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Abstract

In this paper, we study integrated regression techniques to check
the adequacy of a given linear model in the context of selection biased
observations. As a consequence, we introduce a definition of the in-
tegrated regression in this setting, giving not only a suitable statistic
to perform a model checking test, but also a bootstrap distributional
approximation to carry it out.

While the technique is introduced by means of the so–called length
biased data, which is a particular case of selection bias, we also con-
sider some other examples related to life–time analysis and reliability
as well as stratification. All these examples are discussed in detail,
addressing their main characteristics from the point of view of the
selection bias they introduce. The paper ends with a brief simulation
study that shows the empirical performance of the method.
Keywords: Bootstrap, Length-biased data, Goodness of fit, Inte-
grated Regression, Marked Empirical Process.
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1 Introduction

The way the sample data is observed plays a major role in any subse-
quent statistical derivation or study driven by the data. As is pointed
out in Cox (1969), where a number of sampling problems that arise in
the industrial setup are discussed, the direct observation of the phe-
nomena of interest is not always possible. In those situations in which
the straightforward observation of the phenomena is not accessible,
we have to face the problem of extracting information on the basis of
the observable phenomena we can register information about.

The sampling problems discussed in Cox (1969) were concerned
with the way observations related to fibers, small–particles or work
selection can be registered. What all these problems have in com-
mon is that often the way data is registered does not allow for the
direct observation of the phenomena of interest, but the probability of
recording an observation is proportional to its size. This complication,
known as length–bias sampling, is a particular case of selection–bias
sampling, where the frequency of the events we can observe does not
agree with the frequency of those events of the real phenomena of
interest. Among the causes for this drawback, Cox (1969) cited the
absence of a framework where the sampling procedure takes place,
the inaccessibility of part of the population of interest or simply the
complexity of the object to be sampled. Besides all these causes for
such disadvantages when sampling, he also mentions a number of in-
herent drawbacks we have to face in this setup, principally the lack
of correction and/or adjustment in some cases. These concerns are
also shared by a number of authors, see for example Quesenberry and
Jewell (1986), Patil and Rao (1978), Patil (1984), Patil and Taillie
(1989), Rao (1997), Cristóbal and Alcalá (2001).

As is mentioned in all these references, a large number of situations
where selection–bias occurs can be addressed by means of weighted
distributions, because in most cases, when the random phenomena
of interest is distributed according to X with c.d.f. F , the observed
random variable Xw c.d.f is given by

dFw(x) =
w(x)dF (x)

µw
(1)

where µw = E [w(X)] =
∫

w(x) dF (x). While this has a number of
different consequences, let us stress the fact that, if Ew [·] denotes the
expectation with respect to the variable Xw, and t is a real function,
then:

Ew [t(X)] = E [t(X)]

(
1 +

Cov [t(X), w(X)]
E [t(X)]E [w(X)]

)
, (2)
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provided that the expectations with respect to X exist.
Therefore, we can conclude that the influence of the way we ob-

serve the data on the usual estimators depends on the covariance of
the functions t and w, that is to say: the bias depends on the covari-
ance between the function t(X) we want information about, and w(X)
which depends on the way we observe the data. Notice that equation
(2), while interesting in itself, does not allow for an immediate correc-
tion of the bias because we had to compute a covariance with respect
to F that is not available.

Against this background where data observation modifies the real
frequency of events, we propose a procedure that enables us to perform
model checking for the regression function in this context, allowing us
to decide if a parametric model is suitable for it. The basis of this
procedure is not the bias correction that usual estimation procedures
produce in this setup, but the compensation of the bias selection that
is present in the observed sample. To be precise, whenever w(x) > 0,
from (1) we have that the reciprocal of the function w(x) at each of
the observations from Fw can compensate the way the selection–bias
distorts the original distribution of F . In this way we can recover
the original distribution behavior making possible the estimation and
inference about the regression function.

To be able to decide if a given parametric class of functions is a
good choice to represent the regression function is one of the most
interesting and challenging problems statistical theory faces. Model
checking is not only crucial for making predictions but also for gaining
true knowledge of the behavior of the phenomena we want informa-
tion about. The model checking problem for direct observations (i.i.d.
samples from the r.v. X), has been extensively studied from different
perspectives in the literature, see among others, the book by Hart
(1997), where a review of some of the available techniques of per-
forming goodness of fit is offered, or Stute (1997), who introduces the
Marked Empirical Process techniques for performing goodness of fit,
see also Zhu (2005). It is also worth mentioning Härdle and Mammen
(1993), where a comparison of the nonparametric and the parametric
fits are used, and van Keilegom et al. (2007), who developed good-
ness of fit techniques based on the regression error estimation using
nonparametric residuals. While the references included in all these
works also show how rich the goodness of fit literature is in the usual
framework, that is to say when data can be observed directly, this is
not the case for selection biased observations. In the particular case
of the selection biases we are going to deal with, see (1), most of the
work we have found is devoted to the unidimensional case and uses
the observed distribution as the basis for the developments, see for
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example Navarro et al. (2001), Rao (1997) or Patil (2002) and the
references therein. As pointed out in Patil (2002), another interest-
ing issue related to selection–bias is that in some circumstances and
from the statistical point of view, it may be profitable to use biased
observations, those from Xw, than to have direct observations from
X, that is to say: we can also take advantage of biased observations
in some circumstances.

In this work, and following ideas used in Cristóbal and Alcalá
(2000), Cristóbal et al. (2004), and in Ojeda et al. (2004) to avoid
the problems bias selected data introduces in the regression context
we extend the work presented in Stute (1997) to this framework. Our
main motivation is to study the utility and performance of the ideas
about the integrated regression function in a framework where the
data of the real phenomena under study is not present. In addition,
we would like to highlight the fact that, as these ideas seem to work
within quite different contexts, they offer a way of handling a number
of different biased–selected data in an unified way.

To carry out this proposal, we will first deal with the bivariate
response length–biased sampling case in Section 2. With this back-
ground, in Section 3 we will study some extensions starting from the
case where more than a single covariate is present, and ending with
some particular examples of selection–bias sampling. Section 4 will be
devoted to a brief simulation study for the length–biased case. The
proofs of the main results have been collected in a final Appendix.

2 Response Length Biased Data

Throughout the rest of this section we will assume that our popula-
tion (X, Y ) is a bivariate random variable whose distribution is F and
whose joint density function is given by dF (x, y) = f(x, y)dxdy, in
such a way that Y > C > 0 a.s. We will also assume that the regres-
sion function m(x) admits a parametric linear representation, that is
to say: it is a linear combination of given functions gj :

m(x;βββ) = g(x)Tβββ =
k∑

j=1

βjgj(x), (3)

where βββ is the vector of linear combination coefficients (β1, . . . , βk) ∈
Ω, a compact in Rk, and g(x)T = (g1(x), . . . , gk(x)), a row vector of
functions. In this way, we can define a class of lineal models M as:

M =
{

m(x;βββ) = g(x)Tβββ : βββ ∈ Ω ⊂ Rk
}

, (4)
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and provided that the functions gj are suitable to represent m (i.e.
m ∈M), we have to determine the value βββ0 such that E [Y |X = x] =
m(x) = m(x;βββ0).

In order to provide proper estimators for βββ0 we will assume the
following additional hypothesis for the functions gj :

A1 The Matrix
L = E

[
g(X)g(X)T

]

where g(X) is the column vector whose entries are gj(X), j =
1, . . . , k is not singular.

From the perspective of the class of linear functions M, the prob-
lem that we will address is how to check that this class of functions is
adequate to represent m. More precisely, we will consider the following
hypothesis test:

H0 : m ∈M vs. H1 : m /∈M.

While we are interested in the regression function m(x) that de-
pends on the population distribution (X,Y ), as a consequence of the
length–bias sampling we cannot observe this random phenomena di-
rectly. Hence, instead of a random sample from the population we are
interested in, the random sample (x1, y1), . . . , (xn, yn) we have comes
from (X lb, Y lb), the response length–biased version of (X, Y ), whose
density is given by:

dF lb(x, y) = f lb(x, y) dxdy =
y f(x, y)

µY
dxdy, (5)

where µY =
∫

yf(x, y)dxdy. We will also denote the mean and vari-
ance for the observed data (i.e.: computed with distribution F lb) by
means of Elb [·] and Varlb [·] in order to distinguish them from E [·]
and Var [·], which are those computed with distribution F . Therefore
the probability of recording an observation (x, y) from the random
phenomena (X, Y ) we are interested in is proportional to y. Notice
that, in this case

Elb [Y |X = x] = m(x)(1 + c2(x)),

and because of c(x) being the conditional coefficient of variation, the
direct application of the usual estimation techniques will lead to biased
estimators. It is worth mentioning that the length–bias sampling also
affects the marginals, and a simple computation leads to the following
relationship between the observed (length–biased) marginal density for
X lb and the unobserved marginal density for X

f lb
X(x) =

m(x)fX(x)
µY

, (6)
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which tells us about the importance the regression function plays mod-
ifying the way covariates are observed under this kind of sampling.

As can be seen from equation (5), the reciprocal of the response
variable can be used to compensate the length–bias. Therefore, and
following Cristóbal and Alcalá (2000) and Wu (2000), we use the re-
ciprocal of each observation as a weight in the usual Least Squares
Minimization equation to obtain the following minimization problem:

β̂ββn = arg min
βββ

n∑

i=1

1
yi

(
yi − g(xi)

Tβββ
)2

. (7)

The solution for the estimation of the vector of coefficients is then:

β̂ββn = (GTBG)−1 GTBY,

where Y is the column vector with observations, G is the n × k ma-
trix with entries gj(xi) for i = 1, . . . , n, j = 1, . . . , k and B is given
by diag

(
y−1
1 , . . . , y−1

n

)
. Under the assumptions made in the previous

section, it can be proved that this estimator is strongly consistent.
Thus, if εεε denotes the column vector (ε1, . . . , εn) with εi the regression
errors (yi −m(xi)), we have:

Proposition 2.1 If assumption A1 is fulfilled and if the regression
function m belongs to the class of functions M, then the estimator β̂ββn

admits the following almost sure expansion:

β̂ββn = βββ0 + µY L−1 1
n

n∑

i=1

g(xi)
εi

yi
+ O

(
log log n

n

)
. (8)

As a consequence,

β̂ββn = βββ0 + O

(√
log log n

n

)

almost surely and β̂ββn is a strongly consistent estimator for βββ0.

2.1 Integrated regression Estimation

In this framework, where sample observations are affected by length
bias, the computation of the integrated regression is motivated by the
relationship between the distributions F and F lb that has just been
explored. More precisely, notice that

I(x) =
∫ x

−∞
m(z) dF (z) =

∫ x

−∞
µY dF lb(z) = µY F lb(x). (9)
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because of µY f lb
X(x) being m(x)fX(x) as a consequence of equation

(6). In fact, there is no other way to compute I(x) in an integrated
manner from F lb.

Proposition 2.2 The function h(x) = µY for x ∈ Rd is the unique
measurable function F lb–a.e. such that

I(x) =
∫ x

−∞
h(z) dF lb(z).

Hence,

I lb(x) =
∫ x

−∞
µY dF lb(z),

uniquely determines m(x), as happened in the unbiased case (see Stute
(1997)) and, as Elb

[
µY 1{X≤x}

]
is just I lb(x), its empirical counterpart

is given by:

I lb
n (x) =

1
n

yH
n∑

i=1

1{xi≤x},

yH being the harmonic mean, a strongly uniform estimator for µY in
this context. It is interesting to mention that this estimator can be
viewed from the point of view of the compensation of the length–bias
data exhibits by means of the reciprocal of the observations

I lb
n (x) =

1
n

yH
n∑

i=1

1
yi

yi 1{xi≤x}.

On the basis of the latter expression, we can see that the role of the re-
ciprocal of the observations seems to be a specialized case, or an adap-
tation to this setting of the so called length–bias compensation used in
Cristóbal and Alcalá (2000) to perform local polynomial estimation in
this context, and in Cristóbal et al. (2004) to build confidence bands
for this kind of data.

We again find nice properties for I lb
n (x) in line with those given for

In(x) in Stute (1997).

Proposition 2.3 Under the previous assumptions about (X, Y ):

lim
n→∞ I lb

n (x) = I(x)

uniformly and almost surely.
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Bearing in mind the previous discussion about the way the estima-
tion of I(x) can be carried out in this framework, where the observa-
tions are length biased, the statistic we will use to perform goodness
of fit will be based on the following marked empirical process

Rlb1

n (x) =
1√
n

n∑

i=1

1
yi

(
yi −m

(
xi; β̂ββn

))
1{xi≤x}, (10)

that can be written as

Rlb1

n (x) = Rlb
n (x) +

1√
n

n∑

i=1

1
yi

(
m(xi)−m

(
xi; β̂ββn

))
1{xi≤x},

where

Rlb
n (x) =

1√
n

n∑

i=1

1
yi

(yi −m(xi))1{xi≤x}.

We can see in this equation that Rlb1
n has two error sources. The first

accounts for the random error the data has in itself, and it depends
on the regression errors εi = yi −m(xi). The second has to do with
the estimation error for the regression, that depends on the estimation
error for βββ0.

Of course, the first of these two components is unavoidable and
is inherent to the random phenomena we are studying. On the other
hand, the second component depends basically on the class of function
M. In this way, if m /∈ M we have that the differences between
m(xi)−m

(
xi; β̂ββn

)
are accumulated, and hence Rlb1

n suffers a deviation
from its behavior when m ∈M.

Besides all these considerations, it is interesting to point out that
the estimation error depends on εi, and that the use of the compensa-
tion technique introduces the reciprocal of the responses in all these
terms, which as we will see, has consequences on the variance of these
estimators.

The stochastic behavior of Rlb
n (x) can be characterized when m ∈

M provided that

B1 The random variable (X, Y ) verifies

vlb(x) = Elb




(
Y −m(X)

Y

)2∣∣∣∣X = x


 (11)

is integrable with respect to F lb.
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This requirement is a consequence of the compensation we use to
obtain the estimators in this framework. Note that, as a consequence
of B1, we have that

Elb




(
Y −m(X)

Y

)2

 < ∞.

Proposition 2.4 If assumption B1 is fulfilled:

Rlb
n (x) → Rlb

∞(x)

in distribution in the space D[−∞,∞], where Rlb∞(x) is a gaussian
process with null expectation and whose covariance function is given
by

Cov
[
Rlb
∞(x), Rlb

∞
(
x′

)]
=

∫ x∧x′

∞
vlb(z) dF lb(z).

Having characterized the stochastic behavior of Rlb
n (x), we can use

it to address the distributional behavior of Rlb1
n (x). In order to do

this, recall that as a consequence of m belonging to the parametric
class of functions M we can write:

Rlb1

n (x) = Rlb
n (x) +

1√
n

n∑

i=1

1
yi

g(xi)
T
(
βββ0 − β̂ββn

)
1{xi≤x},

and using expression (8), in the next Proposition we find a strong
and uniform representation for Rlb

n
1(x) that is more convenient for

our purposes.
Let us define G(x) as:

G(x) = E
[
g(X)1{X≤x}

]
=

∫ x

∞
g(z) dF (z).

Proposition 2.5 Under the assumptions made in Proposition 2.1
and assumption B1, if g1, . . . , gk are uniformly bounded functions in
R, then:

Rlb1

n (x) = Rlb
n (x)−G(x)T L−1 1√

n

n∑

i=1

g(xi)
1
yi

εi + o(1)

almost surely and uniformly for x ∈ Rd.

This result enables us to obtain the main result of the section: the
asymptotic distribution for Rlb1

n (x).
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Theorem 2.1 Under the assumptions made in Proposition 2.5:

Rlb1

n (x) → Rlb1

∞ (x)

in distribution in the space D[−∞,∞], Rlb1∞ (x) is a gaussian process
with null expectation and whose covariance function is given by

K lb
(
x, x′

)
= Cov

[
Rlb1

∞ (x), Rlb1

∞
(
x′

)]

=
∫ x∧x′

∞
vlb(z) dF lb(z)

+
∫ x

∞
vlb(z)G

(
x′

)T L−1g(z) dF lb(z)

+
∫ x′

∞
vlb(z)G(x)T L−1g(z) dF lb(z)

+ G
(
x′

)TL−1ΣlbL−1G(x),

where
Σlb = Elb

[
vlb(X)g(X)g(X)T

]
.

2.2 Bootstrap Calibration

As we can see from the strong uniform approximation given in Propo-
sition 2.5, the stochastic properties of Rlb1

n (x) are characterized by
the functions gj(x), j = 1, . . . , k and the compensated residuals εi/yi,
i = 1, . . . , n. In fact, the formula given in Theorem 2.1 for the co-
variance function of the weak limit of this process depends on vw(x)
as a consequence of the way the compensation works to avoid the
length–bias in the observations. Because of the complexity the co-
variance structure of this process exhibits, we will present a bootstrap
scheme that, in some sense, follows the wild bootstrap approach (see
Stute et al. (1998), Liu (1988) or Härdle and Mammen (1993)) with
those compensated residuals we have mentioned above to get an ap-
propriate stochastic behavior in this context where observations are
length–biased.

The bootstrap sample we will use is given by:

x∗i = xi; y∗i = m
(
x∗i ; β̂ββn

)
+ ε̂∗i ; ε̂

∗
i = ε̂i γi; (12)

where ε̂i = yi − g(xi)
T β̂ββn and γi for i = 1, . . . , n is an i.i.d. sample

of a random variable Γ, that is independent of the observed random
sample (xi, yi), i = 1, . . . , n, with null expectation, and variance and
third moment equal to 1 (see Härdle and Mammen (1993) and the
references therein). It is worth mentioning that in Stute et al. (1998)
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some other bootstrap resampling methods were studied yielding that
the classical bootstrap was inconsistent in the integrated regression
setting. Their conclusion can also be extended to this setup.

Let us first focus on the consistency of the bootstrap estimator β̂ββ
∗
n

for the vector βββ of parameters in the class M.

Proposition 2.6 If assumption A1 is fulfilled then the estimator β̂ββ
∗
n

admits the following almost sure expansion:

β̂ββ
∗
n = β̂ββn + µY L−1 1

n

n∑

i=1

g(xi)
εi

yi
γi + O

(
log log n

n

)
. (13)

As a consequence,

β̂ββ
∗
n = β̂ββn + O

(√
log log n

n

)

almost surely.

Following the expression given for Rlb1
n (x) in equation (10) we have

that its bootstrap counterpart is given by

Rlb1

n

∗
(x) =

1√
n

n∑

i=1

1
yi

(
y∗i −m

(
x∗i ; β̂ββ

∗
n

))
1{x∗i≤x}. (14)

Now as a consequence of x∗i = xi we can write Rlb1
n

∗
(x) in the following

way:

Rlb1

n

∗
(x) = Rlb

n
∗
(x) +

1√
n

n∑

i=1

1
yi

g(xi)
T
(
β̂ββn − β̂ββ

∗
n

)
1{xi≤x}.

where in this case

Rlb
n
∗
(x) =

1√
n

n∑

i=1

ε̂∗i
yi

1{xi≤x}.

In this way, using residuals that completely resemble the stochastic
behavior of the regression error, we are obtaining a stochastic behavior
that is consistent in both situations, when the null hypothesis H0 :
m ∈M is true, and also when the alternative hypothesis is true.

It is worth noticing that, as can be seen in all these expressions,
in order to compensate the effect length–bias introduces in the boot-
strap estimator, the true yi values of the observed responses, not re-
sampled responses y∗i , should be used. This is a consequence of the
fact that residuals ε̂i are biased, because of being computed using ob-
servations (xi, yi), that are distributed according to Fw. Finally, and
because x∗i = xi we have the following strong uniform representation
for Rlb1

n

∗
(x).

11



Proposition 2.7 Under the assumptions made in Proposition 2.5
then:

Rlb1

n

∗
(x) =

1√
n

n∑

i=1

εi

yi
γi1{xi≤x}

− G(x)T L−1 1√
n

n∑

i=1

g(xi)
εi

yi
γi + o(1)

almost surely and uniformly for x ∈ R.

Now the consistency of the bootstrap follows from the fact that
the asymptotic distribution for Rlb

n
∗(x) agrees with the one we found

for Rlb
n (x) in D[−∞,∞].

Theorem 2.2 Under the assumptions made in Theorem 2.1:

Rlb1

n

∗
(x) → Rlb1

∞ (x)

in distribution in the space D[−∞,∞] where Rlb1∞ (x) is a gaussian
process with null expectation and covariance function K lb(x, x′) as in
Theorem 2.1.

As a consequence, the bootstrap integrated regression error mimics
the stochastic behavior of the integrated regression error and we can
use it to obtain quantiles for our testing statistics. The Bootstrap
version of the statistics we are to use to perform the goodness of fit
test are then given by

K∗
n = sup

x∈Rd

∣∣∣Rlb
n
∗
(x)

∣∣∣ , W 2∗
n =

∫

Rd

Rlb
n
∗
(z)

2
dF (z).

Now, using the wild bootstrap resampling mechanisms we have just
described we can obtain B bootstrap observations (K∗

n)j and
(
W 2

n

)
j

for j = 1, . . . , B. The null hypothesis should be rejected if the pro-
portion of the bootstrap samples that are larger than

Kn = sup
x∈Rd

∣∣∣Rlb
n (x)

∣∣∣ , W 2
n =

∫

Rd

Rlb
n (z)

2
dF (z).

respectively is less than the desired error level α. Therefore, it turns
out that the bootstrap scheme we have just presented is crucial for
obtaining a good calibration of the critical rejection point for our
tests.
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3 Some extensions

In this section we will present some extensions of previous work. First,
we deal with covariates in Rd, then we address the problem in the
selection–bias case in a more general framework. The extensions will
be presented in this way because of the ease of presentation: having
understood the bivariate case it is simpler to understand the multi-
variate case, and then move to more general classes of selection–bias.

From now on we will assume that the population (X, Y ) of interest
is a multivariate random variable (X1, . . . , Xd, Y ) whose distribution
is denoted by F and whose joint density function is given by

dF (x, y) = f(x, y) dxdy = f(x, y) dx1 . . . dxddy

and verifying that Y > C > 0 a.s. The regression function m(x) is
assumed to be a linear combination of given functions gj from Rd on
R. Again the objective is to check if the functions gj are suitable for
representing the regression function m, and the statistics we will use
are the extensions to the multivariate case of that proposed in the
Section 2, the main change being that in this case the processes and
the distribution F lb are defined in the whole Rd+1.

3.1 Response Length–bias with Multidimen-
sional Covariates

As a consequence of the length–bias in the response, in this case we
have

dF lb(x, y) = f lb(x, y) dxdy =
y f(x, y)

µY
dxdy

As is natural, the assumptions A1 and B1 become in this case:

A1 The Matrix
L = E

[
g(X)g(X)T

]

where g(X) is the column vector whose entries are gj(X), j =
1, . . . , k is not singular.

B1 The random variable (X, Y ) verifies

vlb(x) = Elb

[(Y −m(X)
Y

)2∣∣∣∣X = x

]
(15)

is uniformly integrable with respect to F lb.
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Therefore, under condition A1 Proposition 2.1 also holds in this
setup, g, G, and B being defined in the same way as a consequence
of the length–bias in the response. Moreover, the definitions we have
given for I lb, I lb

n , I lb
n , Rlb1

n and Rlb
n are also appropriate in this con-

text substituting univariate variables x, z and xi by their multivari-
ate counterparts x, z and xi, where for vectors x and z with com-
ponents (x1, . . . , xd) and (z1, . . . , zd) respectively, x ≤ z means that
x ∈ (−∞, z1]× · · · × (−∞, zd].

Propositions 2.3 and 2.2 are also true in this context because the
covariate being multidimensional carries no change in argumentation
taking into account the assumptions A1 and B1. However,in the case
of the weak convergence for Rlb

n things are more complicated than in
the univariate setup because of tightness.

Proposition 3.1 If assumption B1 is fulfilled:

Rlb
n (x) → Rlb

∞(x)

in distribution in the space D[R]d, where Rlb∞(x) is a gaussian process
with null expectation and whose covariance function is given by

Cov
[
Rlb
∞(x), Rlb

∞
(
x′

)]
=

∫ x∧x′

∞
vlb(z) dF lb(z).

The space D[R]d is the natural extension to this setup of D[−∞,∞],
check Domı́nguez and Lobato (2003) and the references therein for de-
tails. The previous result enables us to provide asymptotics for the
statistics we will use to perform goodness of fit because R1

n(x) ad-
mits the same strong uniform representation we give in Proposition
2.5 for the bivariate case. As a consequence we obtain the same kind
of asymptotic for this process.

Theorem 3.1 Under the assumptions A1 and B1, if g1, . . . , gk are
uniformly bounded functions in Rd, then:

Rlb1

n (x) → Rlb1

∞ (x)

in distribution in the space D[R]d, where Rlb1∞ (x) is a gaussian process
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with null expectation and whose covariance function is given by

K lb
(
x,x′

)
= Cov

[
Rlb1

∞ (x), Rlb1

∞
(
x′

)]

=
∫ x∧x′

∞
vlb(z) dF lb(z)

+
∫ x

∞
vlb(z)G

(
x′

)T L−1g(z) dF lb(z)

+
∫ x′

∞
vlb(z)G(x)T L−1g(z) dF lb(z)

+ G
(
x′

)TL−1ΣlbL−1G(x),

where
Σlb = Ew

[
vlb(X)g(X)g(X)T

]
.

The asymptotic distribution the previous theorem gives us depends
on a relatively complex expression. To avoid this drawback, we pro-
pose bootstrap scheme

x∗i = xi; y∗i = g(x∗i )
T β̂ββn + ε̂∗i ; ε̂

∗
i = ε̂i γi; (16)

we use in the bivariate case. Hence, both Rlb1
n

∗
and Rlb

n
∗ are defined

in a similar fashion.
As a consequence of x∗i = xi, we obtain the strong uniform con-

sistency of the bootstrap estimator for β̂ββ
∗
n. The strong uniform ap-

proximation as that presented in Proposition 2.7 follows by means of
the same argumentation given in the proof of this result. Therefore,
we can prove that the bootstrap process Rlb1

n

∗
(x) converges weakly to

the same limit the process the process Rlb1
n (x) has, which shows the

consistency of the bootstrap scheme used.

Theorem 3.2 Under the assumptions made in Theorem 3.1:

Rlb1

n

∗
(x) → Rlb1

∞ (x)

in distribution in the space D[R]d, where Rlb1∞ (x) is a gaussian pro-
cess with null expectation and whose covariance function is given by
K lb(x,x′) as in Theorem 3.1

3.2 Selection bias

As we have explained in Section 1, there are a number of situations
from which length–biased data (see Section 2) is only a particular ex-
ample where the observation of the random phenomena of interests is
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not directly available. Using the previous discussion and knowledge
we have gained with the explanations given in Section 2, we will con-
sider in this section a more general situation that covers a number
of selection bias situations present in applications where the observed
distribution is given by:

dFw(x, y) =
w(x, y)

µw
dF (x, y),

hence when w(x, y) = y we have that our data is response length–
biased. While we will mainly focus on the theoretical properties
needed to implement the goodness of fit test we have been dealing
with, the first part of this section will be concerned also with some
issues related to the way selection bias affects the estimation.

In the particular case of the estimation of the regression function,
equation (2) becomes

Ew [Y |X = x] = m(x)

(
1 +

Cov [Y, w(X, Y )|X = x]
m(x)E [w(X, Y )|X = x]

)
, (17)

from which we can see how the conditional covariance between the
response variable and w(X, Y ) influences the regression estimation.

Again we would like to point out that when data is biased by
selection, X marginal are affected in the following way

fw
X(x) =

E [w(X, Y )|X = x]
µw

fX(x),

where µw = E [w(X, Y )], and the Y w marginal density becomes

fw
Y (y) =

E [w(X, Y )|Y = y]
µw

fY (y).

In order to deal with the following examples we will require as-
sumptions A1 and B1, that in this case becomes

vw(x) = Ew




(
Y −m(X)
w(X, Y )

)2∣∣∣∣X = x


 (18)

is uniformly integrable with respect to Fw. However, besides these
two conditions, we will also require that the function w is positive and
its support contains the support of the distribution F , that is to say:

A2 The function w verifies

w(X, Y ) > 0 a.s. and supp(F ) ⊂ supp(w)
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where supp(g) is the support of g. Otherwise, it is impossible to
recover the whole distribution only using a sample from Fw. But
in any case, estimation and inference can be addressed in a common
framework, and in this sense, in a unified way.

With respect to the previous setup, the only change we should
introduce is that B is a diagonal matrix with entries 1/wi where wi =
w(xi, yi), but again both g and G are defined in the same way, and
hence the Proposition 2.1 also holds in this setup as assumption A1 is
fulfilled.

As is obvious, the integrated regression function definition does
not change at all, but of course the way it is computed using obser-
vations from the distribution Fw should be reconsidered. Following
the ideas in Section 2 jointly with the previous discussion about the
way marginals are modified in this setup, the integrated regression
function for F computed with respect to Fw is defined as

Iw(x) =
∫ x

−∞
m(z)

µw

Ew [w(X, Y )|X = z]
dFw(z).

Now, as in the length–biased case, we obtain

Proposition 3.2 The function

h(x) =
µw

Ew [w(X, Y )|X = x]
m(x)

for x ∈ Rd is the unique measurable function Fw–a.e. such that

I(x) =
∫ x

∞
h(z) dFw(z).

Again following the argumentation given in Section 2, the estima-
tion of I in this context should be carried out using

Iw
n (x) =

1
n

wH
n∑

i=1

1
wi

yi1{xi≤x}.

Moreover, it can be proved that:

Proposition 3.3
lim

n→∞ Iw
n (x) = I(x)

uniformly and almost surely

Naturally, we have that both Rw1

n and Rw
n are defined as

Rw1

n (x) =
1√
n

n∑

i=1

1
wi

(
yi −m

(
xi; β̂ββn

))
1{xi≤x},

Rw
n (x) =

1√
n

n∑

i=1

1
wi

(yi −m(xi))1{xi≤x},
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that, because of assumptions A1 and B1, have the same kind of asymp-
totic behavior that we found in the multivariate response length–
biased case.

Theorem 3.3 Under the assumptions A1 and B1, if g1, . . . , gk are
uniformly bounded functions in Rd, then:

Rw
n (x) → Rw

∞(x),

Rw1

n (x) → Rw1

∞ (x)

in distribution in the space D[R]d. Rw∞(x) is a gaussian process with
null expectation and covariance function given by

Cov
[
Rw
∞(x), Rw

∞
(
x′

)]
=

∫ x∧x′

∞
vw(z) dFw(z).

The process Rw1

∞ (x) is also a gaussian process with null expectation
and whose covariance function is:

Kw
(
x,x′

)
= Cov

[
Rw1

∞ (x), Rw1

∞
(
x′

)]

=
∫ x∧x′

∞
vw(z) dFw(z)

+
∫ x

∞
vw(z)G

(
x′

)T L−1g(z) dFw(z)

+
∫ x′

∞
vw(z)G(x)T L−1g(z) dFw(z)

+ G
(
x′

)TL−1ΣwL−1G(x),

where
Σw = Ew

[
vw(X)g(X)g(X)T

]
.

As we can see, these asymptotics are rather complicated, therefore
the same motivation that led us to consider the use of bootstrap in
the length–biased case persists. In this case, the bootstrap scheme we
propose is the same as that given in the length–biased case but using
the reciprocal of the wi

x∗i = xi; y∗i = g(x∗i )
T β̂ββn + ε̂∗i ; ε̂

∗
i = ε̂i γi;

and both Rw1

n

∗
and Rw

n
∗ are defined in a similar way:

Rw1

n

∗
(x) =

1√
n

n∑

i=1

1
wi

(
y∗i − g(x∗i )

T β̂ββ
∗
n

)
1{x∗i≤x},

while the asymptotic behavior in this case takes into account the limit
process Rw1

∞ .
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Theorem 3.4 Under the assumptions made in Theorem 3.3:

Rw1

n

∗
(x) → Rw∗

∞ (x)

in distribution in the space D[R]d and Rw∗∞ (x) is a gaussian process
whose expectation is null and whose covariance function is given by
Kw(x,x′).

Therefore the bootstrap scheme we have introduced is also useful
to calibrate rejection region boundaries.

3.3 Some Examples

Let us consider now several different examples of selection bias from
a more detailed perspective. We will focus on the general effect se-
lection bias produces on the observed distributional behaviour taking
into account both marginals, joint distributions and the regression
function.

Example 3.1 Length–biased data

As we have seen, in this case, w(x, y) = y and, the regression
function of the observed data is given by

Ew [Y |X = x] = m(x)

(
1 +

σ2(x)
m(x)2

)
.

Hence, the usual regression estimation can not be used in this case
without a correction or a compensation that avoids the bias present in
the data. But also notice that in this case, fw

X(x) = m(x)µ−1
X fX(x),

so the marginals of the covariates are also affected.
It is of interest to mention, when we are dealing with length–

biased data in one of the covariate components of the vector X =
(X1 . . . , Xj), that is to say when w(x, y) = xj , we have that

Cov [Y, w(X, Y )|X = x] = Cov [Y,Xj |X = x] = 0

hence, the regression function of the observed data agrees with m(x)
as in this case

Ew [Y |X = x] = m(x)

(
1 +

0
xj m(x)

)

but, fw
X(x) = µ−1

Xj
xjfX(x), where µXj = Ew [Xj ]. Intuitively, this has

to do with the fact that conditioning on covariates, and hence the
regression function, does not depend on covariates marginals. Notice
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that this means that as a consequence of the length–bias in the co-
variates, marginals may change but the regression function remains
the same. This also happens when the selection bias depends only on
covariates, that is to say, when w(x, x) = h(x) for a given function
h. As a consequence, in those cases where the length–bias depends on
the covariates, it is not necessary to correct or to compensate the bias
present in the data.

Let us now focus on other kinds of selection bias related to lifetime
analysis, see for exmple Ansell and Phillips (1994). In some practi-
cal situations where the analysis of the duration of events is involved
(mainly in reliability or epidemiological contexts) there sometimes ex-
ists the need to estimate the running time of certain events that are
somehow related. For example, the lifetime of a system made with
different components (subsystems) depends on the running time of its
components. In fact, these subsystems keep on running according to a
certain policy that defines the running time of the system depending
on the lifetime of its different parts. Now, depending on the way these
times are registered, you may not have a sample from the real dura-
tions of the events you are interested in, but a sample from a random
variable that is somehow related to it. For the shake of ease in exposi-
tion, let us assume first that these systems have only two components
with random lifetimes X and Y respectively, that are possibly related
and that, for whatever reason, we are interested in the relationship
between the random lifetime of the subsystems X and Y .

The usual way to estimate characteristics of the lifetime of any of
the components of the system is to perform some kind of experiment in
which n of these systems are set to work together, later measuring the
running time Z = w(X,Y ) of each of them, jointly with the durations
of the components X and Y . In this way, what we obtain is an i.i.d.
sample from the random population (X,Y ). Nevertheless, there exists
another different way in which we can obtain information from (X, Y ).
We can also think about taking a sample at a given point in time
while the systems are running; in this case those systems with larger
lifetimes will be more likely to be in the sample. Therefore, in the
latter case, while the lifetimes of these two subsystems are distributed
as dF (x, y), the observed lifetimes of the two components (Xw, Y w)
are distributed according to

dF (x, y) =
w(x, y)

µw
dF (x, y)

with w(x, y) depending on the policy the system uses to manage their
components. We will now consider different policies.
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Example 3.2 Replacement of subsystem policy

In this case, one of the subsystems start to run when the one that
is running stops. Hence, the system lifetime amounts to the sum of
the lifetimes of the two components as they run one after the other
and Z = X + Y . As a consequence

Cov [Y, X + Y |X = x] = Var [Y |X = x],

and the estimation of the regression function with respect to the ob-
served distribution is then

Ew [Y |X = x] = m(x)

(
1 +

Var [Y |X = x]
m(x)(m(x) + x)

)
. (19)

Recall that w(X, Y ) = X + Y > 0 a.s., which is accomplished when
both lifetimes are positive with probability one. The marginal densi-
ties are also modified, being proportional to y + E [X|Y = y] in the
case of Y w and to x + m(x) in the case of Xw.

Notice that in the multivariate setup (X, Y ), when Z = Y +∑d
j=1 Xj , equation (19) should be replaced by

Ew [Y |X = x] = m(x)

(
1 +

Var [Y |X = x]

m(x)
(
m(x) +

∑d
j=1 xj

)
)

.

Example 3.3 Running in parallel policy

Now subsystems works altogether from the beginning, and the sys-
tem keeps on running till the last component fails to run. Hence, the
system lifetime depends on the lifetime of the longer lasting compo-
nent, and its lifetime is given by Z = max(X, Y ). As a consequence,
if we observe the lifetime phenomena at a definite point of time, we
make observations whose probability of being registered in the sample
is proportional to the lifetime of the longer lasting component.

Notice first that

µmax(x) = E [max(X, Y )|X = x] = xFY |X=x(x) + G1
Y |X=x(x).

where following and generalizing some expressions in Patil and Taillie
(1989), Gk

W (x) stands for

Gk
W (x) =

∫ ∞

x
wkfW (w) dw,
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being fW the density of a random variable W , and

Gk
W (x) =

∫ x

0
wkfW (w) dw,

These functions are a kind of accumulation of the kth–order moment
of W from the value of x or up to the value of x respectively. Hence,

Gk
W (x) = E

[
W k

]
−Gk

W (x),

that in the particular case of W = Y |X = x means

Gk
Y |X=x(x) = E

[
Y k|X = x

]
−Gk

Y |X=x(x),

moreover G0
W (x) = FW (x).

Now with this notation, and as far as

Cov [Y, max(X,Y )|X = x] =
xCov

[
Y,1{X>Y }|X = x

]
+ Cov

[
Y, Y 1{X≤Y }|X = x

]

the regression with respect to the observed distribution is then

Ew [Y |X = x] = m(x)

(
1+

xG1
Y |X=x(x) + G2

Y |X=x(x)−m(x) µmax(x)

m(x) µmax(x)

)
,

which shows us the complexity of the regression estimation bias term,
telling us about how difficult its correction can be.

Recall that in this case the marginal densities can be heavily mod-
ified. In the case of Y w the marginal density is now proportional to

yFX|Y =y(y) + G1
X|Y =y(y),

while the marginal density for Xw is proportional to µmax(x). As
we can see, in both cases, the relationship with the marginal of the
original random variables can be rather complicated.

Example 3.4 Running in series policy

Again the system lifetime depends on the lifetime of components
running at the same time. But in this case, as each of the subsystem
requires the work of the previous subsystem done before it starts to
work, the whole system lifetime last till the first component fails to
run, that is to say Z = min(X,Y ). So if we observe the lifetime
phenomena at a definite point in time, the chance of the observation
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being in the sample is now proportional to the lifetime of the first
component that fails.

In the case of the regression function, and using previous notation
we have that if

µmin(x) = E [min(X, Y )|X = x] = xFY |X=x(x) + G1
Y |X=x(x),

the regression with respect to the observed distribution is then

Ew [Y |X = x] = m(x)

(
1+

xG1
Y |X=x(x) + G2

Y |X=x(x)−m(x) µmin(x)

m(x) µmin(x)

)

as a consequence of being

Cov [Y, min(X,Y )|X = x] =
xCov

[
Y,1{X≤Y }|X = x

]
+ Cov

[
Y, Y 1{X>Y }|X = x

]
,

showing us again the complexity of the correction of the regression
estimation bias in this particular case.

The marginal densities are now proportional to

yFX|Y =y(y) + G1
X|Y =y(y),

in the case of Y w and to µmin(x) in the case of Xw.

It should also be mentioned that if instead of a bivariate random
variable (X, Y ) the phenomena we are interested in is distributed ac-
cording to a multivariate distribution (X, Y ), then we need to modify
µmax(x) and µmin(x) in the following way:

µmax(x) = E [max(X, Y )|X = x]

= max(x)FY |X=x(max(x)) + G1
Y |X=x(max(x)),

µmin(x) = E [min(X, Y )|X = x]
= min(x)FY |X=x(min(x)) + G1

Y |X=x(min(x)).

It is worth pointing out that these kinds of selection bias can also
appear in some epidemiological or disease studies where the duration
of the evolution of illness is measured by means of encountering the
patients and/or using screening methods. We now turn to a different
framework that appears frequently in a number of different research
areas.

Example 3.5 Stratified sampling
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Stratified sampling is characterized by the fact that some subsets
of the population are sampled with a given artificial probability. As-
suming that our population is a bivariate random variable (X, Y ) in
Rd+1 and that the measurable set A ⊂ Rd+1 is sampled with proba-
bility pw

A > 0, the observed bivariate population (X, Y ) is distributed
according to

dFw(x, y) = wA(x, y)dF (x, y)

where
wA(x, y) =

pw
A

pA
1{(x,y)∈A} +

1− pw
A

1− pA
1{(x,y)∈Ac}

Ac being the Rd+1 complement of the set A and pA the probability
of having an observation of the population (X, Y ) in A, that is to say
pA = P((X, Y ) ∈ A) that should be positive.

Moreover, because of begin dealing with regression function, let us
introduce pB(x) and mB(x) defined for a measurable set B ∈ Rd+1 as
P((X, Y ) ∈ B|X = x) and E

[
Y 1{(X,Y )∈B}|X = x

]
respectively.

Notice also that

wA(x, y)−1 =
pA

pw
A

1{(x,y)∈A} +
1− pA

1− pw
A

1{(x,y)∈Ac},

and the fact that, while E [wA(X, Y )] = 1,

E [wA(X, Y )|X = x] =
pw

A

pA
pA(x) +

1− pw
A

1− pA
pAc(x).

This leads to the following relationship

Ew [Y |X = x] = m(x)

(
1 +

mA(x)
m(x)pA(x)

+
mAc(x)

m(x)pAc(x)
− 1

)

where we assumed that mB(x)pB(x)−1 is null whenever pB(x) = 0.
The marginals are proportional to

pA

pw
A

P{(X, Y ) ∈ A|Xj = x}+
1− pA

1− pw
A

P{(X, Y ) ∈ A|Xj = x}

in the case of Xw
j , and to

pA

pw
A

P{(X, Y ) ∈ A|Y = y}+
1− pA

1− pw
A

P{(X, Y ) ∈ Ac|Y = y}

in the case of Y w. All these expressions make clear that the occurrence
of the (X, Y ) ∈ A given that Xj = x and/or Y = y plays a major role
on the effect stratification has on the observed sample.
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It is worth mentioning, that A can be any interval or union of
intervals in Rd+1, in particular those intervals of the form Rd × [a, b].
Regarding this issue, notice that when stratum selection is based only
on covariates, that is to say A = B×R with B ∈ Rd, it does not affect
the regression estimation. It is also worth noticing the importance in
these expressions of the relative quotient between pA and pw

A, and
their complementary counterparts. It particular, notice these values
can change dramatically both the true regression function.

4 Some Simulations

The simulations we will carry out in this section will be devoted to
the analysis of the performance of the test introduced in Section 2 in
the length–bias framework. The analysis will be mainly focused on
the acceptance/rejection performance. The examples we will show to
perform the simulation are based on models from the simulations in
Stute et al. (1998), with suitable modifications to obtain a positive
response in all the examples.

Basically, if the population we are interested in is distributed ac-
cording to (X, Y ) the modifications we introduce consist in the use of
an Exponential E(σ) random variable as the additive random error,
or in the use of suitable multiplicative error. In the first case, we have
Y = m(X)+E(σ), hence Y = m(X)+σ + ε, where ε has null expecta-
tion and variance equal to σ2. Multiplicative error models are defined
as Y = m(X)

(
1 + σ U(−√3,

√
3
))

, where U(a, b) is a uniform random
variate in [a, b], therefore these models lead to a positive response for
σ < 1/

√
3. With the aim of better appreciating the behavior of these

tests under different conditions an additive perturbation term of the
regression function under the null hypotheses has been introduced.
The perturbation term is proportional to A.

For each of the first three examples considered, we have added
figures that show the plot of the power function for both statistics
(KnpVal for K∞

n and WnpVal for W 2
n) when σ = 0.1, 0.5 and the sample

sizes n are 50, 100, 200, the bootstrap resampling size B is 400, and
A ranges from -2.0 to 2.0. Besides the plot, for each of the examples
we have added tables which present the rejection rates under different
conditions: σ = 0.1, 0.5, n = 50, 100, 200 α = 0.05, 0.01, being B =
400 again.

Example 4.1 Model I in Stute et al. (1998) with E(σ)
errors In this case we have considered (X, Y ) according to

Y = 5X + AX2 + E(σ), X ∼ U(0, 1),
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so for A = 0 the model is linear in the covariate, while in the case of
A 6= 0 we have that the null hypothesis is no longer true for different
degrees of separation from the linear dependence on covariate.

Example 4.2 Model I in Stute et al. (1998) with multi-
plicative errors While the regression function is the same as in the

previous example, in this particular case, (X, Y ) are related according
to

Y =
(
5X + AX2

)(
1 + σ U

(
−
√

3,
√

3
))

, X ∼ U(0, 1),

which changes in a noticeable manner the distributional behavior.
Again different values of A control the degree of separation of the
model from the linearity in the covariate. However, in this case it is
interesting to point out that the error variance also includes the re-
gression function. This decreases the power function in a noticeable
manner for some values of A, especially in the case of σ = 0.5.

Example 4.3 Model III in Stute et al. (1998) with multi-
plicative errors This is a multivariate regression problem in which

the population (X, Y ) are related by means of

Y = (2 + 5X1 − 2X2 + AX1X2)
(
1 + σ U

(
−
√

3,
√

3
))

,

X1, X2 ∼ U(0, 1)× U(0, 1),

Notice that, in this particular example, A controls the degree of sepa-
ration of the model from the linearity but by means of an interrelation-
ship between both covariates. Again in this case it is worth mentioning
how multiplicative error affects the performance of the testing power.

As we can see, most of the power function plots exhibit the ex-
pected behavior: the percentage of rejections increases as the absolute
value of A increases. It is worth mentioning that, as was pointed out
in Stute (1997) for the usual sampling framework, the lack of power is
especially noticeable when σ is large. It is also interesting to point out
that in the case of example 4.2, the power function plot exhibits some
kind of asymmetry. This lack of symmetry may be related to the lack
of orthogonality between the regression function and the perturbation,
and it may be empowered by the multiplicative errors, as in this par-
ticular case, variance is proportional to the regression function, which
is also affected by the perturbation term.
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Figure 1: Power function for example 4.1(α = 0.05).
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Table 1: Rejection percentage of H0 for K∞
n depending on A for example

4.1.

α n A σ K∞
n α n A σ K∞

n

0.01 50 −1 0.1 0.024 0.05 50 −1 0.1 0.114
0 0.004 0 0.036
1 0.050 1 0.190
−1 0.5 0.008 −1 0.5 0.030
0 0.002 0 0.022
1 0.022 1 0.088

100 −1 0.1 0.048 100 −1 0.1 0.188
0 0.004 0 0.060
1 0.124 1 0.350
−1 0.5 0.004 −1 0.5 0.046
0 0.008 0 0.064
1 0.042 1 0.116

200 −1 0.1 0.186 200 −1 0.1 0.404
0 0.008 0 0.062
1 0.318 1 0.616
−1 0.5 0.010 −1 0.5 0.054
0 0.008 0 0.072
1 0.090 1 0.256
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Table 2: Rejection percentage of H0 for W 2
n depending on A for example

4.1.

α n A σ W 2
n α n A σ W 2

n

0.01 50 −1 0.1 0.034 0.05 50 −1 0.1 0.142
0 0.002 0 0.054
1 0.066 1 0.240
−1 0.5 0.010 −1 0.5 0.042
0 0.004 0 0.036
1 0.034 1 0.106

100 −1 0.1 0.074 100 −1 0.1 0.258
0 0.008 0 0.056
1 0.176 1 0.428
−1 0.5 0.012 −1 0.5 0.052
0 0.006 0 0.070
1 0.044 1 0.168

200 −1 0.1 0.252 200 −1 0.1 0.484
0 0.012 0 0.056
1 0.464 1 0.738
−1 0.5 0.020 −1 0.5 0.074
0 0.026 0 0.086
1 0.140 1 0.284
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Table 3: Rejection percentage of H0 for K∞
n depending on A for example

4.2.

α n A σ K∞
n α n A σ K∞

n

0.01 50 −1 0.1 0.040 0.05 50 −1 0.1 0.168
0 0.012 0 0.046
1 0.030 1 0.092
−1 0.5 0.014 −1 0.5 0.056
0 0.006 0 0.062
1 0.020 1 0.076

100 −1 0.1 0.112 100 −1 0.1 0.304
0 0.016 0 0.056
1 0.040 1 0.148
−1 0.5 0.010 −1 0.5 0.048
0 0.022 0 0.058
1 0.006 1 0.060

200 −1 0.1 0.240 200 −1 0.1 0.512
0 0.010 0 0.052
1 0.088 1 0.240
−1 0.5 0.008 −1 0.5 0.048
0 0.002 0 0.044
1 0.018 1 0.068

All the tables are similar regarding the behavior. When A = 0,
the rejection rate agrees more or less with the nominal level α, and
increases when A 6= 0. The effect of σ = 0.5 is clearly noticeable as
the rejection rate increase is not as large as in the case of σ = 0.1.
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Table 4: Rejection percentage of H0 for W 2
n depending on A for example

4.2.

α n A σ W 2
n α n A σ W 2

n

0.01 50 −1 0.1 0.054 0.05 50 −1 0.1 0.218
0 0.010 0 0.048
1 0.032 1 0.102
−1 0.5 0.018 −1 0.5 0.064
0 0.008 0 0.058
1 0.024 1 0.074

100 −1 0.1 0.180 100 −1 0.1 0.392
0 0.008 0 0.042
1 0.058 1 0.186
−1 0.5 0.010 −1 0.5 0.066
0 0.018 0 0.060
1 0.006 1 0.046

200 −1 0.1 0.388 200 −1 0.1 0.670
0 0.020 0 0.044
1 0.152 1 0.356
−1 0.5 0.014 −1 0.5 0.042
0 0.010 0 0.036
1 0.014 1 0.070

5 Appendix.

5.1 Response Length Biased Data

Proof of Proposition 2.1: Equation (7) can be expressed in matrix
terms as

Φ(βββ) = (Y −Gβββ)TB(Y −Gβββ).

The value β̂ββn of βββ that maximize this expression is given by

0 = −GTBY + GTBGβ̂ββn.

Notice that n−1GTBG is a matrix whose element (j, l) is

1
n

n∑

i=1

1
yi

gj(xi)gl(xi),

and that

Elb

[
1
Y

gj(X)gl(X)
]

=
1

µY
E [gj(X)gl(X)].
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Table 5: Rejection percentage of H0 for K∞
n depending on A for example

4.3.

α n A σ K∞
n α n A σ K∞

n

0.01 50 −1 0.1 0.004 0.05 50 −1 0.1 0.054
0 0.006 0 0.064
1 0.012 1
−1 0.5 0.008 −1 0.5 0.054
0 0.010 0 0.040
1 0.018 1 0.084

100 −1 0.1 0.024 100 −1 0.1 0.082
0 0.012 0 0.050
1 0.016 1 0.056
−1 0.5 0.010 −1 0.5 0.052
0 0.010 0 0.044
1 0.002 1 0.034

200 −1 0.1 0.038 200 −1 0.1 0.154
0 0.014 0 0.050
1 0.020 1 0.118
−1 0.5 0.008 −1 0.5 0.046
0 0.008 0 0.036
1 0.012 1 0.052

As all these entries have finite second order moment, the application
of the Law of the Iterated Logarithm gives that

1
n
GTBG =

1
µY

L + O

(√
log log n

n

)
(20)

almost surely where L is given in hypotheses B2. Hence, for a suffi-
ciently large n, we know GTBG is a non–singular matrix and, as a
consequence of writing yi as g(xi)

Tβββ0+εi, we have that Y = GTβββ0+εεε,
and therefore:

β̂ββn = βββ0 +
(
GTBG

)−1
GTBεεε.

This expression leads to the following almost sure representation
of β̂ββn:

β̂ββn = βββ0 +

(
µY L−1 + O

(√
log log n

n

))
1
n
GTBεεε.

Now, as n−1GTBεεε is a vector with entries given by

1
n

n∑

i=1

gj(xi)
εi

yi
,
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Table 6: Rejection percentage of H0 for W 2
n depending on A for example

4.3.

α n A σ W 2
n α n A σ W 2

n

0.01 50 −1 0.1 0.014 0.05 50 −1 0.1 0.088
0 0.008 0 0.042
1 0.012 1 0.074
−1 0.5 0.006 −1 0.5 0.056
0 0.002 0 0.040
1 0.012 1 0.066

100 −1 0.1 0.042 100 −1 0.1 0.162
0 0.002 0 0.064
1 0.018 1 0.118
−1 0.5 0.006 −1 0.5 0.052
0 0.004 0 0.054
1 0.008 1 0.052

200 −1 0.1 0.176 200 −1 0.1 0.430
0 0.006 0 0.038
1 0.114 1 0.322
−1 0.5 0.016 −1 0.5 0.068
0 0.012 0 0.052
1 0.012 1 0.068

the application, once more, of the Law of the Iterated Logarithm to
each of these entries means that GTBεεε is a matrix whose elements are
quantities of order

√
log log n/n almost surely and, hence we obtain

the almost sure representations given in the proposition. ¦
Proof of Proposition 2.2: This is a consequence of the way we should
compute the integrated regression function in this context.

If we assume that there exist a function h such that I lb(x) =∫ x
∞ h(z) dF lb(z), then

0 =
∫ x

∞
(h(z)− µY ) dF lb(z)

because of the definition for I lb(x), hence h(z) = µY F lb–a.e. ¦
Proof of Proposition 2.3: I lb

n (x) can be written as an empirical
process in terms of the empirical distribution of the observed sample
F lb

n (z) in the following way

I lb
n (x) = yH

∫
1{z≤x} dF lb

n (z) = yH F lb
n 1{z≤x} ,
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where F lb
n f is used to denote

∫
f(z) dF lb(z). Therefore I lb

n (x)/yH is
an empirical process indexed by the following class of functions C =
{fx(z, y) : fx(z, y) = 1{z≤x}}, that are F lb measurable VC–classes
of functions (they are indicators of semi-axes in R) whose envelope
eC(z, y) is bounded by a constant, therefore F lb eC < ∞ and verifying
Glivenko–Cantelly property as stated in van der Vaart and Wellner
(1996).

The Law of the Iterated Logarithm for the reciprocal of the re-
sponses 1/yi proves that yH − µY is an O

(√
log log n/n

)
quantity

with probability one, and the result follows. ¦
Proof of Proposition 2.4: Recall that the paths of Rlb

n (x) have left
hand limits and that are continuous on the right hand for every x ∈ R.
We will follow Billingsley (1968) and prove the weak convergence in
two steps.The first step is to check that finite–dimensional distribution
of Rlb

n (x) converges to those of R∞(x) and in the second we will deal
with tightness.

First, the finite–dimensional distribution convergence. The expec-
tation of Rlb

n (x) is null for every x because

Elb

[(
yi −m(xi)

yi

)∣∣∣xi

]
= E [yi −m(xi)|xi] = 0.

Now for the covariance function notice:

Rlb
n (x)Rlb

n

(
x′

)
=

1
n

n∑

i=1

( εi

yi

)2
1{xi≤x}1{xi≤x′}

+
1
n

n∑

j 6=i

( εi

yi

)( εj

yj

)
1{xi≤x}1{xj≤x}

= A + B.

While from the previous reasoning it is clear that the expectation for
B is null, in the case of A we have:

Elb
[
Rlb

n (x)Rlb
n

(
x′

)]
= Elb

[(yi −m(xi)
yi

)2

1{xi≤x∧x′}

]

= Elb
[
vlb(xi)1{xi≤x∧x′}

]
.

And the finite dimensional distribution convergence follows from the
application of the Cramer–World Device or using the multivariate
CLT.

For the tightness let us consider the quantile transformed process
Qlb

n (u)
Rlb

n (x) = Qlb
n

(
F lb(x)

)
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where

Qlb
n (u) =

1√
n

n∑

i=1

1
yi

(
yi −m

(
F lb−1

(ui)
))

1{ui≤u},

and ui = F lb(xi), where in this case, we use F lb(x) to denote X lb

marginal distribution. Because of this transformation, let us use Eq [·]
to denote the expectation with respect to the distribution of

(
U, Y lb

)
for U = F lb(X lb). Then, according to Theorem 15.6 in Billingsley
(1968) we have to check that for 0 ≤ u1 < u < u2 ≤ 1,

Eq

[∣∣∣Qlb
n (u2)−Qlb

n (u)
∣∣∣
2∣∣∣Qlb

n (u)−Qlb
n (u1)

∣∣∣
2
]
≤ (H(u2)−H(u1))2α

(21)
for a non decreasing continuous function H, whenever α > 1/2. Hence
if we take

αi

(
u′′, u′

)
=

εi

yi
1{u′≤ui≤u′′},

we have that for 0 ≤ u′ < u ≤ 1:

Qlb
n

(
u′′

)−Qlb
n

(
u′

)
=

1√
n

n∑

i=1

εi

yi
1{u′≤ui≤u′′} =

1√
n

n∑

i=1

αi

(
u′′, u′

)
,

and the left term in the inequality given in equation (21) is then

C =
1
n2

Eq




(
n∑

i=1

αi(u2, u)

)2( n∑

i=1

αi(u, u1)

)2



which, as a consequence of each of the terms in both sums having null
expectation, can be bounded using Lemma 5.1 in Stute (1997) with
αi = αi(u2, u) and βi = αi(u, u1). Therefore

C ≤ 1
n2

3n(n− 1)Eq
[
α1(u2, u)2

]
Eq

[
α1(u, u1)

2
]

because of α1(u2, u)2α1(u, u1)
2 being null as a consequence of hav-

ing disjoint supports. On the other hand, and bearing in mind the
computations we have made to obtain the covariance function for the
process Rlb

n (x), we have that

Eq
[
α1

(
u′′, u′

)2
]

=
∫ u′′

u′
vq(u) du,

and
C ≤ 3

∫ u2

u
vq(u) du

∫ u

u1

vq(u) du ≤ 3
( ∫ u2

u1

vq(u)
)
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for vq(u) = vlb
(
F lb−1

(u)
)
. So taking H(u) as

∫ u
0 vlb(u) du we have the

desired bound in equation (21) and hence the process Qlb
n (x) is tight

in D[0, 1], therefore Rlb
n (x) is tight in D[−∞,∞]. ¦

Proof of Proposition 2.5: First notice that

Gn(x) =
1
n

n∑

i=1

1
yi

g(xi)1{xi≤x} =
∫

1
y
g(z)1{z≤x}dF lb

n (z, y),

and for every entry gj(x) in g(x), the integral can be written in terms
of the empirical process theory as F lb f , for f ∈ Cj , that is to say: as
an empirical process indexed by the functions in class C defined by

Cj = {f(x) : f(x) =
1
y
gj(z)1{z≤x}, x ∈ R}.

Because of the hypothesis, the functions f(x) are F lb–measurable,
and as they are the product of a fixed function y−1gj(z) and the
indicators of (−∞, x] for x ∈ R, Lemma 2.6.18 in van der Vaart and
Wellner (1996) shows that Cj is a VC–subgraph class of functions
whose envelope verifies

eCj(x) ≤ 1
y
|gj(z)|,

and hence it is a uniformly bounded function.
As we can find real numbers A, B such that the function T (f) =

Af +B takes values into [0, 1] for every f ∈ Cj , the classes of functions
C′j = {T (f) : f ∈ Cj} are also F lb–square–integrable classes of func-
tions, and Theorem 2.14.9 in van der Vaart and Wellner (1996) shows
that ifGF

n (f) for f ∈ F denotes the empirical process
√

n( Fn f − F f )
indexed by the class of function F

P
(∥∥∥GF lb

n (f)
∥∥∥
Cj

> Ct

)
= P

(∥∥∥GF lb

n (f)
∥∥∥
C′j

> C ′t
)
≤

(
Dt√
V

)V

e−2t2 .

In particular, in the case of t =
√

log n we have that

P
(∥∥∥GF lb

n (f)
∥∥∥
Cj

> C
√

log n

)
≤ C ′′(log n)V/2e−2 log n = O

(
1

n2−V α/2

)

for α such that 0 < V α < 2, and as a consequence

∑

n≥0

P
(∥∥∥GF lb

n (f)
∥∥∥
Cj

> C
√

log n

)
< ∞.
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Therefore, the Borel–Cantelly Lemma leads to the following result

sup
x∈R

∣∣∣∣Gn(x)− 1
µY

G(x)
∣∣∣∣ = O

(√
log n

n

)

with probability one, and hence

Gn(x) =
1

µY
G(x) + O

(√
log n

n

)

uniformly in x ∈ Rd and almost surely.
Now, the result follows from Proposition 2.1 as we have:

Rlb1

n (x) = Rlb
n (x) +

1√
n

n∑

i=1

1
yi

g(xi)
T
(
βββ0 − β̂ββn

)
1{xi≤x}

= Rlb
n (x) +

1√
n

n

(
1

µY
G(x) + O

(√
log n

n

))T (
βββ0 − β̂ββn

)

= Rlb
n (x) +

1√
n

n
1

µY
G(x)T

(
βββ0 − β̂ββn

)
+ O

(√
log n log log n√

n

)

= Rlb
n (x)− 1√

n
G(x)TL−1

n∑

i=1

g(xi)
εi

yi
+ O

(
log n√

n

)

almost surely and uniformly over x ∈ Rd. ¦
Proof of Theorem 2.1: As we have seen, the process Rlb1

n (x) can be
decomposed in the following way

Rlb1

n (x) = Rlb
n (x) + Rlb2

n (x) + o

(
log n√

n

)

almost surely and uniformly over x ∈ Rd, being

Rlb2

n (x) = − 1√
n

G(x)TL−1
n∑

i=1

g(xi)
εi

yi
.

The multivariate CLT applied to the summation factor in Rlb2
n (x)

shows that
1√
n

n∑

i=1

g(xi)
εi

yi
→ N

(
0,Σlb

)
,

hence finite dimensional distributions of Rlb2
n (x) converge to finite di-

mensional distributions of a gaussian random process whose expecta-
tion is null and whose covariance is given by

G(x)TL−1ΣlbL−1G(x).
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Now, define Qlb
n

2(u) by means of the same quantile transformation
we use in the proof of Proposition 2.4, say Rlb2

n (x) = Qlb2
n

(
F lb(x)

)
. It is

obvious that Qlb2
n (u) is a linear combination of random variables whose

behavior is independent from u, and whose coefficients are functions of
u, hence Qlb2

n (u) is tight in the space C[0, 1] of continuous functions in
[0, 1] with the sup norm, and therefore Qlb2

n (u) is also tight in D[0, 1],
and Rlb2

n (x) in D[−∞,∞].
As we have seen that Rlb

n (x) is tight in D[−∞,∞] we have that
Rlb1

n (x) is tight in D[−∞,∞]. ¦
Proof of Proposition 2.6: Following the same argumentation that
was given in Proposition 2.1 we obtain that

β̂ββ
∗
n = β̂ββn + µY L−1 1

n

n∑

i=1

g(xi)
ε̂∗i
yi

+ O

(
log log n

n

)
.

Notice that ε̂∗i = ε̂iγi and that

ε̂i = εi + g(xi)
T
(
βββ0 − β̂ββn

)
,

and hence

1
n

n∑

i=1

g(xi)
ε̂∗i
yi

=
1
n

n∑

i=1

g(xi)
εi

yi
γi +

1
n

n∑

i=1

g(xi)g(xi)
T γi

yi

(
βββ0 − β̂ββn

)
.

Because of the properties of γi and g(xi)g(xi)
T the Law of the Iterated

Logarithm can be used to show

1
n

n∑

i=1

g(xi)g(xi)
T γi

yi
= O

(√
log log n

n

)
.

In addition, from Proposition 2.1 we found that βββ0−β̂ββn = O
(√

log log n/n
)
,

therefore the thesis follows. ¦
Proof of Proposition 2.7: . From equation (14) we see that

Rlb1

n

∗
(x) = Rlb

n
∗
(x) +

1√
n

n∑

i=1

1
yi

g(xi)
T
(
β̂ββn − β̂ββ

∗
n

)
1{xi≤x}

= Rlb
n
∗
(x) + T1(x).

By means of the same ideas we use in the proof of Proposition 2.5
and using in this case Proposition 2.6 we can see that

T1(x) = −G(x)TL−1 1√
n

n∑

i=1

g(xi)
εi

yi
γi + O

(
log n√

n

)
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almost surely and uniformly over x ∈ Rd.
Again using the expression we gave for ε̂i in Proposition 2.6 we

obtain

Rlb
n
∗
(x) =

1√
n

n∑

i=1

ε̂∗i
yi

1{xi≤x} =
1√
n

n∑

i=1

εi

yi
γi1{xi≤x}

+

(
1√
n

n∑

i=1

g(xi)
T γi

yi
1{xi≤x}

)(
βββ0 − β̂ββn

)
= T2(x) + T3(x).

First term of T3(x) in previous expression can be written as an empiri-
cal process with respect to the joint empirical distribution F lb

n
∗(z, y, γ)

of the bootstrap and the population samples in the following way

G′
n(x) =

1
n

n∑

i=1

γi

yi
g(xi)

T1{xi≤x} =
∫

γ

y
g(z)T1{z≤x}dF lb

n
∗
(z, y, γ).

Therefore, the entries in G′
n(x) are given by F lb∗ f , an empirical

process indexed by functions in the class

C′j = {f(x) : f(x) =
γ

y
gj(z)1{z≤x}, x ∈ R}

and, having in mind that Γ (the wild bootstrap r.v.) and
(
X lb, Y lb

)
are

independent, and hence dF lb∗(z, y, γ) is just dF lb(z, y)pγ , besides the
properties of Γ it is not difficult to see that this class of functions is a
F lb∗–measurable VC–subgraph class of functions in the same manner
as shown in Proposition 2.5. Moreover, as Γ has null espectation, we
can show that G′

n(x) = O
(√

log n
)

with probability one and uniformly
for all x ∈ R, in the same way we did in that case. As βββ0 − β̂ββn =
O

(√
log log n/n

)
because of Proposition 2.1, we have

T3(x) = O

(√
log n log log n

n

)
,

from which we obtain the result. ¦
Proof of Theorem 2.2: The result follows from Proposition 2.7 argu-
ing as in Theorem 2.1, taking into account that because of the boot-
strap random variable Γ, the random errors εi become now bootstrap
random errors ε∗i = εiγi.

Recall that the distribution of the bootstrap random error
(
X lb, εlbΓ

)
,

εlb being
(
Y lb −m

(
X lb

))
, is given by

P
(
X lb ≤ z, εlbΓ ≤ e

)
= F lb

(
z,

e

a

)
pa + F lb

(
z,

e

b

)
pb,
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where a and b are the values the wild bootstrap random variable Γ can
take and pa and pb their respective probabilities. We have also used
F lb(z, e) to denote the distribution

(
X lb, εlb

)
. Therefore,

(
X lb, εlbΓ

)
has a continuous distribution, with the same first and second order
moments

(
X lb, εlb

)
has. ¦

5.2 Multivariate case

Proof of Proposition 3.1: From the definition of Rlb
n (x) it is clear

that this process belongs to D
(
Rd

)
because any intersection between

quadrants(see definition in Bickel and Wichura (1971)) on Rd and
{x ∈ Rd : x ≤ xi} is again a quadrant in Rd and the fact that Rlb

n (x)
is a finite linear combination of the indicators of {x ∈ Rd : x ≤ xi}
whose coefficients are continuous functions in Rd.

The finite dimensional distribution of a vector
(
Rlb

n

(
x1

)
, . . . , Rlb

n

(
xk

))
for x1, . . . ,xk in Rd is a multivariate normal distribution with null
mean because for every x the expected value of Rlb

n (x) is null and
again its covariance, as in the case of Proposition 2.4, is given by
Ew

[
vlb(xi)1{xi≤x∧x′}

]
.

The proof of tightness will be based on the properties of the trans-
formed process Qlb

n (u) given by

Rlb
n (x) = Qlb

n (T (x)),

for

Qlb
n (u) =

1√
n

n∑

i=1

1
yi

(
yi −m

(
T−1(ui)

))
1{ui≤u},

and ui = T (xi) for T defined as

T (x) =
(
F lb(x1|x2, . . . , xd), F lb(x2|x3, . . . , xd), . . . , F lb(xd−1|xd), F lb(xd)

)
,

where we have used F lb(xi|xi+1, . . . , xd) to denote the conditional dis-
tribution of the random variable X lb

i |X lb
i+1, . . . , X

lb
d and F lb(xd) to de-

note the marginal distribution of Xd, the last variable in X. As a
consequence of this definition, T maps Rd into [0, 1]d and we will use
F q to denote the distribution of the transformed variable while Eq [·]
will be used for its expectation.

Bearing in mind the tightness criteria introduced in Bickel and
Wichura (1971), for a quadrant D = [a1, a1 + b1] × · · · × [ad, ad + bd]
in Rd and a function H from Rd into R the increment of H around
D is defined as

H(D) =
1∑

l1=0

· · ·
1∑

ld=0

(−1)d−Pj ljH(a1 + l1b1, . . . , ad + ldbd).
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In particular, notice that if H(x) = 1{xj≤x}

H(D) =
1∑

l1=0

· · ·
1∑

ld=0

(−1)d−Pj lj1{x1≤a1+l1b1,...,xd≤ad+ldbd}

=
(
1{x1≤a1+b1} − 1{x1≤a1}

)

1∑

l2=0

· · ·
1∑

ld=0

(−1)d−Pd
j=2 lj1{x2≤a2+l2b2,...,xd≤ad+ldbd}

= . . .

=
(
1{x1≤a1+b1} − 1{x1≤a1}

)
. . .

(
1{xd≤ad+bd} − 1{xd≤ad}

)

= 1{xj∈D}

and, as a consequence of being the process Qlb
n (u) a linear combination

of indicators 1{ui≤u}, we obtain that for a quadrant D ⊂ [0, 1]d

Qlb
n (D) =

1√
n

n∑

i=1

1
yi

(
yi −m

(
T−1(ui)

))
1{ui∈D} =

1√
n

n∑

i=1

1
yi

αi(D).

Moreover, for quadrants D1 and D2 in Rd that are neighbouring blocks
in [0, 1]d(see definition in Bickel and Wichura (1971)):

Qlb
n (D1)

2
Qlb

n (D2)
2

=
1
n2

(
n∑

i=1

αi(D1)

)2( n∑

i=1

αi(D2)

)2

and, using Lemma 5.1 in Stute (1997) with αi = αi(D1) and βi =
αi(D2) we obtain

Eq
[
Qlb

n (D1)
2
Qlb

n (D2)
2
]
≤ 1

n2

(
nEq

[
αi(D1)

2αi(D2)
2
]

+ 3n(n− 1)Eq
[
αi(D1)

2
]
Eq

[
αi(D2)

2
])

.

But as a consequence of being D1 and D2 disjoint sets we have that

Eq
[
αi(D1)

2αi(D2)
2
]

= Eq




(
yi −m

(
T−1(ui)

)

yi

)2

1{ui∈D1}1{ui∈D2}


 = 0

and therefore

Eq
[
Qlb

n (D1)
2
Qlb

n (D2)
2
]
≤ 3

n− 1
n

Eq
[
αi(D1)

2
]
Eq

[
αi(D2)

2
]
.

From which we have that

Eq

[∣∣∣Qlb
n (D1)

∣∣∣
2∣∣∣Qlb

n (D2)
∣∣∣
2
]
≤ µ(D1)µ(D2),
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where we have taken µ(D) to be
√

3Eq
[
αi(D)2

]
. Hence, condition

(3) in Bickel and Wichura (1971) becomes fulfilled for neighbouring
blocks D1 and D2 with γ1 = γ2 = 2 and β1 = β2 = 1, and therefore
Qlb

n is tight in [0, 1]d which means that Rlb
n also is tight in Rd.

Notice that µ is a measure that in this particular case is induced
by the relative variance function vlb

µ(D) = Eq




(
yi −m

(
T−1(ui)

)

yi

)2

1{ui∈D}




= Elb

[(
yi −m(xi)

yi

)2

1{xi∈T−1(D)}

]

=
∫

T−1(D)
vlb(z) dF lb(z).

¦
Proof of Theorem 3.1: Follow the same argumentation given in the
proof of Theorem 2.1. ¦
Proof of Theorem 3.2: In the multivariate case, the distribution of
the bootstrap random error

(
Xlb, εlbΓ

)
, εlb being

(
Y lb −m

(
Xlb

))
, is

given by

P
(
Xlb ≤ z, εlbΓ ≤ e

)
= F lb

(
z,

e

a

)
pa + F lb

(
z,

e

b

)
pb,

where a and b are the values the wild bootstrap random variable Γ
and pa and pb their respective probabilities as in the proof of Theorem
2.2. Hence the same argumentation given there also works in this case.
¦

5.3 Selection Bias

Proof of Proposition 3.2: Follow the proof of Proposition 2.2, taking
into account that

dFw(x) =
Ew [w(X, Y )|X = x]

µw
dF (x)

¦
Proof of Proposition 3.3: Iw(x, y)wH is an empirical process indexed
by the following class of functions:

C = {fx(z, y) : fx(z, y) =
1

w(z, y)
1{z≤x}, x ∈ R}.
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But as w(z, y)−1 acts as a fixed functions and indicators of quadrants
in Rd are also VC–classes of functions, the proof follows the same
argument that was given in the Proposition 2.3 ¦
Proof of Theorem 3.3: The argument is analogous to the one given
for the proofs of Proposition 3.1 and Theorem 3.1 but using the re-
ciprocal of wi instead of the one for yi. ¦
Proof of Theorem 3.4: Follow the argumentation given for Theorem
2.2 with the changes pointed out in the previous result. ¦
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Härdle, W. and Mammen, E. (1993). Comparing nonparametric versus
parametric regression fits. Ann. Statist., 21(4), pp. 1926–1947.

Hart, J. D. (1997). Nonparametric smoothing and lack–of–fit tests.
Springer Series in Statistics. Springer-Verlag, New York.

van Keilegom, I., Sánchez Sellero, C., and Gonzlez-Manteiga, W.
(2007). Goodness–of–fit test in parametric regression based on the
estimation of the error distribution. TEST .

44



Liu, R. Y. (1988). Bootstrap procedures under some non-i.i.d. models.
Ann. Statist., 16(4), pp. 1696–1708.

Navarro, J., Ruiz, J. M., and del Aguila, Y. (2001). Parametric esti-
mation from weighted samples. Biom. J., 43(3), pp. 297–311.
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Figure 2: Power function for example 4.2(α = 0.05).
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Figure 3: Power function for example 4.3(α = 0.05).
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