, (25)

j = (j1, j2) = (l, l0), if (l − 1)κ2 ≤ j ≤ lκ2 and j = (l − 1)κ2 + l0. (26)

Now, define the variables Xi =
√

3
π Λi, where i and i satisfy: i = (i1 − 1)κ2 + i2. Q̂1,2 can be

written as a quadratic form with one-dimensional indexes:

Q̂1,2 =
∑

i,j

ai,jXiXj , aij =
π√
3

(2π)2

N

∑

k

Wi(λk)Wj(λk)ω(λk),

where i and j are determined by (25) and (26), respectively. Asymptotic normality is proved
if the following conditions are satisfied:

(i) There exists a sequence of real numbers k(N) such that k(N)4σ2
Q̂

maxi

∑
j a

2
ij → 0.

(ii) The random variables Xi satisfy maxiE
(
X2

i 1{|Xi|>k(N)}
)
→ 0, N → ∞.

(iii) The eigenvalues of the matrix A = (aij) are negligible: σ2
Q̂

maxi µ
2
i → 0, N → ∞.

11



In order to check (i) − (iii) note that:

a2
ij =

π2(2π)4

3N2

(
∑

k

Wi(λk)Wj(λk)ω(λk)

)2

=
π2(2π)4

3N2

∑

k

W 2
i (λk)W 2

j (λk)ω2(λk)

+
π2(2π)4

3N2

∑

k

Wi(λk)Wj(λk)ω(λk)
∑

k6=k′

Wi(λk′)Wj(λk′)ω(λk′)

= a2A
ij + a2B

ij .

Besides,

max
i

∑

j

a2A
ij ≈ CK

π2

3N4|H|1/2
max

i
(ω2 ∗K2)(λi) = O

(
N−4|H|−1/2

)
. (27)

Following similar arguments, the same rate is obtained for maxi

∑
j a

1B
ij . Therefore,

k4(N)σ2
Q̂

max
i

∑

j

aij = O
(
k4(N)

N6|H|

)
, (28)

which tends to zero if the sequence k(N) → ∞ satisfies that
k4(N)

N6|H| → 0.

Condition (ii) holds since the variables Xi are i.i.d. with second order moment E(X2
i ) =

1. It remains to show that condition (iii) also holds. Since maxi

∑
j |aij | = O(N−1) and

taking into account that the spectral ratio of a matrix (maxi |νi|) is bounded by its supremun
norm,

σ2
Q̂

max
i

|µi|2 = O
(

1

N4|H|1/2

)
→ 0.

Then, the asymptotic convergence to a normal distribution is proved.

Proof of Theorem 1. The theorem is proved combining the results from Lemmas 1-3.

Proof of Theorem 2. Consider the decomposition of the test statistic given in Lemma 1:
Q̂ = Q̂1a + Q̂2a + Q̂3a. The sketch of the proof is as follows: find bounds for Q̂2a and Q̂3a

and Q̂1a is decomposed in three addends Q̂1a1, Q̂1a2 and Q̂1. The asymptotic normality of
Q̂1 is proved in Theorem 1. Besides, Q̂1a2 can be also bounded and

E(Q̂1a1) ≈
∫
p2(v)ω(v)dv, (29)

where the approximation holds fof C2
N = N−1|H|−1/4.
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Goodness-of-fit tests for the spatial spectral density. Technical Report. Department of Sta-
tistics and O.R. University of Santiago de Compostela. http://eio.usc.es/pub/reports.html.

de Jong, P. (1987). A central limit theorem for generalized quadratic forms. Probab.
Theory Related Fields, volume 75, no. 2:pp. 261–277.

Dette, H. and Neumeyer, N. (2001). Nonparametric analysis of covariance. Annals of
Statistic, volume 29, no. 5:pp. 1361–1400.

Diblasi, A. and Bowman, A. W. (2001). On the use of the variogram in checking for
independence in spatial data. Biometrics, volume 57, no. 1:pp. 211–218.
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