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ABSTRACT

We propose in this work two different goodness-of-fit testing techniques for the
spatial spectral density. The first approach is based on a smoothed version of the
ratio between the periodogram and a parametric estimator of the spectral den-
sity. The second one is a generalized likelihood ratio test statistic, based on the
log-periodogram representation as the response variable in a regression model.
As a particular case, we provide a test for independence. Asymptotic normal
distribution of both statistics is obtained, under the null hypothesis. We carry
out a simulation study, using resampling techniques to estimate the p-value of
the tests. Applications to real data are also provided.

Key words: spatial spectral density; goodness-of-fit tests; Kernel estimators;
Local likelihood.

1 Introduction

One of the main problems in spatial statistics is the description of the dependence struc-
ture of a data set, both for lattice or geostatistical data. In the geostatistics context, the
estimation of the variogram plays a key role since kriging prediction methods depend on
the variogram or covariogram estimation. There exists an extensive literature devoted to
the estimation problem (see Cressie (1993) for parametric models and Garćıa-Soidán et al.
(2003), Garćıa-Soidán et al. (2004) for nonparametric estimations of the variogram). Re-
cently, Francisco-Fernandez and Opsomer (2005) proposed a generalized cross-validation
(GCV) criteria, suitably adjusted for the presence of spatial correlation, in order to fit a
nonparametric regression model to spatial data. The correlation adjustment needed for the
modification of the GCV also involves the estimation of the dependence structure. Diblasi
and Bowman (2001) propose a goodness-of-fit technique to analyze spatial independence
and Maglione and Diblasi (2004) extend this result in order to test whether the spatial
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dependence structure of a data set can be explained by a certain parametric family. For
multidimensional lattice data, there are several classical references on estimation and mod-
elling. Whittle (1954) points out the difference between stationary processes in the plane
or in time and derives general estimation equations, which provide the so called Whittle
estimates. In the seminal paper from Besag (1974), the author studies different stochas-
tic models which may describe lattice data. Martin (1979) introduces the linear-by-linear
processes, a simple subclass of lattice processes in order to represent autocorrelated variables
in practical situations. Guyon (1982) is concerned with parameter estimation. The estima-
tion problem in this context has been deeply studied. Our main concern in this paper is to
check spatial dependence structures. The theoretical results presented in this work are given
for stationary processes observed on a two-dimensional regular grid. The testing methods we
propose can be adapted, under suitable modifications, for geostatistical (continuous) data.

In spatial statistics, one could think about solving the crucial problem of modelling the
spatial dependence in the spectral domain, instead of working with the variogram or the
covariogram in the spatial setting (e.g. Fuentes (2002)). The spatial spectral density is the
Fourier transform of the covariogram, so testing a certain covariance structure is equivalent
to test a spatial spectral density model. Spectral techniques are a broadly used tool in
time series analysis, although its extension to higher dimension problems is not straightfor-
ward. From the theoretical point of view, the main advantage of the spectral methodology
is that the dependence between observations can be avoided, for a large enough sample,
since periodogram values at different Fourier frequencies are asymptotically independent
(e.g. Brilinger (1974)).

Besides, the periodogram (the classical non-parametric estimator of the spectral density) can
be obtained as the response variable in a multiplicative regression model. In time series con-
text, Paparoditis (2000) proposes a goodness-of-fit test based on a smoothed ratio between
the periodogram and a parametric estimator of the spectral density, under the null hypoth-
esis of an underlying parametric model. Equivalently, the log-periodogram can be seen as
the exogenous variable in an additive regression model. This idea is considered in Fan and
Zhang (2004), in time series context, where the authors apply a generalized likelihood ratio
test for regression models (Fan et al. (2001)). In order to adapt a regression goodness-of-fit
test to the spectral setting, other techniques could be considered. For instance, one could
use tests based on the error distribution function, using the empirical process methodology
(Stute (1997), Stute et al. (1998)). In time series case, Delgado et al. (2005) propose a
goodness-of-fit test based on empirical processes. Other tests could be based on smoothed
estimators of the regression function (Härdle and Mammen (1993), González Manteiga and
Cao (1993) and Hart (1997), among others).

We extend in this work, the goodness-of-fit testing techniques proposed in Paparoditis (2000)
and Fan and Zhang (2004) to the multidimensional lattice data case.

This paper is organized as follows. In Section 2, we relate the spatial and spectral domains
for lattice data. In Section 3, we provide the extensions of different goodness-of-fit tests for
regression models to the spectral setting. Section 4 is devoted to the simulation study and
real data application. A brief discussion is provided in Section 5.
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2 Spectral techniques for spatial processes. Background.

Let Z be a zero-mean second order stationary process observed on a bidimensional regular
grid D = {0, . . . , n1−1}×{0, . . . , n2−1} and denote by N = n1n2, number of observations.
The covariance function of the process is defined by:

C(u) = E (Z(s) · Z(s + u)) s,u ∈ Z
2, (1)

Assuming that
∑

u |C(u)|du < ∞, by Khinchin’s theorem (e.g. Grenander (1981), Yaglom
(1987)), the covariance funcion of a stationary random process can be written as:

C(u) =

∫

Π2

e−iuT λf(λ)dλ, Π2 = [−π, π] × [−π, π]

where f is bounded and continuous and T denotes the transpose operator. This function f
is the spectral density of Z.

Assume that Z can be represented as:

Z(s) =

∞∑

j=−∞

∞∑

l=−∞
ajlε(s1 − j, s2 − l), s = (s1, s2) (2)

where the error variables ε are independent and identically distributed as N(0, σ2
ε). As a

particular case, any Gaussian process with absolutely integrable spectral density can be
written in this way. Although representation (2) remind us to time series context, the
extension of time series results to spatial processes is not simple, due to the fact that a
variable in a time series is influenced only by past values while for spatial processes, this
dependence extents in all directions. The spectral density of process (2) at a frequency λ is
given by:

f(λ) =

∣∣∣∣∣∣

∞∑

j=−∞

∞∑

l=−∞
ajle

−i(j,l)λ

∣∣∣∣∣∣

2

· σ2
ε

(2π)2
= |A(λ)|2fε(λ), λ ∈ Π2, (3)

where

A(λ) =

∞∑

j=−∞

∞∑

l=−∞
ajle

−i(j,l)λ, and fε(λ) =
σ2

ε

(2π)2

with (j, l)λ = jλ1 + lλ2. The classical nonparametric estimator of the spectral density is
the periodogram, which is given by:

I(λk) =
1

(2π)2
· 1

N

∣∣∣∣∣
∑

s∈D
Z(s)e−isT λk

∣∣∣∣∣

2

, (4)

where sT λk denotes the scalar product in R
2. The periodogram is usually computed at the

set of bidimensional Fourier frequencies λT
k = (λk1

, λk2
):

λk1
= 2πk1

n1
, k1 = 0,±1, . . . ,±m1, where m1 = [(n1 − 1)/2],

λk2
= 2πk2

n2
, k2 = 0,±1, . . . ,±m2, where m2 = [(n2 − 1)/2]
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and denote by n = (2m1 +1)(2m2 +1) the number of Fourier frequencies. The periodogram
can be written in terms of the sample covariances as:

I(λk) =
1

(2π)2

∑

u∈U
Ĉ(u)e−iuT λk , (5)

where U = {u = (u1, u2);u1 = 1 − n1, . . . , n1 − 1, u2 = 1 − n2, . . . , n2 − 1} and the sample
covariances are given by:

Ĉ(v) =
1

N

∑

s∈D(v)

Z(s)Z(s + v), D(v) = {s ∈ D; s + v ∈ D}. (6)

As we have seen in (3), f can be written in terms of fε, the spectral density of the innovation
process. A similar expression is obtained for the periodogram of Z, which can be written in
terms of the periodogram of ε:

I(λ) = |A(λ)|2 Iε(λ) + RN (λ), (7)

where, the residual term is uniformly bounded by OP(N−1/2 log N), as it is proved later in
Lemma 2 in the appendix and Iε denotes the periodogram for ε and expression (7) can be
written as

I(λk) = f(λk)Vk + RN (λk) (8)

where Vk’s are independent identically distributed random variables with standard expo-
nential distribution. Then, applying logarithms in (8), we have

Yk = m(λk) + zk + rk (9)

where m = log f and

rk = log

[
1 +

RN (λk)

f(λk)Vk

]
. (10)

The variables zk are independently and identically distributed with density function:

h(x) = e−ex+x. (11)

The mean is the Euler constant E(zk) = C0 = −0.57721 and the variance is Var(zk) = π2/6.
This is a particular case of the Gumbel distribution, with position and scale parameters 0
and 1, respectively.

The main attractive feature of the periodogram is, as we have already commented, that
its values at different Fourier frequencies are asymptotically independent. Besides, it is an
asymptotically unbiased estimator of the spatial spectral density, but as it happens in the
one-dimensional case, the periodogram is inconsistent (see Fuentes (2002)). In order to over-
come this drawback, tapering and smoothing techniques could be used (Brillinger (1981),
Robinson (2006)). Properties of spatial periodogram have been investigated by Whittle
(1954), Guyon (1982) and Stein (1995).

Despite its lack of consistency as an estimator, the periodogram can be used as a pilot
item when trying to fit a parametric model. In the spectral parametric context, Whittle
parameter estimation is the most popular method. For a parametric model of the spatial
spectral density fθ with θ ∈ Θ ⊂ R

p, the Whittle parameter estimator θ̂ is given by:

θ̂ = arg min
θ

L(θ, I), (12)
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where L(θ, I) denotes the Whittle log-likelihood

L(θ, I) =

∫

Π2

(
log fθ(λ) +

I(λ)

fθ(λ)

)
dλ. (13)

The log-likelihood function (13) can be interpreted as the Kullback-Leibler divergence be-
tween I and fθ. The extension of spectral parametric estimation techniques to higher di-
mensional settings present some problems. Whittle estimates are studied in Guyon (1982).
For dimension d = 2, the spatial periodogram bias contributes a bias of order N−1/2 in the
estimation of θ. In order to obtain a

√
N -consistent estimator of θ, an unbiased version of

the periodogram can be used in the Whittle log-likelihood expression (Guyon (1982)). The
unbiased periodogram is obtained from (5), replacing the sample covariances Ĉ(v) by the
unbiased sample covariances, namely C̃(v), with vT = (v1, v2)

C̃(v) =
∑

s∈D(v)

1

(n1 − s1 + v1)(n1 − s2 + v2)
Z(s)Z(s + v). (14)

Another alternative is proposed in Dahlhaus and Künsch (1987), who correct this problem
with tapering techniques. In this paper, we propose a simple bias correction based on para-
metric Bootstrap techniques.

3 Testing a model for the spectral density.

Our main goal is testing whether the spectral density for Z belongs to a parametric family
Fθ, with θ ∈ Θ ⊂ R

p:
H0 : f ∈ Fθ = {fθ; θ ∈ Θ},
Ha : f /∈ Fθ = {fθ; θ ∈ Θ}. (15)

Considering the log-spectral density, the problem can be written as

H̃0 : m ∈ Mθ = {mθ; θ ∈ Θ},
H̃a : m /∈ Mθ = {mθ; θ ∈ Θ}. (16)

The periodogram is written in (8) as the exogenous variable in a multiplicative regression
model. From equation (9), the log-spectral density function m can be seen as a regression
function in a model where the response is given by the log-periodogram (substracting a
residual term rk) and the explanatory variables are the corresponding Fourier frequencies
(fixed design case).

Provided that n1 → ∞, n2 → ∞ and n1/n2 → c, for a constant c, the following assumptions
on the process, spectral density and bidimensional kernel function, K, are needed.

Assumption 1. Assume the spatial process Z can be represented as in (2), and
∑

j,l |j|1/2|aj,l| <

∞,
∑

j,l |l|1/2|aj,l| < ∞ and
∑

j,l |l|4|j|4|aj,l| < ∞. Assume also that the error process is

such that E(ε(s)) = 0, E(ε2(s)) = σ2
ε and E(ε8(s)) < ∞.

Assumption 2. The spectral density f is Lipschitz continuous and non vanishing, i.e.
infλ∈[−π,π]×[−π,π] f(λ) > 0.
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Assumption 3. K is symmetric , bounded and non-negative bidimensional kernel with
support Π2 = [−π, π] × [−π, π], such that

∫
R2 K(u)du = (2π)2 and

∫
R2 K2(u)du < ∞.

The rescaled kernel KH is defined by KH(u) = |H|−1/2K(H−1/2u), following (Ruppert and
Wand (1994)). The sequence of bandwidth matrices is such that each entry of H tends to
zero and N |H|1/2 → ∞. Some further assumptions on the bandwidth matrix are needed in
theorem 2.

Assumption 4. The parameter space Θ is an open subset of R
p and the spectral density

fθ is twice differentiable w.r.t. θ with continuous second derivatives.

3.1 Using the spatial periodogram for hypothesis testing.

It is known that, if Assumption 1 holds,

E

(
I(λk)

fθ(λk)

)
=

f(λk)

fθ(λk)
+ O(N−1 log N), (17)

uniformly in k. Equation (17) implies that, under H0, the asymptotic expected value of this
ratio equals one. We consider a squared deviation criterion on a kernel type estimator of
the ratio between the periodogram and the spectral density (under H0), as it is proposed in
Paparoditis (2000) for the one-dimensional case.

When testing a composite hypothesis H0 : f = fθ against Ha : f 6= fθ as in case (15), the
test statistic is given by:

TP = N |H|1/4

∫

Π2

(
1

N |H|1/2

∑

k

K(H−1/2(λ − λk))

(
I(λk)

fθ̂(λk)
− 1

))2

dλ, (18)

where the sum
∑

k extends over the Fourier frequencies. Asymptotic normality of this
statistic is also obtained.

Theorem 1. Under assumptions (1)-(4) and under H0 : fθ ∈ Fθ

TP − µH → N(0, τ2) in distribution ,

where µH and τ2 are given by:

µH = |H|−1/4

∫
K2(s)ds, (19)

τ2 =
1

2π2

∫

2Π2

(∫

Π2

K(s)K(s + u)ds

)2

du, 2Π2 = [−2π, 2π] × [−2π, 2π]. (20)

Assume that the true spectral density f lies in F − Fθ and consider θ∗ satisfying:

θ∗ = arg min
θ

L(θ, f)

where

L(θ, f) =

∫

Π2

(
log fθ(λ) +

f(λ)

fθ(λ)

)
dλ.
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where θ∗ is the parameter which determines the best fit in Fθ. The estimator θ̂ given by
(12) is an efficient estimator of θ∗. In order to guarantee the necessary conditions for this
estimator, a further assumption on the parameter space Θ must be taken.

Assumption 5. Θ ⊂ R
p is compact and fθ is three times differentiable with respect to θ,

with continuous derivatives. Besides, θ∗ exists, is unique and lies in the interior of Θ.

Generalizing Theorem 3.2 in Dahlhaus and Wefelmeyer (1996), we see that:

√
N(θ̂ − θ∗) =

√
N

∫

Π2

W (λ)(I(λ) − f(λ))dλ + oP(1) (21)

where

W (λ) = −H−1∇f−1
θ∗ (λ), H =

∫

Π2

∇2G(θ∗, f,λ)dλ,

G(θ, f,λ) = log fθ(λ) +
f(λ)

fθ(λ)
,

and ∇ and ∇2 denote the first and second derivatives with respect to θ, ∇f−1
θ∗ (λ) denotes

the first derivative w.r.t. θ evaluated in θ∗ and ∇2G(θ∗, f,λ) denotes the second derivative
w.r.t. θ evaluated in θ∗. L(θ, f) can be interpreted as the Kullback-Leibler divergence be-
tween f and fθ.

Theorem 2. Consider the problem of testing a composite hypothesis H0 : f ∈ Fθ vs.
Ha : f ∈ F − Fθ. If f ∈ F − Fθ, under assumptions (1)-(3) and (5):

N−1|H|−1/4TP →
∫

Π2

(
f(λ)

fθ∗(λ)
− 1

)2

dλ

in probability.

Remark 1. Both results are a generalization of Theorems 2 and 3 in Paparoditis (2000)
for time series context. As in the one-dimensional situation, this result implies the omnibus
property of the TP test, that is, TP is consistent against any alternative such that f /∈ Fθ.
Besides, note that in practice, a discretized version of the TP statistic is used (see simulation
section).

3.2 Using the spatial log-periodogram for hypothesis testing.

In this part, we tackle the testing problem (16). Consider the following regression model:

Y ∗∗
k = m(λk) + z∗k, (22)

where we denote by Y ∗∗
k = Y ∗

k − rk, Y ∗
k = Yk −C0 and z∗k = zk −C0. The Y ∗∗

k variables are
not observed, so we establish the testing procedure in terms of Yk, although the theoretical
reasoning takes this fact into account.

Following Fan and Zhang (2004), we introduce the generalized likelihood ratio test statistic
based on two likelihood approaches of equation (8). The first approach is given by the

7



loglikelihood maximization under the null hypothesis. The second approach is purely non-
parametric, obtained by a local loglikelihood function maximization. The loglikelihood
function associated with (9), when rk has been removed, is

∑

k

[
Yk − m(λk) − eYk−m(λk)

]
. (23)

We will introduce two likelihood-based approaches to obtain the generalized likelihood ratio
test statistic. Under the null hypothesis, the maximizer of the loglikelihood function of (9),
when ignoring the residual part rk, is the Whittle estimate from equation (12). From a non
parametric approach, we consider the estimator obtained for the log-spectral density function
m by a multidimensional local linear kernel estimator. For any x ∈ R

2, we approximate
m(λk) by the plane a + bT (λk − x). Then, we construct the local loglikelihood function

∑

k

[
Yk − a − bT (λk − x) − eYk−a−bT (λk−x)

]
KH(λk − x), (24)

where the function KH is a reescaled bidimensional kernel, as in Assumption 3. The local
maximum likelihood estimator m̂LK(H,x) ≡ m̂LK(x) of m(x) is â in the maximizer (â, b̂)
of (24). Then, a generalized likelihood test statistic can be constructed as

TLK =
∑

k

[
eYk−mθ̂(λk) + mθ̂(λk) − eYk−m̂LK(λk) − m̂LK(λk)

]
. (25)

The local estimator m̂LK contains biases even under the null hypothesis which affect the
distribution under H0. In the regression context, Härdle and Mammen (1993) in order
to compare parametric vs. nonparametric regression fits, propose smoothing the residuals
from both approaches. The bias correction technique consists on a reparametrization of
the log-periodogram. Let θ denote the true parameter under H0 and rewrite mBC(λ) =
m(λ) − mθ(λ). Then, the hypothesis testing statement, in terms of mBC is given by:

H0 : mBC = 0,
Ha : mBC 6= 0.

The expression for the test statistic is:

TLK,BC =
∑

k

(
eỸk − eỸk−m̂∗

LK(λk) − m̂∗
LK(λk)

)
,

where θ̂ is the Whittle estimator of θ and Ỹk = Yk−mθ̂(λk) denote the synthetic data. m∗
LK

is the local linear estimator of mBC , considering these synthetic data. Although asymptotic
distribution of the test statistic is also obtained, in practice, we approximate the null distri-
bution of TLK using Monte Carlo simulations. Consider the following decomposition of the
test statistic.

TLK = TLK,1 − TLK,2

where
TLK,1 =

∑

k

[
e(Yk−mθ(λk)) + mθ(λk) − e(Yk−m̂LK(λk)) − m̂LK(λk)

]

TLK,2 =
∑

k

[
e(Yk−mθ(λk)) + mθ(λk) − e(Yk−mθ̂(λk)) − mθ̂(λk)

]
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The test statistic TLK,1 is the generalised likelihood ratio test statistic for testing between

H̃0 : m = mθ

H̃a : m 6= mθ

while TLK,2 is the maximum likelihood ratio test statistic for testing between

H̄0 : θ = θ0

H̄a : θ 6= θ0

where θ0 denotes the true parameter in the parametric family of models Mθ. For simplicity,
we will denote the true parameter by θ, instead of θ0 and the spectral density of Z will
be denoted by fθ. Under certain regularity conditions, the asymptotic null distribution of
TLK,2 is χ2

p, where p = dim(θ). Hence, TLK,2 = OP(1). Therefore, we can simplify the test
statistic to TLK,1 with a simple null hypothesis test:

TLK =
∑

k

[
e(Yk−mθ(λk)) + mθ(λk) − e(Yk−m̂LK(λk)) − m̂LK(λk)

]
. (26)

In order to study the asymptotic properties of this statistic, we decompose TLK in some
addends. We consider T ∗

LK , which is the same statistic as TLK but replacing Yk by Y ∗∗
k

given in equation (22) and m̂LK by m̂∗
LK . If the observed test statistic is larger than a

selected critical value, then we reject the null hypothesis.

Define also the following quantities, related to the asymptotic distribution of the test sta-
tistic:

µH =
4π2

|H|1/2

(
K(0) − 1

2

∫
K2(s)ds

)
, (27)

bH =
−|H|2

8

∑

k

1

fθ(λk)

∫ ∫
sT Hmθ

(λk)s·(s+u)T Hmθ
(λk)(s+u)K(s)K(s+u)dsdu, (28)

σ2 =
2π2

|H|1/2

∫
(2K(s) − K ∗ K(s))

2
ds. (29)

Where Hmθ
(λk) is the Hessian matrix of mθ.

Theorem 3. Under assumptions (1)-(4), as N (ζ−1)/ζ |H|1/2 ≥ c logδ N , for a constant c
and some δ > (ζ − 1)/(ζ − 2)), ζ > 2 and provided that H0 holds,

σ−1(TLK − µH + bH) → N(0, 1),

where µH , bH and σ2 are given by (27), (28) and (29), respectively.

Remark 2. The former theorem extends Theorem 1 in Fan and Zhang (2004) to the mul-
tidimensional setting.

Remark 3. Other goodness-of-fit testing techniques based on smoothed estimators m̂ of
the log-spectral density could be used. An L2−approach could be considered:

TC =
∑

k

(m̂(λk) − m̂θ̂(λk))2. (30)
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This test statistic was studied by González Manteiga and Cao (1993) (and simultaneously
by Härdle and Mammen (1993), in a continuous form). Or even Zheng’s test (Zheng (1996)),
who proposes

TZ =
1

n

∑

k6=v

KH(λk − λv)(Yk − mθ̂(λk))(Yv − mθ̂(λv)). (31)

For the test statistics (30) and (31), asymptotic normal distributions are obtained in the
one-dimensional case. Also in the one-dimensional case, Zhang and Dette (2004) give a
power comparison between non-parametric regression tests. Similarly, in the spatial con-
text, it would be possible to obtain the normal asymptotic distribution of the extensions of
these tests.

Remark 4. Theorems 1 to 3 can be generalized for stationary random fields on R
d, under

a similar asymptotic framework. The d-variate kernel K (with support on Πd = [−π, π]d)
and the d × d bandwidth matrix H must satisfy the corresponding assumption 3. For the
TP test, the expressions for the mean and the variance are given by:

µ
(d)
H =

1

|H|1/4

∫

Πd

K2(s)ds,

τ2(d) =
1

2d−1πd

∫

2Πd

(∫

Πd

K(s)K(s + u)ds

)
du, 2Πd = [−2π, 2π]d.

For the TLK test:

µ
(d)
H =

(2π)d

|H|1/2

(
K(0 − 1

2

∫

Πd

K2(s)ds)

)
,

σ2(d) =
2d−1πd

|H|1/2

∫

Πd

(2K(s) − K ∗ K(s))
2
ds.

These expressions generalize the results in this section and those provided by Paparoditis
(2000) and Fan and Zhang (2004).

3.3 Testing in practice.

Since the rate of convergence of the distributions of TP and TLK to their Gaussian limit is
quite slow, we show an alternative way of estimating the distribution of the test statistic,
under H0, by a Monte Carlo approach. The performance of TP and TLK tests is shown in
a simulation study. We propose the following algorithm, for computing the p−value of the
test statistics TP and TLK :

Step 1. Obtain the parametric estimate θ̂.

Step 2. Compute the observed test statistic T obs. For the discrete approximation of the TP

test:

T obs
P = N |Ĥ|1/4

∑

k



N−1|Ĥ|−1/2
∑

j

K
(
H−1/2(λk − λj)

)( I(λj)

fθ̂(λj)
− 1

)


2

and for the TLK , obtain the non-parametric estimate m̂LK(H, ·) and:

T obs
LK =

∑

k

{
eYk−mθ̂(λk) − eYk−m̂LK(λk) + mθ̂(λk) − m̂LK(λk)

}
,

10



Step 3. From fθ̂, generate a random sample of size N = n1 · n2.

Step 4. Using the generated random sample in Step 3, obtain the test statistic T ∗.

Step 5. Repeat B times steps 3 and 4 and obtain the bootstrap test statistics T ∗
1 , T ∗

2 , . . . , T ∗
B .

Step 6. Compute the p-value of the test statistic as the percentage of the bootstrap replicates
{T ∗

1 , T ∗
2 , . . . , T ∗

B} that exceed T obs.

Both for TP and TLK non-linear multidimensional optimization problems must be solved.
Whittle estimates θ̂ are obtained in Step 1, using a discretized version of (13). Newton type
methods can be used to solve this problem, although these methods are not suitable for
situations where local maximum values are found. In order to guarantee the convergence to
a global maximum, genetic algorithms were implemented (see Goldberg (1989)).

In the case of the algorithm for TLK , the computational cost is highly increased in Step 2
with the non-parametric estimation of the log-spectral density, obtained by local maximum
loglikelihood. There is again a non-linear multidimensional optimization problem, which
must be solved for every Fourier frequency. For each λk, we take (Yk,0) as initial values of
(a,b) in (24). As it happens for solving Step 1, one could think of using genetic algorithms
for avoiding convergence problems.

A key problem in nonparametric statistics is the selection of the bandwidth parameter. Op-
timal bandwidth selection for non parametric testing in high dimensional problems is still
an open question. Usually, in practice, the standard approach consists of examining a range
of bandwidths.

Automatic bandwidth selection criteria is another alternative. For instance, the bandwidth
matrix could be chosen by minimizing the Mean Integrated Square Error of the nonpara-
metric estimator under the null hypothesis that H0 : f = fθ0

:

Ĥ = arg min
H

E

(∫

Π2

(m̂LK(H,λ) − mθ0
(λ))2dλ

)
. (32)

Bandwidth estimation can be obtained using a Monte Carlo approach of the MISE error
(32), where m̂j

LK denotes the nonparametric estimator in each simulated sample:

Ĥ = arg min
H

1

M

M∑

j=1

∫

Π2

(
m̂j

LK(H,λ) − mθ0
(λ)
)2

dλ, (33)

although in practice, the theoretical parameter θ0 is replaced by an estimator θ̂. How-
ever, the computational cost of this approach can be really high in some cases (due to the
computation of the local log-likelihood estimator). Since log-periodogram values are asymp-
totically independent, for a large enough sample, good approximations are expected using
a traditional cross-validation criteria. That is, select Ĥ such that:

Ĥ = arg min
H

∑

k

(
m̂−k

LK(H,λk) − mθ̂(λk)
)2

, (34)

where m̂−k
LK(H, ·) is the nonparametric estimator of the log-spectral density obtained by

maximizing expression (24), deleting the frequency λk.
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It is important to note that the bandwidth matrix H plays a different role in both test
statistics. In the TLK test, the bandwidth matrix is involved in the nonparametric estima-
tion of the log-spectral density. In the TP test, the bandwidth matrix is not involved in
the estimation procedure. Therefore, it may be expected that this test statistic will be less
influenced by the bandwidth parameter.

The algorithm we propose for calibrating the p−value of the test statistics needs, in Step
3, the generation of a sample of size N , given a parametrically estimated spectral density
function fθ̂. For that purpose, we consider a spectral simulation procedure, as it is outlined
in (Chilès and Delfiner (1999) pp. 502-503).

Remark 4. If Z is a continous process (geostatistical data), the summation in representa-
tion (2) is replaced by an integral (Priestley (1981)) and the spectrum of such a process is
defined for all λ in R

2. Although asymptotic theory has not been yet obtained in this case,
the tests can be applied, with suitable modifications, when the observations are taken on
a regular grid. In this case, the spectral density estimators should be modified in order to
account for the spacing between data (e.g. Fuentes (2002)).

4 Simulation study

In this section, we study the performance of the testing procedures in terms of size and power.
For illustration purposes, we consider the bidimensional autoregressive process (from now
on BAR(1)):

Z(i, j) = β1Z(i − 1, j) + β2Z(i, j − 1) − β1β2Z(i − 1, j − 1) + ε(i, j), (35)

where ε(i, j) are independet identically distributed Gaussian random variables, with zero-
mean and variance σ2

ε . This is the simplest process in the class of linear-by-linear processes,
introduced by Martin (1979) and it is also known as the doubly-geometric process.

Parameters β1 and β2 belong to [0, 1) to guarantee stationarity. The spectral density of this
process can be factorized with respect to β1 and β2 as

f(ω) =
σ2

ε

(2π)2
· 1

1 + β2
1 − 2β1 cos(ω1)

· 1

1 + β2
2 − 2β2 cos(ω2)

. (36)

In order to study the size of the tests, we consider different values for the parameters β1 and
β2 from 0.0 (which corresponds to the independence case) to 0.9. 1000 simulations of the
process are generated on a 20× 20 and 50× 50 regular grid. Random sample generations of
this process are obtained as in (Alonso et al. (1996)). Estimators for β1 and β2 are obtained
from the periodogram of the generated data, using a discretized version of the Whittle log-
likelihood (13).

We set the null hypothesis that Z is a doubly-geometric process, considering different para-
meters. A multiplicative Epanechnikov bidimensional kernel is used along the study. The
bandwidth parameter has been chosen using the cross-validation criteria (34). In order to
simplify the computations, we consider diagonal bandwidth matrices, with elements propor-
tional to the spacing between frequencies:

H = r · diag

(
2π

n1
,
2π

n2

)
. (37)
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α = 0.01 α = 0.05 α = 0.1
(β1, β2) TP TLK TP TLK TP TLK

(0.0, 0.0) 0.014 0.009 0.043 0.054 0.090 0.105
(0.1, 0.1) 0.014 0.014 0.043 0.045 0.090 0.085
(0.2, 0.2) 0.018 0.011 0.051 0.049 0.024 0.088
(0.3, 0.3) 0.021 0.080 0.058 0.052 0.112 0.100
(0.4, 0.4) 0.020 0.090 0.058 0.053 0.099 0.099
(0.5, 0.5) 0.022 0.014 0.058 0.054 0.103 0.105
(0.6, 0.6) 0.023 0.015 0.067 0.059 0.113 0.117
(0.7, 0.7) 0.044 0.037 0.104 0.097 0.172 0.161
(0.8, 0.8) 0.096 0.067 0.210 0.171 0.289 0.225
(0.9, 0.9) 0.170 0.189 0.346 0.347 0.443 0.457
(0.1, 0.9) 0.088 0.092 0.195 0.186 0.287 0.264

Table 1: Size of the tests. 20 × 20 grid.

α = 0.01 α = 0.05 α = 0.1
(β1, β2) TP TLK TP TLK TP TLK

(0.7, 0.7) 0.018 0.023 0.060 0.056 0.125 0.105
(0.9, 0.9) 0.097 0.052 0.269 0.114 0.396 0.168

Table 2: Size of the tests, 50 × 50 grid.

α = 0.01 α = 0.05 α = 0.1
(β1, β2) TP TLK TP TLK TP TLK

(0.7, 0.7) 0.027 0.019 0.054 0.049 0.097 0.098
(0.8, 0.8) 0.034 0.030 0.075 0.070 0.119 0.119
(0.9, 0.9) 0.048 0.053 0.107 0.112 0.165 0.169
(0.1, 0.9) 0.028 0.031 0.072 0.069 0.131 0.117

Table 3: Size of the tests, 20 × 20 grid, with bias correction on the parameter estimates.
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α = 0.01 α = 0.05 α = 0.1
(β1, β2) TP TLK TP TLK TP TLK

(0.01, 0.01) 0.017 0.009 0.062 0.047 0.110 0.088
(0.05, 0.05) 0.036 0.017 0.096 0.079 0.169 0.148
(0.1, 0.1) 0.085 0.097 0.192 0.254 0.307 0.374
(0.2, 0.2) 0.376 0.713 0.589 0.903 0.720 0.943
(0.3, 0.3) 0.882 0.993 0.952 1.000 0.980 1.000

Table 4: Power of the tests.Testing for independence.

The behaviour of the test in size terms is shown in Table 1, at three different significance
levels: 0.01, 0.05 and 0.10. The percentage of rejections of both test statitistics are computed
from 1000 simulations.The results are quite satisfactory for both test, when the autoregres-
sion parameters are smaller than 0.5. For autoregresion parameters near 1, the performance
is not so good as in the previous cases. It may happens that, for high dependence parame-
ters, this sample size is too small for hypothesis testing.

As an example, in Table 2, we show the results of applying TLK and TP for parameters
(0.7, 0.7) and (0.9, 0.9), in a 50 × 50 regular grid. Despite increasing the sample size, the
size of the test does not improve as it could be expected. In Figure 1 we observed that, for
a 20 × 20 regular grid, large autoregression parameter estimates from Whittle’s likelihood
are seriously biased. It seems clear that the bias in the parametric estimation distorts the
results in the approximation of the size of the tests.

As we have already commented, Whittle parameter estimates computed from the raw peri-
odogram are biased. We propose a bootstrap correction technique, which can be included
in the bootstrap procedure for approximating the test statistic distribution. The modifica-
tions in the algorithm described in the section 3.3, in order to include the bias correction
technique, are the following:

Step 1. Obtain the parametric estimate θ̂.

1.A. Generate B′ random samples of size N fron fθ̂.

1.B. Estimate θ̂∗i for each sample.

1.C. b̂(θ, θ̂) = 1
B′

∑
i(θ̂ − θ̂∗i ).

1.D. Replace θ̂ by the bias corrected version θ̂ + b̂(θ, θ̂).

. . .

Step 5. Using the generated random sample in Step 4, obtain the test statistic T ∗, correcting
the parameter estimator θ̂∗ by θ̂∗ + b̂(θ, θ̂), and repeat B times steps 3 and 4.

The percentage of rejections of both tests, in a 20 × 20 grid, when applying the Bootstrap
bias correction on the parameter estimates, is shown in Table 3. Significative improvements
are observed in all cases, although for parameters near one, the results are not still com-
pletely satisfactory.

Behaviour of the test in terms of power is shown in Table 4, when testing for independence,
that is H0 : f = c, for some positive constant c. We set as alternatives different parameters

14
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Figure 1: Parameter estimates.

approaching the null hypothesis. It seems that TLK performs better than TP . This feature
may be explained by the fact that the bandwidth matrix approximates the optimal band-
width for the nonparametric estimation.

5 Real data application. Mercer and Hall wheat-yield

data.

In this section, we apply the proposed testing techniques to the well-known wheat data from
Mercer and Hall experiment, consisting of a uniformity trial (all the plots received the same
treatment) on an area of one acre. The layout is a 20×25 lattice. Although the exact size of
the plots from the original data set seems to be unknown, some researchers have used 3.30
meters east to west, and 2.51 meters north to south. This dataset has been broadly studied
by different authors (Whittle (1954), Cressie (1993), Young and Young (1998)). Young
and Young (1998) conducted an exploratory data analysis on these data and Cressie (1993)
shows that data indicate an irregular east-west trend. Whittle (1954) fitted a zero-mean,
first-order autoregressive model:

Z(s) = α1(Z(s1 + 1, s2) + Z(s1 − 1, s2)) + α2(Z(s1, s2 + 1) + Z(s1, s2 − 1)) + ε(s), (38)

where ε(s) are zero-mean independent Gaussian random variables, with variance σ2
ε . The

corresponding spectral density is given by

f(ω) =
σ2

(2π)2
(1 − 2α1 cos(ω1) − 2α2 cos(ω2))

−2
, ω ∈ Π2. (39)

15



Local estimator

Periodogram Estimated model

Figure 2: Spectral density estimators for Mercer-Hall data.

We will refer to model (38) as the spatial autoregressive model (SAR(1) model). Whittle
obtained α̂1 = 0.213, α̂2 = 0.102. No estimation of the variance σ2

ε is given. In Figure 2
we show the plots of the periodogram, the parametric fit (38) and the nonparametric log-
likelihood estimator.

As a first approach, we test for independence, using both TLK and TP test statistics. We
examine a range of diagonal bandwidth matrix (37), with r varying from 2.0 to 20.0. In
both cases, the hypothesis of independence is rejected (p-values lower than 0.001) along the
whole bandwidth range.

Once the independence hypothesis is rejected, we apply TLK and TP in order to check that
model (38) fits the data. We obtain as estimated parameters α̂1 = 0.23217, α̂2 = 0.09267
and variance 0.12452. The p−values for different bandwidths are shown in Figure 3. In the
horizontal axis, we represent the parameter r from equation (37) varying from 2.0 to 20.0.
As it has been commented before, TP test is less affected by the choice of the bandwidth,
and the null hypothesis that the data admit a SAR model fit is accepted. TLK test accepts
the null hypothesis, for a significance level α = 0.05, in most part of the bandwidth range, as
it is shown in Figure 3. In particular, the null hypothesis is accepted for the cross-validation
bandwidth.
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Figure 3: p-values for testing SAR(1) model. Solid line: TLK test p−values. Dashed line: TP

test p−values. Dotted line: significance level 0.05. Vertical solid line: cross-validation bandwidth.

6 Discussion

We propose in this work two different testing procedures to check whether a spatial spectral
density belongs to a parametric family. The first proposal extends the test in (Paparodi-
tis (2000)), for time series case, to the lattice data case in R

2. The second approach is a
generalized likelihood ratio test TLK , computed with the bias-reduction approach, as it is
proposed in (Fan et al. (2001)), also for time series. Both test statistics involve parameter
estimation, which is done using the Whittle log-likelihood. For the spatial (or higher dimen-
sional) case, Whittle estimates are not consistent and this feature must be taken into account
when computing the test statistics. A Bootstrap bias correction technique is considered, in
order to correct the parameter estimates bias. Besides, the TLK test statistic needs also
a non-parametric estimation of the log-spectral density. This non-parametric estimation is
computed by local log-likelihood maximization.

In practice, the p−value of the test statistic, both for TP and TLK is approximated by
Monte Carlo simulations. For both statistics, the parametric estimator must be obtained
and for TLK , the non-parametric estimator must be also computed. This non-parametric
log-spectral density estimator needs a bandwidth matrix. For simplicity, we have considered
diagonal bandwidth matrices, but other choices are also possible. An automatic selection
criteria (cross-validation) has been employed to obtain the estimated bandwidth matrices.

In computational cost terms, TP is less expensive than TLK . This higher computational
cost is due to the computation of the log-spectral density non-parametric estimator, which
is obtained by local maximum loglikelihood. As we have already commented, in order to
solve the non-linear multidimensional optimization problems that arise in both techniques,
genetic algorithms could be used. Although computationally more expensive than Newton
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type methods, these kind of algorithms avoid local extremes.
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8 Appendix.

8.1 Proof of Theorem 1.

In order to prove Theorem 1, we must introduce some lemmas. Lemma 6 gives a decom-
position of the TP statistic as a sum of the test statistic when considering a simple null
hypothesis plus a negligible term. Lemma 5 gives the asymptotic distribution of the TP

statistic, under H0 : θ = θ0. Lemmas 1 to 5 provide some tools which are needed in Lemma
6 and 7.

Lemma 1. Assume that {θN} is a sequence of estimators of θ0 ∈ Θ ∈ R
p such that

√
N(θN−

θ0) = OP(1). Assume that the spectral density fθ0
is continuously differentiable w.r.t. θ with

bounded derivatives in λ ∈ Π2 = [−π, π]× [−π, π]. Then, under the assumptions in Theorem
1:

sup
λ∈Π2

∣∣∣∣
fθN

(λ) − fθ0
(λ)

fθN
(λ)

∣∣∣∣ = OP(N−1/2). (40)

Proof. Since for any θN , the estimated spectral density fθN
is continuous in Π2, then

sup
λ∈Π2

∣∣∣∣
1

fθN
(λ)

∣∣∣∣ = OP(1). (41)

Besides, since
√

N(θN − θ0) = OP(1), it implies that the difference between the estimator
θN and the parameter θ0 can be stochastically bounded by: θN − θ0 = OP(N−1/2). For a
fixed λ, using a Taylor expansion of fθN

around fθ and considering the Lagrange remainder,
we have:

fθN
(λ) = fθ0

(λ) + (θN − θ0)
T∇fθ̃(λ) ≤ fθ0

(λ) +

p∑

i=1

|θi
N − θi

0| sup
λ∈Π2

∣∣∣∣
∂

∂θi
fθ̃(λ)

∣∣∣∣

for some θ̃ with ‖θ̃ − θ0‖ ≤ ‖θN − θ0‖. Therefore,

sup
λ∈Π2

|fθN
(λ) − fθ0

(λ)| ≤
p∑

i=1

|θi
N − θi

0| sup
λ∈Π2

∣∣∣∣
∂

∂θi
fθ̃(λ)

∣∣∣∣ = OP(N−1/2). (42)

The result is proved combining equations (41) and (42).

Lemma 2. Consider Z a spatial process with representation (2) and suppose that assumption
(1) holds. Then:

max
λ∈Π2

E(R4
N (λ)) = O(N−2), (43)

max
k

|RN (λk)| = OP(N−1/2 log N). (44)

Proof. In order to prove (43), the residual term RN (λ) can be written as:

RN (λ) = A(λ)Jε(λ)YN (−λ) + A(−λ)Jε(−λ)YN (λ) + |YN (λ)|2 , (45)

where,

A(λ) =

∞∑

j=−∞

∞∑

l=−∞
ajle

−i(j,l)λ, (46)
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Jε(λ) =
1

2π
√

N

n1−1∑

s1=0

n2−1∑

s2=0

ε(s)e−isT λ, (47)

UN,j,l(λ) =
1

2π
√

N






n1−1−j∑

s1=−j

n2−1−l∑

s2=−l

e−isT λε(s) −
n1−1∑

s1=0

n2−1∑

s2=0

e−isT λε(s)




 , (48)

and finally

YN (λ) =
∞∑

j=−∞

∞∑

l=−∞
ajle

−i(j,l)λUN,j,l(λ), (49)

just following similar arguments to those in (Brockwell and Davis (1991), pp. 346-347).
Therefore, taking expectations on the fourth order moment:

E
(
R4

N (λ)
)
≤

k1E
(
|A(λ)Jε(λ)YN (−λ)|4

)
+ k2E

(
|A(−λ)Jε(−λ)YN (λ)|4

)
+ k3E(|YN (λ)|8),

for some positive constants k1, i = 1, 2, 3. For the first term on the right hand side using
Caucy-Schwarz inequality:

E
(
|A(λ)Jε(λ)YN (−λ)|4

)
≤

|A(λ)|4
(
E|Jε(λ)|8

)1/2 (
E|YN (−λ)|8

)1/2
= O(1)

√
E(|YN (−λ)|8).

For E|YN (−λ)|8, we can get a bound taking into account that, if |j| < n1 and |l| < n2,
2π

√
NUN,j,l is a sum of 4|j||l| independent random variables. For |j| ≥ n1, |l| ≥ n2, it is a

sum of 4n1n2 independent random variables. In the case |j| < n1, |l| ≥ n2, it is a sum of
4|j|n2 iid random variables, whereas if |j| ≥ n1, |l| < n2, it is a sum of 4|l|n1 iid random
variables. Then, using the inequality:

E




n∑

j=1

Zj




8

≤ nEZ8
1 + 28n2EZ6

1EZ2
1 + 35n2(EZ4

1 )2 + 210n3EZ4
1 (EZ2

1 )2 + 105(EZ2
1 )4

where Zj are independent identically distributed random variables, with zero mean and
finite eight-order moment, we have:

E |UN,j,l(λ)|8 ≤ c1|j||l|E(ε8) + c2|j|2|l|2E(ε6)E(ε2) + c3|j|2|l|2E2(ε4)

+c4|j|3|l|3E(ε4)E2(ε2) + c5|j|4|l|4E4(ε2).

By assumption (1), concercing the summability of {|j||l|aj,l} and Jensen’s inequality, we get
E|YN (λ)|8 ≤ O(N−4):

E(|YN (λ)|8) = E




∣∣∣∣∣∣

∑

j,l

|aj,l|e−i(j,l)λUN,j,l(λ)

∣∣∣∣∣∣

8

 ≤ c6

∑

j,l

aj,l

(
E
(
|UN,j,l(λ)|8

))

c6



 1

N4

∑

j,l

|aj,l|c1|j||l|E(ε(s)8) +
1

N4

∑

j,l

|aj,l|c2|j|2|l|2E(ε(s)6)E(ε(s)2)
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+
1

N4

∑

j,l

|aj,l|c3|j|2|l|2E2(ε(s)4) +
1

N4

∑

j,l

|aj,l|c4|j|3|l|3E(ε(s)4)E2(ε(s)2)

+
1

N4

∑

j,l

|aj,l|c5|j|4|l|4E4(ε(s)2)



 = O(N−4),

and from the expression above, we obtain that E1/2(|YN (λ)|8) = O(N−2).

The bound for (44) ca be obtained by a straightforward extension of the arguments in
(Kooperberg et al. (1995)).

Let’s prove now (44). Consider the expression of Jε(λ) given by (47) and split it in its real
and imaginary parts. The real part of Jε(λ) is distributed as:

Re(Jε(λ)) ∼ N

(
0,

AT Aσ2

(2π)2N

)
,

where A is given by

A =




1
cos((1, 0)λ)

...
cos((1, n2 − 1)λ)

cos((2, 1)λ)
...

cos((2, n2 − 1)λ)
...

cos((n1 − 1, 1)λ)
...

cos((n1 − 1, n2 − 1)λ)




.

We prove that the real part is OP(
√

log N), where N = n1 · n2. For that purpose, let ν ∈ R.
We will prove that:

P

(
1

2π
√

N

∑

s

cos(λT
k s)ε(s) ≥ ν

√
log N

)
→ 0. (50)

First, considering the distribution of Re(Jε(λ)), we can write:

P

(
1

2π
√

N

∑

s

cos(λT
k s)ε(s) ≥ ν

√
log N

)
=

√
2πN

AT Aσ2

∫ ∞

ν
√

log N

e

�
− 2π2Nx2

AT Aσ2

�
dx. (51)

Applying a change of variable:
2π2Nx2

AT Aσ2
=

y2

2
,

we rewrite (51) as:

P

(
1

2π
√

N

∑

s

cos(λT
k s)ε(s) ≥ ν

√
log N

)
=

1√
2π

∫ ∞

2πν

σ
√

AT A

√
N log N

e−
y2

2 dy. (52)
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Since the following exponential inequality holds:

∫ ∞

y

e−x2/2

e−y2/2
dx ≤

∫ ∞

y

x

y
e(−x2/2dx =

1

y

∫ ∞

−y2/2

e−udu =
1

y
e−y2/2,

that is ∫ ∞

y

e−x2/2dx ≤ 1

y
e−y2/2, y > 0,

expression (52) can be bounded by:

1√
2π

∫ ∞

2πν

σ
√

AT A

√
N log N

e−
y2

2 dy ≤ σ
√

AT A

(2π)3/2ν
√

N log N
e
− 1

2

�
2πν

√
N log N

σ
√

AT A

�2

, (53)

and since AT A = O(N), it is easy to see that the right hand side in (53) tends to zero.
Then, (50) is proved. The same result hold for the imaginary part of Jε(λ).

We find a (uniform) bound for YN (λ). We can write the expression as:

YN (λ) =

∞∑

j=−∞

∞∑

l=−∞
ajl exp(−iλT (j, l))

1

2π
√

N




n1−1−j∑

s1=−j

n2−1−l∑

s2=−l

e(−i(j,l)T λ)ε(s)

−
n1−1∑

s1=0

n2−1∑

s2=0

e(−i(j,l)T λ)ε(s)

]

Decomposing each addend in real and imaginary part and taking as an example just the one
dealing with the cosines (since the same procedure can be applied to the other addends), we
have:

1

2π
√

N

∞∑

j=−∞

∞∑

l=−∞

n1−1−j∑

s1=−j

n2−1−l∑

s2=−l

ajl cos(λT (j + s1, l + s2))ε(s) =

1

2π
√

N

∞∑

j=−∞

∞∑

l=−∞

n1−1∑

p1=0

n2−1∑

p2=0

ajl cos(λT p)ε(p − (j, l)), pT = (p1, p2).

We will see that this term is an OP

(√
log N

N

)
:

P



 1

2π
√

N

∞∑

j=−∞

∞∑

l=−∞

n1−1∑

p1=0

n2−1∑

p2=0

ajl cos(λT p)ε(p − (j, l)) ≥ ν

√
log N

N



 =

P




∞∑

j=−∞

∞∑

l=−∞
ajlN

(
0,

σ2

(2π)2N

)
≥ ν

√
log N

N



 ≤

P

(
N

(
0,

σ2

(2π)2N

)
≥ ν

SA

√
log N

N

)
=

∫ ∞

ν
SA

√
log N

N

√
(2π)2N

σ
e

�
− (2π)2Nx2

2σ2

�
dx =
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∫ ∞

ν2π
√

N
νSA

√
log N

N

√
(2π)2N

σ

σ

2π
√

N
e−

y2

2 dy =
1√
2π

∫ σ

2πν
√

log N
SAσ

e

�
− y2

2

�
dy ≤

1√
2π

1
2πν

SAσ
√

log N

e

�
− (2π)2ν2 log n

S2
A

σ2

�
=

SAσ

(2π)3/2ν
√

log N
e

�
− (2π)2ν2 log N

S1
A

σ2

�
=

SAσ

(2π)3/2ν
√

log N
e

�
− (2π)2ν2

S2
A

σ2 log N

�
= M

e−p log N

√
N

→ 0

The constants involved in the proof are given by:

M =
SAσ

(2π)3/2ν
√

log N
, p =

(2π)2ν2

2S2
Aσ2

and SA =
∞∑

j=−∞

∞∑

l=−∞
ajl.

So, for all λk, we have the following stochastic convergence rates:

Jε(λk) = OP(
√

log N) and YN (λk) = OP

(√
log N

N

)
.

Then, for the residual term RN (λk), we obtain that:

RN (λk) = OP

(
log N√

N

)
.

Lemma 3. Under assumptions (1) and (2), as N → ∞

|H|1/4

N

∫

Π2

(
∑

k

KH(λ − λk)
RN (λk)

fθ0
(λk)

)2

dλ → 0 in probability.

Proof. The proof of this lemma can be done by similar arguments to those in the proof
of Lemma 5 in Paparoditis (2000), with bidimensional kernel function K and bandwidth
matrix H.

We have that, from Lemma 2 and using the Cauchy-Schwarz inequality:

E(RN (λk)RN (λj)RN (λi)RN (λm)) ≤
{
E(R2

N (λk)R2
N (λj))

}1/2 {
E(R2

N (λi)R
2
N (λm))

}1/2 ≤
{
E(R4

N (λk))E(R4
N (λj))E(R4

N (λi))E(R4
N (λm))

}1/4
= O(N−2).

We prove that

|H|1/4

N

∫

Π2

(
∑

k

KH(λ − λk)
RN (λk)

fθ0
(λk)

)2

dλ
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tends to zero in L2 norm.

0 ≤ E



 |H|1/4

N

∫

Π2

(
∑

k

KH(λ − λk)
RN (λk)

fθ0
(λk)

)2

dλ




2

=

|H|1/2

N2
E




∫

Π2

∑

k

∑

j

KH(λ − λk)KH(λ − λj)
RN (λk)

fθ0
(λk)

RN (λj)

fθ0
(λj)

dλ




2

=

|H|1/2

N2
E




∑

k

∑

j

∫

Π2

KH(λ − λk)KH(λ − λj)dλ
RN (λk)

fθ0
(λk)

RN (λj)

fθ0
(λj)




2

=

|H|1/2

N2
E








∑

k

∑

j

∫

Π2

KH(λ − λk)KH(λ − λj)dλ
RN (λk)

fθ0
(λk)

RN (λj)

fθ0
(λj)





[
∑

l

∑

m

∫

Π2

KH(ω − λl)KH(ω − λm)dω
RN (λl)

fθ0
(λl)

RN (λm)

fθ0
(λm)

])
≤

|H|1/2

N2

∑

k

∑

j

∫

Π2

KH(λ − λk)KH(λ − λj)dλ

×
∑

l

∑

m

∫

Π2

KH(ω − λl)KH(ω − λm)dω
1

fθ0
(λk)fθ0

(λj)fθ0
(λl)fθ0

(λm)

×E|RN (λk)RN (λj)RN (λl)RN (λm)| = O(|H|1/2),

where the last equality follows from the fact that
∫

Π2

KH(λ − λk)KH(λ − λj)dλ < ∞.

Lemma 4. Consider Z a spatial process with spectral density f and denote Wk = Vk − 1,
where Vk ∼ Exp(1), independent random variables. Under assumptions (1)-(2),

|H|1/4

N

∫

Π2

∑

k

∑

j

KH(λ − λk)KH(λ − λj)Wk

RN (λj)

f(λj)
dλ → 0

in probability.

Proof. The proof is similar to Lemma 4 in Paparoditis (2000).

Consider the following notation, in order to make the proof more brief:

KH(λ − λk) = Kk
H(λ), f(λk) = fk and RN (λk) = Rk

N .

We will prove L2−consistency:

E



 |H|1/4

N

∫

Π2

∑

k

∑

j

KH(λ − λk)KH(λ − λj)(Vk − 1)
RN (λj)

f(λj)
dλ




2

(54)

=
|H|1/2

N2

∫ ∫ ∑

k,j,l,m

Kk
H(λ)Kj

H(λ)Kl
H(ω)Km

H (ω)
E
(
WkRj

NWlR
m
N

)

fkfj

dλdω (55)
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In order to find a bound for this term, consider that k, j, l and m are all different indexes.
From Theorem 2.3.2 in (Brillinger (1981)):

E(WkRj
NWlR

m
N ) =

cum(WkRj
N )cum(WlR

m
N ) + cum(WkRm

N )cum(WlR
j
N ) + cum(Rj

N )cum(WkWlR
m
N )

+cum(Rl
N )cum(WkWlR

j
N ) + cum(Wk)cum(Rj

NWlR
m
N ) + cum(Wl)cum(WkRj

NRm
N ).

Since cum(Wk) = E(Wk) = 0 and cum(WkWl) = E(WkWl) = 0, and applying Theo-
rem 2.3.2 of (Brillinger (1981)) on the three term cumulants, the expression above can be
simplified:

E(WkRj
NWlR

m
N ) = E(WkRj

N )E(WkRm
N ) + E(WlR

j
N )E(WlR

m
N ) = O(N−2),

where the last equality is obtained recalling the expression for Rj
N in (45), and from a

straightforward extension of Lemma 2 in Paparoditis (2000). Then, (54) is O(|H|1/2).
Consider the case k = j 6= l = m. By the Cauchy-Schwarz inequality and Lemma 2,

|E(WkRj
NWlR

m
N )| ≤

√
E(WkRj

N )2E(WlRm
N )2 ≤ O(N−1).

Then, (54) is O(N−1|H|1/2). For the case k 6= j 6= l = m, using the same arguments, (54)
is also O(N−1|H|1/2).

Lemma 5. Assume that assumption (2) is fulfilled and consider Uk independent identically
distributed random variables with E(Uk) = 1, V ar(Uk) = 1 and E(U4

k) < ∞. Then,

|H|1/4

N

∫

Π2

(
∑

k

KH(λ − λk)(Uk − 1)

)2

dλ − µH → N(0, τ2),

where µH and τ2 are given in (19) and (20), respectively and the sum
∑

k extends over the
set of Fourier frequencies.

Proof. Let Zk = Uk − 1.

|H|1/4

N

∫

Π2

(
∑

k

KH(λ − λk)(Uk − 1)

)2

dλ − µH =
|H|1/4

N

∫

Π2

∑

k

K2
H(λ − λk)Z2

kdλ

−|H|1/4

∫

Π2

K2(u)du +
|H|1/4

N

∫

Π2

∑

k6=j

KH(λ − λk)KH(λ − λj)ZkZjdλ

= T1 − µH + T2.

Note that, as N → ∞:

|E(T1) − µH | = |H|−1/4

∣∣∣∣∣

∫

Π2

1

N |H|1/2

∑

k

K2(H−1/2(λ − λk))dλ −
∫

Π2

K2(u)du

∣∣∣∣∣→ 0.

For the variance of this first term T1, since the Zk are independent zero-mean variables:

V ar(T1) = V ar

(
|H|1/4

∫

Π2

1

N |H|1/2

∑

k

K2(H−1/2(λ − λk))Zkdλ

)
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=
1

N2|H|3/2

(
∑

k

∫

Π2

K2(H−1/2(λ − λk))dλ

)2

V ar(Z2
0) = O

(
N−1|H|−1/2

)
.

using the same arguments as above. Let’s analyze T2. Define, for j 6= k

a(k, j) = a(k1, k2, j1, j2) =
|H|1/4

N

∫

Π2

KH(λ − λk)KH(λ − λj)dλ

and define a(k,k) = 0; then, T2 can be decomposed as follows:

T2 =
|H|1/4

N

∫

Π2

∑

k6=j

KH(λ − λk)KH(λ − λj)ZkZjdλ =
∑

k

∑

j

a(k, j)ZkZj.

Define b(k, j) = b(k1, k2, j1, j2) as:

b(k1, k2, j1, j2) = a(k1, k2, j1, j2) + a(k1,−k2, j1, j2) + a(k1, k2,−j1, j2) + a(k1, k2, j1,−j2)+

a(−k1, k2, j1, j2) + a(−k1,−k2, j1, j2) + a(−k1, k2,−j1, j2) + a(−k1, k2, j1,−j2)+

a(−k1,−k2,−j1, j2) + a(−k1,−k2, j1,−j2) + a(−k1,−k2,−j1, j2) + a(k1,−k2,−j1,−j2)+

a(k1,−k2,−j1,−j2) + a(k1, k2,−j1,−j2) + a(−k1, k2,−j1,−j2) + a(−k1,−k2,−j1,−j2).

Then, T2 can be written as T2 = QN + T3 where

QN =

m1∑

k1=1

m2∑

k2=1

m1∑

j1=1

m2∑

j2=1

b(k, j)ZkZj

and

T3 =

m2∑

k2=−m2

m1∑

j1=−m1

m2∑

j2=−m2

a(k1, k2, j1, j2)ZkZjδkj,

where the function

δkj =

{
1 if 0 < 1(k1=0) + 1(k2=0) + 1(j1=0) + 1(j2=0),
0 otherwise,

and 1 is the indicator function. Consider any of the addends in the expression of T3, for
instance:

m2∑

k2=−m2

m1∑

j1=−m1

m2∑

j2=−m2

a(0, k2, j1, j2)ZkZj.

Since the Zk are independent zero-mean random variables, in order to obtain a non-null
expectation term, k must be equal to j. For k0 = (0, k2):

E




m2∑

k2=−m2

m1∑

j1=−m1

m2∑

j2=−m2

a(0, k2, j1, j2)ZkZj



 =

|H|1/4

N

m2∑

k2=−m2

∫

Π2

K2
H(λ − λk0

)dλE(Z2
k0

) = O(n−1
1 |H|−1/4).
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Besides:

E




m2∑

k2=−m2

m1∑

j1=−m1

m2∑

j2=−m2

a(0, k2, j1, j2)ZkZj




2

=

|H|1/2

N2

m2∑

k2=−m2

m1∑

j1=−m1

m2∑

j2=−m2

∫

Π2

∫

Π2

KH(λ − λk0
)KH(λ − λj)

× KH(ω − λk0
)KH(ω − λj)dλdωE (Zk0

Zj)
2

and then

E




m2∑

k2=−m2

m1∑

j1=−m1

m2∑

j2=−m2

a(0, k2, j1, j2)ZkZj




2

= O(n−1
1 ).

Analogous expressions are obtained for the other addends. Therefore

T2 =

m1∑

k1=1

m2∑

k2=1

m1∑

j1=1

m2∑

j2=1

b(k, j)ZkZj + oP(1) = QN + oP(1).

In order to prove the asymptotic normal distribution of QN , we will apply Theorem 5.2
in de Jong (1987). For that purpose, we must write QN as a quadratic form, namely
QN =

∑
i,j ci,jZiZj , where i and j are one-dimensional indexes and Zi are i.i.d. random

variables with zero mean and unit variance.

First, define a new subindex for the Fourier frequencies λk, with k = (k1, k2) and kl =
0,±1, . . . ,±ml, for l = 1, 2. Consider λk = λk′ where k′ = (k′

1, k
′
2), with k′

l = 1, . . . ,m′
l =

2ml + 1, in such a way that k′
l = kl + ml + 1 for l = 1, 2. Let M = m′

1 × m′
2 and denote by

MM×M the space of square matrices with size M , that is, with M rows and M columns.

The new coefficients, with one dimensional indexes, are given by the following matrix:

A = (cij) , A ∈ MM×M ,

and each entry of this matrix is defined by cij = bij and cii = 0, where the bidimensional
indexes i determine unidimensional indexes i such that:

i = (i1, i2), if (i1 − 1)m′
2 ≤ i ≤ i1m

′
2 and i = (i1 − 1)m′

2 + i2, (56)

Now, define the variables:

Zi = Zi, where i = (i1 − 1)m′
2 + i2, i = 1, . . . ,M.

With this definitions, QN can be written as a quadratic form with one-dimensional indexes:

QN =
∑

i,j

ci,jZiZj .

In order to apply Theorem 5.2 (de Jong (1987)) on the quadratic form QN , we must prove
that, as N → ∞:
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1. There exists a sequence k(n1, n2) → ∞ such that

k(n1, n2)
4 1

V ar(QN )
max

i

∑

j

c2
ij → 0.

Taking into account that n1 and n2 tend to infinity at the same rate, it holds that
E(T3) = O(n−1

1 |H|−1/4) and V ar(T3) ≤ E(T 2
3 ) = O(n−1

1 ). Then, applying that
V ar(QN ) = V ar(T2) + V ar(T3) − 2Cov(T2, T3), the variance of the quadratic form
can be approximated by V ar(T2), since V ar(T3) ≤ O(n−1

1 ) and |Cov(T2, T3)| ≤√
V ar(T2)V ar(T3) = O(n−1

1 ), using the Cauchy-Schwarz inequality.

We prove that

V ar(T2) = V ar




∑

k

∑

j

a(k, j)ZkZj



 =
∑

k

∑

j

∑

l

∑

m

a(k, j)a(l,m)E(ZkZjZlZm)

(57)
The non-vanishing terms correspond to k 6= j and l 6= m.Then, (57) can be written as:

V ar(T2) =

|H|1/2

N2

∑

k6=j

∑

l6=m

∫

Π2

KH(λ − λk)KH(λ − λj)dλ

×
∫

Π2

KH(ω − λl)KH(ω − λm)dωE(ZkZjZlZm) =

2|H|1/2

N2

∑

k

∑

j

∫

Π2

KH(λ − λk)KH(λ − λk)dλ

∫

Π2

KH(ω − λj)KH(ω − λj)dω

−2|H|1/2

N2

∑

k

∫

Π2

K2
H(λ − λk)dλ

∫

Π2

K2
H(ω − λk)dω,

where E(ZkZjZlZm) = 1 if an only if k = j 6= l = m or k = m 6= j = l. The second
addend is O(N−1|H|−1/2):

2|H|1/2

N2

∑

k

∫

Π2

∫

Π2

K2
H(λ − λk)K2

H(ω − λk)dλdω

=
2

N2|H|3/2

∑

k

(∫

Π2

K2(H−1/2(λ − λk))dλ

)2

=
2

N2|H|1/2

∑

k

(∫

Π2

K2(ω − λk)dω

)2

= O(N−1|H|−1/2),
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whereas, for the first term we obtain:

2|H|1/2

N2

∑

k

∑

j

∫ ∫
KH(λ − λk)KH(λ − λj)KH(ω − λk)KH(ω − λj)dλdω

=
2|H|1/2

N2

∑

k

∑

j

(∫
KH(λ − λk)KH(λ − λj)dλ

)2

=
2

N2|H|1/2

∑

k

∑

j

(∫
K(u)K

(
u + H−1/22π

(
k1 − j1

n1
,
k2 − j2

n2

)T
)

du

)2

=
2

N |H|1/2

2m1∑

k1=−2m1

2m2∑

k2=−2m2

c(k, N)

(∫
K(u)K

(
u + H−1/22π

(
k1

n1
,
k2

n2

)T
)

du

)2

→ 1

2π2

∫

2Π2

(∫

Π2

K(u)K(u + x)du

)2

dx,

where 2Π2 = [−2π, 2π] × [−2π, 2π] and c(k, N) = 2m1+1−|k1|
n1

2m2+1−|k2|
n2

. Therefore,

in order to prove the required condition, since c2
ij is a squared sum of a(i, j) terms,

we prove the condition for one of the addends, that is, for a2(i, j). Besides, using that
KH(·) ≤ |H|−1/2C, for 0 < C < ∞:

k4(n1, n2)max
k

∑

j

a2(k, j) =

k4(n1, n2)max
k

∑

j

( |H|1/4

N

∫
KH(λ − λk)KH(λ − λj)dλ

)2

=

= O(k4(n1, n2)N
−1|H|−1/2).

So, this condition is satisfied for all k(n1, n2) → ∞ such that
k4(n1, n2)

n1n2|H|1/2
→ 0.

2. We also have to check that max
k

E(Z2
k)1{|Zk|>k(n1,n2)} → 0, but this assertion follows

just taking into account that Zk are identically distributed with E(Z2
k) = 1.

3. It remains to show that
maxi µ2

i

V ar(QN )
→ 0 where µi, i = 1, 2, . . . ,M are the eigenvalues

of the matrix A = (cij) define above.

The matrix A is symmetric, because the cij entries are defined in terms of the a(i, j)
terms defined above. Besides, the a(i, j) satisfy that a(i, j) = a(j, i) and

∑

j

|a(i, j)| = O(|H|1/4).

Thus, the same condition applies on the cij terms.

Now, to prove the required condition, since A is a symmetric M × M matrix, there
exists an ortogonal matrix U such that U−1AU is diagonal. This result implies that B
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is diagonalizable with real eigenvalues, {µi}, with i = 1, . . . ,M , with M = m′
1 × m′

2.
The ‖ · ‖∞ norm of the matrix B is given by:

‖A‖∞ = max
i

∑

j

|cij |,

where the maximum is taken over i ∈ {1, . . . ,M} and consider the spectral ratio of
the matrix:

ρ(A) = max
i

|µi|.

The spectral ratio of the matrix can be bounded by any norm in the matrix space
MM×M ; therefore, for the particular case of the supremun norm ‖ · ‖∞:

max
i

|µi| ≤ max
i

∑

j

|cij |.

To prove the result, just take into account that:

max
i

µ2
i ≤

(
max

i
|µi|
)2

≤



max
i

∑

j

|cij |




2

.

Then, since |H|1/2 → 0 and V ar(QN ) → τ2:

maxi µ2
i

V ar(QN )
≤

(
maxi

∑
j |cij |

)2

V ar(QN )
=

O(|H|1/2)

V ar(QN )
→ 0.

Lemma 6. Let T 0
P denote the test statistic in (18) assuming that the true parameter is

given by θ0. Then, under assumptions in Theorem 1:

TP = T 0
P + oP(1).

Proof. The test statistic T 0
P is given by

T 0
P = N |H|1/4

∫

Π2

(
1

N |H|1/2

∑

k

K(H−1/2(λ − λk))

(
I(λk)

fθ0
(λk)

− 1

))2

dλ. (58)

Note that:

I(λk)

fθ̂(λk)
− 1 =

(
I(λk)

fθ0
(λk)

− 1

)
−
(

fθ̂(λk) − fθ0
(λk)

fθ̂(λk)

)
I(λk)

fθ0
(λk)

. (59)

Therefore,

TP = T 0
P + N |H|1/4

∫

Π2

(
1

N

∑

k

KH(λ − λk)
I(λk)

fθ0
(λk)

(
fθ̂(λk) − fθ0

(λk)

fθ0
(λk)

))2

dλ

−2|H|1/4

N

∫

Π2

∑

k

∑

j

KH(λ − λk)KH(λ − λj)

(
I(λk)

fθ0
(λk)

− 1

)
fθ̂(λj) − fθ0

(λj)

fθ̂(λj)

I(λj)

fθ0
(λj)

dλ
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For the second addend, using Lemma 1 and the fact that

∫

Π2

(
1

N

∑

k

KH(λ − λk)
I(λk)

fθ0
(λk)

)2

dλ = OP(1)

we have

N |H|1/4

∫

Π2

(
1

N

∑

k

KH(λ − λk)
I(λk)

fθ0
(λk)

(
fθ̂(λk) − fθ0

(λk)

fθ0
(λk)

))2

dλ

≤ N |H|1/4

(
sup
k

∣∣∣∣
fθ̂(λk) − fθ0

(λk)

fθ0
(λk)

∣∣∣∣
)2 ∫

Π2

(
1

N

∑

k

KH(λ − λk)
I(λk)

fθ0
(λk)

)2

dλ

= OP(|H|1/4).

For the last addend:

|H|1/4

N

∫

Π2

∑

k

∑

j

KH(λ − λk)KH(λ − λj)

(
I(λk)

fθ0
(λk)

− 1

)
fθ̂(λj) − fθ0

(λj)

fθ̂(λj)

I(λj)

fθ0
(λj)

dλ =

M1 + M2,

where

M1 =
|H|1/4

N

∫

Π2

∑

k

∑

j

KH(λ − λk)KH(λ − λj)

(
I(λk)

fθ0
(λk)

− 1

)

× fθ̂(λj) − fθ0
(λj)

fθ̂(λj)

(
I(λj)

fθ0
(λj)

− 1

)
dλ

and

M2 =
|H|1/4

N

∫

Π2

∑

k

∑

j

KH(λ − λk)KH(λ − λj)

(
I(λk)

fθ0
(λk)

− 1

)
fθ̂(λj) − fθ0

(λj)

fθ̂(λj)
dλ.

We will prove that M1 = oP(1). Recall that

I(λk)

fθ0
(λk)

− 1 = Wk +
RN (λk)

fθ0
(λk)

,

where Wk = Vk − 1, and the Vk are independent identically distributed Exp(1). Then,

M1 =
|H|1/4

N

∫

Π2

∑

k

∑

j

KH(λ − λk)KH(λ − λj)dλ

×
{

WkWj

(
fθ̂(λj) − fθ0

(λj)

fθ̂(λj)

)
+ Wk

RN (λj)

fθ0
(λj)

(
fθ̂(λj) − fθ0

(λj)

fθ̂(λj)

)

+Wj

RN (λk)

fθ0
(λk)

(
fθ̂(λj) − fθ0

(λj)

fθ̂(λj)

)

+
RN (λj)

fθ0
(λj)

RN (λk)

fθ0
(λk)

(
fθ̂(λj) − fθ0

(λj)

fθ̂(λj)

)}
= C1 + C2 + C3 + C4.
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In order to prove the bounds for Cj , j = 1, 2, 3, 4, we have to consider the Taylor expansion
of fθ̂(λ) around fθ0

(λ), for a fixed λ:

fθ̂(λ) = fθ0
(λ) + (θ̂ − θ0)

T∇fθ0
(λ) +

1

2
(θ̂ − θ0)

T∇2fθ̃(λ)(θ̂ − θ0),

where ‖θ̃ − θ0‖ ≤ ‖θ̂ − θ0‖. By similar arguments to those in Lemma 1, for λj

fθ̂(λj) − fθ0
(λj)

fθ̂(λj)
= OP(1)

(
(θ̂ − θ0)

T∇fθ0
(λj) +

1

2
(θ̂ − θ0)

T∇2fθ̃(λj)(θ̂ − θ0)

)
, (60)

and the OP(1) factor is uniform in j. We will see that C1 = OP(N−1/2)+OP(|H|1/4). Taking
into account (60), C1 can be written as:

C1 = OP(1)(θ̂ − θ0)
T |H|1/4

N

∫

Π2

∑

k

∑

j

KH(λ − λk)KH(λ − λj)WkWj∇fθ0
(λj)dλ

+OP(1)(θ̂ − θ0)
T |H|1/4

2N

∫

Π2

∑

k

∑

j

KH(λ − λk)KH(λ − λj)WkWj∇2fθ̃(λj)dλ(θ̂ − θ0).

Since
|H|1/4

N

∫

Π2

∑

k

∑

j

KH(λ − λk)KH(λ − λj)WkWjdλ = OP(1)

and the derivatives of fθ are uniformly bounded, the first addend in C1 is OP(N−1/2). Taking

into account that (θ̂−θ0) = OP(N−1/2), the second addend is OP(|H|1/4). In order to obtain
a bound for C2, one should consider the results in Lemma 4. From Taylor expansion (60),
C2 can be written as:

C2 = OP(1)(θ̂ − θ0)
T |H|1/4

N

∫

Π2

∑

k

∑

j

KH(λ − λk)KH(λ − λj)Wk

RN (λj)

fθ0
(λj)

∇fθ0
(λj)dλ

+OP(1)(θ̂ − θ0)
T |H|1/4

2N

∫

Π2

∑

k

∑

j

KH(λ − λk)KH(λ − λj)Wk

RN (λj)

fθ0
(λj)

∇2fθ̃(λj)(θ̂ − θ0).

From Lemma 4, we have that:

|H|1/4

2N

∫

Π2

∑

k

∑

j

KH(λ − λk)KH(λ − λj)Wk

RN (λj)

fθ0
(λj)

dλ = oP(1).

Then, the first addend in C2 is OP(N−1/2)oP(1). For the second addend, one should note
that |RN (λj)| = OP(N−1/2), from Lemma 2. Then:

OP(1)(θ̂ − θ0)
T |H|1/4

2N

∫

Π2

∑

k

∑

j

KH(λ−λk)KH(λ−λj)Wk

RN (λj)

fθ0
(λj)

∇2fθ̃(λj)(θ̂ − θ0)dλ =

= OP(N−1/2|H|1/4).

The third addend C3 can be bounded using the same arguments as in the proof for C2. For
the last addend C4, and taking also into account Lemma 2:

|C4| ≤
∑

j

∣∣∣∣
fθ̂(λj) − fθ0

(λj)

fθ0
(λj)

∣∣∣∣
|H|1/4

N

∫

Π2

∑

k

∑

j

KH(λ−λk)KH(λ−λj)
|RN (λj)|
fθ0

(λj)

|RN (λk)|
fθ0

(λk)
dλ
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= OP(N−1/2)OP(|H|1/4N)OP(N−1) = OP(|H|1/4N−1/2).

M2 = oP(1) can be proved using similar arguments.

Lemma 7. If θ = θ0 is the true parameter, under assumptions (1)-(4):

T 0
P − µH → N(0, τ2),

as N → ∞, where µH and τ2 are given in (19) and (20), respectively and T 0
P is given in

(58).

Proof. Recall the expression for the periodogram

I(λk) = f(λk)Vk + RN (λk), (61)

where {λk} denote the Fourier frequencies and recall the notation Wk = 1−Vk (where Vk are
independent identically distributed random variables with Exp(1) distribution) introduced
in Lemma 6. Then:

I(λk)

fθ0
(λk)

− 1 = Wk +
RN (λk)

fθ0
(λk)

.

The statistic T 0
P can be decomposed in three addends in the following way:

T 0
P − µH =

|H|1/4

N

∫

Π2

(
∑

k

KH(λ − λk)Wk

)2

dλ − µH (62)

+
|H|1/4

N

∫

Π2

(
∑

k

KH(λ − λk)
RN (λk)

fθ0
(λk)

)2

dλ (63)

+
2|H|1/4

N

∫

Π2

∑

k

∑

j

KH(λ − λk)KH(λ − λj)Wk

RN (λj)

fθ0
(λj)

dλ (64)

From Lemma 3, (63) tends to zero in probability. Also, from Lemma 4, (64) tends to zero
in probability. This lemma is proved considering Lemma 5.

Proof. Proof of Theorem 1. Theorem 1 is proved combining the results in Lemma 6 and
Lemma 7.

8.2 Proof of theorem 2.

Before proving the theorem, we must verify that (21) holds. The prove of the following
lemma is obtained generalizing Theorem 3.2 in Dahlhaus and Wefelmeyer (1996).

Lemma 8. Under assumptions (2) and (5), if f is bounded and bounded away from cero,
then √

N(θ̂ − θ∗) −
√

N

∫

Π2

W (λ)(I(λ) − f(λ))dλ → 0

in probability, where

W (λ) = −H−1∇f−1
θ (λ)|θ=θ∗ , H =

∫

Π2

∇2G(θ∗, f,λ)dλ,

G(θ, f,λ) = log fθ(λ) +
f(λ)

fθ(λ)
.
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Proof. Let’s write the Kullback-Lebiler discrepancy between f and fθ

L(θ, f) =

∫

Π2

(
log fθ(λ) +

f(λ)

fθ(λ)

)
dλ, (65)

in a more general form as:

L(θ, f) =

∫

Π2

G(θ, f,λ)dλ.

In our particular case, the function in the integrand is given by:

G(θ, f,λ) = aθ(λ) + bθ(λ)f(λ) where aθ(λ) = log fθ(λ), bθ(λ) = f−1
θ (λ).

Then, the H matrix can be written as:

H =

∫

Π2

(
∇2aθ∗(λ) + ∇2bθ∗(λ)f(λ)

)
dλ,

where θ∗ gives the best fit in Fθ. Considering L(θ, I) the analogous expression to (65), but

replacing f by the periodogram I, it is straightforward to see that L(θ̂, I) ≤ L(θ∗, I) and

L(θ∗, f) ≤ L(θ̂, f), only recalling the definitions of θ̂ and θ∗:

θ̂ = arg min
θ

L(θ, I) and θ∗ = arg min
θ

L(θ, f).

Since
sup

θ
|L(θ, I) − L(θ, f)| → 0 (66)

in probability (see Dahlhaus and Wefelmeyer (1996), Lemma A.7), then the Kullback-Leibler

discrepancy L(θ̂, f) converges to L(θ∗, f) in probability. This result is proved by the con-
vergence of Cesaro sums of the Fourier transform of f−1

θ (λ).

Therefore, θ̂ tends to θ∗ in probability. The result follows from a Taylor expansion of
∇L(θ̂, I) around ∇L(θ∗, I). Note that ∇L(θ̂, I) = 0, then:

0 = ∇L(θ∗, I) + ∇2L(θ̃, I)(θ̂ − θ∗). (67)

for θ̃ such that ‖θ̃ − θ∗‖ ≤ ‖θ̂ − θ∗‖. For the first addend:

∇L(θ∗, I) =

∫

Π2

∇G(θ∗, I,λ)dλ =

∫

Π2

(∇aθ∗(λ) + ∇bθ∗(λ)I(λ)) dλ

=

∫

Π2

∇G(θ∗, f,λ)dλ +

∫

Π2

∇bθ∗(λ)(I(λ) − f(λ))dλ

=

∫

Π2

∇bθ∗(λ)(I(λ) − f(λ))dλ,

since the first term is zero. For the second addend in (67), it can be seen that, for θ̃ such

that ‖θ̃ − θ∗‖ ≤ ‖θ̂ − θ∗‖:

∇2L(θ̃, I) =

∫

Π2

∇2G(θ̃, f,λ)dλ +

∫

Π2

∇2bθ̃(λ)(I(λ) − f(λ))dλ.

Then, (67) can be written as:

−
∫

Π2

∇bθ∗(λ)(I(λ) − f(λ))dλ =

∫

Π2

∇2G(θ̃, f,λ)dλ +

∫

Π2

∇2bθ̃(λ)(I(λ) − f(λ))dλ.
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Provided that H is non-singular:

−
√

NH−1

∫

Π2

∇bθ∗(λ)(I(λ) − f(λ))dλ = (68)

√
NH−1

(∫

Π2

∇2G(θ̃, f,λ)dλ +

∫

Π2

∇2bθ̃(λ)(I(λ) − f(λ))dλ

)
(θ̂ − θ∗). (69)

By the smoothness of G, ∫

Π2

∇2G(θ̃, f,λ)dλ → H (70)

in probability, and by Lemma A.7 in (Dahlhaus and Wefelmeyer (1996)):
∫

Π2

∇2bθ̃(λ)(I(λ) − f(λ))dλ → 0 (71)

also in probability.

The result is proved replacing (70) and (71) in (68)-(69).

Proof. Proof of Theorem 2. Once we have obtained the
√

N -consistency of θ̂ as an esti-
mator of θ∗, the proof of the theorem is analogous as the proof of Theorem 3 in Paparoditis
(2000). Note that:

I(λk)

fθ̂(λk)
− 1 =

(
I(λk)

f(λk)
− 1

)
+

I(λk)

fθ∗(λk)

(
fθ∗(λk)

fθ̂(λk)
− 1

)
+

I(λk)

f(λk)

(
f(λk)

fθ∗(λk)
− 1

)
,

and recall that I(λk)/f(λk) = Vk + RN (λk)/f(λk). Then,

N−1|H|−1/4TP =

∫

Π2

(
1

N |H|1/2

∑

k

K(H−1/2(λ − λk))
I(λk)

f(λk)

(
f(λk)

fθ∗(λk)
− 1

))2

dλ+oP(1).

The first addend can be decomposed in two terms:

∫

Π2

(
N−1

∑

k

KH(λ − λk)

(
f(λk)

fθ∗(λk)
− 1

))2

dλ

+

∫

Π2

(
N−1

∑

k

KH(λ − λk)

(
Wk +

RN (λk)

f(λk)

)(
f(λk)

fθ∗(λk)
− 1

))2

dλ,

where Wk = Vk − 1. From Lemma 4:

N−2

∫

Π2

∑

k

∑

j

KH(λ−λk)KH(λ−λj)f(λk)/fθ∗(λk)f(λj)/fθ∗(λj)Wk

RN (λj)

f(λj)
dλ = oP(1).

From Lemma 3, we have:

N−2

∫

Π2

(
∑

k

KH(λ − λk)f(λk)/fθ∗(λk)
RN (λk)

f(λk)

)2

dλ = oP(1).

Besides,

N−2

∫

Π2

(
∑

k

KH(λ − λk)Wk

)2

dλ → 0.
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Then,

N−1|H|−1/4TP =

∫

Π2

(
N−1

∑

k

KH(λ − λk)

(
f(λk)

fθ∗(λk)
− 1

))2

dλ + oP(1). (72)

Besides, this uniform convergence holds:

N−1
∑

k

KH(λ − λk)
f(λk)

fθ∗(λk)
→ f(λ)

fθ∗(λ)
(73)

The result is concluded from (72) and (73).

8.3 Proof of Theorem 3.

From now on, note that N = n1n2 denotes the number of data points whereas n denotes
the number of Fourier frequencies and ‖ · ‖ is the L2-norm. We will drop the subindex 0 and
denote by θ the true parameter under the null hypothesis. Define

q1(m(λk), Yk) = +eYk−m(λk) − 1, q2(m(λk), Yk) = −eYk−m(λk),

where m can be replaced by mθ or by m̂LK . Assume mθ is the log-likelihood under the null
hypothesis and denote

εk = q1(mθ(λk), Y ∗∗
k ) = eY ∗∗

k −mθ(λk) − 1, qk
2 = q2(mθ(λk), Y ∗∗

k ) = −eY ∗∗
k −mθ(λk),

where Y ∗∗
k is given by (22). Define, also

Γ(λk) = −E (q2(mθ(λ), Y ∗∗
k ))

1

4π2
.

Some other constants and vectors that will appear in our computations are

βT = β(λ)T =
(
mθ(λ), |H|1/2∇T mθ(λ)

)
∈ R

3,

where ∇mθ(λ) denotes the gradient vector ∇mθ(λ) =
(

∂mθ

∂x (λ), ∂mθ

∂y (λ)
)

and ∂
∂x , ∂

∂y denote

the derivatives with respect to the first and second components. Besides, define

βT
2 = β2(λ)T =

√
n|H|1/2(a − m(λ), |H|1/2(b −∇m(λ))T ) ∈ R

3,

where (a,b) are the parameters in the non-parametric model (24),

Wk = Wk(λ) = (1, |H|−1/2(λ − λk)) ∈ R
3,

r2
N =

1

N |H|1/2
, and m̄k = m̄k(λ) = mθ(λ) + ∇T mθ(λ)(λ − λk).

Besides,

Φn,j = sup
λ∈Π2,‖α‖=c1rN

∣∣∣q2(β
T
∗ Wk + αT Wk, Yk)|H|(j−1)/2‖(λ − λk)‖(j−1)KH(λ − λk)

∣∣∣ ,

where β∗ denotes β or β2 and assume that

E(Φn,j)
ζ = O(1), j = 1, 2, 3.
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Lemma 9. The Generalized Likelihood Ratio Test statistic

TLK =
∑

k

[
eYk−mθ(λk) + mθ(λk) − eYk−m̂LK(λk) − m̂LK(λk)

]
(74)

admits the following decomposition

TLK = T ∗
LK + B1 + B2 − B3 (75)

where T ∗
LK is the same as TLK but replacing Yk by Y ∗∗

k and m̂LK(λk) by m̂∗
LK(λk) and,

B1 =
∑

k

{
1 − eYk−m̂∗

LK(λk)
}

(m̂LK(λk) − m̂∗
LK(λk)) ,

B2 =
∑

k

eYk−m̂∗
LK(λk) (m̂LK(λk) − m̂∗

LK(λk))
2
,

B3 =
∑

k

RN (λk)

fθ(λk)

{
emθ(λk)−m̂∗

LK(λk) − 1
}

.

Proof.

TLK − T ∗
LK =

∑

k

[
m̂∗

LK(λk) − m̂LK(λk) + eYk−mθ(λk) − eY ∗∗
k −mθ(λk) + eY ∗∗

k −m̂∗
LK(λk) − eYk−m̂LK(λk)

]
=

∑

k

[
m̂∗

LK(λk) − m̂LK(λk) + eYk−mθ(λk) − eY ∗∗
k −mθ(λk) + eYk−m̂∗

LK(λk)

−eYk−m̂∗
LK(λk) + eY ∗∗

k −m̂∗
LK(λk) − eYk−m̂LK(λk)

]

By Taylor’s expansion of hk(x) = eYk−x evaluated at m̂∗
LK(λk), and doing the expansion

around m̂LK(λk):

eYk−m̂LK(λk) = eYk−m̂∗
LK(λk) − (m̂LK(λk) − m̂∗

LK(λk))eYk−m̂∗
LK(λk)

+
1

2
(m̂LK(λk) − m̂∗

LK(λk))2eYk−m̂LK(λk) − 1

3!
(m̂LK(λk) − m̂∗

LK(λk))3eYk−zk

where zk is such that |m̂LK(λk) − m̂∗
LK(λk)| ≥ |zk − m̂∗

LK(λk)|. The last addend is given
in Lagrange’s remainder form, and it can be bounded by:

(m̂LK(λk) − m̂∗
LK(λk))3eYk−zk

= (m̂LK(λk) − m̂∗
LK(λk))3

(
1 + (m̂LK(λk) − zk) +

1

2
(m̂LK(λk) − zk)2 + . . .

)

= OP(N−3/2 log3 N),

applying Lemma 2:

|Yk − zk| ≤ |m̂LK(λk) − zk| ≤ OP(N−1/2 log N).
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Then, TLK − T ∗
LK can be written as:

∑

k

[
eYk−mθ(λk) − eY ∗∗

k −mθ(λk) + eY ∗∗
k −m̂∗

LK(λk) − eYk−m̂∗
LK(λk)+

m̂∗
LK(λk) − m̂LK(λk) + eYk−m̂∗

LK(λk)(m̂∗
LK(λk) − m̂LK(λk)

+
1

2
eYk−m̂∗

LK(λk)(m̂LK(λk) − m̂∗
LK(λk))2 + OP(N−3/2 log3 N)

]

=
∑

k

[
eYk−mθ(λk) − eY ∗∗

k −mθ(λk) + eY ∗∗
k −m̂∗

LK(λk) − eYk−m̂∗
LK(λk)

+(1 − eYk−m̂LK(λk))(m̂LK(λk) − m̂∗
LK(λk))

+
1

2
eYk−m̂∗

LK(λk)(m̂LK(λk) − m̂∗
LK(λk))2 + OP(N−3/2 log3 N)

]
=

∑

k

[
(1 − eYk−m̂LK(λk))(m̂∗

LK(λk) − m̂LK(λk))
]

+

∑

k

[
1

2
eYk−m̂∗

LK(λk)(m̂∗
LK(λk) − m̂LK(λk))2

]
+

∑

k

[
eYk−mθ(λk) − eY ∗∗

k −mθ(λk) + eY ∗∗
k −m̂∗

LK(λk) − eYk−m̂∗
LK(λk)

]

+OP(N−3/2 log3 N)

The first two addends correspond to B1 and B2. To obtain the third part, B3, we should
recall the following relations:

I(λk) = fθ(λk)Vk + RN (λk), Yk = mθ(λk) + zk + rk (76)

eYk = fθ(λk)Vkerk , eY ∗∗
k = fθ(λk)Vk, eYk−Y ∗∗

k = fθ(λk)Vk(erk − 1). (77)

And recall also that emθ(λ) = fθ(λ). In order to derive the final expression for B3, we
must consider the following Taylor’s expansion:

eYk−mθ(λk) = eY ∗∗
k −mθ(λk) + (Yk − Y ∗∗

k )eY ∗∗
k −mθ(λk) +

1

2
(Yk − Y ∗∗

k )2eck−mθ(λk), (78)

where ck is such that |Yk − Y ∗∗
k | ≥ |ck − Y ∗∗

k |. Besides, the difference between Yk and Y ∗∗
k

is bounded by:

|Yk − Y ∗∗
k | = |rk − C0|, where C0 is the Euler constant.

From the expression for rk:

rk = log

(
1 +

RN (λk)

f(λk)Vk

)
,

and taking into account that RN (λk) is uniformly bounded by:

max
k

|RN (λk)| = OP(N−1/2 log N), (79)

the remainder in Taylor’s expansion can be bounded by:

|Yk − Y ∗∗
k | = OP(log N−1/2 log log N),
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and this bound is uniform in λk. Using similar arguments, we have:

eYk−m̂∗
LK(λk) = eY ∗∗

k −m̂∗
LK(λk) + (Yk − Y ∗∗

k )eYk−m̂∗
LK(λk) +OP(log N−1/2 + log log N). (80)

Applying Taylor’s expansion in B3 (for two groups of addends) we have

B3 =
∑

k

(
eYk−mθ(λk)(Yk − Y ∗∗

k ) − eYk−m̂∗
LK(λk)(Yk − Y ∗∗

k ) + OP(log N−1/2 + log log N)
)

=

∑

k

eYk(Yk − Y ∗∗
k )(e−mθ(λk) − e−m̂∗

LK(λk)) + OP(N log N−1/2 log log N) =

∑

k

eYk(Yk − Y ∗∗
k )

1

fθ(λk)

(
1 − emθ(λk)−m̂∗

LK(λk)
)

+ OP(N log N−1/2 + N log log N)

And, with another Taylor’s expansion on eYk around eY ∗∗
k :

B3 =
∑

k

(eYk − eY ∗∗
k )

1

fθ(λk)
(1 − emθ(λk)−m̂∗

LK(λk)) + OP(N log N−1/2 + N log log N) =

∑

k

rN (λk)
1

fθ(λk)
(1 − emθ(λk)−m̂∗

LK(λk)) + OP(N log N−1/2 + N log log N).

We prove now that T ∗
LK follows an asymptotically normal distribution.

Proof. Proof of Theorem 3.
The regression model (22) under the null hypothesis

Y ∗∗
k = mθ(λk) + zk (81)

can be seen regresion model with non-Gaussian error variables with density (11). The
asymptotic distribution of T ∗

LK is obtained as a particular case of Theorem 10 in (Fan et al.
(2001)), generalized to dimension d = 2. The loglikelihood associated with model (81):

f(Y ∗∗
k ,mθ(λk)) = Y ∗∗

k − mθ(λk) − eY ∗∗
k −mθ(λk) (82)

and the generalized likelihood ratio test statistic is given by

T ∗
LK =

∑

k

{
eY ∗∗

k −mθ(λk) + mθ(λk) − eY ∗∗
k −m̂∗

LK(λk) − m̂∗
LK(λk)

}
.

Using Taylor’s expansion of the loglikelihood function, with the notation introduced above:

T ∗
LK =

∑

k

{
εk(m̂∗

LK(λk) − mθ(λk)) + qk
2

1

2
(m̂∗

LK(λk) − mθ(λk))2 + OP(N−3/2 log3 N)

}

(83)
For the sake of simplicity, we will drop the residual part. Now, using the asymptotic repre-
sentation for the nonparametric estimator given in Lemma 11, and the expression for HN (λ)
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in (84), the non-negligible part of (83) can be written as:

T ∗
LK =

∑

k

{
εkr2

NΓ(λk)−1
∑

i

εiK(H−1/2(λi − λk))(1 + oP(1)) + εkHN (λk)

+
1

2
qk
2

[
r2
NΓ(λk)−1

∑

i

K(H−1/2(λi − λk))(1 + oP(1)) + HN (λk)

]2



 =

r2
N

∑

k

∑

i

εkεiΓ(λk)−1K(H−1/2(λi − λk))(1 + oP(1)) +
∑

k

εkHN (λk)

+
1

2

∑

k

qk
2



r4
NΓ(λk)−2

∑

i

∑

j

εiεjK(H−1/2(λi − λk))K(H−1/2(λj − λk))(1 + oP(1))2

+H2
N (λk) + 2r2

NΓ(λk)−1
∑

i

εiK(H−1/2(λi − λk))(1 + oP(1))HN (λk)

]
=

r2
N

∑

k

∑

i

εkεiΓ(λk)−1K(H−1/2(λi − λk))(1 + oP(1)) +
∑

k

εkHN (λk)

+
r4
N

2

∑

k

qk
2 Γ(λk)−2

∑

i

∑

j

εiεjK(H−1/2(λi − λk))K(H−1/2(λj − λk))(1 + oP(1))2

+
1

2

∑

k

qk
2 H2

N (λk) − r2
N

∑

k

qk
2 Γ(λk)−1

∑

i

εiK(H−1/2(λi − λk))(1 + oP(1))HN (λk) =

S1N + S2N + R1N + R2N + R3N

where

HN (λ) = r2
NΓ(λ)−1

∑

k

[
q1(β(λ)T Wk, Y ∗∗

k ) − εk

]
K(H−1/2(λ − λk))(1 + oP(1)) (84)

and the residual terms are given by:

R1N =
∑

k

εkHN (λk),

R2N =
−1

2

∑

k

qk
2 H2

N (λk),

R3N = −r2
N

∑

k

qk
2 Γ(λk)−1

∑

i

εiK(H−1/2(λi − λk))HN (λk).

The leading terms are:

S1N = r2
N

∑

k

∑

i

εkεiΓ(λk)−1K(H−1/2(λi − λk)) (85)

and

S2N =
r4
N

2

∑

k

qk
2 Γ(λk)−2

∑

i

∑

j

εiεjK(H−1/2(λi − λk))K(H−1/2(λj − λk)). (86)

40



S1N can be decomposed as:

S1N

= r2
N

∑

k

ε2
kΓ(λk)−1K(H−1/2(λk − λk)) + r2

N

∑

k6=i

εkεiΓ(λk)−1K(H−1/2(λi − λk))

= r2
N

∑

k

ε2
kΓ(λk)−1K(H−1/20) + r2

N

∑

k6=i

εiεkΓ(λk)−1K(H−1/2(λi − λk))

= S1
1N + S2

1N .

For the first addend,

S1
1N = r2

N

∑

k

ε2
kΓ(λk)−1K(H−1/20) =

=
1

N |H|1/2

∑

k

4π2E−1(q2(mθ(λk), Y ∗∗
k ))K(H−1/20) →P

4π2

|H|1/2
K(0).

Therefore:

S1N ≈ 4π2

|H|1/2
K(0) + S2

1N ,

with
S2

1N = r2
N

∑

k6=i

εkεiΓ(λk)−1K(H−1/2(λi − λk)).

Note that:
E(ε2

k/λ = λk) = −E(q2(mθ(λk), Y ∗∗
k ),

and consider the following decomposition for (86):

S2N =
r4
N

2

∑

k

qk
2 Γ(λk)−2

∑

i=j

εiεjK(H−1/2(λi − λk))K(H−1/2(λj − λk))

+
r4
N

2

∑

k

qk
2 Γ(λk)−2

∑

i6=j

εiεjK(H−1/2(λi − λk))K(H−1/2(λj − λk)) =

S1
2N + S2

2N .

The first part S1
2N converges in probability to:

S1
2N =

r4
N

2

∑

k

qk
2 Γ(λk)−1

∑

i

ε2
i K

2(H−1/2(λi − λk)) →P

4π2

2|H|1/2

∫
K2(u)du.

The addend S2
2N can be decomposed in two parts:

S2
2N =

r4
N

2

∑

k

qk
2 Γ(λk)−2

∑

i6=j

εiεjK(H−1/2(λi − λk))K(H−1/2(λj − λk))

=
r4
N

2
K(0)

∑

k

∑

j

εkεjq
k
2 Γ(λk)−2K(H−1/2(λj − λk)) +

r4
N

2

∑

i,j

εiεj

∑

k6=i,k6=j

qk
2 Γ(λk)−2K(H−1/2(λi − λk))K(H−1/2(λj − λk))

= S21
2N + S22

2N .
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The variance of the first addend can be bounded by:

V ar(S21
2N ) = V ar



r4
N

2
K(0)

∑

k

∑

j

εkεjq
k
2 Γ(λk)−2K(H−1/2(λj − λk))





= O(N−2|H|−3/2) = o(|H|−1/2),

therefore, this addend is
S21

2N = oP(|H|−1/4).

Then, in the expression of T ∗
LK we have:

T ∗
LK ≈ µH + R1N + R2N + R3N + S2

1N + S22
2N = µH + R1N + R2N + R3N +

1

2
WN |H|−1/4,

where

WN =
|H|1/4

N

∑

i6=j

εiεjΓ(λj)
−1 (2KH(λi − λj) − KH ∗ KH(λi − λj)) .

Besides, if we define, for i 6= j:

b(i, j) =
|H|1/4

N
(2KH(λi − λj) − KH ∗ KH(λi − λj))Γ(λj)

−1,

and b(i, i) = 0. Then, WN can be written as:

WN =
∑

i

∑

j

b(i, j)εiεj.

In order to prove the asymptotic normal distribution of WN , we will apply Proposition 3.2
in de Jong (1987). For that purpose, we must write WN as a quadratic form of indpendent
random variables, namely WN =

∑
i<j ci,jεiεj , where i and j are one-dimensional indexes.

As it is done in the proof of Theorem 1, define a new subindex for the Fourier frequencies
λk, with k = (k1, k2) and kl = 0,±1, . . . ,±ml, for l = 1, 2. Consider λk = λk′ where
k′ = (k′

1, k
′
2), with k′

l = 1, . . . ,m′
l = 2ml +1, in such a way that k′

l = kl +ml +1 for l = 1, 2.
Let M = m′

1 × m′
2. The new coefficients, with one dimensional indexes, are given by the

following matrix:
A = (aij) , A ∈ MM×M ,

and each entry of this matrix is defined by aij = bij and aii = 0, where the bidimensional
indexes i and j are given by:

i = (i1, i2) = (k, k0), if (k − 1)m′
2 ≤ i ≤ km′

2 and i = (k − 1)m′
2 + k0, (87)

j = (j1, j2) = (l, l0), if (l − 1)m′
2 ≤ j ≤ lm′

2 and j = (l − 1)m′
2 + l0. (88)

With this definitions, WN can be written as a quadratic form with one-dimensional indexes:

WN =
∑

i,j

ai,jεiεj .

For aij we have that:

aij =
|H|1/4

N
2KH(λi − λj)Γ(λj)

−1 − |H|1/4

N
KH ∗ KH(λi − λj)Γ(λj)

−1 = a1
i,j − a2

i,j ,
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where

a1
ij =

|H|1/4

N
2KH(λi − λj)Γ(λj)

−1, a2
ij =

|H|1/4

N
KH ∗ KH(λi − λj)Γ(λj)

−1.

Now, if we define:
c1
ij = a1

ij , c2
ij = c1

ji,

c3
ij = a2

ij , c4
ij = c3

ji.

Define also, Wij =
(
c1
ij + c2

ij − c3
ij − c4

ij

)
εiεj . Then, WN can be wrriten as:

WN =
∑

i<j

Wij .

The variance of this form is given by(29). In order to apply Proposition 3.2 in (de Jong
(1987)), we must check some conditions on WN . The first one is the WN is clean, but this
is clear, by definition (see definition 2.1 in de Jong (1987)). Consider:

GI =
∑

i<j

W 4
ij ,

GII =
∑

i<j<k

{
E
(
W 2

ijW
2
ik

)
+ E

(
W 2

jiW
2
jk

)
+ E

(
W 2

kiW
2
kj

)}
,

GIII =
∑

i<j<k<l

{E (WijWikWljWlk) + E (WijWilWkjWkl) + E (WikWilWjkWjl)} .

We must check that GI , GII and GIII are of smaller order than V ar(WN ), which is given
by (29). It is easy to see that GI = O(N−2|H|−1/2), just taking into account that:

E
(
a1

ijεiεj

)4
= O

( |H|
N4

16K4
H(λi − λj)Γ(λj)

−4

)
= O

(
1

N4|H|1/2

)
,

and E(a3
ijεiεj)

4 = O(N−4). GII is O(N−1|H|−1/2), since:

E
(
(a1

ij)
2(a2

ij)
2
)

= O
(

1

N4|H|1/2

)
.

Similar computations lead to GIII = O
(
|H|1/2

)
. Then, we have that WN → N(0, σ2).

Finally, we must find a bound for R1N , R2N and R3N in (85), (85) and (85), respectively,
with HN (λ) is given by (84). We can see that both R1N and R3N are stochastically bounded.
In fact R1N = N1/2|H|R1N0, where

R1N0 =
1√
N

∑

k

εk

∫
uT Hmθ

(λk)uK(u)du

and R3N = N1/2|H|R3N0, where

R3N0 =
−1√
N

∑

k

εkΓ(λk)−1

∫ ∫
sT Hmθ

(λk)suT Hmθ
(λk)uK(s)K(u)dsdu.

Both R1N0 and R3N0 are asymptotically normal, and therefore, stochastically bounded. The
remaining residual term, R2N admits the following asymptotic expression:

R2N =
−|H|2

8

∑

k

1

fθ(λk)

∫ ∫
sT Hmθ

(λk)s(s + u)T Hmθ
(λk)(s + u)K(s)K(u)dsdu.

An additional term of the bias, bH is obtained from R2N , as N1/2|H| → ∞.
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The following lemmas are needed for bounding B1, B2 and B3 in Lemma 9.

Lemma 10. Define

ΨN (λ) = |H|1/2(N |H|1/2)−1/2
∑

k

(eY ∗∗
k −m̄k − 1)WkKH(λ − λk) (89)

By Taylor’s expansion and conditions in Theorem 3, the following hold also uniformly in λ:

|H|1/2l(β) = ΨN (λ)T β +
1

2
βT Aβ + ∆1(β),

where l(β) is given by:

l(β) =
∑

k

[
−(N |H|1/2)−1/2βT Wk − eY ∗∗

k −m̄k−(N |H|1/2)−1/2βT Wk + eY ∗∗
k −m̄k

]
KH(λ − λk).

Proof. The expression for l(β) is given by:

|H|1/2l(β) =

|H|1/2
∑

k

{
−(N |H|1/2)−1/2β

T Wk − eY ∗∗
k −(N |H|1/2)−1/2βT Wk + eY ∗∗

k −m̄k

}
KH(λk − λ),

and by Taylor’s expansion, we can write:

eY ∗∗
k −(N |H|−1/2)−1/2βT Wk = eY ∗∗

k −m̄k + (N |H|−1/2)−1/2βT WkeY ∗∗
k −m̄k +

1

2
(N |H|−1/2)−1βT WkWT

k βeY ∗∗
k −ck ,

where ck is such that |(N |H|−1/2)−1/2βT Wk − m̄k| ≥ |ck − m̄k|. Then, |H|1/2l(β) is given
by:

|H|1/2
∑

k

{
−(N |H|1/2)−1/2βT Wk − (N |H|−1/2)−1/2βT WkeY ∗∗

k −m̄k

−1

2
(N |H|1/2)−1βT WkWT

k β(eY ∗∗
k −ck − 1 + 1)

}
KH(λ − λk)

= |H|1/2(N |H|1/2)−1/2
∑

k

(eY ∗∗
k −m̄k − 1)WT

k KH(λ − λk)β

−1

2
|H|1/2(N |H|1/2)−1

∑

k

βT WkWT
k βKH(λ − λk)

−1

2
|H|1/2(N |H|1/2)−1

∑

k

βT WkWT
k β(eY ∗∗

k −ck − 1)KH(λ − λk)

= ΨN (λ)T β +
1

2N

∑

k

βT WkWT
k βKH(λ − λk) + ∆1(β)

= ΨN (λ)T β +
1

2N

∑

k

βT AkβKH(λ − λk) + ∆1(β).

The matrix Ak is given by WkWT
k :

Ak = WkWT
k =

(
1 |H|−1/2(λ − λk)T

|H|−1/2(λ − λk)T |H|−1/4(λ − λk)(λ − λk)T

)
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and it converges in probability to

1

N

∑

k

AkKH(λ − λk) →P A,

where A is given by

A =
−1

4π2

(
1 0T

0
∫

uuT K(u)du

)
.

The residual term ∆1(β) is OP(1), provided that N (ζ−1)/ζ |H|1/2 ≥ c0 log N :

∆1(β) =
−|H|1/2

2
(N |H|1/2)−1

∑

k

βT WkWT
k β(eY ∗∗

k −ck − 1)KH(λ − λk).

Since |rNβT Wk − m̄k| ≥ |ck − m̄k|, ck can be written as ck = βT Wk + αT Wk, where
‖α‖ ≤ c1rN , for some c1 > 0. Then, ∆1(β) can be decomposed in two addends:

∆1
1(β) =

−|H|1/2

2
(N |H|1/2)−1

∑

k

q2(β
T Wk + αT Wk, Y ∗∗

k )βT WkWT
k βKH(λ − λk),

∆2
1(β) =

|H|1/2

2
(N |H|1/2)−1

∑

k

βT WkWT
k βKH(λ − λk).

Uniform bound OP(1) for both addends is obtained from condition on Φn,j , for the particular
case of j = 1 and j = 3. Then, the expression for l(β) is proved.

Lemma 11. If fθ is twice differentiable, we have the following representation for the dif-
ference between the non parametric estimation m̂∗

LK and the log-spectral density under the
null hypothesis mθ, in a frequency λ and under conditions in Theorem 3:

m̂∗
LK(λ) − mθ(λ) = r2

NΓ(λ)−1
∑

k

εkK
(
H−1/2(λ − λk)

)
(1 + oP(1)) + HN (λ), (90)

where HN is given by (84).

Proof. Using the expression for l(β) obtained in Lemma 10 and applying the convexity

lemma of Pollard (1991) we obtain the maximizer β̂ of the expression for l(β) is given by

β̂ = B−1ΨN (λ) + oP(1).

The inverse of matrix B is given by:

B−1 = −π2




1 0 0
0 b2 −b12

0 −b12 b1



 ,

bj =

∫
u2

jK(u)du

b1
, j = 1, 2, b12 =

−
∫

u1u2K(u)du

a1
,

b1 =

∫
u2

1K(u)du

∫
u2

2K(u)du −
(∫

u1u2K(u)du

)2

,

45



where u1 and u2 denote the first and the second components of vector u ∈ R
2. The first

component of β is
β̂(1) = (N |H|1/2)−1/2(m̂LK(λ) − mθ(λ)).

We obtain, from the expression for Ψn(λ) in (89):

ΨN (λ) = |H|1/2(N |H|1/2)−1/2
∑

k

(eY ∗∗
k −m̄k − 1)WkKH(λ − λk) =

|H|1/2(N |H|1/2)−1/2
∑

k

(eY ∗∗
k −m̄k − 1)WkKH(λ − λk) =

|H|1/2(N |H|1/2)−1/2
∑

k

(eY ∗∗
k −βT Wk − 1)WkKH(λ − λk) =

|H|1/2(n|H|1/2)−1/2
∑

k

(eY ∗∗
k −βT Wk + eY ∗∗

k −mθ(λk) − eY ∗∗
k −mθ(λk) − 1)WkKH(λ − λk) =

|H|1/2(N |H|1/2)−1/2
∑

k

(eY ∗∗
k −mθ(λk) − 1)WkKH(λ − λk) +

|H|1/2(N |H|1/2)−1/2
∑

k

(eY ∗∗
k −βT Wk − eY ∗∗

k −mθ(λk))WkKH(λ − λk).

The result is proved just considering the first component of Ψn(λ).

Ψ
(1)
N (λ) = |H|1/2(N |H|1/2)−1/2

∑

k

(eY ∗∗
k −mθ(λk) − 1)KH(λ − λk) +

|H|1/2(N |H|1/2)−1/2
∑

k

(eY ∗∗
k −βT Wk − eY ∗∗

k −mθ(λk))KH(λ − λk) =

(N |H|1/2)−1/2
∑

k

εkK(H−1/2(λ − λk)) +

(N |H|1/2)−1/2
∑

k

(q1(β
T Wk, Y ∗∗

k ) − εk)K(H−1/2(λ − λk)).

Lemma 12. Under assumption (1)-(3), we have

sup
λ∈[0,π]2

|m̂LK(λ) − m̂∗
LK(λ)| = OP(N−1/2 log N)

Proof. The proof of this Lemma is obatined using similar arguments as that for the proof
of Lemma 11. Recall the expression for the local loglikelihood given by:

∑

k

[
Yk − a − bT (λ − λk) − eYk−a−bT (λ−λk)

]
KH(λ − λk). (91)

This expression can be written in terms of the vector β2 as

L(β2) =
∑

k

[
Yk − m̄k − (N |H|1/2)−1/2βT

2 Wk − eYk−m̄k−(N |H|1/2)−1/2βT
2 Wk

]
KH(λ − λk)

and the difference:

L(β2) − L(0) =
∑

k

[
−(N |H|1/2)−1/2βT

2 Wk − eYk−m̄k−(N |H|1/2)−1/2βT
2 Wk

]
KH(λ − λk).
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If we set

Un(β2) =
∑

k

rN (λk)
[
e−m̄k−(n|H|1/2)−1/2βT

2 Wk − e−m̄k

]
KH(λ − λk)

Then,
L(β2) − L(0) = l(β2) − UN (β2)

An uniform bound for UN (β2) is easily found just by Taylor’s expansion and using the
bound maxk |rN (λk)| = OP(N−1/2 log N):

|H|1/2 sup
λ∈[0,π]2

UN (β2) = OP(|H|−1/4 log N)

With the same arguments as in Lemma 11, we show that the following bounds also hold
uniformly in λ:

|H|1/2(l(β2) − UN (β2)) = |H|1/2(L(β2) − L(0)) = ΨN (λ)T β2 +
1

2
β

T
2 Aβ2 + ∆2(β2)

∆1(β2) = OP(1), ∆2(β2) = OP(1)

∇∆1(β2) = OP((N |H|1/2)−1/2 log |H|1/2αN + |H|)
∆2(β2) = ∇∆1(β2) + OP(|H|1/4 log N)

where αN → ∞. Using the same arguments as that for the proof of Theorem 2 in Carroll
et al. (1997) and the proof of the quadratic approximation lemma in Fan and Gijbels (1995)
we obtain:

(N |H|1/2)1/2{m̂LK(λ) − m(λ)} = (π2, 0, 0)ΨN (λ) + OP

(
|H|1/4 log N

)
, (92)

and

(N |H|1/2)1/2{m̂∗∗
LK(λ) − m(λ)} = (π2, 0, 0)ΨN (λ) + OP

(
log |H|1/2

√
N |H|1/2

αN + |H|
)

. (93)

Lemma 13. Assume that ε1, . . . , εN are independent identically distributed random vari-
ables, with E(ε1) = 0 and E(|ε1|s) < ∞, for some s > 2. Assume that x1, . . . ,xN are fixed
design points in [0, 1]2 ⊂ R

2 such that xi ∈ Ai ⊂ R
2, ∪N

i=1Ai = [0, 1]2, Ai ∩ Aj = ⊘, where
Ai is Jordan-measurable, with maxi µ(Ai) = O(N−1), where µ is the Jordan measure and

max
i

d(Ai) = O(N−1),

where d(B) = supx,y∈B ‖x − y‖, ‖ · ‖ is the L2-norm. Assume that W is a weight function
satisfying a Lipchitz condition and:

max
i

|Wi(x))| ≥ c0N
−1,

uniformly in x ∈ [0, 1]2, for a constant c0. Finally assume that there is a sequence αN → 0
and constants η ∈ (0, s − 2), c > 1/2 such that, for all x ∈ [0, 1]2:

N2/(s−η) max
i

|Wi(x)|logN ≤ αNc, and

(
∑

i

Wi(x) log N

)2

≤ αNc. (94)
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Then:

sup
x∈[0,1]2

∣∣∣∣∣
∑

i

Wi(x)εi

∣∣∣∣∣ = O(αN ).

Proof. This lemma is a straightforward extension of Theorem 11.2 in Müller (1988). The
proof is similar, since the stochastic part is not affected by the dimension.

Lemma 14. Assume conditions in Lemma 13 hold and suppose that the weight functions
are kernel weights:

Wi(x) = |H|−1/2K(H−1/2(x − xi)).

Then,

sup
x∈[0,1]2

1

N

∣∣∣∣∣
∑

i

KH(x − xi)εi

∣∣∣∣∣ = o((N |H|1/2)−1/2(− log |H|1/2)βN ),

where the sequence βN → ∞ and provided that there exists s > 2, η ∈ (0, s − 2) such that
N2/(s−η)|H|−1/2 log N → C, for some constant C.

Proof. The proof is inmediate from Lemma 13. The condition on s and η is obtained from
the restriction (94) on the kernel weights.

Lemma 15. The terms B1, B2 and B3 in Lemma 9 are bounded by:

B1 = OP

(
log N√

N
|H|−1/2 log |H|1/2αN

)
,+OP(log2 N)

B2 = OP(log2 N),

B3 = OP(|H|−1/4 log N(− log |H|1/2)αN ),

where αN → ∞.

Proof. Recall the expression for B2 is given by:

B2 =
∑

k

eYk−m̂∗
LK(λk) (m̂LK(λk) − m̂∗

LK(λk))
2
.

By Taylor’s expansion of ex and Lemma 12:

B2 =
∑

k

[1 + Yk − m̂∗
LK(λk) + OP((Yk − m̂∗

LK(λk))2)] · (m̂LK(λk) − m̂∗
LK(λk))2 ≈

∑

k

(m̂LK(λk) − m̂∗
LK(λk))2 +

∑

k

(Yk − m̂∗
LK(λk))(m̂LK(λk) − m̂∗

LK(λk))2 ≤

≤ N sup
k

|m̂LK(λk) − m̂∗
LK(λk)|2 = OP(log2 N).

Just taking into account that:

eYk = I(λk) = fθ(λk)Vk + rN (λk) = Vkemθ(λk) + rN (λk)

the term B1 is decomposed in two addends:

B1 =
∑

k

(1 − eYk−m̂∗
LK(λk)) (m̂LK(λk) − m̂∗

LK(λk))

=
∑

k

(1 − Vkemθ(λk)−m̂∗
LK(λk))(m̂LK(λk) − m̂∗

LK(λk)) +

∑

k

rN (λk)e−m̂∗
LK(λk)(m̂LK(λk) − m̂∗

LK(λk)) =

B1,1 + B1,2.
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The second addend, B1,2 can be bounded by:

B1,2 ≤
∑

k

sup
k

|rN (λk)| · |m̂LK(λk) − m̂∗
LK(λk)| ≤

∑

k

OP(N−1/2 log N) sup
k

|m̂LK(λk) − m̂∗
LK(λk)| = OP

(
log2 N

)
.

For the first addedn, B1,1, applying Taylor’s expansion on emθ(λk)−m̂∗
LK(λk) around the

origin, we have:

B1,1 =
∑

k

(
1 − Vkemθ(λk)−m̂∗

LK(λk)
)

(m̂LK(λk) − m̂∗
LK(λk))

=
∑

k

(1 − Vk − Vk(mθ(λk) − m̂∗
LK(λk))eck)(m̂LK(λk) − m̂∗

LK(λk)),

where ck satisfies that |mθ(λk) − m̂∗
LK(λk)| ≥ |ck|. Then,

B1,1 =
∑

k

(Vk − 1)(m̂∗
LK(λk) − m̂LK(λk))

−
∑

k

Vk(mθ(λk) − m̂LK(λk))(m̂∗
LK(λk) − m̂LK(λk))eck .

The variables Vk are zero-mean, so the first term in B1,2 is oP(1). For the first addend,
applying Lemma 12:

B1,1 =
∑

k

Vk(mθ(λk) − m̂∗
LKλk)(m̂LK(λk) − m̂∗

LK(λk))eck

≤ OP(N−1/2 log N)
∑

k

(mθ(λk) − m̂∗
LK(λk))

= OP(N−1/2 log N)

×
∑

k

(
(π2, 0, 0)ΨN (λk) + OP((N |H|1/2)−1/2) log |H|1/2αN + |H|

)
(N |H|1/2)−1/2

= OP

(
log N√

N

)

×
∑

k



 |H|1/4

√
N

∑

j

(eY ∗∗
j −m̄j − 1)KH(λk − λj) + OP((N |H|1/2)−1/2 log |H|1/2αN + |H|)



 ,

applying the expressions (92) and (93). By a Taylor’s expansion on eY ∗∗
j −m̄j around the

origin, Lemma 14 can be applied on the sum in the first addend. Now, applying Lemmas 2
and 12,

B1,2 = OP

(
log N√

N
|H|−1/2 log |H|1/2αN

)
,

For the last term, B3, also using Lemmas 2, 12, and Lemma 14 in a Taylor’s expansion for
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the expression of ΨN (λk) we derive:

B3 =
∑

k

RN (λk)

fθ(λk)

{
emθ(λk)−m̂∗

LK(λk) − 1
}
≤

N max
k

RN (λk)

fθ(λk)
sup
k

∣∣∣emθ(λk)−m̂∗
LK(λk) − 1

∣∣∣ ≤

N max
k

RN (λk)

fθ(λk)

(
N |H|1/2

)−1/2

× sup
k

∣∣∣(π2, 0, 0)ΨN (λk) + OP

(
(N |H|1/2)−1/2 log |H|1/2αN + |H|

)∣∣∣ =

OP

(
(N |H|1/2)−1/2 log N log |H|1/2

)
+ OP

(
|H|−1/4 log N(− log |H|1/2)αN

)
+

OP

(
log N |H|3/4

)
= OP(|H|−1/4 log N(− log |H|1/2)αN ).
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Dahlhaus, R. and Künsch, H. (1987). Edge effects and efficient parameter estimation for
stationary random fields. Biometrika, volume 74, no. 4:pp. 877–882.

Dahlhaus, R. and Wefelmeyer, W. (1996). Asimptotically optimal estimation in mis-
specified times series models. Annals of Statistics.

de Jong, P. (1987). A central limit theorem for generalized quadratic forms. Probab.
Theory Related Fields, volume 75, no. 2:pp. 261–277.

50



Delgado, M.; Hidalgo, J.; and Velasco, C. (2005). Distribucin free goodness-of-fit
tests for linear processes. Ann. Statist., volume 33, no. 6.

Diblasi, A. and Bowman, A. W. (2001). On the use of the variogram in checking for
independence in spatial data. Biometrics, volume 57, no. 1:pp. 211–218.

Fan, J. and Gijbels, I. (1995). Data-driven bandwidth selection in local polynomial fitting:
variable bandwidth and spatial adaptation. J. Roy. Statist. Soc. Ser. B, volume 57,
no. 2:pp. 371–394.

Fan, J.; Zhang, C.; and Zhang, J. (2001). Generalized likelihood ratio statistics and
Wilks phenomenon. Ann. Statist., volume 29, no. 1:pp. 153–193.

Fan, J. and Zhang, W. (2004). Generalised likelihood ratio tests for spectral density.
Biometrika, volume 91, no. 1:pp. 195–209.

Francisco-Fernandez, M. and Opsomer, J. D. (2005). Smoothing parameter selection
methods for nonparametric regression with spatially correlated errors. Canad. J. Statist.,
volume 33, no. 2:pp. 279–295.

Fuentes, M. (2002). Spectral methods for nonstationary spatial processes. Biometrika,
volume 89, no. 1:pp. 197–210.
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