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Abstract

A multivariate generalized autoregressive conditional heteroscedasticity (MGARCH) model with dy-

namic conditional correlations where the vector of innovations is assumed to follow a mixture of two

Gaussian distributions is analyzed. The Gaussian mixture distribution postulates that a large number

of multivariate innovations are generated from a Gaussian distribution with a small covariance matrix,

while a small number of multivariate innovations are generated from a Gaussian distribution with a

large covariance matrix. It is shown that this specification jointly with a MGARCH model with time

varying correlations, can capture the stylized facts usually found in multivariate returns. Inference on

the model parameters and prediction of future volatilities is addressed using a Bayesian approach via

a Markov Chain Monte Carlo (MCMC) method. Furthermore, the proposed methodology allows us to

obtain point estimates and predictive intervals for the Value at Risk (VaR) of a given portfolio, which

is strongly affected by the specification of a convenient innovation distribution. Finally, the proposed

approach also provides a method for selecting portfolios with a low out-of-sample conditional variance.

The good performance of the proposed methodology is illustrated via Monte Carlo experiments and the

analysis of the daily closing prices of the Dow Jones and Nasdaq indices.

Keywords: Bayesian inference; Gaussian mixture models; Markov Chain Monte Carlo methods;

Multivariate GARCH models; Portfolio selection; Value at Risk.
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1 Introduction

The autoregressive conditional heteroscedastic (ARCH) model introduced by Engle (1982) and its generaliza-

tion, the GARCH model proposed by Bollerslev (1986), have become very popular in modeling financial time

series as they are able to deal with several of the main features exhibited by this kind of series. The extension

of univariate models to the multivariate framework is important because the estimation of the correlations

between different returns is crucial for many issues of financial management such as portfolio analysis, risk

management and asset pricing. Several multivariate models have been proposed in the literature since the

seminal multivariate ARCH model of Kraft and Engle (1982). For instance, the VEC model proposed by

Bollerslev, Engle and Wooldridge (1988) and the BEKK model proposed by Engle and Kroner (1995) are

direct generalizations of the univariate ARCH and GARCH models, respectively. The factor models (FM)

proposed by Engle, Ng and Rothschild (1990), Bollerslev and Engle (1993) and Vrontos, Dellaportas and

Politis (2003b), among others, are multivariate models based on the assumption that the co-movements of

stock returns are driven by a small number of common factors. The constant conditional correlation (CCC)

model proposed by Bollerslev (1990), and the dynamic conditional correlation (DCC) models proposed by

Tse and Tsui (2002) and Engle (2002), are nonlinear combinations of univariate GARCH models. Bauwens,

Laurent and Rombouts (2006) give a comprehensive survey of multivariate GARCH-type models and their

properties. There exists a large number of applications of MGARCH models. Just to mention two of them,

Baillie and Myers (1991) estimate time-varying hedge ratios of commodity futures, while Karolyi (1995) an-

alyzes the transmissions between volatilities and co-volatilities of international markets along time through

MGARCH models.

Most of the proposed multivariate models have been derived to describe time varying volatilities and

correlations of several return series, but other features exhibited by multivariate returns such as long tailed

distributions, high multivariate kurtosis and the presence of extremes have received considerably less at-

tention. It is usual to assume that the returns have a conditional multivariate Gaussian or a Student-t

distribution. However, it is well known that both distributions are not consistent with the above mentioned

features. This problem also appears in the univariate framework in which several authors including Bai,

Rusell and Tiao (2003) and Auśın and Galeano (2007), have proposed modeling the standardized innovation

distribution with a mixture of two zero mean Gaussian distributions with different variances. Therefore,

most of the innovations are generated according to a Gaussian distribution whose variance is slightly less

than one, while a few innovations are generated according to a Gaussian distribution whose variance may

be much larger than one. These authors have shown that this mixture innovation specification combined

with GARCH models, successfully captures volatility clustering, long tails, high kurtosis and the presence
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of extreme events. The first contribution of this paper is to analyze a multivariate dynamic conditional cor-

relation model with a multivariate Gaussian mixture innovation distribution, which extends the univariate

Gaussian mixture specification to the multivariate framework, showing that it successfully captures the main

features of multivariate financial time series.

Inference on multivariate GARCH-type models is usually carried out by maximum likelihood. However,

less attention has been made in the analysis of these models from a Bayesian point of view. For instance,

Vrontos, Dellaportas and Politis (2003a, 2003b), performed Bayesian inference on some multivariate GARCH

models. Bayesian inference is specially well suited for MGARCH models as it offers a natural way to introduce

parameter uncertainty in the estimation of volatilities and correlations. Also, predictive distributions of

future volatilities and correlations can be obtained which are more informative than simple point forecasts.

The second contribution of this paper is to show how to perform Bayesian inference for the proposed time-

varying MGARCH model with Gaussian mixture innovations. This is carried out by using Markov Chain

Monte Carlo (MCMC) methods which are able to address the complexity of these models. We show how

a special reparametrization of the model parameters combined with data augmentation techniques and a

block-sampling scheme allow for a straightforward MCMC implementation associated with good mixing

performances.

Value at Risk (VaR) is a widely used measure of market risk which has become one of the most important

issues in Risk Management, see e.g. Jorion (2006). Value at Risk may be defined as the worst scenario that

is expected to occur with a large probability for a portfolio given by a linear combination of the returns of

the multivariate series. Clearly, the VaR of a portfolio strongly depends on the assumption made for the

innovation distribution and the Gaussian distribution is unable to mimic the heavy-tailedness of financial

time series observed in markets, see e.g. Jaschke and Jiang (2002). The third contribution of this paper is

to propose a Bayesian procedure for the derivation of predictive distributions for the portfolio VaR based

on the individual returns. Under this framework, besides of giving point estimates of VaR, the Bayesian

approach provides a measure of precision for VaR estimates via predictive intervals.

The portfolio selection problem may be defined as the determination of the optimal weights which are

assigned to each return. There are different answers to the question of what an optimal portfolio means. The

classical approach is the mean-variance method proposed by Markowitz (1952) which is based on minimizing

the variance for a given expected return using efficient frontiers. However, this methodology has been shown

to be extremely unstable due to several causes including the difficulties associated with the large estimation

errors of the mean asset returns, see Jagannathan and Ma (2003). These authors, among others have

shown that minimum-variance portfolios usually performs better than mean-variance portfolios. Then, we

consider here that a portfolio is optimal if it minimizes the risk, measured in terms of the variance. The
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fourth contribution of this paper is to propose a Bayesian method to provide point estimates and predictive

intervals for the optimal weights of minimum-variance portfolios.

The rest of this paper is organized as follows. Section 2 presents the Gaussian mixture dynamic condi-

tional correlation (GMDCC) model and shows its flexibility in capturing the special features of multivariate

financial time series. Section 3 describes how to perform Bayesian inference for the GMDCC model. Non

informative priors are chosen for a suitable reparameterization of the model parameters and samples of the

posterior distributions are obtained with a Random Walk Metropolis Hastings algorithm, see e.g. Robert and

Casella (2004), using a block-sampling scheme. Also, it is shown how to estimate in-sample volatilities and

correlations and how to predict future volatilities and correlations. Section 4 deals with the problems of cal-

culation of VaR and determination of optimal portfolios. Section 5 presents a brief Monte Carlo experiment

which shows the accuracy in the estimation of the parameters, prediction of volatilities and correlations,

calculation of VaR and determination of optimal portfolios. Section 6 illustrates the proposed methodology

with the Dow Jones Industrial Average and the Nasdaq composite indices. Finally, Section 7 concludes.

2 The Gaussian mixture dynamic conditional correlation (GMDCC)

model

In the following, we assume that the vector of return time series of dimension K × 1 given by yt =

(y1t, . . . , yKt)
′

follows a multivariate generalized autoregressive conditionally heteroscedastic (MGARCH)

model given by,

yt = µ + H
1

2

t ǫt,

where µ = (µ1, . . . , µK)
′

is the unconditional mean vector of the process, which is assumed to be constant,

Ht is the K × K positive definite conditional covariance matrix of yt given the past information It−1 =

{yt−1, yt−2, . . .} and ǫt are iid random vectors of dimension K×1 such that E [ǫt] = 0 and Cov [ǫt] = IK , the

K-dimensional identity matrix. The (i, j)-th element of the covariance matrix, Ht, is denoted by Hijt, where

i, j = 1, . . . , K. Thus, Hiit, for i = 1, . . . , K, denotes the individual conditional variances of the components

of the return vector yt, and Hijt, for i 6= j and i, j = 1, . . . , K, denotes the conditional covariances between

the i-th and j-th components of the return vector yt. The conditional covariance matrix can be decomposed

as follows,

Ht = DtRtDt, (1)
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where Dt is the K × K diagonal matrix with the K conditional standard deviations H
1

2

iit, and Rt is the

K × K matrix of conditional correlations. Note that Ht is positive definite if and only if all the conditional

variances Hiit are positive and the conditional correlation matrix Rt is positive definite.

The conditional variance of each individual return series can be formulated by entertaining a univariate

GARCH model, or any other stochastic volatility model allowing for asymmetries, such as the EGARCH

model by Nelson (1991), the GJR model by Glosten, Jagannathan and Runkle (1993) or the threshold

ARCH model of Zakoian (1994). For simplicity, and without loss of generality, we exemplify our approach

by considering the case in which each single return follows a univariate GARCH(pi, qi) model given by the

equation,

Hiit = ωi +

pi∑

l=1

αi,l (yi,t−l − µi)
2

+

qi∑

l=1

βi,lHii,t−l,

where the parameters of each individual GARCH model verify ωi > 0, αi,l ≥ 0, l = 1, . . . , pi, βi,l ≥

0, l = 1, . . . , qi, which ensure positive variances, and consequently, the matrices Dt are positive definite.

Additionally we impose that
∑pi

l=1 αi,l +
∑qi

l=1 βi,l < 1, so that the GARCH(pi, qi) model is covariance

stationary (see, Bollerslev, 1986). Note that the orders (pi, qi) of the individual GARCH models do not

necessarily coincide.

On the other hand, we adopt the specification made by Tse and Tsui (2002) of the conditional correlation

matrix Rt. For that, let et = D−1
t (yt − µ) be the vector of standardized returns, let Et−1 be the K × K

matrix Et−1 = (et−1, . . . , et−K), and let Bt−1 be the K-dimensional diagonal matrix where the i−th element

is given by
(∑K

h=1 e2
i,t−h

) 1

2

, for i = 1, . . . , K. Then, Rt is generated from the recursion,

Rt = (1 − θ1 − θ2)R + θ1Rt−1 + θ2Ψt−1,

where θ1 and θ2 are non-negative parameters satisfying θ1 + θ2 < 1, R is a K-dimensional positive definite

matrix with unit diagonal elements and off-diagonal elements denoted by Rij , for i 6= j and i, j = 1, . . . , K,

and Ψt−1 is a K × K matrix given by Ψt−1 = B−1
t−1Et−1E

′

t−1B
−1
t−1. Therefore, Ψt−1 is a kind of sample

correlation matrix of Et−1, as the (i, j)-th element of Ψt−1 is given by,

Ψij,t−1 =

∑K
h=1 ei,t−hej,t−h√(∑K

h=1 e2
i,t−h

)(∑K
h=1 e2

j,t−h

) , 1 ≤ i < j ≤ K.

Note also that Ψt−1 can be seen as a kind of multivariate analogous to (yi,t−1 − µi)
2 in the univariate

GARCH(1,1) model. With this specification, the conditional correlation matrices, Rt, are positive definite,

and thus that Ht is also positive definite.
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Inference on multivariate GARCH-type models is usually carried out by assuming a distribution for

the innovations ǫt and maximizing the corresponding log-likelihood function. The common election is the

multivariate standard Gaussian distribution because, although the true innovation distribution may be non-

Gaussian, the quasi maximum likelihood estimator (QMLE) of the vector of parameters under certain condi-

tions, is strong consistent, as shown by Jeantheau (1998), and asymptotically normal for BEKK models, as

shown by Comte and Lieberman (2003). In particular, under Gaussianity, the DCC models proposed by Tse

and Tsui (2002) and Engle (2002) can be consistently estimated, although inefficiently, by using the QMLE.

These properties justify the use of QMLE if we only want to estimate consistently the model parameters

and the first two conditional moments, but the Gaussian assumption has several drawbacks. First, it is well

known that the Gaussianity assumption is rejected for most multivariate residuals after fitting a MGARCH

model. In fact, after fitting the model via the Gaussian likelihood, the estimated innovation distribution

shows long tails and high excess kurtosis, which means that the number of extreme events in the series

is much larger than the number of extreme events which may be generated by the Gaussian distribution.

Second, if the innovations are not Gaussian, the QMLE is less efficient than the MLE based on the true

innovation distribution. Third, many financial applications including VaR calculation deeply rely on the cor-

rect assumption on the innovation distribution and has been shown to perform poorly assuming Gaussianity.

Finally, in the univariate case, Hall and Yao (2003) have shown that the usual asymptotic consistency and

normality properties do not necessarily hold if the innovations do not have at least moments smaller or equal

than four. In summary, the Gaussianity assumption is unrealistic in practice.

Mardia (1970) introduced a measure of multivariate kurtosis, which for a K-dimensional multivariate

random variable X with mean µ and covariance matrix Σ, is given by,

MK [X ] = E
[{

(X − µ)
′

Σ−1 (X − µ)
}2
]
. (2)

As the multivariate kurtosis (2) of a Gaussian distributed random variable X is K (K + 2), the multivariate

excess kurtosis of a given random variable X is defined as follows,

EK [X ] = MK [X ] − K (K + 2) . (3)

Thus, the multivariate excess kurtosis is a generalization of the excess kurtosis in the univariate case, such

that, when EK [X ] is positive, the distribution of X has longer tails than the Gaussian distribution. Conse-

quently, if we assume that the innovation process ǫt is a sequence of independent and identically distributed

Gaussian random variables with zero mean and identity covariance matrix, then, the multivariate excess
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kurtosis (3) of ǫt is EK [ǫt] = 0, as in the univariate case.

The usual alternative distribution for the innovations is the multivariate standardized Student-t distri-

bution with ν degrees of freedom. If we assume that ǫt follows this specification, it can be shown that the

excess kurtosis of ǫt only exists if ν > 4, in which case is given by,

EKT [ǫt] =
2K (K + 2)

ν − 4
.

Note that the fourth moment of ǫt only exists if ν > 4, while the second moment of ǫt only exists if ν > 2. In

practice, ν is fixed to be larger than 4, in which case, the implied multivariate excess kurtosis of the residuals

after estimation does not usually match the observed excess kurtosis, or it is estimated, in which case, its

estimate may be smaller than 4, which implies that the estimated excess kurtosis does not exist.

In the univariate case, a solution to this problem was suggested by Bai, Rusell and Tiao (2003), who

proposed to model the innovations with a mixture of two zero mean Gaussian distributions. This is the

distribution used in the variance inflation model of Box and Tiao (1968), which successfully handle extreme

events in linear models. Bai, Rusell and Tiao (2003) showed that the Gaussian mixture gives better fits

than the Student-t distribution and that the excess kurtosis implied by the Gaussian mixture is closer to

the sample excess kurtosis than the implied by the Student-t distribution. Also, these authors and Auśın

and Galeano (2007) from a Bayesian point of view, have shown that the mixture specification combined

with GARCH models can capture the usual patterns exhibited by financial time series such as volatility

clustering, large excess kurtosis and extreme observations. Accordingly with this, we extend this specification

to the multivariate framework and assume that the innovation process ǫt follows a mixture of two Gaussian

distributions as follows,

ǫt ∼





N
(
0, σ2IK

)
, with probability ρ,

N
(
0, σ2

λ IK

)
, with probability 1 − ρ,

(4)

where 0 < λ < 1 and σ2 =
(
ρ + 1−ρ

λ

)−1
, so that, Cov [ǫt] = IK . Therefore, the innovation vector, ǫt, is

generated from a Gaussian distribution with covariance σ2IK , where σ2 is always less than 1, with probability

ρ, or from a multivariate Gaussian distribution with covariance
(
σ2/λ

)
IK , where σ2/λ is always larger than

σ2 and may increase to infinity if λ goes to 0, with probability 1− ρ. As our aim is to allow for the presence

of several extreme events, we set ρ in the interval (0.5, 1) which ensures that the component with largest

number of elements is the one with smallest variance. Note that 1 − ρ can be seen as the proportion of

multivariate extremes in the return series. It is not difficult to show that the excess kurtosis of the mixture
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Figure 1: Multivariate excess kurtosis of the Standardized Student-t and the Gaussian Mixture distributions
for K = 2.

is given by,

EKGM [ǫt] = 3K
ρ (1 − ρ)

(
1 − 1

λ

)2
(
ρ + 1−ρ

λ

)2 ,

which exists for every value in the domain of ρ and λ and can take any possible positive value. Figure 1

compares the multivariate excess kurtosis of the Student-t and the Gaussian mixture distributions for K = 2,

respectively. As can be seen, the multivariate excess kurtosis under the Student-t distribution diverges to

infinity when ν tends to 4, while the multivariate excess kurtosis under the Gaussian distribution exists for

all the values on the range of λ and ρ. Note that when λ tends to one, EKGM [ǫt] tends to zero, and when

λ and ρ tend to one and zero, respectively, EKGM [ǫt] tends to infinity. In fact, all the moments of the

mixture exists as they are a linear combination of the moments of the components of the mixture, which are

the moments of Gaussian distributions.

The parameters of the GMDCC model can be summarized in the vector Φ = (Λ′, Ω′

1, . . . , Ω
′

K , Θ′)
′

, where

Λ = (ρ, λ)
′

are the parameters of the Gaussian mixture, Ωi = (µi, ωi, αi,1, . . . , αi,pi
, βi,1, . . . , βi,qi

)
′

, for i =

1, . . . , K, are the parameters of the conditional variances of the single returns and Θ = (θ1, θ2, R12, . . . , RK−1,K)
′

are the parameters of the conditional correlation matrix. In summary, the total number of parameters of

the GMDCC model is K (K + 3) /2 + p1 + . . . + pK + q1 + . . . + qK + 4. For instance, when K = 2, 3 and

4 and entertaining univariate GARCH(1,1) models for the individual returns, the number of parameters of

the GMDCC model is 13, 19 and 26, respectively. Note that there are only two and one additional pa-
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rameters compared with the DCC model of Tse and Tsui (2002) using Gaussian and Student-t innovations,

respectively.

The expression of the likelihood function for the observed return series, y = (y1, . . . , yT ), assuming

the Gaussian mixture specification for the innovation distribution, can be quite simplified using a set of

unobserved latent variables given by,

zt =





1, with probability ρ,

2, with probability 1 − ρ,

for t = 1, . . . , T . Thus, the return series is completed with a missing data set, z = (z1, . . . , zT ), indicating

the specific component of the mixture from which each multivariate innovation is assumed to arise. Then,

conditional on these indicators, we have that,

yt | Ht, zt ∼





N
(
µ, σ2Ht

)
if zt = 1

N
(
µ, σ2

λ Ht

)
if zt = 2,

and the likelihood for the completed data can be separated into two blocks, taking into account the obser-

vations assigned to each component of the Gaussian mixture,

l (Φ|y, z) =
∏

t:zt=1

[
ρ (2π)

−K/2 ∣∣σ2Ht

∣∣−1/2
exp

{
−

1

2
(yt − µ)

′
(
σ2Ht

)−1
(yt − µ)

}]
×

∏

t:zt=2

[
(1 − ρ) (2π)

−K/2

∣∣∣∣
σ2

λ
Ht

∣∣∣∣
−1/2

exp

{
−

1

2
(yt − µ)

′

(
σ2

λ
Ht

)−1

(yt − µ)

}]
.

The likelihood may be further simplified by replacing Ht = DtRtDt and et = D−1
t (yt − µ),

l (Φ|y, z) =
(
2πσ2

)−TK/2
ρT1 (1 − ρ)

T2 λKT2/2
T∏

t=1

[(
K∏

i=1

H
−1/2
iit

)
|Rt|

−1/2

]
× exp

(
−

S1 + λS2

2σ2

)
,

where Tj = # {zt = j}, and Sj =
∑

t:zt=j e′tR
−1
t et, for j = 1, 2 respectively.

3 Bayesian Inference for the GMDCC model

This section describes how to perform Bayesian inference of the GMDCC model introduced in the previous

section via Markov Chain Monte Carlo methods. Under the Bayesian framework, inference on the parameters

of the model, Φ, is done through the posterior density of Φ conditionally on the return series, y, which is
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denoted by p (Φ|y). Using the Bayes theorem, p (Φ|y) is given by,

p (Φ|y) =
l (Φ|y) p (Φ)∫
l (Φ|y) p (Φ) dΦ

,

where l (Φ|y) is the likelihood function and p (Φ) is the prior probability of Φ. Although the analytical

derivation of p (Φ|y) for the GMDCC model is extremely difficult, we may rely on Markov Chain Monte

Carlo (MCMC) methods to obtain samples of the posterior distribution. The idea is to build an irreducible

and aperiodic Markov chain in the parameter space with states Φ(0), Φ(1), . . . , Φ(N), where Φ(0) is the initial

state, such that, under very mild conditions, the chain has equilibrium distribution p (Φ|y). Therefore, as

n goes to infinity, Φ(n) tends in distribution to a random variable which has density p (Φ|y). Moreover, if f

is a function of the parameters Φ, then, the strong law of large numbers guaranties that,

1

N − s

N∑

n=s+1

f
(
Φ(n)

)
→ E [f (Φ) |y] ,

almost surely, where s is the number of realizations which are discarded in a burn-in period. See, for instance,

Robert and Casella (2004) for an overview on MCMC methods from both theoretical and practical points

of view.

Firstly, we need to specify the expressions of the prior distributions. We use uniform prior distributions

in the domain of all the parameters of the vector Φ, except for the mean parameters, µ1, . . . , µk, and the

parameters ω1, . . . , ωk of the univariate GARCH models. We assume a prior standard normal distribution

for each µi. On the other hand, we assume a uniform distribution on the interval
(
0, σ̂2

i

)
, where σ̂2

i is the

sample variance of the i-th return, which is a large enough upper bound for the values attained by ωi. These

distributions ensure a non informativeness prior for these parameters, avoiding the use of improper priors.

Next, we reparameterize the model parameters using logit transformations as follows,

ρ∗ = ln

(
ρ − 0.5

1 − ρ

)
, ω∗

i = ln

(
ωi

σ̂2
i − ωi

)
, R∗

ij = ln

(
1 + Rij

1 − Rij

)
,

λ∗ = ln

(
λ

1 − λ

)
, α∗

il = ln

(
αil

1 −
∑pi

l=1 αi,l −
∑qi

l=1 βi,l

)
, θ∗1 = ln

(
θ1

1 − θ1 − θ2

)
,

µ∗

i = µi, β∗

il = ln

(
βil

1 −
∑pi

l=1 αi,l −
∑qi

l=1 βi,l

)
, θ∗2 = ln

(
θ2

1 − θ1 − θ2

)
.

These transformations allow for a better performance of the MCMC algorithm as the parameters tak-

ing values in finite ranges are transformed to parameters defined in the interval (−∞,∞). This type of

reparametrization was also used by Vrontos, Dellaportas and Politis (2003a, 2003b) in other multivariate

GARCH models. But, in addition, the transformations that we propose here automatically impose the
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stationarity restrictions on the single GARCH models,
∑pi

l=1 αi,l +
∑qi

l=1 βi,l < 1, and on the dynamic cor-

relation model, θ1 + θ2 < 1, while the transformed parameters, α∗

il, β∗

il, θ∗1 and θ∗2 , remain unconstrained.

Note that the means µi are not transformed but for notational convenience, we also define µ∗

i = µi. The

transformed parameters are summarized into the vector Φ∗ = (Λ∗′, Ω∗′

1 , . . . , Ω∗′

K , Θ∗′)′, where Λ∗, Ω∗

1, . . . , Ω
∗

K

and Θ∗ denote the transformed block vectors. The prior distributions on the transformed parameters are

then obtained as the transformation of the prior distributions on the parameter vector Φ.

Now, we construct an MCMC algorithm to sample from the joint posterior distribution. As noted by

Vrontos, Dellaportas and Politis (2003a, 2003b), the convergence of this type of algorithms may be accelerated

by updating the highly correlated parameters simultaneously using a blocking sampling approach. Thus, we

define the following algorithm scheme whose main steps are elaborated below.

1. Set n = 0 and initial values Φ∗(0) =
(
Λ∗(0)′, Ω

∗(0)′
1 , . . . , Ω

∗(0)′
K , Θ∗(0)′

)
′

.

2. Update the allocations by sampling from z(n+1) ∼ z|y, Φ∗(n).

3. Update the innovation distribution by sampling from Λ∗(n+1) ∼ Λ∗|Ω
∗(n)
1 , . . . , Ω

∗(n)
K , Θ∗(n), y, z(n+1).

4. For i = 1, . . . , K, update the variance equations by sampling from,

Ω
∗(n+1)
i ∼ Ω∗

i |Λ
∗(n+1), Ω

∗(n+1)
1 , . . . , Ω

∗(n+1)
i−1 , Ω

∗(n)
i+1 , . . . , Ω

∗(n)
K , Θ∗(n), y, z(n+1).

5. Update the correlation equations by sampling from Θ∗(n+1) ∼ Θ∗|Λ∗(n+1), Ω
∗(n+1)
1 , . . . , Ω

∗(n+1)
K , y, z(n+1).

6. Define n = n + 1 and go to 2, until n = N , for a large N .

In step 2, we sample from the conditional posterior probabilities that each multivariate return, yt, for

t = 1, . . . , T, has been generated from the first or the second component of the mixture which are given by,

p (zt = 1 | y, Φ∗) =
exp (ρ∗) exp

{
−

e′

t
R−1

t
et

2σ2

}

exp (ρ∗) exp
{
−

e′

t
R−1

t
et

2σ2

}
+
(

exp(λ∗)
1+exp(λ∗)

)K/2

exp
{
− exp(λ∗)

1+exp(λ∗)
e′

t
R−1

t
et

2σ2

} ,

and p (zt = 2|y, Φ∗) = 1 − p (zt = 1|y, Φ∗), respectively.

In step 3, we sample from the conditional posterior probability of Λ∗ whose kernel is given by,

κ (Λ∗ | Ω∗

1, . . . , Ω
∗

K , Θ, y, z) = p (Λ∗)×

(
σ2
)
−TK/2

exp (ρ∗)
T1

(1 + exp (ρ∗))T

(
exp (λ∗)

1 + exp (λ∗)

)KT2/2

×exp



−
S1 + exp(λ∗)

1+exp(λ∗)S2

2σ2



 .

(5)
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where p (Λ∗) is the prior probability of Λ∗, i.e., the product of the individual priors of ρ∗ and λ∗. In order

to do that, we make use of the Random Walk Metropolis Hastings (RWMH) method, see e.g. Robert and

Casella (2004), using the following steps,

3.1. Generate a candidate vector Λ̃∗ from a multivariate normal distribution N
(
Λ∗(n), cΣ̂Λ∗

)
where c is a

constant and Σ̂Λ∗ is the covariance matrix of the MLE of Λ∗. Let,

τ
(n)
Λ∗ = min



1,

κ
(
Λ̃∗ | Ω

∗(n)
1 , . . . , Ω

∗(n)
K , Θ∗(n), y, z(n+1)

)

κ
(
Λ∗(n) | Ω

∗(n)
1 , . . . , Ω

∗(n)
K , Θ∗(n), y, z(n+1)

)



 ,

where κ
(
Λ̃∗ | Ω

∗(n)
1 , . . . , Ω

∗(n)
K , Θ∗(n), y, z(n+1)

)
is given in (5).

3.2. Define,

Λ∗(n+1) =






Λ̃∗, with probability τ
(n)
µ∗ ,

Λ∗(n), with probability 1 − τ
(n)
µ∗ .

The constant c is taken by tuning the acceptance rate to achieve fast convergence. Usually, an acceptance

rate lying between 0.2 to 0.5 is plausible and practical for good convergence. We have found that c = 0.9

works well in practice.

In step 4, we sample from the conditional posterior distribution of Ω∗

i whose kernel is given by,

κ
(
Ω∗

i | Λ∗, Ω∗

1, . . . , Ω
∗

i−1, Ω
∗

i+1, . . . , Ω
∗

K , Θ, y, z
)

= p (Ω∗

i )×

T∏

t=1

[
H

−1/2
iit |Rt|

−1/2
]
×exp



−
S1 + exp(λ∗)

1+exp(λ∗)S2

2σ2



 ,

where p (Ω∗

i ) is the prior probability of Ω∗

i , which can be performed using a similar RWMH as the described

in step 3.

Finally, in step 5, we sample from the conditional posterior distribution of Θ∗ whose kernel is given by,

κ (Θ∗ | Λ∗, Ω∗

1, . . . , Ω
∗

K , y, z) = p (Θ∗) ×

T∏

t=1

[(
K∏

i=1

H
−1/2
iit

)
|Rt|

−1/2

]
× exp



−
S1 + exp(λ∗)

1+exp(λ∗)S2

2σ2



 ,

where p (Θ∗) is the prior probability of Θ∗, using also an analogous RWMH algorithm to the described in

step 3.

Besides of making inference on the parameters of the GMDCC model, we may use the Markov chain to

estimate in-sample volatilities and correlations and to predict future volatilities and correlations. First, a

sample from the posterior distribution of each conditional variance, Hiit, for i = 1, . . . , K and t = 1, . . . , T ,

can be obtained by calculating the value of each conditional variance for each draw, Φ(n), which is denoted

12



by H
(n)
iit , for n = s + 1, . . . , T . Then, the posterior expected value of Hiit, E [Hiit | y], can be approached by

the mean of the posterior sample of conditional variances, i.e.:

1

N − s

N∑

n=s+1

H
(n)
iit .

Note that we can also approximate the posterior median of Hiit using the median of the posterior sample

of conditional variances. Finally, 95% credible intervals can be obtained by just calculating .025 and .975

quantiles of each posterior sample, respectively. Similarly, we can estimate in-sample correlations Rijt, using

the draws R
(n)
ijt .

Next, prediction of future volatilities, correlations and returns, are of particular interest. Assuming that

the parameters are known, then Hii,T+1 and Rij,T+1 are also known. Thus, given the MCMC outputs, a

sample from the predictive distribution of Hii,T+1 and Rij,T+1 and 95% predictive intervals can be obtained

similarly to the case of in-sample estimation. On the other hand, the predictive density of yT+1 is given by,

p (yT+1|y) =

∫

Φ

p (yT+1|y, Φ) p (Φ|y) dΦ, (6)

where the distribution of yT+1|y, Φ is a mixture of two multivariate Gaussian distributions with common

mean µ and covariances σ2HT+1 y
(
σ2/λ

)
HT+1, respectively. Thus, the predictive density p (yT+1|y) in (6)

can be estimated as the mean of the density functions obtained for the draws of the MCMC samples:

1

N − s

N∑

n=s+1

p
(
yT+1|y, Φ(n)

)
,

from which we can obtain point predictions and predictive intervals.

The prediction of Hii,T+m, Rij,T+m and yT+m when m > 1 is more complicated because the values of

yt are unknown for t ≥ T + 1. However, we can also generate samples from the predictive distributions of

Hii,T+m, Rij,T+m and yT+m, when m > 1, using the following sequential procedure, which is an extension

of the proposed in Auśın and Galeano (2007) for single returns. For each MCMC output, Φ(n), H
(n)
ii,T+1 and

R
(n)
ij,T+1 are known, and thus, samples y

(n)
T+1 can be generated from the mixture distribution of yT+1|y, Φ(n).

These samples gives two set of samples from the predictive distribution of Hii,T+2 and Rij,T+2, denoted by

H
(n)
ii,T+2 and R

(n)
ij,T+2. Now, the predictive distribution of yT+2 is unknown but we can generate samples from

the Gaussian mixture distribution with parameters ρ(n) and λ(n), ǫ
(n)
T+2, and define,

y
(n)
T+2 = µ(n) + H

(n) 1

2

T+2 ǫ
(n)
T+2.

13



By replicating this scheme, given y
(n)
T+m−1, H

(n)
ii,T+m and R

(n)
ij,T+m, the samples y

(n)
T+m can be generated. Then,

samples from the predictive distributions, p(Hii,T+m|y), p(Rij,T+m|y) and p(yT+m|y), are obtained, which

allow us to obtain point estimates and predictive intervals.

4 Value at Risk (VaR) calculation and portfolio selection

In this section, we take advantage of the MCMC outputs in order to estimate several quantities of interest

for portfolio management. In particular, we deal with VaR calculation and optimal portfolio selection.

Given a vector return series yt = (y1t, . . . , yKt)
′

, a portfolio of the components of yt is defined as a

linear combination of the individual returns, i.e., a portfolio pt is given by pt = δ′yt, where the weights

δ = (δ1, . . . , δK)
′

add to 1. The VaR is the maximum potential loss expected with probability 1 − π, where

π is supposed to be small, for instance, 0.01 or 0.05. As the losses may exceed VaR with small probability,

it can be thought as the worst case outcome of the portfolio performance. Thus, the one step ahead VaR,

denoted by VaRT+1, is defined as the 100π-th quantile of the distribution of the portfolio return, i.e.,

Pr (pT+1 ≤ VaRT+1) = π.

Assuming that the model parameters are known, the conditional distribution of the portfolio is,

pT+1 ∼





N
(
δ′µ, σ2δ′HT+1δ

)
, with probability ρ,

N
(
δ′µ, σ2

λ δ′HT+1δ
)

, with probability 1 − ρ.
(7)

Thus, if the model parameters, Φ, are known, VaRT+1 is the 100π−th quantile of this univariate mix-

ture, which may be easily obtained, for instance, using the Newton-Raphson method. Consequently, using

the posterior sample, Φ(n), a consistent estimator of the posterior mean of the one step ahead VaRT+1,

E [VaRT+1 | y], is given by the sample mean of the posterior sample of VaRT+1:

1

N − s

N∑

n=s+1

VaR
(n)
T+1, (8)

where VaR
(n)
T+1 is the one-step-ahead VaR obtained for each value Φ(n), n = s + 1, . . . , N , of the MCMC

output. We can also obtain predictive intervals for VaRT+1 using the quantiles of the posterior sample,

VaR
(n)
T+1, for n = s + 1, . . . , N .

The m step ahead VaR, denoted by VaRT+m, is defined as the 100π−th quantile of the conditional

14



distribution of the sum of the portfolio returns,

Pr (pT+1 + · · · + pT+m ≤ VaRT+m) = π.

The calculation of VaRT+m when m > 1 is more complicated because the values of yt are unknown for

t > T . However, we can also generate values of the predictive distributions of VaRT+m, when m > 1, using

the samples y
(n)
T+i, i = 1, . . . , m, generated to predict yT+i. With these samples, we obtain samples of the

predictive distribution of pT+1 + · · ·+ pT+m, from which we can also obtain point predictions and predictive

intervals for VaRT+m.

On the other hand, another important issue of financial management is the optimal portfolio selection

problem. As mentioned in the introduction, among all the possibilities of defining what an optimal portfolio

is, we assume that a portfolio is optimal if it has minimum variance, i.e., minimum risk. The problem of

determining the one step ahead optimal portfolio can be formulated as the solution of the following problem,

δopt = arg min
δ

{δ′HT+1δ : δ′1K = 1} ,

where 1K = (1, . . . , 1)
′

. It is well known that the solution of this problem is given by,

δopt =
1

1′KH−1
T+11K

H−1
T+11K . (9)

Note that δopt depends on the inverse of HT+1, but this matrix is positive definite by construction. Then,

the conditional standard deviation of the optimal portfolio at time T + 1, popt = δ′optyT+1, is given by

h
1/2
opt =

(
δ′optHT+1δopt

)1/2
, while the expected gain for the optimal portfolio is given by gopt = δ′optµ. From

the classical point of view, µ and HT+1 are replaced in the expression for δopt, h
1/2
opt and gopt by their maximum

likelihood estimates and the uncertainty due to the parameter estimates is ignored. The Bayesian approach

allows for inclusion of parameter uncertainty through the predictive distributions of µ and HT+1 as follows.

Given the samples of the posterior distribution of µ and the samples of the predictive distribution of HT+1,

µ(n) and H
(n)
T+1, for n = s + 1, . . . , N , respectively, we can obtain: (i) a sample of the posterior distribution

of the optimal weights, denoted by δ
(n)
opt , replacing HT+1 by H

(n)
T+1 in the equation (9); (ii) a sample of the

posterior distribution of the optimal standard deviation, denoted by h
(n)1/2
opt , replacing HT+1 by H

(n)
T+1 in

the expression for h
1/2
opt ; and (iii) a sample of the posterior distribution of the expected gain, denoted by

g
(n)
opt , replacing µ by µ(n) in the expression for gopt. Finally, using these samples, we can obtain consistent

estimators of the posterior mean for the weights, standard deviation and gain of the optimal portfolio using
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the following means of the posterior samples:

1

N − s

N∑

n=s+1

δ
(n)
opt ,

1

N − s

N∑

n=s+1

h
(n)1/2
opt , and

1

N − s

N∑

n=s+1

g
(n)
opt .

Also, 95% credible intervals can be obtained by just calculating .025 and .975 quantiles of these posterior

samples.

5 Computational issues

In this section, we illustrate some of the examples that we have performed to examine our proposed procedure.

We consider three bivariate series, with sample sizes T = 1000, 2000 and 3000, simulated from model (2)

with: (i) individual conditional variances,

H11t = 8 × 10−7 + 0.15
(
y1,t−1 − 9 × 10−5

)2
+ 0.8H11,t−1,

H22t = 8 × 10−7 + 0.1
(
y2,t−1 − 1 × 10−3

)2
+ 0.85H22,t−1,

respectively, so that the univariate GARCH models have parameters Ω1 = (9× 10−5, 8× 10−7, 0.15, 0.8) and

Ω2 = (10−3, 8 × 10−7, 0.1, 0.85); (ii) dynamic conditional correlation,

Rt = (1 − 0.6 − 0.2) × 0.5 + 0.6Rt−1 + 0.2Ψt−1,

so that Θ = (0.6, 0.2, 0.5); and, (iii) a Gaussian mixture distribution (4) with parameters Λ = (0.90, 0.15),

for the innovation process.

The proposed MCMC algorithm is run for each simulated series using 20000 iterations and the initial

10000 ones are discarded for inference as burn-in iterations. We consider the classical MLE of the parameters

as the initial values and use the block-sampling approach, described in Section 2, based on multivariate nor-

mal proposal distributions whose covariance matrices are the ones of the MLE. The algorithm is programmed

in MATLAB (The MathWorks, Inc.) using the internal Gaussian and uniform random number generators.

The MCMC chains present a good mixing performance and fast convergence as illustrated in Figure 2, where

the traces and histograms of the posterior samples for each model parameter of the first simulated series

with sample size T = 1000 are shown. Similar trace plots are obtained for the other simulated series which

are not shown here to save space. Observe that the algorithm captures the asymmetry of the posterior

distributions of the parameters ωi, αi and βi, for i = 1, 2. We have also observed that, as expected, these
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Figure 2: Trace plots and histograms of the posterior MCMC samples for each model parameter correspond-
ing to the first simulated series with T = 1000.

posterior distributions become more symmetric for T = 2000 and T = 3000 (not reported).

Table 1 shows the posterior means and standard deviations of the model parameters for the three ex-

perimental setups. Observe the accuracy of the estimations and that, as expected, the posterior standard

deviations become smaller as the sample size, T , increases. These Bayesian estimates are compared with the

classical MLE leading to very similar results. Observe that, besides of providing point estimates and stan-

dard errors, the Bayesian estimation produces posterior densities, as the given in Figure 2, which describe

all their uncertainty associated with the model parameters. Moreover, this uncertainty may be introduced

in the estimation of volatilities, correlations, VaR, portfolio selection, etc., as it is shown below.

Using the MCMC output, we can estimate in-sample volatilities and correlations as described in Section

3. This is illustrated in Figure 3, where the estimated in-sample volatilities, Hiit, for i = 1, 2, and the

estimated in-sample correlations, R12t, for t = 1900, . . . , 2000, for the second simulated series with sample

size T = 2000 are presented. Also shown are 95% credible intervals and true values. Observe the accuracy of

the estimations and that the Bayesian credible intervals always include the true values of Hiit and R12t for

all time periods. The same pattern is observed for the estimation of in-sample volatilities and correlations

for the remaining simulated series (not reported). Note that, using the MCMC output, we can also make

Bayesian predictions for future volatilities and correlations as described in Section 3. In particular, Figure

3 also shows the predictive means and intervals for the one-step ahead volatilities, Hii,T+1, for i = 1, 2, and
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Table 1: Posterior means and standard deviations of the model parameters compared with the maximum
likelihood estimations and standard errors for the three simulated series.

T = 1000 T = 2000 T = 3000
Parameter Post. Mean

std
MLE

std
Post. Mean

std
MLE

std
Post. Mean

std
MLE

std

ρ = 0.9 0.9079
0.0210

0.9044
0.0212

0.9155
0.0138

0.9106
0.0149

0.9187
0.0124

0.9156
0.0116

λ = 0.15 0.1305
0.0247

0.1556
0.0244

0.1382
0.0211

0.1591
0.0185

0.1416
0.0187

0.1546
0.0146

µ1 = 9 × 10−5 1.27 × 10−4

1.95×10−4

1.27 × 10−4

7.35×10−5

9.91 × 10−5

1.33×10−4

1.00 × 10−4

4.95×10−5

8.01 × 10−5

1.12×10−4

8.78 × 10−5

3.90×10−5

ω1 = 8 × 10−7 1.01 × 10−6

9.16×10−7

6.96 × 10−7

2.10×10−7

9.67 × 10−7

6.09×10−7

8.28 × 10−7

1.60×10−7

8.42 × 10−7

4.29×10−7

7.44 × 10−7

1.24×10−7

α1 = 0.15 0.1675
0.0862

0.1153
0.0239

0.1776
0.0599

0.1469
0.0202

0.1557
0.0469

0.1348
0.0162

β1 = 0.80 0.7892
0.0977

0.8302
0.0337

0.7742
0.0751

0.7924
0.0260

0.7847
0.0622

0.8010
0.0222

µ2 = 1 × 10−3 1.18 × 10−3

1.30×10−4

1.17 × 10−3

9.53×10−5

1.02 × 10−3

8.38×10−5

1.03 × 10−3

5.67×10−5

1.02 × 10−3

6.89×10−5

1.02 × 10−3

4.67×10−5

ω2 = 8 × 10−7 8.82 × 10−7

2.86×10−7

7.25 × 10−7

1.95×10−7

7.06 × 10−7

1.75×10−7

6.14 × 10−7

1.25×10−7

7.13 × 10−7

1.42×10−7

6.60 × 10−7

1.10×10−7

α2 = 0.10 0.1160
0.0239

0.0973
0.0181

0.1039
0.0196

0.0921
0.0130

0.0979
0.0154

0.0907
0.0109

β2 = 0.85 0.8559
0.0244

0.8678
0.0200

0.8586
0.0205

0.8675
0.0156

0.8566
0.0181

0.8623
0.0143

θ1 = 0.60 0.5565
0.0980

0.5791
0.0778

0.6199
0.0528

0.6305
0.0441

0.6281
0.0396

0.6322
0.0388

θ2 = 0.20 0.2279
0.0417

0.2225
0.0377

0.2155
0.0264

0.2124
0.0237

0.1984
0.0192

0.1982
0.0191

R12 = 0.50 0.4988
0.0544

0.4990
0.0517

0.5373
0.0382

0.5375
0.0379

0.5213
0.0302

0.5236
0.0291
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Figure 3: Estimated (dashed) and true (continuous) volatilities, Hiit, for i = 1, 2, and correlations, R12t,
for t = 1900, . . . , 2001, joint with 95% credible intervals (dotted lines) for the second simulated series with
sample size T = 2000.
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Table 2: True values, Bayesian point estimations, MLE, and 95% predictive intervals for the VaRT+1 of the
portfolio pT+1 = δ× y1,T+1 +(1 − δ)× y2,T+1, for the three simulated series and different values for π and δ.

T = 1000 T = 2000 T = 3000
π = 0.05 δ = 0.25 True −0.00584 −0.00352 −0.00357

Pred. Mean −0.00595 −0.00353 −0.00352
95% interval [−0.00661,−0.00527] [−0.00397,−0.00315] [−0.00378,−0.00330]
MLE −0.00583 −0.00350 −0.00350

δ = 0.50 True −0.00533 −0.00356 −0.00306
Pred. Mean −0.00528 −0.00357 −0.00300
95% interval [−0.00601,−0.00452] [−0.00407,−0.00310] [−0.00332,−0.00275]
MLE −0.00510 −0.00353 −0.00298

δ = 0.75 True −0.00612 −0.00393 −0.00297
Pred. Mean −0.00601 −0.00392 −0.00290
95% interval [−0.00685,−0.00500] [−0.00445,−0.00339] [−0.00338,−0.00252]
MLE −0.00575 −0.00388 −0.00289

π = 0.01 δ = 0.25 True −0.01101 −0.00688 −0.00697
Pred. Mean −0.01173 −0.00686 −0.00670
95% interval [−0.01424,−0.00954] [−0.00815,−0.00578] [−0.00773,−0.00596]
MLE −0.01085 −0.00655 −0.00652

δ = 0.50 True −0.00994 −0.00678 −0.00588
Pred. Mean −0.01027 −0.00675 −0.00563
95% interval [−0.01246,−0.00822] [−0.00809,−0.00561] [−0.00663,−0.00491]
MLE −0.00939 −0.00644 −0.00548

δ = 0.75 True −0.01117 −0.00725 −0.00555
Pred. Mean −0.01139 −0.00721 −0.00528
95% interval [−0.01376,−0.00892] [−0.00867,−0.00596] [−0.00646,−0.00444]
MLE −0.01032 −0.00688 −0.00514

correlation, R12,T+1, where T + 1 = 2001, which are compared with their true values.

Next, we apply the procedures described in Section 3 for VaR calculation and portfolio selection. As an

illustration, Table 2 shows the Bayesian point estimations and 95% predictive intervals for the one step ahead

VaRT+1 of portfolios of the form, pT+1 = δ × y1,T+1 + (1 − δ) × y2,T+1, for the three simulated series, two

different values for π, π = .05 and π = .01, and three different values for δ, δ = .25, δ = .5 and δ = .75. These

are compared with the maximum likelihood estimates and true values of VaRT+1, which are obtained using

the MLE and true values, respectively, of HT+1 and of the model parameters, Φ, and calculating (by Newton-

Raphson) the quantile of a two-component normal mixture with mean δ′µ and covariances σ2δ′HT+1δ and
(
σ2/λ

)
δ′HT+1δ, respectively, as given in (7). Observe the accuracy of the Bayesian estimations and that

the Bayesian credible intervals always include the true VaRT+1 values in all cases.

Figure 4 shows the histograms of the posterior samples of the first return weight, δopt,1, standard devia-

tion, h
1/2
opt , and gain, gopt, of the optimal portfolio, δopt,1×y1,T+1 +(1 − δopt,1) y2,T+1, for the third simulated

series with sample size T = 3000. The posterior means and confidence intervals obtained from these samples
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Figure 4: Histograms of the posterior samples of the weight, δopt,1, standard deviation, h
1/2
opt , and gain, gopt,

of the optimal portfolio, δopt,1 × y1,T+1 + (1 − δopt,1) y2,T+1, for the third simulated series with sample size
T = 3000.

are shown in the third column of Table 3, which also shows these quantities for the remaining simulated

series. These are compared with the MLE and true values leading to similar results.

6 Application

As an illustration, in this section we apply the proposed Bayesian procedure to the daily closing prices of Dow

Jones Industrial Average and Nasdaq composite indices for the period 2/1/1996-29/12/2006. The log return

bivariate series, whose sample size is T = 2769, is plotted in Figure 5. Observe that the series is affected

by the presence of several extreme values. The sample means, variances and excess kurtosis of both log

return series are .0317 and .0297, 1.1833 and 3.1013, and 4.178 and 4.182, respectively. The autocorrelation

functions of both returns do not show any significant autocorrelations. In fact, the Ljung-Box statistics for

both log returns for lags 5 and 10 are 7.987 and 13.375, and 9.480 and 13.688, respectively, with associated

p-values .157 and .203, and .091 and .188, respectively. The sample correlation between both log returns is

.705. The final objectives of this application are estimation of the parameters of the model, estimation of

in sample volatilities and correlations, calculation of VaR for different return portfolios and selection of the

minimum-variance optimal portfolio.

The GMDCC model described in Section 2 is estimated using the Bayesian procedure developed in Section
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Table 3: True values, Bayesian point estimations, 95% predictive intervals and MLE for the optimal weight

δopt,1, standard deviation, h
1/2
opt and gain gopt of the optimal portfolio δopt,1 × y1,T+1 + (1 − δopt,1) × y2,T+1,

for the three simulated series.

T = 1000 T = 2000 T = 3000
δopt,1 True 0.5170 0.5186 0.7709

Pred. Mean 0.5450 0.5292 0.7828
95% interval [0.4798, 0.6346] [0.4206, 0.6494] [0.6926, 0.8647]
MLE 0.5576 0.5330 0.7795

h
1/2
opt True 3.90 × 10−3 2.75 × 10−3 2.18 × 10−3

Pred. Mean 3.98 × 10−3 2.72 × 10−3 2.13 × 10−3

95% interval
[
3.43 × 10−3, 4.49 × 10−3

] [
2.47 × 10−3, 3.05 × 10−3

] [
1.83 × 10−3, 2.46 × 10−3

]

MLE 3.77 × 10−3 2.69 × 10−3 2.10 × 10−3

gopt True 5.29 × 10−4 5.28 × 10−4 2.98 × 10−4

Pred. Mean 6.07 × 10−4 5.35 × 10−4 2.83 × 10−4

95% interval
[
2.72 × 10−4, 9.19 × 10−4

] [
2.90 × 10−4, 7.40 × 10−4

] [
3.82 × 10−5, 5.25 × 10−4

]

MLE 5.91 × 10−4 5.34 × 10−4 2.94 × 10−4
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Figure 5: Log return series of the daily closing prices of Dow Jones Industrial Average and Nasdaq composite
indices.
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Table 4: Posterior means and standard deviations of the model parameters compared with the maximum
likelihood estimations and standard errors for the Dow Jones and Nasdaq indices.

Parameter Post. Mean Post. std. MLE Std. error
ρ 0.9442 0.0265 0.9666 0.0132
λ 0.2695 0.0718 0.2375 0.0406
µ1 0.0583 0.0499 0.0548 0.0138
ω1 0.0066 0.0064 0.0070 0.0019
α1 0.0622 0.0201 0.0558 0.0056
β1 0.9345 0.0208 0.9377 0.0060
µ2 0.0763 0.0558 0.0664 0.0196
ω2 0.0092 0.0054 0.0089 0.0029
α2 0.0592 0.0111 0.0560 0.0064
β2 0.9387 0.0112 0.9408 0.0064
θ1 0.9619 0.0075 0.9559 0.0061
θ2 0.0244 0.0046 0.0269 0.0037

R12 0.9635 0.0249 0.9286 0.0211

3. The proposed MCMC algorithm is run for this bivariate series using 20000 iterations and the first 10000

are discarded as burn-in iterations. Table 4 shows the posterior means and standard deviations obtained

from the MCMC output. Observe that the Bayesian model predicts that about 94.4% of the innovations

are generated by the mixture component with smaller covariance matrix, while approximately 5.6% of the

innovations are generated by the component with larger covariance matrix. Also, the covariance matrix of

this second component, which is designed to include the extreme events, is estimated to be approximately

4.21 times larger than the smaller covariance matrix. Table 4 also compares the Bayesian estimations with

the maximum likelihood estimates and standard errors leading to similar results.

Figure 6 illustrates the Bayesian estimations together with 95% credible intervals for the volatilities, Hiit,

for i = 1, 2, and correlations, R12t, of the last 100 observations for the Dow Jones and Nasdaq indices. Note

that the Bayesian posterior means are very close to the MLE for the time period. Observe also that the

Bayesian credible intervals are not necessarily symmetric as shown for various posterior estimations of the

correlations, R12t. Figure 6 also includes the one-step ahead point prediction of Hii,2770, for i = 1, 2, and the

correlation, R12,2770, joint with the corresponding predictive intervals. It appears that the Nasdaq index is

more volatile than the Dow Jones in this last period of 2006. In fact, this effect is also observed since 1998

(not reported). Also note that the conditional correlations are very high, with values around 0.9 and has a

drop in November 2006.

Figure 7 illustrates the Bayesian estimations and 95% credible intervals compared with the MLE for the

one-step ahead VaRT+1 of the portfolio pT+1 = δ×DowJonesT+1 +(1 − δ)×NasdaqT+1, as a function of δ,

for δ ∈ (−1, 2), for π = 0.01. Observe that the Bayesian credible intervals always include the MLE for each
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Figure 6: Bayesian estimations (dashed) and 95% intervals (dotted) compared with MLE (dashdot) for the
volatilities, Hiit, for i = 1, 2, and correlations, R12t, of the last 100 observations for the Dow Jones and
Nasdaq indices.

−1 −0.5 0 0.5 1 1.5 2
−3

−2.5

−2

−1.5

−1

−0.5

δ

Va
R

predictive mean
95% interval
MLE

Figure 7: Bayesian estimations (dashed) and 95% intervals (dotted) compared with MLE (dashdot) for the
one-step ahead VaRT+1 of the portfolio pT+1 = δ × DowJonesT+1 + (1 − δ)× NasdaqT+1, as a function of
δ, using π = 0.01.
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Table 5: Bayesian estimation and 95% predictive interval for the weight, δopt,1, standard deviation, h
1/2
opt ,

and gain, gopt, of the optimal portfolio, δopt,1DowJonesT+1 + (1 − δopt,1)NasdaqT+1, compared with the
MLE.

δopt,1 hopt,1 gopt,1

Pred. Mean 1.2100 0.5139 0.0544
95% interval [0.9011, 1.3563] [0.4216, 0.6836] [−0.0489, 0.1384]
MLE 1.1711 0.5255 0.0528

weight vector δ. Note also that this kind of plot can be used for portfolio selection in the case of considering

that the optimal portfolio is the one which maximizes the VaR as it minimizes the maximum potential loss

with probability π. In this case, the optimal portfolio is approximately pT+1 = 1.2×DowJonesT+1 − 0.2×

NasdaqT+1.

Finally, Table 5 shows the Bayesian estimation and 95% predictive interval for the weight, δopt,1, standard

deviation, h
1/2
opt , and gain, gopt, of the optimal portfolio, δopt,1DowJonesT+1 +(1 − δopt,1)NasdaqT+1. These

are compared with the maximum likelihood estimations which are always included in the predictive intervals.

Note that the posterior mean of the optimal weight is 1.21 which is very similar to the optimal weight obtained

previously by maximizing the VaR as shown in Figure 7.

7 Conclusions

In this paper, we have proposed a multivariate GARCH model with time-varying correlations in which

the innovations are assumed to follow a mixture of two multivariate zero mean Gaussian distributions.

This specification extends the Gaussian mixture innovation distribution proposed by Bai, Rusell and Tiao

(2003) to the multivariate framework. We have shown how to perform Bayesian inference on this model

through MCMC methods, which allows us to estimate and predict conditional variances and correlations.

In particular, we have proposed a Random Walk Metropolis Hastings algorithm which is straightforward to

implement and has been shown to work well with both simulated and real data examples. Also, we have

developed a Bayesian procedure for the derivation of predictive distributions for the portfolio VaR and a

method for the determination of optimal portfolios.

Note that more complex approaches for the innovation distribution may be also entertained. For instance,

we can use a Gaussian mixture with a larger number of components, but this has the cost of adding two

more additional parameters for each new component, which will increase the computational cost of the

MCMC algorithm. Also, we can try other distributions with fat tails, such as the multivariate generalized

extreme value distribution, but this has the cost of losing the simplicity and the interpretability of the
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Gaussian expressions. Finally, an alternative approach may be to allow for different univariate GARCH

model parameters depending on which component of the mixture the innovation belongs to, but the same

problems as the mentioned above are found. All these alternative approaches are currently under research.
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