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Universidad de Santiago de Compostela, Spain

and
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1 Introduction

Nonparametric regression models assume that we have a response yi ∈ IR and covariates or design
points xi ∈ IRp satisfying

yi = m (xi) + σ (xi) εi 1 ≤ i ≤ n , (1)

with the errors εi independent and independent of xi, with symmetric distribution F0 (·). The
nonparametric nature of model (1) offers more flexibility than the standard linear model, when
modelling a complicated relationship between the response variable with the covariates.

Two of the most common methods in nonparametric regression are kernel and k−nearest neigh-
bor kernel methods, introduced by Nadaraya-Watson (1964) and Collomb (1981) respectively. How-
ever, most of the statistical methods in nonparametric regression are designed for complete data
sets and problems arise when missing responses are present which is a common situation in bio-
medical or socioeconomic studies, for example. Classic examples can be found in the field of social
sciences with the problem of non-response in sample surveys, physics and genetics (Meng, 2000),
among others.

Even if they are many situations in which both the response and the explanatory variables
are missing, we will focus our attention only when missing data occur only in the responses. This
situation arises in many biological situations when the explanatory variables can be controlled. This
pattern is common, for example, in the scheme of double sampling proposed by Neyman (1938),
where first a complete sample is obtained and then some additional covariate values are computed
since perhaps this is less expensive than to obtain more response values. Hence, in this paper we
will derive robust nonparametric estimators of the regression function when the response variable
has missing observations but the covariate x is totally observed.

In the regression setting with missing data, a common method is to impute the incomplete
observations and then proceed to carry out the estimation of the conditional or unconditional
mean of the response variable with the completed sample. The methods considered include linear
regression (Yates, 1933), kernel smoothing (Cheng, 1994; Chu and Cheng, 1995) nearest neighbor
imputation (Chen and Shao, 2000), semiparametric estimation (Wang, Linton and Härdle, 2004),
nonparametric multiple imputation (Aerts, Claeskens, Hens and Molenberghs, 2002), empirical
likelihood over the imputed values (Wang and Rao, 2002), among others. González–Manteiga
and Pérez–Gonzalez (2004) considered an approach based on local polynomials to estimate the
regression function when the response variable y is missing but the covariate x is totally observed.
All these proposals are very sensitive to anomalous observations since they are based on a local
least squares approach.

As is well known, most nonparametric regression estimates with complete data suffer from the
same lack of robustness that their linear counterparts in parametric models. The treatment of
outliers is an important step in highlighting features of any data set. In this setting, outlying
observations can be even more dangerous since the shape of the estimated curve is highly sensitive
to outlying observations. Extreme points affect the scale and the shape of any estimate of the
regression function based on local averaging, leading to possible wrong conclusions. This has
motivated the interest in combining the ideas of robustness with those of smoothed regression, to
develop procedures which will be resistant to deviations from the central model in nonparametric
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regression models. Robust estimators can be obtained via local M−estimates. The first proposal of
robust estimates for nonparametric regression was given by Cleveland (1979) who adapted a local
polynomial fit by introducing weights to deal with large residuals. See also, Tsybakov (1982) and
Härdle (1984), who studied pointwise asymptotic properties of a robust version of the Nadaraya–
Watson method. These results were extended to M−type scale equivariant kernel estimates by
Härdle and Tsybakov (1988) and by Boente and Fraiman (1989a), who also considered robust
equivariant nonparametric estimates using nearest neighbor weights. A review of several methods
leading to robust nonparametric regression estimators for complete data sets can be seen in Härdle
(1990).

As in nonparametric regression without missing observations, the aim of a robust smoother, as
the local M−estimator, is to provide reliable estimations when outliers observations are present
in the responses yi. Indeed, the researcher is seeking for consistent estimators of the regression
function m without requiring moment conditions on the errors εi. This includes the well–known α-
contaminated neighborhood for the errors distribution. More precisely, in a robust framework, one
looks for procedures that remain valid when εi ∼ F0 ∈ Fε = {G : G(y) = (1 − α)G0(y) + αH(y)},
with H any symmetric distribution and G0 a central model with possible first or second moments.
In fact, the same framework can be considered in this paper. No moment conditions are required
to the errors and outliers correspond to deviations on the errors distribution.

The aim of this paper is to obtain robust nonparametric procedures to estimate the regression
function when missing responses are present and when possible outliers can occur in the responses.
We propose two robust nonparametric regression estimators when we are dealing with missing ob-
servations in the responses based on the robust nonparametric estimators for complete data studied
by Boente and Fraiman (1989b). The first one is the simplified multivariate local M−smoother
which uses only the observations at hand for the estimation and discards the incomplete vectors.
The second one is the imputed multivariate local M−smoother which uses the simplified local
M−smoother in order to impute the missing responses and then estimates the regression function
with the completed sample.

The paper is organized as follows. Section 2 introduces the robust nonparametric estimators.
The asymptotic properties of the simplified estimator and of the imputed estimator are studied in
the Sections 3 and asdistimputed respectively. A data–driven selector is discussed in Section 5. In
Section 6 we present results of a simulation study while some concluding remarks are presented in
Section 7. Finally, technical proofs are left to the Appendix.

2 Robust Proposals

We will consider robust inference with an incomplete data set (yi,xi, δi), 1 ≤ i ≤ n where δi = 1 if yi

is observed and δi = 0 if yi is missing. Let (Y,X, δ) be a random vector with the same distribution
as (yi,xi, δi). Our aim is to estimate the nonparametric regression function in a robust way with
the data set at hand. An ignorable missing mechanism will be imposed by assuming that δ and Y
are conditionally independent given X, i.e.,

P (δ = 1|Y,X) = P (δ = 1|X) = p (X) (2)
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We will consider two type of smoothers. The first one is based on kernel weights which are
given by

wi(x) =
K

(
xi − x
hn

)
δi

n∑

j=1

K

(
xj − x
hn

)
δj

, (3)

with K a kernel function, i.e., a nonnegative integrable function on IR and h the bandwidth
parameter, while the nearest neighbor with kernel approach considers as weight function

wi(x) =
K

(
xi − x
Hn(x)

)
δi

n∑

j=1

K

(
xi − x
Hn(x)

)
δi

, (4)

with Hn(x) the distance between x and its kn−nearest neighbor among x1, . . . ,xn.

2.1 Simplified Local M−Smoother

The simplified local M−smoother (SLMS) uses the information at hand and defines the estimator
with the complete observations only. Denote by F̂ (y|X = x) the empirical conditional distribution
function which is defined as

F̂ (y|X = x) =
n∑

i=1

wi(x)I(−∞,y](yi) , (5)

with wi(x) the kernel weights defined in (3) or the nearest neighbor with kernel weights given
in (4). F̂ (y|X = x) provides an estimate of the distribution of Y |X = x which will be denoted
F (y|X = x) and which has been studied by Cheng and Chu (1996). Note also that the kernel
weights are modified multiplying by the indicator of the missing variables in order to adapt to the
complete sample and avoid bias.

The simplest one is the local median, m̂med(x), computed as the median of F̂ (y|X = x). An
interesting feature of this estimate is that it does not need any consistent scale estimate, when scale
is unknown.

On the other hand, the local M−type estimate, m̂m(x) is defined as the location M−estimate
related to F̂ (y|X = x). Thus, it is the solution of

n∑

i=1

wi(x)ψ
(
yi − m̂m(x)

ŝ(x)

)
= 0 , (6)

where wi(x) are given in (3) or (4), ψ is an odd, bounded and continuous function and ŝ(x) is a
local robust scale estimate. Possible choices for the score function ψ are the Huber or the bisquare
ψ−function, while the scale ŝ(x) can be taken as the local median of the absolute deviations
from the local median (local mad), i.e., the mad (Huber (1981)) with respect to the distribution
F̂ (y|X = x) defined in (5). Note that m̂med(x) corresponds to the choice ψ(t) = sg(t).
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2.2 Imputed Local M−Smoother

As in the classical setting, see González–Manteiga and Pérez–González (2004), an imputation
method can be developed. The imputed local M−smoother is constructed in two stages. In
the first step, the SLMS is used to predict the missing observations so as to complete the sample.
In this way, a complete sample of the form (xi, ŷi), 1 ≤ i ≤ n, where ŷi = δi yi + (1 − δi)m̂(xi), is
obtained. The predictor m̂(xi) can be taken as the local median, m̂med(xi), defined as the me-
dian of the empirical conditional distribution function given in (5), or as the local M−estimator,
m̂m(xi) defined through (6). Also, a local one–step, m̂os(x), or a reweighted estimator, m̂rw(x),
can be consider to improve the efficiency of the local median and to reduce computations. These
estimators are defined through

m̂os(x) = m̂med(x) + ŝ(x)

n∑

i=1

wi(x)ψ
(
yi − m̂med(x)

ŝ(x)

)

n∑

i=1

wi(x)ψ ′
(
yi − m̂med(x)

ŝ(x)

)

m̂rw(x) =

n∑

i=1

wi(x)w
(
yi − m̂med(x)

ŝ(x)

)
yi

n∑

i=1

wi(x)w
(
yi − m̂med(x)

ŝ(x)

)

respectively, with w(t) =
ψ(t)
t

. To make explicit the dependence on the smoothing parameter,

we will denote the preliminary robust simplified smoother as m̂s(xi, hn), when dealing with kernel
weights and m̂s(xi, kn) when using nearest neighbor with kernel weights.

The kernel–based ILMS, m̂m,i(x), is then defined as the solution of
n∑

i=1

L

(
xi − x
γn

)
ψ

(
ŷi − m̂m,i(x)
ŝ(x, hn)

)
= 0 , (7)

where ŝ(x, hn) is the simplified estimator for the scale function, to avoid extra computations and
ŷi = δi yi + (1 − δi)m̂s(xi, hn). Note that a different smoothing parameter and a different kernel L
can be used in this step. The nearest neighbor with kernel estimate is defined similarly.

2.3 Some Comments

• In the classical setting, the target is to estimate the conditional mean E(Y |X = x) = m(x).
When considering ψ(t) = sgn(t) the target is now the conditional median. For general score
functions ψ, the target is the robust location conditional functional, related to ψ, as introduced
in Boente and Fraiman (1989a) who noted that it is a natural extension of the conditional
expectation.

It is worth noticing that the assumption of symmetry required to the error’s distribution is
needed if we want to guarantee that all robust location conditional functionals are Fisher–
consistent and so, to ensure that consistent estimators of the regression function m(x) are
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obtained. This result extends straightforward if the oddness of the score function and the
symmetry assumption on the errors distribution are replaced by EF0 (ψ (ε/σ)) = 0, for any
σ > 0. In Theorem 2.1 of Boente and Fraiman (1989a), it was shown that if the score
function ψ is a strictly increasing bounded continuous score function, the robust location
conditional functional exists, is unique and measurable. Furthermore, its weak continuity
was proved in Theorem 2.2 therein. Therefore, by applying this functional to weak consistent
estimators of the conditional distribution, we obtain consistent and asymptotically strongly
robust estimators of the robust location conditional functionals m(x). These results can thus
be applied in our missing setting

Effectively, for the simplified local M−smoother F̂ (y|X = x) provide weak consistent es-
timators of F (y|X = x). On the other hand, the imputed estimator can be viewed as

the robust location functional applied to ̂̂
F n(y|X = x) =

∑n
i=1Wi,n,l(x)I(−∞,y](ŷi) with

Wi,n,l(x) the kernel weights defined as Wi,n,l(x) = L ((xi − x) /γn)/
∑n

j=1 L ((xj − x) /γn).

As it will be shown in the Appendix, ̂̂F n(y|X = x) are weak consistent estimators of
F̃ (y|X = x) = p(x)F (y|X = x) + (1 − p(x))∆m(x) with ∆m(x) the point mass at m(x).
These properties together with Theorem 2.2 in Boente and Fraiman (1989a) allow to ensure
that our proposals for missing responses provide asymptotically strongly robust estimators.

• It is worth noticing that, as in the classical case, both, the simplified and imputedM−estimator
suffer from the “curse of dimensionality”. In particular, as shown in Sections 3.4 and 4.2 the
rate of convergence is (nhp

n)
1
2 or (nγp

n)
1
2 , respectively, as in the classical case.

Better rates of convergence can be achieved by restricting the class of regression functions,
for instance, assuming an additive model, i.e, by assuming an additive structure for m(x)
so as m(x) =

∑p
j=1 rj(xj), where rj : IR → IR are smooth functions. In the independent

setting, Härdle and Tsybakov (1990) proposed a nonrobust estimate of the function m based
on kernels, when no missing observations are present. Their estimates are very sensitive to
outliers, since they are based on local means, however a robust proposal was given by Bianco
and Boente (1998), also for data sets with no missing responses. An approach combining
our proposals with the estimators introduced in Bianco and Boente (1998) can be used when
dealing with missing responses. However, their asymptotic behavior deserves further careful
investigation as a future study and is beyond the scope of this paper.

3 Asymptotic Properties of the SLMS

3.1 Consistency

We will derive consistency for both kernel or nearest neighbor with kernel estimates. For this
reason, assumptions are split according to the weights used. Denote fX the density of X. When
dealing with kernel weights, there will be no need to require a density to the distribution µ of X.
In that sense, as in the complete sample setting, the results will be robust and distribution free.
We will consider the following set of assumptions.

H1. ψ : IR→ IR is an odd function, strictly increasing, bounded and continuous function.
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H2. F (y|X = x) is symmetric around m(x) and a continuous function of y for each fixed x.

H3. 0 < p(x)

H4. The kernel K : IRp → IR is a bounded nonnegative function such that

a I‖x‖≤r(x) ≤ K(x) for some a > 0, r > 0
a1 H(‖x‖) ≤ K(x) ≤ a2 H(‖x‖)

where a1, a2 are positive numbers and H : IR+ → IR+ is bounded decreasing and upH(u) → 0
as u→ ∞.

H5. The sequence h = hn is such that hn → 0, nhp
n → ∞ and

nhp
n

log n
→ ∞.

Note that H3 implies that, locally, some response variables are observed, which is a common
assumption in the literature. The following result ensures consistency of the regression function
estimator of m, when the smoothing is based either on local medians or local M−smoothers and
kernel weights.

Proposition 3.1.1. Assume that H1 to H5 hold. Then, we have that m̂m(x) a.s.−→ m(x), for
almost all x(µ).

When dealing with nearest neighbor with kernel weights we will need the following additional
assumptions

H6. The vector X has a density fX positive at x.

H7. The kernel K : IRp → IR is a bounded nonnegative function such that
∫
K(x)dx < ∞ and

either of the following hold

i) K(x) ≤ c I‖x‖≤r(x) for some c > 0 and r > 0

ii) fX is bounded and
∫
K2(x)dx <∞, lim

‖x‖→∞
‖x‖pK(x) = 0.

H8. K(ux) ≥ K(x) for u ∈ (0, 1).

H9. The sequence k = kn is such that
kn

n
→ 0, kn → ∞ and

kn

log n
→ ∞.

Proposition 3.1.2. Assume that H1 to H3 and that H6 to H8 hold. Then, we have that the
local M−smoothers based on nearest neighbor with kernel weights satisfy m̂m(x) a.s.−→ m(x), for
almost all x(µ).

Remark 3.1.1. Using the continuity of the median, similar arguments allow to show the consis-
tency of local medians if F (y|X = x) has a unique median at m(x), for almost all x.
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As above, let us denote by m̂s(x, hn), the robust simplified smoother based on kernel weights
when the bandwidth hn is used. The following proposition shows that the conclusion of Propo-
sition 3.1.1 remains valid if, instead of using a deterministic bandwidth, a random sequence of
bandwidths ĥn such that ĥn/hn

a.s.−→ 1 is considered. This result is hepful when considering data–
driven bandwidth selectors. It allows to show that the final data–driven regression estimator is still
consistent.

Proposition 3.1.3. Assume that H1 to H3 and that H7 to H8 hold. Moreover, assume that
there exists a sequence of fixed positive numbers hn satisfying H5, such that ĥn/hn

a.s.−→ 1. Then,
we have that the local M−smoothers based on kernel weights with random bandwidth ĥn satisfy
m̂m,s(x, ĥn) a.s.−→ m(x), for almost all x(µ).

3.2 Strong Convergence Rates

In order to obtain strong consistency rates we will need some additional regularity conditions.

H10. F (y|X = x) is Lipschitz in x uniformly in y, i.e., there exists η > 0 and c > 0 such that
‖u − x‖ < η entail |F (y|X = u) − F (y|X = x)| ≤ c‖u − x‖ for all y.

H11. p(x) and fX(x) satisfy a Lipschitz condition of order one.

H12. The function H defined in H4 satisfies up+2H(u) is bounded.

H13. θ−1
n hn ≤ A <∞ for all n with θn =

(
log n
nhp

n

) 1
2

.

Proposition 3.2.1. Assume that H1 to H5 and that H10 to H13 hold. If in addition ψ
is continuously differentiable with derivative ψ ′ positive and bounded, we have that the local
M−smoothers based on kernel weights satisfy θ−1

n |m̂m(x) −m(x)| = O(1), almost surely.

3.3 Uniform Consistency

We will now derive uniform consistency on a compact set C ⊂ IRp, for both kernel or nearest
neighbor with kernel estimates. We will consider the following set of assumptions.

A1. ψ : IR → IR is an odd function, strictly increasing, bounded and continuous differentiable,
with bounded derivative ψ ′ such that η(u) = uψ ′(u) ≤ ψ(u).

A2. The functions fX(x) and p (x) are bounded functions on C such that Ap = inf
x∈C

p(x) > 0 and

Af = inf
x∈C

fX(x) > 0. Moreover, p(x) is a continuous function in a neighborhood of C.

A3. F (y|X = x) is a continuous function of x in a neighborhood of C. Furthermore, it satisfies
the following equicontinuity condition:

∀ε > 0 ∃δ > 0 : |u− v| < δ ⇒ sup
x∈C

(|F (u|X = x) − F (v|X = x)|) < ε .
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A4. The kernel K : IRp → IR is a bounded nonnegative function such that 0 <
∫
K(u) du < ∞,∫

|u|K(u) du < ∞, ‖u‖pK(u) → 0 as ‖u‖ → ∞ and satisfies a Lipschitz condition of order
one.

A5. The function fX is a continuous function in a neighborhood of C.

Remark 3.3.1. This set of assumptions can be divided in three groups. The first one establishes
standard conditions on the score function ψ. The second one states regularity conditions on the
marginal density of X and on the conditional distribution function which imply that, for any
compact set C, 0 < inf

x∈C
s(x) ≤ sup

x∈C
s(x) < ∞ and that m(x) is a continuous function of x. The

third group restricts the class of kernel functions to be chosen and establishes conditions on the
rate of convergence of the smoothing parameters, which are standard in nonparametric regression.

The following result ensures uniform consistency of the regression functionm, when the smooth-
ing is based either on local medians or local M−smoothers. As in Section 3.1, a similar result can
be derived for the estimator m̂m,s(x, ĥn) based on a random sequence of bandwidths ĥn such that
ĥn/hn

a.s.−→ 1, if hn satisfies H5.

Proposition 3.3.1. Assume that A2 to A4 hold. Moreover, assume that H5 holds, for kernel
weights and that A5, H8 and H9 hold for nearest neighbor with kernel weights. Then, for any
compact set C,

a) under A1 and H2, we have that sup
x∈C

|m̂m(x) −m(x)| a.s.−→ 0,

b) if, in addition, F (y|X = x) have a unique median at m(x), we have that

sup
x∈C

|m̂med(x) −m(x)| a.s.−→ 0. (8)

Uniform strong convergence rates can also be derived similarly to the complete sample setting.

3.4 Asymptotic Distribution

We will state the result giving the asymptotic normality of the kernel–based estimates. The result
for the nearest neighbor with kernel weights can be derived similarly.

We will derive the asymptotic normality under the following set of assumptions

N1. The kernel K : IRd → IR is bounded, nonnegative, 0 <
∫
K(u)du <∞, 0 <

∫
‖u‖2K(u)du <

∞ and ‖u‖pK(u) → 0 as ‖u‖ → ∞.

N2. There exists 0 ≤ β <∞ such that hnn
1

p+2 → β
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N3. There exists a continuous symmetric function F0 such that the conditional distribution

F (y|X = u) = F0

(
y −m(u)
σ(u)

)
with m and σ such that σ is continuous in a neighborhood of

x and m satisfies a Lipschitz condition of order one and there exists lim
ε→0

m(x + εu) −m(x)
ε

=

m ′(x,u).

N4. The function ψ is twice continuously differentiable with bounded derivatives and with second
derivative ψ ′′ verifying that there exists positive constants c, M and ε such that ψ ′′(t) ≤
c|t|−2+ε for |t| > M .

N5. A0(ψ) =
∫
ψ ′(u)dF0(u) 6= 0

N6. g (u) = p (u) fX(u) is positive and continuous at x. Moreover, fX(u) is a bounded function.

Proposition 3.4.1. Under H1, H2, N1 to N6, if in addition m̂m(x)
p−→ m(x) and ŝ(x)

p−→ σ(x),
we have that

(nhp
n)

1
2 (m̂m(x) −m(x)) D−→ N

(
b1,

∫
ψ2(u)dF0(u)

[
∫
ψ ′(u)dF0(u)]

2V (x)

)

with

b1 = β1+ p
2

∫
m ′(x,u)K(u)du∫

K(u)du

V (x) =
σ2(x)

p(x)fX(x)

∫
K2(u)du

[
∫
K(u)du]2

.

Remark 3.4.1. It is worthwhile noticing that the asymptotic distribution of the simplified local
M−estimator is analogous to that of the kernel M−smoother based on the complete sample except
for the factor p(x) appearing in the asymptotic variance that corrects the effect of having missing
responses.

4 Asymptotic Properties of the ILMS

4.1 Consistency

We will derive consistency for the kernel estimates defined through (7), under mild conditions on
the smoother used to predict the missing observations. Results for nearest neighbor with kernel
weights follow similarly.

Proposition 4.1.1. Assume that H1 to H3 hold, that the kernel L satisfy H4 and the
bandwidth γn verify H5. Let m̂s(x) be the robust simplified estimator used to predict the missing
responses. Assume that for any compact set C, sup

u∈C
|m̂s(u) −m(u)| a.s.−→ 0. Then, if in addition

ŝ(x) a.s.−→ σ(x), we have that m̂m,i(x) a.s.−→ m(x).
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Note that H2, H5 and A2 to A4 entail that the simplified local M−smoother m̂m,s(x, hn) can
be used as predictor.

Remark 4.1.1. Denote by m̂m,i(x, γn) the estimator defined in (7) with bandwidth γn on the kernel
L. As in Section 3.1, let γ̂n be a random sequence of bandwidths such that for some deterministic
sequence γn, γ̂n/γn

a.s.−→ 1. It is easy to see that similar arguments to those used to derive Proposition
4.1.1 combined with Lemma A.1 in the Appendix, allow to show that m̂m,i(x, γ̂n) a.s.−→ m(x) if the
sequence γn verifies H5. Thus, the imputed data–driven robust estimators of the regression function
will be consistent as far as the data–driven bandwidths used at each step, ĥn and γ̂n satisfy that
there exist deterministic sequences hn and γn verifying H5 such that ĥn/hn

a.s.−→ 1 and γ̂n/γn
a.s.−→ 1.

4.2 Asymptotic Distribution

We will derive the asymptotic distribution under two different conditions on the robust estimators
used to predict the missing responses.

Proposition 4.2.1. Assume that H1, H2, N3 to N6 hold, that L satisfies N1 and that there

exists 0 ≤ β <∞ such that γnn
1

p+2 → β. Moreover, assume that L has compact support and that
m̂m,i(x) p−→ m(x) and ŝ(x) p−→ σ(x).

i) If for any compact neighborhood C of x, υ̂(C) = (nγp
n)

1
2 sup

u∈C
|m̂s(u) −m(u)| = op(1), we

have that

(nγp
n)

1
2
(
m̂m,i(x) −m(x)

) D−→ N

(
b1,

∫
ψ2(u)dF0(u)

[p(x)A0(ψ) + (1 − p(x))ψ ′(0)] 2 V (x)

)

with

b1 = β1+ p
2

∫
m ′(x,u)L(u)du∫

L(u)du

V (x) =
σ2(x) p(x)
fX(x)

∫
L2(u)du

[
∫
L(u)du]2

ii) Assume now that m̂m,s(u) is the simplified local M−smoother defined in (6) with score
function ψ1 satisfying H1, N4 and N5, bandwidth hn and kernel K with compact support

satisfying N1. Moreover, assume that
γn

hn
→ κ 6= 0, so that, for any compact neighborhood

C of x, υ̂(C) = (nγp
n)

1
2 sup

u∈C
|m̂m,s(u) −m(u)| = Op(1). Denote ∆(x,u,v) = m ′(x,u + κv)−

κm ′(x,v) and Γ(v, a) =
∫
L (u)K ((v − u) a) du. If, in addition, sup

u∈C
|ŝ(u) − σ(u)| p−→ 0,

we have that

(nγp
n)

1
2
(
m̂m,i(x) −m(x)

) D−→ N

(
b1,

∫
ψ2(u)dF0(u)

[p(x)A0(ψ) + (1 − p(x))ψ ′(0)] 2V (x)

)
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with

b1 = β
p
2
+1





∫
L (v)m ′(x,v)dv
∫
L(v)dv

+
κ−1 (1 − p(x))ψ ′ (0)

∫
L (v)K (u)∆(x,u,v)dvdu

[p(x)A0(ψ) + (1 − p(x))ψ ′(0)]
∫
K(u)du

∫
L(v)dv





V (x) =
σ2(x) p(x)

∫ [
L (v)ψ(ε) + κp (1 − p(x))

A0(ψ1)
∫
K(u)du p(x)

ψ ′ (0)ψ1(ε)Γ (v, κ)
]2

dF0(ε) dv

fX(x)
∫
ψ2(u)dF0(u) [

∫
L(u)du]2

Remark 4.2.1. Note that the asymptotic behavior of the imputed M−estimator depends on
the rate of convergence of the initial simplified estimator. If the initial estimate has a higher
rate of convergence, then the asymptotic bias does not depend on the score function, only the
asymptotic variance depends on the score function used and the efficiency involves now the value
ψ ′(0) weighted with the probability of having missing observations. On the other hand, if the
simplified M−estimator has rate of convergence (nγp

n)
1
2 the bias depend on th score function used

to compute the imputed estimate while the asymptotic variance depend on the score functions used
in both steps. In particular, if the same score function is used, i.e., ψ = ψ1, the expression for the
asymptotic variance reduces to

∫
ψ2(u)dF0(u)[p(x)A0(ψ) + (1 − p(x))ψ ′(0)]−2V (x) with

V (x) =
σ2(x) p(x)
fX(x)

∫ [
L (v) + κp (1 − p(x))

A0(ψ1)
∫
K(u)du p(x)

ψ ′ (0) Γ (v, κ)
]2

dv

[
∫
L(u)du]2

.

5 Data–driven selection of the smoothing parameters

An important issue in any smoothing procedure is the choice of the smoothing parameter. Under
a nonparametric regression model, two commonly used approaches are cross–validation and plug–
in. However, these procedures may not be robust and their sensitivity to anomalous data was
discussed by several authors, including Leung, Marriott and Wu (1993), Wang and Scott (1994),
Boente, Fraiman and Meloche (1997), Cantoni and Ronchetti (2001) and Leung (2005). Wang and
Scott (1994) note that, in the presence of outliers, the least squares cross–validation function is
nearly constant on its whole domain and thus, essentially worthless for the purpose of choosing
a bandwidth. The robustness issue remains for the estimators considered in this paper, specially
since we are dealing with missing responses. With a small bandwidth, a small number of outliers
with similar values of xi could easily drive the estimate of m to dangerous levels. Therefore, we
may consider a robust cross-validation approach analogous to that described in Leung (2005) for
an homoscedastic nonparametric regression model with unidimensional carriers, that takes into
account the missing observations.

To avoid a complete search in both parameters (hn, γn), when considering the imputed es-
timator, we propose to choose, in a first step, the smoothing parameter for the simplified local
M−estimator as follows
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• For each given h, compute m̂−i
m,s (x, h) as the solution of

n∑

j 6=i

K

(
xj − x
h

)
δj ψ

(
yj − a

ŝ−i(x)

)
= 0 ,

i.e., the estimator computed without the i−th observation.

• Calculate

RCV1,s(h) =
n∑

i=1

δiψ
2
H

(
ûi(h)
σ̂n(xi)

)
w (xi)

where ψH is the Huber’s function with tuning constant 1.345, ûi(h) = yi−m̂−i
m,s (xi, h), σ̂n(x)

is an estimator of the error’s scale σ(x) that does relatively little smoothing (see Cantoni and
Ronchetti (2001) for the complete case), w (xi) is a function to control boundary effects.

• Choose ĥn = argmin
h

RCV1,s(h).

As in classical cross–validation, the i−th observation (yi,xi) is not used to predict yi. In
this way, we ensure that the observations used to calculate m̂−i

m,s (·, h) are independent of xi, the
observation at which we evaluate m̂−i

m,s (x, h) to predict the i−response, when it is not missing. It
is worth noticing that this leave–out scheme is not used to obtain a more resistant procedure. As
mentioned above, several authors noticed that, when using L2 cross–validation, the final estimators
will be sensitive to outliers even if a local M−smoother is used, since the bandwidth choice is highly
influenced by anomalous responses. The score function ψH prevents from this effect by bounding
large residuals. On the other hand, once a reliable bandwidth is choosen the score function ψ in
(6) controls the effect of outliers on the estimator of the regression function.

When dealing with an homocedastic model, if they are no missing responses, it is well known
that one can take as estimator of the scale σ̂n(x) = σ̂n = mediani |yi+1 − yi|/(0.6745

√
2), when

x ∈ IR, x1 ≤ . . . ≤ xn. Otherwise, any other robust scale estimator using the observations
at hand and computed using a preliminary regression estimator can be considered. To be more
precise, let m̂med,s (x, h0) the simplified local median computed with a pilot bandwidth h0 and
ûi(h0) = yi − m̂med,s (xi, h0). Then under an homocedastic model σ̂n(x) = σ̂n can be taken
as the median of the absolute deviation with respect to the median of the residuals ûi(h0), i.e.,
σ̂n = mad{i: δi=1} (ûi(h0)). Note that in our setting, only the observations at hand are used to
compute the mad, since we are dealing with missing responses. If we suspect heteroscedasticity, it
is quite natural to consider ŝ(x) the local median of the absolute deviations from the local median,
i.e., the mad with respect to the distribution F̂ (y|X = x) defined in (5) with bandwidth h0.

Usually, in classical cross–validation, the function w is taken as w ≡ 1. However, as discussed
for instance in Härdle, Müller, Sperlich and Werwatz (2004) it may be used to assign less weight
to observations in regions of sparse data to reduce the variability in this region or at the tail of the
distribution of x to trim away boundary effects. The same decision can be taken when considering
a robust cross–validation if we want to avoid points near the boundary to be influential in the
selection of the smoothing parameter. For instance, if the distribution of x has a compact support
K, one can define w(x) = ICc (x) where C is a δ−neighborhood of Kc where Ac stands for the
complement of the set A. When p = 1 and K = [0, 1], this choice corresponds to w(x) = I[δ,1−δ](x).
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This selector can be used for the local imputed estimator. We guess that similar results to those
obtained by Leung (2005) can be derived in our setting with missing responses and p−dimensional
explanatory variables, but their derivation is beyond the scope of this paper. In particular, we
guess that the optimal asymptotic rate that depends on the smoothness of the regression function
m can be attained.

With this data–driven bandwidth, missing observations are imputed as ŷi = δi yi + (1 −
δi)m̂s

(
xi, ĥn

)
, to complete the sample. In the second step, to select γn, we apply the robust

cross–validation procedure to the completed sample, i.e, we select γ̂n = argmin
h

RCV1,i(γ) with

RCV1,i(γ) =
n∑

i=1

ψ2
H

( ̂̂ui(γ)
σ̂n(xi)

)
w (xi)

where ̂̂ui(γ) = ŷi − m̂−i
m,i (xi, γ), σ̂n(x) is the preliminary scale estimator computed in the first step

and m̂−i
m,i (x, γ) is the solution of

n∑

j 6=i

L

(
xj − x
γ

)
ψ

(
ŷj − a

σ̂n(x)

)
= 0 .

It is worth noticing that this method is not a direct application of the cross–validation criteria
but it reduces considerably the computations and the results of our simulation study show that it
worked favorably.

A cross–validation criterium analogous to that defined in Bianco and Boente (2007) can also
be considered. As mentioned by these authors, the cross–validation criterium tries to provide a
measure both of bias and variance, and so it would make sense to introduce a new measure that
establishes a trade–off between bias and variance. The robust cross–validation criterium when there
are no missing observations and under homoscedasticity is thus based on a robust estimator of the
bias, defined through a location estimator µn, and on a robust scale estimator σn of the residuals
as follows,

RCV2(h) = µ2
n (ûi(h), w (xi)) + σ2

n (ûi(h), w (xi)) ,

where µn (ui, wi) and σn (ui, wi) indicates that to compute the robust location and scale, respec-
tively, each observation ui receives a weight wi. For instance, when w(x) = ICc (x), we compute
the robust location of the residuals ûi(h) such that xi ∈ Cc, the other ones being discarded.

For the situation we are dealing with, it is enough, in the first step, to compute RCV2 with
the observations at hand. To be more precise, define the residuals r̂i = ûi(h)/σ̂n(xi) under het-
eroscedasticity and r̂i = ûi(h) under homoscedasticity. To compute RCV2,s we use only the observed
residuals {r̂i}i:δi=1 and discard the incomplete vectors.

If our aim is to evaluate the imputed estimator, to select γn, we proceed as described previously
by imputation of the missing responses. As above, we define the residuals ̂̂ri = ̂̂ui(h)/σ̂n(xi) under
heteroscedasticity and ̂̂ri = ̂̂ui(h) under homoscedasticity. The robust cross–validation selector γ̂n

minimizes
RCV2,i(γ) = µ2

n

(
̂̂ri, w (xi)

)
+ σ2

n

(
̂̂ri, w (xi)

)
.

We can consider µn as the median and σn as the mad, the bisquare a–scale estimator or the Huber
τ−scale estimator.
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6 Monte Carlo Study

6.1 Monte Carlo Study in dimension 1

This section contains the results of a simulation study, in dimension p = 1, designed to evaluate
the performance of the robust procedure defined in Section 2 when there are missing observations
in the response variable. The S–code is available upon request to the authors. The aims of this
study are

• to compare the behavior of the classical and robust estimators under contamination and under
normal samples.

• to study the behavior of the two robust proposals, simplified and imputed, among them and
compared to that of the robust nonparametric regression estimator that would be computed
if the complete data set will be available. Note that this last estimator, that we will denote
the complete data estimator, cannot be computed in practice. The aim is to detect which
of the two proposals, simplified or imputed, will give integrated mean square errors closer to
that obtained if all data were recorded.

6.1.1 General Description

Once the deterministic smoothing parameter was selected, we performed NR = 1000 replications
generating independent samples of size n = 100 following the model zi = 0.25 π sin (πxi) + εi,
1 ≤ i ≤ n, where xi ∼ U(0, 1), εi are i.i.d. and independent of xi, εi ∼ (1−α)N

(
0, σ2

)
+αN

(
0, 25σ2

)

with σ = 0.5. We considered three contamination proportions α = 0, 0.1 and 0.2, denoted C0, C1

and C2, the first one corresponding to the central normal model. When considering data–driven
bandwidths we performed only NR = 200 replications since the procedure of bandwidth selection
is computationally expensive.

We then define yi = zi if δi = 1 and missing otherwise to obtain the missing responses, where
the model for the missing probability considered, (2), is p (x) = 0.3 + 0.5 (sin (5 (x+ 0.2)))2 which
gives a proportion of missing data in each sample near the 40%.

The robust smoothing procedure uses local M−estimates with bisquare score function, with
tuning constant 4.685, and local medians as initial estimate. In both the classical and the robust
estimators, we have used the gaussian kernel with standard deviation 0.25/0.675 = 0.37 such that
the interquartile range is 0.5.

The estimators considered were:

• The Nadaraya–Watson and the local M−estimates with the complete data set, denoted re-
spectively, m̂ls,c and m̂m,c, in all Tables and Figures. As noted above, these estimators
cannot be computed in practice when missing responses are present.

• The simplified version of the Nadaraya–Watson andM−estimates, denoted respectively, m̂ls,s
and m̂m,s,
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• The imputed Nadaraya–Watson and M−estimates with predictors the simplified ones, de-
noted respectively, m̂ls,i and m̂m,i.

6.1.2 Selection of the smoothing parameters

The deterministic smoothing parameters was selected for each of these estimators and for each
contamination using as goodness of fit criterium the mean integrated square error, MISE,

MISE (h) = E
∫

(m (x) − m̂h (x))2 dx,

where m̂h denotes the estimator to be considered (classical or robust, with the complete data set
and with the simplified or imputed estimators for the samples with missing responses) using as
bandwidth the value h.

We performed 100 replications generating independent samples of size n = 100 following the
model described above. For each value of the smoothing parameter, the value of the MISE was
approximated by Monte Carlo as

∑100
k=1M(h, k)/100, where for each replication k, M(h, k) =∑`

j=1 (m (vj) − m̂h (vj))
2 /`, with vj = j/`, 1 ≤ j ≤ `, ` = 50. The smoothing parameter hn

was selected on a grid of 20 points in [0.2, 0.4] for the estimators using the sample without missing
responses and also for the simplified estimators. For the imputed estimator, the minimization for
each parameter h and γ, was carried out over a two dimensional grid on [0.2, 0.4]× [0.2, 0.4]. When
the minimization process, leads to a value on the boundary the search was carried on over the limits
of the interval. Table 1 reports the values obtained in each situation.

A data–driven selector was discussed in Section 5. We have computed the data–driven band-
widths when w ≡ 1. When using RCV2 , we choose the median as location estimator and the
τ−scale estimator. For this preliminary study, the search for the data–driven bandwidth selector
was performed searching over a grid of step 0.02 on the interval [0.05, 0.99], for the complete esti-
mators and on the interval [0.1, 0.99], for the simplified and imputed one. So, too small or too large
bandwidths are not allowed in this procedure. As mentioned above, due to the expensive computing
time, we have only performed 200 replications when considering cross–validation bandwidths. We
have also evaluate the performance of the classical estimators using least squares cross–validation.

6.1.3 Results

Once the smoothing parameters were obtained, we compared the different estimators for sample
sizes n = 100, under the scenario described in Section 6.1.1. The performance of an estimate m̂ of m
is measured using two measures computed over the replications ISE(m̂) =

∑`
j=1 (m (vj) − m̂ (vj))

2 /`

and MSE(m̂, x) =
∑NR

k=1 M(m̂, x, k)/NR where for each replication k, M(m̂, x, k) = (m (x) − m̂ (x))2.
As above vj = j/`, 1 ≤ j ≤ `, ` = 50. An approximation to the MISE was obtained as the mean
over the 1000 replications of ISE. Note that, when using the simplified estimator, ISE(m̂) is simply
the value of M(h0, k) obtained for the bandwidth h0 at the k−th replication, where h0 denotes the
smoothing parameter used in the estimation procedure and reported in Table 1 for the deterministic
bandwidth h0.
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Tables 2 to 4 summarize the results of the simulations. Table 2 gives the values of the MISE
for the linear and robust nonparametric estimators for complete data and when considering the
simplified and imputed estimators.

The reported efficiency of the robust estimators with respect to their linear relatives was com-
puted as

EFls,m =
MISEls − MISEm

MISEls
× 100 . (9)

where MISEls denotes the MISE of the local linear estimator and MISEm that of the local
M−smoother for each method, complete data, simplified or imputed one that will be indicated,
respectively, by c, s and i after the comma.

Table 3 shows the percentage of times that the ISE for robust estimators is less than the ISE
of the classical estimators.

Table 4 gives the percentage of times that the imputed robust estimator is less than the ISE of
the simplified together with the efficiency of the first with respect to the latter

EFm;s,i =
MISEm,s − MISEm,i

MISEm,s
× 100 ,

with MISEm,s the MISE of the local simplified M−estimator and MISEm,i that of the imputed
local M−smoother.

Figure 1 present the density estimation of ratio between the ISE for robust estimator and that
of the classical estimators when α = 0, 0.1 and 0.2 for the complete data and the simplified and
imputed estimators, respectively. In order to compare the simplified and imputed robust estimators,
Figure 2 shows the density estimator ratio between the ISE for the imputed robust estimator and
that of the simplified robust one while Figure 4 represents the ratio betwen the MSE of both
estimators across the values of x. The density estimates were evaluated using the normal kernel
with bandwidth 0.6 in all cases.

Finally, Figure 5 shows the boxplots of the ISE for the simplified and imputed robust estimators.

The results reported in Tables 2 to 4 show that when there are no contamination, the linear
estimator performs better than the robust ones that show a loss of efficiency related to that of
the M−smoother used. On the other hand, the performance of the classical Nadaraya–Watson
estimator is highly sensitive to the presence of outliers in the sample. The MISE increases with the
contamination level. For instance, when α = 0.2, the MISE of the linear estimator computed with
complete data is almost four times that observed under no contamination. The robust estimators
are much more estable under contamination increasing at most a 50% their MISE. This explains
the better efficiency observed in Table 2 for the robust estimators as contamination increases. On
the other hand, this is also reflected in Table 3 that shows that under contamination the robust
procedure reaches more than 70% of the times lower ISE than the linear estimates. Note also, that
when there is no contamination only 60% of the times the classical estimator is better than the
robust one been this fact related to the efficiency of the M−smoother.

From Figure 1 it should be noticed that when there is no contamination (α = 0) the behavior of
all estimators is quite similar, improving, in some cases, the robust procedure the performance of
the classical ones as it was observed in Table 3. However, as the contamination increases, Figures
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1 clarify the phenomena observed in Table 3 with respect to the better performance of the robust
estimators, since the density functions move towards the left of the point 1. Notice that the behavior
of the ratio is less than 1 as long as α increases.

Figures 2 and 4 show that the imputed estimator has a better performance than the simplified,
both at each point and globally. Moreover, its behavior improves as the contamination α increases.

Table 6 shows the percentage of times that the ISE for the robust imputed estimator is less
than the ISE for the robust simplified estimator when using robust cross–validation together with
the efficiency of the first with respect to the latter while Table 5 shows the number of times that
the ISE for the robust estimators is less than that of their linear counterparts. The results given in
Table 5 show that RCV2 is slightly better than RCV1. Figure 3 plots the density estimator of the
ratio between the ISE of the imputed robust estimator and that of the simplified robust one when
using the two robust cross–validation criterium. The results are quite similar to those obtained
with the fixed bandwdiths and the comments above still hold.

On the other hand, to study the sensitivity of the data selector to the contamination considered,
Figure 8 shows the boxplots of log(ĥn,C0/ĥn,C1) and log(ĥn,C0/ĥn,C2) for each scenario. These box-
plots show the sensitivity of least squares cross–validation and the stability of the robust bandwidth
selector when contaminating 10% or 20% of the data. The results being quite similar with both
robust cross–validation measures.

6.2 Monte Carlo Study in dimension 2

This section contains the results of a small simulation study, in dimension p = 2. As in Section 6.1,
the aims of this study are

• to compare the behavior of the classical and robust estimators under contamination and under
normal samples.

• to study the behavior of the two robust proposals, simplified and imputed, among them,
under different missing scenarios.

6.2.1 General Description

At each replication, data–driven bandwidths were selected using RCV1 and RCV1,i with w ≡ 1,
for the robust smoothers. For this preliminary study, the search for the data–driven bandwidth
selector was performed searching over a grid of step 0.025 on the interval [0.2, 0.925]. So, again too
small or too large bandwidths are not allowed. We have only performed 100 replications due to
the expensive computation time. We have also evaluate the performance of the classical estimators
using least squares cross–validation.

At each replication, we generated independent samples of size n = 500 following the model
zi = sin(2π xi1) + xi2 + εi, 1 ≤ i ≤ n, where xi = (xi1, xi2) ∼ U((0, 1) × (0, 1)), εi are i.i.d.
and independent of xi, εi ∼ (1 − α)N

(
0, σ2

)
+ αN

(
0, 25σ2

)
with σ = 0.5. We considered three

contamination proportions α = 0, 0.2 and 0.3, denoted C0, C1 and C2, the first one corresponding
to the central normal model.
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We then define yi = zi if δi = 1 and missing otherwise to obtain the missing responses. We
have considered the following models for the missing probability considered,

• p(x) ≡ 1, that corresponds to the complete data situation. In this case, imputed estimators
equal the simplified ones and so, they are not reported.

• p(x) ≡ 0.8, corresponding to data missing at random

• p(x) = 0.4 + 0.5 cos2(2x1 x2 + 0.4)

As in dimension 1, the robust smoothing procedure uses local M−estimates with bisquare score
function, with tuning constant 4.685, and local medians as initial estimate. In both the classical and
the robust estimators, we have used the gaussian kernel with standard deviation 0.25/0.675 = 0.37
such that the interquartile range is 0.5.

We considered the same estimators as in Section 6.1, i.e, the simplified version of the Nadaraya–
Watson and M−estimates, denoted respectively, m̂ls,s and m̂m,s and the imputed Nadaraya–
Watson and M−estimates with predictors the simplified ones, denoted respectively, m̂ls,i and
m̂m,i.

6.3 Results

Once the smoothing parameters were obtained, we compared the different estimators for sample
sizes n = 500, under the scenario described in Section 6.2.1. The performance of an estimate m̂
of m is measured using the ISE(m̂) =

∑`
j=1

∑`
s=1 (m (vj) − m̂ (vj,s))

2 /` with vj,s = (j/`, s/`),
1 ≤ j ≤ `, ` = 20. An approximation to the MISE was obtained as the mean over the 100
replications of ISE.

Tables 7 to 9 summarize the results of the simulations. Table 7 gives the values of the MISE
for the linear and robust nonparametric estimators when considering the simplified and imputed
estimators, for the different amounts of missingness while Table 8 reports the efficiency of the robust
estimators with respect to their linear relatives as defined in (9) while Table 9 reports the values
of EFm;s,i and EFm; s,i as defined in Section 6.1.3.

The robust estimators show their advantage over the classical ones under contamination as
shown by Table 8. On the other hand, it is worth noticing that in order to ensure that imputing
is better than using the sample at hand, a local bandwidth needs to be considered. Only a small
advantage could be expected with a global bandwidth. On the other hand, as contamination
increases the imputed estimators perform better than the simplified ones specially when considering
robust estimators (see Table 9). On the other hand, it is well known that when p(x, t) is constant,
the imputed estimators are not better than the simplified since data are randomly missing.

7 Concluding Remarks

We have introduced two robust procedures to estimate the regression function when there are
missing obervations in the response variable and it can be suspected that anomalous observations
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are present in the sample. Both procedures are strongly consistent and asymptotically normally
distributed.

Under the contaminations considered, they show their advantage over the Nadaraya-Watson
estimators. Moreover, the imputed localM−estimator, even if it is computationally more expensive,
should be used, since it performs better as contamination increases.
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A Appendix: Proofs.

Proof of Proposition 3.1.1. Using Theorem 2.2 in Boente and Fraiman (1989), it will be
enough to show that

sup
y∈IR

∣∣∣F̂ (y|X = x) − F (y|X = x)
∣∣∣ a.s.−→ 0 for almost all x ,

which will follow easily, if we show that for any measurable A ⊂ IR

φ̂A(x) a.s.−→ φA(x) for almost all x ,

where

φ̂A(x) =
n∑

i=1

wi(x)IA(yi) ,

φA(x) = P (Y ∈ A|X = x) .

Note that φ̂A(x) =
r̂A(x)
p̂(x)

where

r̂A(x) =
n∑

i=1

Wi,n(x)δiIA(yi) , (A.1)

p̂(x) =
n∑

i=1

Wi,n(x)δi , (A.2)

Wi,n(x) =
K

(
xi − x
hn

)

n∑

j=1

K

(
xj − x
hn

) . (A.3)
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Theorem 1 of Greblicki, Krzyzak and Pawlak (1984) entails that

r̂A(x) a.s.−→ p(x)φA(x) for almost all x ,

p̂(x) a.s.−→ p(x) for almost all x ,

which concludes the proof.

Proof of Proposition 3.1.2. The proof follows as that of Proposition 3.1.1 using Proposition
2 in Collomb (1980).

The proof of Proof of Proposition 3.1.3 is based on the following lemma that can be found in
Collomb (1980). Let (Xi, Bi), 1 ≤ i ≤ n, be a sequence of random vectors such that Xi ∈ IRp and
Bi ∈ IR+. Let k : IR× IRp → IR+ be a measurable function such that

u1 ≤ u2 ⇒ k(u1, z) ≤ k(u2, z) ∀z ∈ IRp .

Denote by cn(D) =
∑n

i=1Bik(D,Xi)/
∑n

i=1 k(D,Xi).

Lemma A.1. Let (Dn)n∈IN be a sequence of random variables. If for all 0 < β < 1, there exist
two sequences (D+

n )n∈IN and (D−
n )n∈IN satisfying

a) D−
n ≤ D+

n for all n and ID−
n ≤Dn≤D+

n

a.s.−→ 1

b) cn(D−
n ) a.s.−→ c and cn(D+

n ) a.s.−→ c

c)
∑n

i=1 k(D
−
n ,Xn)/

∑n
i=1 k(D

+
n ,Xn) a.s.−→ β

then cn(Dn) a.s.−→ c.

Proof of Proposition 3.1.3. As in the proof of Proposition 3.1.1 it will be enough to show that
for any measurable A ⊂ IR, φ̂A(x, ĥn) a.s.−→ φA(x) for almost all x, where φA(x) = P (Y ∈ A|X = x),
φ̂A(x, u) = r̂A(x, u)/p̂(x, u) with r̂A(x, u) =

∑n
i=1Wi,n(x, u)δiIA(yi), p̂(x, u) =

∑n
i=1Wi,n(x, u)δi

and Wi,n(x, u) = K

(
xi − x
u

)


n∑

j=1

K

(
xj − x
u

)


−1

.

Take in Lemma A.1, Bi = δiIA(yi) or Bi = δi, for r̂A(x, ĥn) and for p̂(x, ĥn), respectively, Dn = ĥn

and k(u, z) = K ((z − x)/u). Given 0 < β < 1 define D−
n = D−

n (β) = hnβ
1/(2p) and D+

n = D+
n (β) =

hnβ
− 1/(2p). The proof follows now easily applying Theorem 1 of Greblicki, Krzyzak and Pawlak

(1984) to r̂A(x,D−
n (β)), r̂A(x,D+

n (β)), p̂(x,D−
n (β)) and p̂(x,D+

n (β)) and Lemma A.1.

Proof of Proposition 3.2.1. The proof follows from Theorem 2.3 in Boente and Fraiman (1988)
if we show that

θ−1
n sup

y∈IR

∣∣∣F̂ (y|X = x) − F (y|X = x)
∣∣∣ = O(1)

which is a consequence of Lemma 2.1 in Boente and Fraiman (1990b) using that

sup
y∈IR

|F̂ (y|X = x) − F (y|X = x)| ≤
sup
y∈IR

|r̂(y,x) − r(y,x)| + |p̂(x) − p(x)|

p(x)p̂(x)
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with r̂(y,x) = φ̂(−∞,y](x), where φ̂(−∞,y](x) and p̂(x) defined in (A.1) and (A.2).

Proof of Proposition 3.3.1. a) Arguing as in Theorem 3.3 in Boente and Fraiman (1991) we
will only need to show that

sup
x∈C

sup
y∈IR

|F̂ (y|X = x) − F (y|X = x)| a.s.−→ 0, . (A.4)

Theorems 3.1 or 3.2 from Boente and Fraiman (1991), entail that

sup
x∈C

sup
y∈IR

|r̂(y,x) − r(y,x)| a.s.−→ 0, (A.5)

sup
x∈C

|p̂(x) − p(x)| a.s.−→ 0, (A.6)

where r(y,x) = φ(−∞,y](x) = p(x)F (y|X = x), r̂(y,x) = φ̂(−∞,y](x), with φ̂(−∞,y](x) and p̂(x)
defined in (A.1) and (A.2), respectively. The weights Wi,n are the kernel weights given by (A.3) or
the nearest with kernel weights

Wi,n(x) =
K

(
xi − x
Hn(x)

)

n∑

j=1

K

(
xj − x
Hn(x)

) .

Note that (A.6) can be derived for kernel weights using Proposition 2 in Collomb (1979). Now,
(A.4) follows using A2 and the inequality

sup
x∈C

sup
y∈IR

|F̂ (y|X = x) − F (y|X = x)| ≤
sup
x∈C

sup
y∈IR

|r̂(y,x) − r(y,x)| + sup
x∈C

|p̂(x) − p(x)|

ApÂp

where Ap = inf
x∈C

p(x) and Âp = inf
x∈C

p̂(x).

b) The equicontinuity condition required in A3 and the uniqueness of the conditional median
imply that m(x) is a continuous function of x and thus, for any fixed a ∈ IR the function ha(x) =
F (a+m(x)|X = x) will also be continuous as a function of x.

Given ε > 0, let 0 < δ < ε be such that

|u− v| < δ ⇒ sup
x∈C

(|F (u|X = x) − F (v|X = x)|) < ε

2
. (A.7)

Then, from the uniqueness of the conditional median and (A.7) we get that,

1
2
< F (m(x) + δ|X = x) <

1
2

+
ε

2
(A.8)

1
2
− ε

2
< F (m(x) − δ|X = x) <

1
2
. (A.9)

Write ι(δ) = inf
x∈C

F (m(x) + δ|X = x) and ν(δ) = sup
x∈C

F (m(x) − δ|X = x).
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The continuity of hδ(x) and h−δ(x) together with (A.8) and (A.9) entail that, ν(δ) <
1
2
< ι(δ) and

thus η = min
(
ι(δ) − 1

2
,
1
2
− ν(δ)

)
> 0.

Since (A.4) holds, let N be such that P (N ) = 0 and for any ω /∈ N , sup
x∈C

sup
y∈IR

|F̂ (y|X =

x) − F (y|X = x)| → 0. Thus, for n large enough we have that sup
x∈C

sup
y∈IR

|F̂ (y|X = x) − F (y|X =

x)| < min
(
η

2
,
ε

2

)
= ε1 . Therefore, for x ∈ C, we have that

F (m(x) + δ|X = x) − ε1 < F̂ (m(x) + δ|X = x) < F (m(x) + δ|X = x) + ε1

F (m(x) − δ|X = x) − ε1 < F̂ (m(x) − δ|X = x) < F (m(x) − δ|X = x) + ε1 ,

which entail that 1
2 < F̂ (m(x) + δ|X = x) < 1

2 + ε and 1
2 − ε < F̂ (m(x) − δ|X = x) < 1

2 and so,
sup
x∈C

|m̂med(x) −m(x)| ≤ δ < ε which concludes the proof.

Proof of Proposition 3.4.1. Using a Taylor’s expansion of order one, we get that

m̂m(x) −m(x) = ŝ(x)A−1
0,n(x)A1,n(x, ŝ(x))

with

A0,n(x) =
1
nhp

n

n∑

i=1

K

(
xi − x
hn

)
δiψ

′
(
yi − ξ(x)
ŝ(x)

)

A1,n(x, σ) =
1
nhp

n

n∑

i=1

K

(
xi − x
hn

)
δiψ

(
yi −m(x)

σ

)

where ξ(x) is an intermediate point. It is enough to show that

a) A0,n(x) p−→ p(x)fX(x)A0(ψ)
∫
K(u)du

b) (nhp
n)

1
2

(
Ã1,n(x, ŝ(x)) − Ã1,n(x, σ(x))

)
p−→ 0

c) (nhp
n)

1
2

(
A1,n(x, ŝ(x)) − Ã1,n(x, ŝ(x))

)
p−→ a1

d) (nhp
n)

1
2 Ã1,n(x, σ(x)) D−→ N(0, σ1),

where

Ã1,n(x, σ) =
1
nhp

n

n∑

i=1

K

(
xi − x
hn

)
δiψ

(
yi −m(xi)

σ

)

a1 = b1
p(x)fX(x)A0(ψ)

∫
K(u)du

σ(x)
= β1+ p

2
p(x)fX(x)A0(ψ)

∫
m′(x,u)K(u)du

σ(x)

σ1 = p(x)fX(x)
∫
K2(u)du

∫
ψ2(t)dF0(t) .
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a)and b) follows as in Boente and Fraiman (1990a). c) follows using a Taylor’s expansion of order

two. Effectively, denote Zi(σ) = δiψ
′
(
εiσ(xi)
σ

)
[m(xi) −m(x)], Zi = δiψ

′ (εi) [m(xi) −m(x)]. We

have the following expansion

(nhp
n)

1
2 (A1,n(x, ŝ(x)) − Ã1,n(x, ŝ(x))

)
=

1
ŝ(x)

1√
nhp

n

n∑

i=1

K

(
xi − x
hn

)
δiZi(ŝ(x)) +

+
1
2

1
ŝ(x)2

1√
nhp

n

n∑

i=1

K

(
xi − x
hn

)
δiψ

′′
(

ξi
ŝ(x)

)
[m(xi) −m(x)]2

=
1

ŝ(x)
1√
nhp

n

n∑

i=1

K

(
xi − x
hn

)
δiZi +

+
1
2

1
ŝ(x)2

1√
nhp

n

n∑

i=1

K

(
xi − x
hn

)
δi [σ(xi) − σ(x)]ψ′′

(
θi

ŝ(x)

)
[m(xi) −m(x)]

+
1
2

1
ŝ(x)2

[σ(x) − ŝ(x)]
1√
nhp

n

n∑

i=1

K

(
xi − x
hn

)
δiψ

′′
(

θi

ŝ(x)

)
[m(xi) −m(x)]

+
1
2

1
ŝ(x)2

1√
nhp

n

n∑

i=1

K

(
xi − x
hn

)
δiψ

′′
(

ξi
ŝ(x)

)
[m(xi) −m(x)]2

= S1n + S2n + S3n + S4n

with θi and ξi intermediate points. Using the boundness of ψ′′, the Lipschitz continuity of m
and the continuity of σ()̇ together with the consistency of the scale estimator, N1 and N2 we
get that Sjn

p−→ 0 for 2 ≤ j ≤ 4. On the other hand, using that λ(u) = E (Z1|X1 = u) =
p(u)A0(ψ) [m(u) −m(x)], we get that S1n

p−→ a1.

In order to prove d) denote by Zi = δiψ

(
yi −m(xi)

σ(x)

)
, E(Z1|X1) = 0. Therefore, the results

follows using the asymptotic distribution for the classical Nadaraya–Watson estimates for bounded
variables applied to (xi, Zi) (see, for instance, Theorem 2 in Schuster (1972)).

Proof of Proposition 4.1.1. Let Wi,n,l(x) be the kernel weights defined as

Wi,n,l(x) =
L

(
xi − x
hn

)

n∑

j=1

L

(
xj − x
hn

) . (A.10)

Then, the imputed estimate are the solution of
∫
ψ

(
y − m̂m,i(x)

ŝ(x)

)
d
̂̂
F n(y|X = x) = 0

where
̂̂
F n(y|X = x) =

n∑

i=1

Wi,n,l(x)I(−∞,y](ŷi) .
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Denote by F̃ (y|X = x) = p(x)F (y|X = x) + (1 − p(x))∆m(x) with ∆m(x) the point mass at m(x)

and by F̃n(y|X = x) =
n∑

i=1

Wi,n,l(x)I(−∞,y](ỹi) where ỹi = δiyi + (1 − δi)m(xi). Note that m(x) is

the unique solution of λ(x, a, σ) = 0 for all σ > 0 with

λ(x, a, σ) = p(x)E
(
ψ

(
y − a

σ

)
|X = x

)
+ (1 − p(x))ψ

(
m(x) − a

σ

)
.

It is easy to see that sup
y∈IR

|F̃n(y|X = x) − F̃ (y|X = x)| a.s.−→ 0. Thus, in order to obtain the

strong consistency and using Theorem 2.2 in Boente and Fraiman (1989), it will be enough to show

that sup
y∈IR

|F̃n(y|X = x) − ̂̂
F n(y|X = x)| a.s.−→ 0, which will follow if we show that, there exists a

measurable set N with probability 0, such that, for any ω /∈ N it holds that for any bounded and
Lipschitz f , we have that

∫
f(y)d ̂̂F n(y|X = x) −

∫
f(y)dF̃n(y|X = x) → 0 (A.11)

Note that

∆n,f (x) =
∫
f(y)d ̂̂F n(y|X = x) −

∫
f(y)dF̃n(y|X = x)

=
n∑

i=1

Wi,n,l(x)(1 − δi) [f (m̂s(xi)) − f (m(xi))]

Let C be a compact set such that x ∈ int(C). Denote

B1,n =
n∑

i=1

Wi,n,l(x)(1 − δi)ICc(xi) [f(m̂s(xi)) − f(m(xi))]

B2,n =
n∑

i=1

Wi,n,l(x)(1 − δi)IC(xi) [f(m̂s(xi)) − f(m(xi))]

Then, ∆n,f (x) = B1,n + B2,n. Using that the kernel K is a positive function, we get that |B1,n| ≤

‖f‖∞
n∑

i=1

Wi,n,l(x)ICc(xi) and |B2,n| ≤ Cf sup
u∈C

|m̂s(u) −m(u)|, where Cf denotes the Lipschitz

constant of f . Note that
n∑

i=1

Wi,n,l(x)ICc(xi)
a.s.−→ 0 since x /∈ C. Let N the probability 0 set such

that, for any ω /∈ N , we have

n∑

i=1

Wi,n,l(x)ICc(xi) → 0

sup
u∈C

|m̂s(u) −m(u)| → 0 .

Then, the bounds given entail that, for ω /∈ N , ∆n,f(x) → 0, concluding the proof.
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Proof of Proposition 4.2.1. Using a Taylor’s expansion of order one, we get that

m̂m,i(x) −m(x) = ŝ(x)A−1
0,n(x)A1,n(x, ŝ(x))

with

A0,n(x) =
1
nγp

n

n∑

i=1

L

(
xi − x
γn

)
ψ′
(
ŷi −m(x)
ŝ(x)

)
+

+
1
2
[
m(x) − m̂m,i(x)

] 1
nγp

n

n∑

i=1

L

(
xi − x
γn

)
ψ ′′
(
ŷi − ξ(x)
ŝ(x)

)

A1,n(x, ŝ(x)) =
1
nγp

n

n∑

i=1

L

(
xi − x
γn

)
ψ

(
ŷi −m(x)
ŝ(x)

)

where ξ(x) is an intermediate point between m̂m,i(x) and m(x). It is enough to show that

a) A0,n(x) p−→ fX(x) [p(x)A0(ψ) + (1 − p(x))ψ′(0)]
∫
L(u)du

b) (nγp
n)

1
2 A1,n(x, ŝ(x)) D−→ N(a1, σ1) with

a1 = b1
fX(x)
σ(x)

[
p(x)A0(ψ) + (1 − p(x))ψ′(0)

] ∫
L(u)du

σ1 =
∫
ψ2(u)dF0(u) V (x)

(
fX(x)
σ(x)

)2 [∫
L(u)du

]2

= p(x)fX(x)





∫
ψ2(u)dF0(u)

∫
L2(u)du under i)

∫ [
L (v)ψ(ε) +

κp (1 − p(x)) ψ′ (0)ψ1(ε)
A0(ψ1)

∫
K(u)du p(x)

Γ (v, κ)
]2
dv dF0(ε) under ii)

a) follows using similar arguments to those considered in Proposition 4.1.1. To obtain b) note that

nγp
n A1,n(x, σ) =

n∑

i=1

L

(
xi − x
γn

)
ψ

(
ŷi −m(x)

σ

)

=
n∑

i=1

L

(
xi − x
γn

)[
ψ

(
ỹi −m(x)

σ

)
+ (1 − δi)

m̂s(xi) −m(xi)
σ

ψ′
(
ξ(xi) −m(x)

σ

)]
(A.12)

=
n∑

i=1

L

(
xi − x
γn

) [
ψ

(
ỹi −m(x)

σ

)
+ (1 − δi)

m̂s(xi) −m(xi)
σ

ψ′
(
ỹi −m(x)

σ

)]

+
1
2

n∑

i=1

L

(
xi − x
γn

)
(1 − δi)

[m̂s(xi) −m(xi)]
2

σ
ψ′′
(
ξ(xi) −m(x)

σ

)
(A.13)

where ỹi = δiyi + (1 − δi)m(xi) and ξ(xi) denotes an intermediate point.

We begin by proving i).
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For n large enough, we have that L
(

xi−x
γn

)
= 0 for xi /∈ C which entails that (nγp

n)
1
2 A1,n(x, ŝ(x))

has the same asymptotic behavior as

(nγp
n)−

1
2

n∑

i=1

L

(
xi − x
γn

)
ψ

(
ỹi −m(x)
ŝ(x)

)

since from (A.12)

(nγp
n)

1
2

∣∣∣∣∣A1,n(x, ŝ(x)) − 1
nγp

n

n∑

i=1

L

(
xi − x
γn

)
ψ

(
ỹi −m(x)
ŝ(x)

)∣∣∣∣∣ ≤ υ̂(C)‖ψ′‖∞
1

ŝ(x)
1
nγp

n

n∑

i=1

L

(
xi − x
γn

)

Now the proof follows as in Proposition 3.4.1 by showing that

a1) (nγp
n)−

1
2

∣∣∣∣∣
n∑

i=1

L

(
xi − x
γn

)
ψ

(
ỹi −m(xi)

ŝ(x)

)
−

n∑

i=1

L

(
xi − x
γn

)
ψ

(
ỹi −m(xi)

σ(x)

)∣∣∣∣∣
p−→ 0

b1) (nγp
n)−

1
2

∣∣∣∣∣
n∑

i=1

L

(
xi − x
γn

)
ψ

(
ỹi −m(x)
ŝ(x)

)
−

n∑

i=1

L

(
xi − x
γn

)
ψ

(
ỹi −m(xi)

ŝ(x)

)∣∣∣∣∣
p−→ a1

c1) (nγp
n)−

1
2

n∑

i=1

L

(
xi − x
γn

)
ψ

(
ỹi −m(xi)

σ(x)

)
D−→ N(0, σ1)

a1 = b1
fX(x)
σ(x)

[
p(x)A0(ψ) + (1 − p(x))ψ ′(0)

] ∫
L(u)du

σ1 =
∫
ψ2(u)dF0(u)p(x)fX(x)

∫
L2(u)du .

a1) and b1) are derived as in Proposition 3.4.1. On the other hand, to prove c1) let Zi =

ψ

(
ỹi −m(xi)

σ(x)

)
, E (Z1|X1 = u) = 0. The result follows now from the asymptotic distribution

of the classical Nadaraya–Watson estimator.

Let us derive ii).

Using (A.13) we obtain that (nγp
n)

1
2 A1,n(x, ŝ(x)) has the same asymptotic behavior as

(nγp
n)−

1
2

[
n∑

i=1

L

(
xi − x
γn

)
ψ

(
ỹi −m(x)
ŝ(x)

)
+

n∑

i=1

L

(
xi − x
γn

)
(1 − δi)

m̂m,s(xi) −m(xi)
ŝ(x)

ψ ′
(
m(xi) −m(x)

ŝ(x)

)]

Using the consistency of ŝ(x) straightforward calculations allow to show that (nγp
n)

1
2 A1,n(x, ŝ(x))

has the same asymptotic behavior as

(nγp
n)−

1
2

[
n∑

i=1

L

(
xi − x
γn

)
ψ

(
ỹi −m(x)
σ(x)

)
+

n∑

i=1

L

(
xi − x
γn

)
(1 − δi)

m̂m,s(xi) −m(xi)
σ(x)

ψ ′
(
m(xi) −m(x)

σ(x)

)]

As in Proposition 3.4.1, denote

A0,n,s(x, ψ1) =
1
nhp

n

n∑

i=1

K

(
xi − x
hn

)
δiψ

′
1

(
yi − ξ(x)
ŝ(x)

)
.
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Using that sup
u∈C

|ŝ(u) − σ(u)| p−→ 0, and that sup
x∈C

∣∣∣∣A0,n,s(x, ψ1) −A0(ψ1)p(x)fX(x)
∫
K(u)du

∣∣∣∣
p−→

0 and expanding as in Proposition 3.4.1, we get

m̂m,s(xi) = m(xi)+
σ(xi)

p(xi)fX(xi)

(∫
K(u)duA0(ψ1)

)−1 1
nhp

n

n∑

j=1

K

(
xj − xi

hn

)
δjψ1

(
yj −m(xi)
σ(xi)

)
+Rn(xi)

where (nhp
n)

1
2 sup

u∈C
|Rn(u)| p−→ 0. Since

γn

hn
→ κ > 0, using the boundness of ψ ′, we obtain that

(nγp
n)

1
2 A1,n(x, ŝ(x)) has the same asymptotic behavior as

Un = (nγp
n)−

1
2

[
B1,n +

(
σ(x)A0(ψ1)

∫
K(u)du

)−1

B2,n

]

B1,n =
n∑

i=1

L

(
xi − x
γn

)
ψ

(
ỹi −m(x)
σ(x)

)

B2,n =
1
nhp

n

n∑

i=1

L

(
xi − x
γn

)
(1 − δi)

σ(xi)
p(xi)fX(xi)

ψ ′
(
m(xi) −m(x)

σ(x)

) n∑

j=1

K

(
xj − xi

hn

)
δjψ1

(
yj −m(xi)
σ(xi)

)

We begin by splitting B1,n and B2,n in the terms leading to the bias and those leading to the
asymptotic disribution. Using that ỹi = δiyi + (1 − δi)m(xi), we get

B1,n =
n∑

i=1

L

(
xi − x
γn

)
δiψ

(
yi −m(x)
σ(x)

)
+

n∑

i=1

L

(
xi − x
γn

)
(1 − δi)ψ

(
m(xi) −m(x)

σ(x)

)

=
n∑

i=1

L

(
xi − x
γn

)
δiψ

(
σ(xi)εi
σ(x)

)
+

n∑

i=1

L

(
xi − x
γn

)
δiψ

′
(
σ(xi)εi
σ(x)

)(
m(xi) −m(x)

σ(x)

)

+
n∑

i=1

L

(
xi − x
γn

)
δiψ

′′
(
ξi,1
σ(x)

)(
m(xi) −m(x)

σ(x)

)2

+
n∑

i=1

L

(
xi − x
γn

)
(1 − δi)ψ

(
m(xi) −m(x)

σ(x)

)

=
n∑

i=1

L

(
xi − x
γn

)
δiψ

(
σ(xi)εi
σ(x)

)
+

n∑

i=1

L

(
xi − x
γn

)
δiψ

′ (εi)
(
m(xi) −m(x)

σ(x)

)

+
n∑

i=1

L

(
xi − x
γn

)
δi

[
ψ ′′
(
ξi,1
σ(x)

)(
m(xi) −m(x)

σ(x)

)2

+ ψ ′′
(
ξi,2
σ(x)

)(
σ(xi) − σ(x)

σ(x)

)(
m(xi) −m(x)

σ(x)

)]

+
n∑

i=1

L

(
xi − x
γn

)
(1 − δi)ψ

(
m(xi) −m(x)

σ(x)

)

= D11,n +D12,n +D13,n +D14,n

where ξi,1 and ξi,2 denote intermediate points. Using that ψ ′′ is bounded and that m satisfies a
Lipschitz condition of order one (with Lipschitz constant Cm) we get that

(nγp
n)−

1
2 |D13,n| ≤ C2

m‖ψ ′′‖∞
σ(x)2

(
nγp+2

n

) 1
2

[
γn

1
nγp

n

n∑

i=1

L

(
xi − x
γn

)(‖xi − x‖
γn

)2

+
1
nγp

n

n∑

i=1

L

(
xi − x
γn

)(‖xi − x‖
γn

)
(σ(xi) − σ(x))

]
,
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which together with nγp+2
n → βp+2, the continuity of σ and

1
nγp

n

n∑

i=1

L

(
xi − x
γn

)(‖xi − x‖
γn

)2
p−→ fX(x)

∫
‖u‖2L(u)du

1
nγp

n

n∑

i=1

L

(
xi − x
γn

)(‖xi − x‖
γn

)
(σ(xi) − σ(x)) p−→ 0

entail that (nγp
n)−

1
2 D13,n

p−→ 0. On the other hand, we have that

(nγp
n)−

1
2 E (D12,n +D14,n) =

(
n

γp
n

) 1
2

E

(
L

(
x1 − x
γn

)[
p(x1)A0(ψ)

(
m(x1) −m(x)

σ(x)

)
+

+ (1 − p(x1))ψ
(
m(x1) −m(x)

σ(x)

)])

=
(
nγp+2

n

) 1
2

∫
L (u)

[
p(x + γn u)A0(ψ)

1
σ(x)

(
m(x + γn u) −m(x)

γn

)
+

+ (1 − p(x + γn u))
1
γn
ψ

(
m(x + γn u) −m(x)

σ(x)

)]
fX(x + γn u)du

Using the continuity of p(u), the boundness pf fX, the Lipschitz continuity of m and ψ, N3 and
the fact that ψ(0) = 0 and nγp+2

n → βp+2, from the dominated convergence Theorem, we get that

(nγp
n)−

1
2 E (D12,n +D14,n) → β

p+2
2
[
p(x)A0(ψ) + (1 − p(x))ψ ′(0)

] fX(x)
σ(x)

∫
L (u)m ′(x,u)du .

(A.14)
Finally, since

V ar (D12,n +D14,n)
nγp

n
=

1
γp

n
V ar

(
L

(
x1 − x
γn

) [
δ1ψ

′ (ε1)
(
m(x1) −m(x)

σ(x)

)
+ (1 − δ1)ψ

(
m(x1) −m(x)

σ(x)

)])

≤ 1
γp

n
E

(
L2
(

x1 − x
γn

)[
δ1ψ

′ (ε1)
(
m(x1) −m(x)

σ(x)

)
+ (1 − δ1)ψ

(
m(x1) −m(x)

σ(x)

)]2)

≤ ‖ψ ′‖∞
1
γp

n
E

(
L2
(

x1 − x
γn

)[
m(x1) −m(x)

σ(x)

]2)

≤ ‖ψ ′‖∞C2
m

1
σ(x)2

γp
nE

(
L2
(

x1 − x
γn

)(‖x1 − x‖
γp

n

)2
)

≤ ‖ψ ′‖∞C2
m

1
σ(x)2

γp
n

∫
L2 (u) ‖u‖2fX(x + γn u)du

we obtain that (nγp
n)−1 V ar (D12,n +D14,n) → 0 and so using (A.14), we have

(nγp
n)−

1
2 (D12,n +D14,n)

p−→ β
p+2
2
[
p(x)A0(ψ) + (1 − p(x))ψ ′(0)

] fX(x)
σ(x)

∫
L (u)m ′(x,u)du .

(A.15)
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Moreover, note that

D11,n =
n∑

i=1

L

(
xi − x
γn

)
δiψ (εi) +

n∑

i=1

L

(
xi − x
γn

)
δi

[
ψ

(
σ(xi)εi
σ(x)

)
− ψ (εi)

]

= ∆11,n + ∆12,n

withE(∆11,n) = 0 andE(∆12,n) = 0. We have the following bound for the variance of (nγp
n)−

1
2 ∆12,n

V ar
(
(nγp

n)−
1
2 ∆12,n

)
=

1
γp

n
V ar

(
L

(
x1 − x
γn

)
δ1

[
ψ

(
σ(x1)ε1
σ(x)

)
− ψ (ε1)

])

=
1
γp

n
E

(
L2
(

x1 − x
γn

)
δ1

[
ψ

(
σ(x1)ε1
σ(x)

)
− ψ (ε1)

]2)

≤
∫
L2 (u)

[
ψ

(
σ(uγn + x)ε

σ(x)

)
− ψ (ε)

]2
fX(uγn + x)dF0(ε) .

Using the dominated convergence Theorem, we get that V ar
(
(nγp

n)−
1
2 ∆12,n

)
→ 0, which together

with (A.15) entail that

(nγp
n)−

1
2 B1,n = (nγp

n)−
1
2 ∆11,n+

β
p+2
2 [p(x)A0(ψ) + (1 − p(x))ψ ′(0)] fX(x)

σ(x)

∫
L (u)m ′(x,u)du+op(1)

(A.16)

where ∆11,n =
n∑

i=1

L

(
xi − x
γn

)
δiψ (εi) and E(∆11,n) = 0.

We will made an expansion to the term (nγp
n)−

1
2 (σ(x)A0(ψ1)

∫
K(u)du)−1B2,n analogous to

that made for B1,n. Using a Taylor’s expansion of order 2, we obtain

B2,n =
1
nhp

n

n∑

i=1

L

(
xi − x
γn

)
(1 − δi)

σ(xi)
p(xi)fX(xi)

ψ ′
(
m(xi) −m(x)

σ(x)

) n∑

j=1

K

(
xj − xi

hn

)
δjψ1

(
yj −m(xi)
σ(xi)

)

=
1
nhp

n

n∑

i=1

L

(
xi − x
γn

)
(1 − δi)

σ(xi)
p(xi)fX(xi)

ψ ′
(
m(xi) −m(x)

σ(x)

)

×
n∑

j=1

K

(
xj − xi

hn

)
δjψ1

(
σ(xj)εj +m(xj) −m(xi)

σ(xi)

)

=
1
nhp

n

n∑

i=1

L

(
xi − x
γn

)
(1 − δi)

σ(xi)
p(xi)fX(xi)

ψ ′
(
m(xi) −m(x)

σ(x)

) n∑

j=1

K

(
xj − xi

hn

)
δjψ1

(
εj
σ(xj)
σ(xi)

)

+
1
nhp

n

n∑

i=1

L

(
xi − x
γn

)
(1 − δi)

p(xi)fX(xi)
ψ ′
(
m(xi) −m(x)

σ(x)

)

×
n∑

j=1

K

(
xj − xi

hn

)
δjψ

′
1

(
εj
σ(xj)
σ(xi)

)
(m(xj) −m(xi))

+
1
nhp

n

n∑

i=1

L

(
xi − x
γn

)
(1 − δi)

σ(xi)
p(xi)fX(xi)

ψ ′
(
m(xi) −m(x)

σ(x)

)
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×
n∑

j=1

K

(
xj − xi

hn

)
δjψ

′′
1

(
ξij,1
σ(xi)

)(
m(xj) −m(xi)

σ(xi)

)2

= D21,n +D22,n +D23,n

where ξij,1 denote intermediate points. Using that ψ ′′
1 is bounded and that m satisfies a Lipschitz

condition of order one (with Lipschitz constant Cm) we get that

(nγp
n)−

1
2 |D23,n| ≤ C2

m‖ψ ′‖∞‖ψ ′′
1 ‖∞ (nγp

n)−
1
2

1
nhp

n

n∑

i=1

L

(
xi − x
γn

)
σ(xi)

p(xi)fX(xi)

n∑

j=1

K

(
xj − xi

hn

)(‖xi − xj‖
σ(xi)

)2

≤ C2
m‖ψ ′‖∞‖ψ ′′

1 ‖∞
(
nγp+2

n

) 1
2 γn∆23,n

∆23,n =
1
nγp

n

1
nhp

n

n∑

i=1

L

(
xi − x
γn

)
1

σ(xi)p(xi)fX(xi)

n∑

j=1

K

(
xj − xi

hn

)(‖xi − xj‖
γn

)2

.

Thus, it will be enough to show that limE∆23,n <∞, since γn → 0 and nγp+2
n → βp+2.

E∆23,n =
1
γp

n

1
nhp

n
EL

(
x1 − x
γn

)
1

σ(x1)p(x1)fX(x1)

n∑

j=1

K

(
xj − x1

hn

)(‖x1 − xj‖
γn

)2

=
1
γp

n

1
hp

n

n− 1
n

E

[
L

(
x1 − x
γn

)
1

σ(x1)p(x1)fX(x1)
K

(
x2 − x1

hn

)(‖x1 − x2‖
γn

)2
]

=
1
γp

n

1
hp

n

n− 1
n

∫
L

(
x1 − x
γn

)
1

σ(x1)p(x1)
fX(x2)K

(
x2 − x1

hn

)(‖x1 − x2‖
γn

)2

dx1dx2

=
n− 1
n

(
hn

γn

)2 ∫
L (u)

1
σ(x + γnu)p(x + γnu)

fX(x + γnu + hnv)K (v) ‖v‖2dudv .

Therefore, using L has compact support,
γn

hn
→ κ 6= 0 and the dominated convergence Theorem we

get that E∆23,n → κ−2 fX(x)
σ(x)p(x)

∫
L (u) du

∫
K (v) ‖v‖2dv and so, (nγp

n)−
1
2 D23,n

p−→ 0.

Let us show that (nγp
n)−

1
2 D22,n converges in probability to the second component of the bias.

Denote

Hn,i,j = L

(
xi − x
γn

)
(1 − δi)

p(xi)fX(xi)
ψ ′
(
m(xi) −m(x)

σ(x)

)
K

(
xj − xi

hn

)
δjψ

′
1

(
εj
σ(xj)
σ(xi)

)
(m(xj) −m(xi))

ED22,n

(nγp
n)

1
2

= (nγp
n)−

1
2

1
nhp

n
E

[
n∑

i=1

L

(
xi − x
γn

)
(1 − δi)

p(xi)fX(xi)
ψ ′
(
m(xi) −m(x)

σ(x)

)

×
n∑

j=1

K

(
xj − xi

hn

)
δjψ

′
1

(
εj
σ(xj)
σ(xi)

)
(m(xj) −m(xi))

]

= (nγp
n)−

1
2

1
nhp

n
n(n− 1)E (Hn,1,2)
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= (nγp
n)

1
2
n− 1
n

1
γp

n h
p
n
E

[
L

(
x1 − x
γn

)
(1 − p(x1))
p(x1)fX(x1)

ψ ′
(
m(x1) −m(x)

σ(x)

)

× K

(
x2 − x1

hn

)
p(x2)ψ ′

1

(
ε2
σ(x2)
σ(x1)

)
(m(x2) −m(x1))

]

= (nγp
n)

1
2
n− 1
n

1
γp

n h
p
n

∫
L

(
x1 − x
γn

)
(1 − p(x1))
p(x1)

ψ ′
(
m(x1) −m(x)

σ(x)

)

× K

(
x2 − x1

hn

)
p(x2)ψ ′

1

(
ε
σ(x2)
σ(x1)

)
(m(x2) −m(x1)) fX(x2)dx1dx2dF0(ε)

= (nγp
n)

1
2
n− 1
n

1
γp

n

∫
L

(
x1 − x
γn

)
(1 − p(x1))
p(x1)

ψ ′
(
m(x1) −m(x)

σ(x)

)

× K (u) p(x1 + hnu)ψ ′
1

(
ε
σ(x1 + hnu)

σ(x1)

)
(m(x1 + hnu) −m(x1)) fX(x1 + hnu)dx1dudF0(ε)

= (nγp
n)

1
2
n− 1
n

∫
L (v)

(1 − p(x + γnv))p(x + γnv + hnu)
p(x + γnv)

ψ ′
(
m(x + γnv) −m(x)

σ(x)

)

× K (u)ψ ′
1

(
ε
σ(x + γnv + hnu)

σ(x + γnv)

)
(m(x + γnv + hnu) −m(x + γnv)) fX(x + γnv + hnu)dvdudF0(ε)

=
(
nγp+2

n

) 1
2 n− 1

n

hn

γn

∫
L (v)

(1 − p(x + γnv))p(x + γnv + hnu)
p(x + γnv)

ψ ′
(
m(x + γnv) −m(x)

σ(x)

)

× K (u)ψ ′
1

(
ε
σ(x + γnv + hnu)

σ(x + γnv)

)
m(x + γnv + hnu) −m(x + γnv)

hn
fX(x + γnv + hnu)dvdudF0(ε)

Using that nγp+2
n → βp+2, hn

γn
→ κ−1, N3 and the dominated convergence Theorem, we get that

(nγp
n)−

1
2 E (D22,n) → A0(ψ1)fX(x)(1−p(x))ψ ′ (0) β

p+2
2 κ−1

∫
L (v)K (u)∆(x,u,v)dvdu . (A.17)

It remains to show that (nγp
n)−1 V ar (D22,n) → 0.

V ar (D22,n)
nγp

n
=

1
nγp

n

1

(nhp
n)2

V ar




n∑

i=1

n∑

j 6=i

Hn,i,j




=
1
nγp

n

1

(nhp
n)2

n∑

i=1

n∑

j 6=i

n∑

s=1

n∑

6̀=s

Cov (Hn,i,j,Hn,s,`)

=
1
nγp

n

1

(nhp
n)2




n∑

i=1

n∑

j 6=i

n∑

6̀=i

Cov (Hn,i,j,Hn,i,`) +
n∑

i=1

n∑

j 6=i

n∑

s6=i

Cov (Hn,i,j,Hn,s,i)

+
n∑

i=1

n∑

j 6=i

n∑

6̀=i,j

Cov (Hn,i,j,Hn,j,`) +
n∑

i=1

n∑

j 6=i

n∑

s6=i,j

Cov (Hn,i,j,Hn,s,j)




=
1
nγp

n

n(n− 1)

(nhp
n)2

[(n− 2)Cov (Hn,1,2,Hn,1,3) + V ar (Hn,1,2)

+ [(n− 2)Cov (Hn,1,2,Hn,3,1) + Cov (Hn,1,2,Hn,2,1)]
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+ (n− 2) [Cov (Hn,1,2,Hn,2,3) + Cov (Hn,1,2,Hn,3,2)]]

=
1
nγp

n

n(n− 1)

(nhp
n)2

(n− 2) [Cov (Hn,1,2,Hn,1,3) + Cov (Hn,1,2,Hn,3,1)

+ Cov (Hn,1,2,Hn,2,3) + Cov (Hn,1,2,Hn,3,2)]

+
1
nγp

n

n(n− 1)

(nhp
n)2

[V ar (Hn,1,2) + Cov (Hn,1,2,Hn,2,1)]

From the equality

αn =
ED22,n

(nγp
n)

1
2

= (nγp
n)−

1
2

1
nhp

n
n(n− 1)E (Hn,1,2)

and the fact that

Λn =
1
nγp

n

n(n− 1)

(nhp
n)2

(n− 2) [E (Hn,1,2)]2 +
1
nγp

n

n(n− 1)

(nhp
n)2

[E (Hn,1,2)]2

= α2
n

1
nγp

n

n(n− 1)

(nhp
n)2





(n− 2)


(nγp

n)
1
2 nhp

n

n(n− 1)




2

+


(nγp

n)
1
2 nhp

n

n(n− 1)




2




= α2
n

1
n

using (A.17), we have that it will be enough to show that

1
nγp

n

n(n− 1)

(nhp
n)2

(n− 2) [E (Hn,1,2Hn,1,3) +E (Hn,1,2Hn,3,1) +E (Hn,1,2Hn,2,3) +E (Hn,1,2Hn,3,2)]

+
1
nγp

n

n(n− 1)

(nhp
n)2

[
E
(
H2

n,1,2

)
+E (Hn,1,2Hn,2,1)

]
→0

that follows easily using that γn

hn
→ κ 6= 0, E (Hn,1,2Hn,2,3) = (hp

n)3 o(1), E
(
H2

n,1,2

)
= (hp

n)2 o(1)
and the fact that nγp

n → ∞.

Therefore, using (A.17), we have that

(nγp
n)−

1
2

B2,n

σ(x)A0(ψ1)
∫
K(u)du

= (nγp
n)−

1
2

(
σ(x)A0(ψ1)

∫
K(u)du

)−1

D21,n

+
(1 − p(x))fX(x)
σ(x)

∫
K(u)du

ψ ′ (0) β
p+2
2 κ−1

∫
L (v)K (u)∆(x,u,v)dvdu + op(1) (A.18)

with

D21,n =
1
nhp

n

n∑

i=1

L

(
xi − x
γn

)
(1 − δi)

σ(xi)
p(xi)fX(xi)

ψ ′
(
m(xi) −m(x)

σ(x)

) n∑

j=1

K

(
xj − xi

hn

)
δjψ1

(
εj
σ(xj)
σ(xi)

)
.

Denote

∆21,n =
1
nhp

n

n∑

i=1

L

(
xi − x
γn

)
(1 − δi)σ(xi)
p(xi)fX(xi)

ψ ′
(
m(xi) −m(x)

σ(x)

) n∑

j=1

K

(
xj − xi

hn

)
δjψ1 (εj)(A.19)

∆22,n = D21,n − ∆21,n
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Using that E (∆22,n) = 0 and bounding the variance of (nγp
n)−

1
2 ∆22,n as we have done with that

of (nγp
n)−

1
2 D22,n, replacing ψ ′

1

(
εj

σ(xj )
σ(xi)

)
(m(xj) −m(xi)) by ψ1

(
εj

σ(xj )
σ(xi)

)
− ψ1 (εj), the continuity

of σ and straightforward calculations lead to (nγp
n)−

1
2 ∆22,n

p−→ 0.

Thus, putting together (A.16), (A.18) and (A.19), we have the following expansion for Un

Un = (nγp
n)−

1
2

[
B1,n +

(
σ(x)A0(ψ1)

∫
K(u)du

)−1

B2,n

]

= (nγp
n)−

1
2

[
∆11,n +

(
σ(x)A0(ψ1)

∫
K(u)du

)−1

∆21,n

]
+ a1 + op(1)

a1 =
β

p+2
2 fX(x)
σ(x)

{[
p(x)A0(ψ) + (1 − p(x))ψ ′(0)

] ∫
L (v)m ′(x,v)dv

+
(1 − p(x))∫
K(u)du

ψ ′ (0) κ−1
∫
L (v)K (u)∆(x,u,v)dvdu

}

= b1
fX(x)
σ(x)

[
p(x)A0(ψ) + (1 − p(x))ψ ′(0)

] ∫
L(u)du

∆11,n =
n∑

i=1

L

(
xi − x
γn

)
δiψ (εi)

∆21,n =
1
nhp

n

n∑

i=1

L

(
xi − x
γn

)
(1 − δi)

σ(xi)
p(xi)fX(xi)

ψ ′
(
m(xi) −m(x)

σ(x)

) n∑

j=1

K

(
xj − xi

hn

)
δjψ1 (εj)

It only remains to show that (nγp
n)−

1
2

[
∆11,n + (σ(x)A0(ψ1)

∫
K(u)du)−1 ∆21,n

] D−→ N(0, σ1).

Let us begin by writting (nγp
n)−1 ∆21,n as a U−statistic with symmetric kernel. Denote Lγn(v) =

γ−p
n L(v/γn), Khn(v) = h−p

n K(v/hn) and zi =
(
xt

i , δi, εi
)t

. Then,

1
nγp

n
∆21,n =

1
nγp

n

1
nhp

n

n∑

i=1

L

(
xi − x
γn

)
(1 − δi)

σ(xi)
p(xi)fX(xi)

ψ ′
(
m(xi) −m(x)

σ(x)

) n∑

j=1

K

(
xj − xi

hn

)
δjψ1 (εj)

=
1
n2

n∑

i=1

n∑

j=1

Lγn (xi − x)Khn (xj − xi) (1 − δi)δj
σ(xi)

p(xi)fX(xi)
ψ ′
(
m(xi) −m(x)

σ(x)

)
ψ1 (εj)

=
1
n2

n∑

i=1

n∑

j=1

Hγn,hn (zi, zj)

Hγn,hn (zi, zj) = Lγn (xi − x)Khn (xj − xi) (1 − δi)δj
σ(xi)

p(xi)fX(xi)
ψ ′
(
m(xi) −m(x)

σ(x)

)
ψ1 (εj)

Note that Hγn,hn (zi, zi) = 0, thus if we denote

λγn,hn (zi, zj) =
1
2

(Hγn,hn (zi, zj) +Hγn,hn (zj , zi))

we obtain that
1
nγp

n
∆21,n =

1
n2

n∑

i=1

n∑

j=1

λγn,hn (zi, zj) =
n− 1
n

Uλ,n
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Uλ,n =
1

n(n− 1)

n∑

i=1

n∑

j=1

λγn,hn (zi, zj)

We have that E (λγn,hn (zi, zj)) = 0 and for any j 6= i

E (Uλ,n|zi) =
2

n(n− 1)

n∑

j=1

E (λγn,hn (zi, zj) |zi)

E (Uλ,n|zi) =
2
n
E (λγn,hn (zi, zj) |zi)

E (λγn,hn (zi, zj) |zi) =
1
2
E ((Hγn,hn (zi, zj) +Hγn,hn (zj , zi)) |zi)

=
1
2
E (Hγn,hn (zj , zi) |zi) .

The last equality holds since Eψ1(εj) = 0. Therefore, for any j 6= i, we have

E (Uλ,n|zi) =
1
n
E (Hγn,hn (zj , zi) |zi)

=
1
n
δiψ1 (εi)E

(
Lγn (xj − x)

σ(xj)(1 − δj)
p(xj)fX(xj)

ψ ′
(
m(xj) −m(x)

σ(x)

)
Khn (xi − xj) |zi

)

=
1
n
δiψ1 (εi)E

(
Lγn (xj − x)

σ(xj)(1 − p(xj))
p(xj)fX(xj)

ψ ′
(
m(xj) −m(x)

σ(x)

)
Khn (xi − xj) |zi

)

=
1
n
δiψ1 (εi)

∫
Lγn (xj − x)

σ(xj)(1 − p(xj))
p(xj)

ψ ′
(
m(xj) −m(x)

σ(x)

)
Khn (xi − xj) dxj

=
1
n
δiψ1 (εi)

∫
L (u)

σ(x + γnu)(1 − p(x + γnu))
p(x + γnu)

ψ ′
(
m(x + γnu) −m(x)

σ(x)

)

×Khn (xi − x− γnu) du

=
γp

n

nhp
n

1
γp

n
δiψ1 (εi)

∫
L (u)

σ(x + γnu)(1 − p(x + γnu))
p(x + γnu)

ψ ′
(
m(x + γnu) −m(x)

σ(x)

)

×K
((

xi − x
γn

− u
)
γn

hn

)
du

=
γp

n

nhp
n
δiψ1 (εi)

[
σ(x)(1 − p(x))

p(x)
ψ ′ (0)

∫
L (u)

1
γp

n
K

((
xi − x
γn

− u
)
γn

hn

)
du +R1,n(xi)

]

=
κp

n
δiψ1 (εi)

[
σ(x)(1 − p(x))

p(x)
ψ ′ (0)

∫
L (u)

1
γp

n
K

((
xi − x
γn

− u
)
γn

hn

)
du +R2,n(xi)

]
,

where (nγp
n)

1
2

1
n

n∑

i=1

|R2,n(xi)| → 0. Let Γ(v, a) =
∫
L (u)K ((v − u) a) du and Γγn(v, a) = γ−p

n Γ(v/γn, a)

E (Uλ,n|zi) =
κp

n
δiψ1 (εi)

[
σ(x)(1 − p(x))

p(x)
ψ ′ (0) Γγn

(
xi − x,

γn

hn

)
+R2,n(xi)

]

=
1
n

Λγn,hn(zi) +
κp

n
δiψ1 (εi)R2,n(xi) ,
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with Λγn,hn(zi) = κpσ(x)(1 − p(x))p−1(x)ψ ′ (0) δiψ1 (εi) Γγn

(
xi − x, γn

hn

)
.

Denote Ûλ,n =
1
n

n∑

i=1

Λγn,hn(zi). Then, standard U–statistic arguments allow to show that

nγp
nE

(
Uλ,n − Ûλ,n

)2
≤ (1/(n − 1))V ar (λγn,hn(z1, bz2)). Using that hp

n γp
n V ar (λγn,hn(z1, z2)) =

(1/2)E
(
Hγn,hn(z1, z2)2

)
is bounded, we get that nγp

nE
(
Uλ,n − Ûλ,n

)2
≤ C/(n hp

n) → 0 , and

so (nγp
n)Uλ,n and (nγp

n) Ûλ,n have the same asymptotic behavior. Therefore, we obtain that
(nγp

n)
1
2 A1,n(x, ŝ(x)) has the same asymptotic behavior as

Wn = (nγp
n)−

1
2

[
∆11,n +

(
σ(x)A0(ψ1)

∫
K(u)du

)−1

∆31,n

]
+ a1

∆11,n =
n∑

i=1

L

(
xi − x
γn

)
δiψ (εi)

∆31,n = γp
n

n∑

i=1

Λγn,hn(zi) =
n∑

i=1

κpσ(x)(1 − p(x))
p(x)

ψ ′ (0) δiψ1 (εi) Γ
(

xi − x
γn

,
γn

hn

)

Therefore, Wn = a1 +W1,n with

W1,n = (nγp
n)−

1
2

n∑

i=1

δi

[
L

(
xi − x
γn

)
ψ (εi) + κp (1 − p(x))

A0(ψ1)
∫
K(u)du p(x)

ψ ′ (0) Γ
(

xi − x
γn

,
γn

hn

)
ψ1 (εi)

]

Since

V ar (W1,n) = γ−p
n E

{
δi

[
L

(
xi − x
γn

)
ψ (εi) + κp (1 − p(x))

A0(ψ1)
∫
K(u)du p(x)

ψ ′ (0) Γ
(

xi − x
γn

,
γn

hn

)
ψ1 (εi)

]2}

= γ−p
n

∫
p(v)

[
L

(
v − x
γn

)
ψ (ε)

+ κp (1 − p(x))
A0(ψ1)

∫
K(u)du p(x)

ψ ′ (0) Γ
(

v − x
γn

,
γn

hn

)
ψ1 (ε)

]2
fX(v)dv dF0(ε)

=
∫
p(vγn + x)

[
L (v)ψ (ε)

+
κp(1 − p(x))

A0
∫
K(u)du p(x)

ψ ′ (0) Γ
(
v,
γn

hn

)
ψ1 (ε)

]2
fX(vγn + x)dv dF0(ε) −→ σ1

σ1 = p(x)fX(x)
∫ [
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ψ ′ (0) Γ (v, κ)ψ1 (ε)
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α = 0 α = 0.1 α = 0.2

m̂ls,c 0.23 0.34 0.41
m̂m,c 0.23 0.27 0.3

m̂ls,s 0.25 0.39 0,49
m̂m,s 0.26 0.29 0.34

(h, γ)
m̂ls,i (0.21, 0.24) (0.22, 0.38) (0.25, 0.47)
m̂m,i (0.19, 0.25) (0.21, 0.28) (0.25, 0.3)

Table 1: Smoothing parameters for each scenario for the linear and the robust nonparametric
estimators.

α = 0 α = 0.1 α = 0.2

m̂ls,c 0.01275 0.03034 0.04558
m̂m,c 0.01319 0.01566 0.02051
EFls,m;c -3.452 48.371 55.003

m̂ls,s 0.02187 0.05190 0.07309
m̂m,s 0.02264 0.02737 0.03504
EFls,m;s -3.536 47.258 52.061

m̂ls,i 0.02088 0.05004 0.07133
m̂m,i 0.02197 0.02592 0.03223
EFls,m;i -5.207 48.197 54.809

Table 2: Mean Integrated Squared Error (MISE) for the linear and the robust nonparametric
estimators.
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m̂m,c m̂m,s m̂m,i
α = 0 39.1 39.7 41.7
α = 0.1 79.2 81.5 79.6
α = 0.2 83.5 81.9 83.3

Table 3: Percentage of times that the ISE for the robust estimators is less than the ISE for their
linear counterparts.

% ISE(m̂m,i) < ISE(m̂m,s) EFm;s,i
α = 0 61.4 2.982
α = 0.1 63.5 5.294
α = 0.2 68.2 8.009

Table 4: Percentage of times that the ISE for the robust imputed estimator is less than the ISE for
the robust simplified estimator.

RCV1 RCV2

m̂m,c m̂m,s m̂m,i m̂m,c m̂m,s m̂m,i
C0 22.0 36.5 36.0 30.5 39.0 41.0
C1 65.5 74.0 75.0 71.5 76.0 77.0
C2 75.5 79.5 78.5 79.5 81.0 81.0

Table 5: Percentage of times that the ISE for the robust estimators is less than the ISE for their
linear counterparts when using cross–validation.

RCV1 RCV2

%ISE(m̂m,i) < ISE(m̂m,s) EFm; s,i %ISE(m̂m,i) < ISE(m̂m,s) EFm; s,i
C0 51.5 −1.399 51.5 −0.953
C1 56.5 2.827 54.0 1.480
C2 61.0 5.601 58.0 3.270

Table 6: Percentage of times that the ISE for the robust imputed estimator is less than the ISE for
the robust simplified estimator when using robust cross–validation.
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C0 C1 C2 C0 C1 C2

m̂ls,s m̂m,s
p(x) ≡ 1 0.02427 0.06171 0.07610 0.02597 0.04253 0.05427
p(x) ≡ 0.8 0.02718 0.07148 0.08850 0.02931 0.04921 0.06468
p(x) = 0.4 + 0.5 cos2(2x1 x2 + 0.4) 0.03248 0.08929 0.10960 0.03465 0.06203 0.08186

m̂ls,i m̂m,i
p(x) ≡ 0.8 0.02892 0.07199 0.08993 0.03253 0.05002 0.06380
p(x) = 0.4 + 0.5 cos2(2x1 x2 + 0.4) 0.03565 0.08898 0.10950 0.03815 0.06145 0.07823

Table 7: Mean Integrated Squared Error (MISE) for the linear and the robust nonparametric
estimators in dimension p = 2.

C0 C1 C2

EFls,m;s
p(x) ≡ 1 -7.0045 31.0809 28.6859
p(x) ≡ 0.8 -7.8366 31.1556 26.9153
p(x) = 0.4 + 0.5 cos2(2x1 x2 + 0.4) -6.6810 30.5297 25.3102

EFls,m;i
p(x) ≡ 0.8 -12.4826 30.5181 29.0559
p(x) = 0.4 + 0.5 cos2(2x1 x2 + 0.4) -7.0126 30.9396 28.5570

Table 8: Efficiency EFls,m of the robust estimators with respect to their linear relatives in dimension
p = 2.

C0 C1 C2 C0 C1 C2

EFls;s,i EFm;s,i
p(x) ≡ 0.8 -6.4018 -0.7135 -1.6158 -10.9860 -1.6460 1.3605
p(x) = 0.4 + 0.5 cos2(2x1 x2 + 0.4) -9.7599 0.3472 0.0912 -10.1010 0.9350 4.4344

Table 9: Mean Integrated Squared Error (MISE) for the linear and the robust nonparametric
estimators.
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Figure 1: Density estimator of the ratio between the ISE of the robust estimator and that of the linear
estimator for a) the complete data estimator, b) the simplified estimator and c) the imputed estimator. The
solid line corresponds to C0, while the broken (− −) and dashed (− · · · −) lines correspond to C1 and C2,
respectively. 43
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Figure 2: Density estimator of the ratio between the ISE of the imputed robust estimator and that of the
simplified robust one. The solid line corresponds to C0, while the broken (− −) and dashed (− · · ·−) lines
correspond to C1 and C2, respectively.
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Figure 3: Density estimator of the ratio between the ISE of the imputed robust estimator and that of the
simplified robust one when using a robust cross–validation criterium. The solid line corresponds to C0, while
the broken (− −) and dashed (− · · · −) lines correspond to C1 and C2, respectively.
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Figure 4: Ratio betwen the MSE of the imputed robust estimator and that of the simplified robust one
across the values of x. The solid line corresponds to C0, while the broken (− −) and dashed (− · · ·−)lines
correspond to C1 and C2, respectively.
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Figure 5: Boxplots of the ISE for the simplified and the imputed robust estimators for α = 0, 0.1
and 0.2.
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Figure 6: Boxplots of the ISE for the simplified and the imputed robust estimators for α = 0, 0.1
and 0.2. Values larger than 0.10 are not plotted.
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Figure 7: Boxplots of the ISE for the simplified and the imputed robust estimators for α = 0, 0.1
and 0.2 using robust cross–validation.
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Figure 8: Boxplots of log(ĥn,C0/ĥn,C1) and log(ĥn,C0/ĥn,C2) for the complete (a), simplified (b) and imputed
(c) robust estimators.
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