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W. González–Manteiga
Departamento de Estat́ıstica e Investigación Operativa, Facultad de Matemáticas
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1 Introduction

Consider the partially linear regression model yi = xt
i β0 + g0 (ti) + εi, 1 ≤ i ≤ n, where the response

yi ∈ R and the covariates (xt
i , ti) are such that xi ∈ Rp, ti ∈ R, while the errors εi are i.i.d., independent of

(xt
i , ti) satisfying E(εi) = 0 and VAR (εi) < ∞. Partly linear models are more flexible than standard linear

models since they have a parametric and a nonparametric component. They can be a suitable choice when
one suspects that the response y linearly depends on x, but that it is nonlinearly related to t. This model
has gained attention in recent years. An extensive description of the different results obtained in partly
linear regression models can be found in Härdle et al. (2000). He et al. (2002) considered M−type estimates
for repeated measurements using B−splines, while Bianco and Boente (2004) considered a kernel–based
three–step procedure to define robust estimates under the partly linear model.

In practice, some response variables may be missing, by design (as in two-stage studies) or by happen-
stance. As it is well known, the methods described above are designed for complete data sets and problems
arise when missing observations are present. Even if there are many situations in which both the response and
the explanatory variables are missing, we will focus our attention on those cases where missing data occur
only in the responses. Actually, missingness of responses is very common in opinion polls, market research sur-
veys, mail enquiries, social-economic investigations, medical studies and other scientific experiments. Wang
et al. (2004) considered inference on the mean of y under regression imputation of missing responses based
on the semiparametric regression model yi = xt

i β0 + g0 (ti) + εi. The estimator of the regression parameter
β0, introduced by Wang et al. (2004), is a least squares regression estimator defined by considering prelimi-
nary kernel estimators, of the quantities E(δ1x1|t1 = t)/E(δ1|t1 = t) and E(δ1y1|t1 = t)/E(δ1|t1 = t), where
δi = 1 if yi is observed and δi = 0 if yi is missing. Based on this estimator, estimators of the marginal mean
of the responses y are defined using an imputation estimator and a number of propensity score weighting
estimators. On the other hand, Wang and Sun (2007) considered estimators of the regression coefficients
and the nonparametric function using either imputation, semiparametric regression surrogate or an inverse
marginal probability weighted approach. These estimators are based on weighted means of the response
variables and so, they are higly sensitive to anomalous data. This fact motivated the need of considering
procedures resistant to outliers as those given in Bianco et al. (2010), who introduced robust estimators
based on bounded score functions together with algorithms to compute them. Moreover, consistency of the
marginal estimators was derived therein.

In this paper, we go further and we focus our attention on the asymptotic behavior of the robust es-
timators of the regression parameter and the marginal location y, say θ, when the response variable has
missing observations, but the covariates (xt, t) are totally observed. The paper is organized as follows. Sec-
tion 2 reviews the definition of the robust semiparametric estimators. The consistency and the asymptotic
distribution of the regression parameter are derived in Section 3, while the asymptotic distribution of the
marginal location estimator is studied in Section 4. For the marginal simplified location estimator, the as-
ymptotic distribution is derived in the situation in which the missing probability is known and also when it
is estimated under two different frameworks. In many situations, a parametric model can be assumed for the
missingness probability and the influence of estimating the parameters of the model on the distribution of
the marginal location estimators needs to be quantified. In particular, if a logistic model is assumed and the
parameters are estimated using the maximum likelihood estimator a reduction in the variance is obtained
with respect to the estimator computed with the true missingness probability, denoted p(x, t). On the other
hand, if the parameters are estimated robustly we argue that a larger variance can be obtained. Besides,
if a kernel estimator is used to estimate p(x, t), then a reduction of variance is always achieved and so, as
recommended in Bianco et al. (2010), this estimator should be used whenever it is possible. Technical proofs
are left to the Appendix.
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2 The robust estimators

Suppose we obtain a random sample of incomplete data (yi,xt
i , ti, δi), 1 ≤ i ≤ n , of a partially linear model

where δi = 1 if yi is observed, δi = 0 if yi is missing and

yi = xt
i β0 + g0 (ti) + σ0εi , 1 ≤ i ≤ n , (1)

with errors εi independent, identically distributed with symmetric distribution F0(·), i.e., we assume that
the error’s scale equals 1 to identify the parameter σ0. Moreover, εi are independent of (xt

i , ti).

Let (y,xt, t, δ) be a random vector with the same distribution as (yi,xt
i , ti, δi). As mentioned in the

Introduction our aim is to study the asymptotic behavior of the robust estimators of the regression para-
meter and the marginal location. For that purpose, an ignorable missing mechanism will be imposed by
assuming that y is missing at random (MAR), that is, δ and y are conditionally independent given (x, t),
i.e., P (δ = 1|(y,x, t)) = P (δ = 1|(x, t)) = p (x, t). For the sake of completeness, we will briefly remind the
definition of the estimators.

2.1 Estimators of the regression parameter and regression function

As mentioned in Bianco et al. (2010), the estimation of the robust location conditional functional related to
each component of xi causes no problem since the data set is complete, while that of the response yi is prob-
lematic since there are missing responses. Therein, a profile–likelihood approach was considered by combining
the M−smoothers defined in Boente et al. (2009) with robust regression estimators. Let ψ1 be an odd and
bounded score funtion and ρ be a rho–function as defined in Maronna, Martin and Yohai (2006, Chapter 2),
i.e., a function ρ such that ρ(x) is a nondecreasing function of |x|, ρ(0) = 0, ρ(x) is increasing for x > 0 when
ρ(x) < ‖ρ‖∞. If ρ is bounded, it is also assumed that ‖ρ‖∞ = 1. We will consider kernel smoothers weights for

the nonparametric component which are given by wi(τ) = K ((ti − τ)/hn) δi
{∑n

j=1K ((tj − τ )/hn) δj
}−1

,
with K a kernel function, i.e., a nonnegative integrable function on R and hn the bandwidth parameter.

To define a robust estimator, Bianco et al. (2010) proceed as follows

Step 1. For each τ and β, define gβ(τ) and its related estimate ĝβ(τ) as the solutions of S(1)(gβ(τ),β, τ) =
0 and S(1)

n (ĝβ(τ),β, τ) = 0, respectively, where

S(1)(a,β, τ) = E

[
δψ1

(
y − xtβ − a

σβ

)
υ (x) |t = τ

]
, (2)

S(1)
n (a,β, τ) =

n∑
i=1

wi(τ)ψ1

(
yi − xt

i β − a

ŝβ

)
υ (xi) , (3)

with ŝβ a preliminary robust consistent scale estimator of σβ the scale of y−xtβ−gβ(τ) and υ a weight
function.
Step 2. The functional β(F ) where F is the distribution of (y,xt, t, δ) is defined as β(F ) = argminβ H(β),
whereH(β) = E [δρ ((y − xtβ − gβ(t))/σ0) υ (x)]. Its related estimate is defined as β̂ = β̂n = argminβ Hn(β),
where

Hn(β) =
1
n

n∑
i=1

δiρ

(
yi − xt

i β − ĝβ(ti)
σ̂

)
υ (xi) ,

with σ̂ a preliminary estimate of the scale σ0, i.e., a robust M−scale computed using an initial (possibly
inefficient) estimate of β with high breakdown point.
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Step 3. Then, the functional g(τ, F ) is defined as g(τ, F ) = gβ(F )(τ), while the estimate of the nonpara-
metric component is ĝn(τ) = ĝ

̂β(τ).

As in any regression model, leverage points in the explanatory variables x, can cause breakdown. To
overcome this problem, GM−, S− and MM−estimators have been introduced, see for instance, Maronna
et al. (2006). In Step 2, a score function ρ combined with a weight υ is introduced to include both families
of estimators. This proposal is thus resistant against outliers in the residuals and in the carriers x as well. In
most situations, when considering MM−estimators, one chooses υ (x) ≡ 1 since MM−estimators already
control high–leverage points. An algorithm to compute these estimators is described in Bianco et al. (2010),
where MM−estimators with initial LMS−estimators combined with S−estimators adapted to the partly
linear setting are considered.

Let ψ = ρ′ be the derivative of the loss function ρ. Thus, the regression estimator defined in Step 2 is
the solution of

H(1)
n (β̂) =

n∑
i=1

δiψ

(
yi − xt

i β̂ − ĝ
̂β(ti)

σ̂

)
υ (xi)

(
xi +

∂

∂β
ĝβ(ti)

∣∣∣
β=̂β

)
= 0 . (4)

2.2 Estimators of the marginal location

Let us denote by θ the marginal location of y, for instance, we are interested in the M−location parameter
of y solution of λ(a, ς) = Eψ2 ((y − a)/ς) = 0 for all ς , where ψ2 is an odd and bounded score funtion. When
ψ2(u) = sg(u) = I(0,∞)(u) − I(−∞,0)(u), θ is the median of y. The same score functions ψ1 and ψ2 can be
considered both in Step 1 and when computing the marginal parameter estimators defined below.

Denote by ς̂ any robust consistent estimator of the marginal scale ς0 of the responses y, such as the mad.
To correct the bias caused in the estimation by the missing mechanism, an estimator of the missingness
probability needs to be considered. Denote by pn(x, t) any estimator of p(x, t). The weighted simplified

M−estimate was introduced in Bianco et al. (2010) where its consistency was derived. It is the solution, θ̂,
of Un(pn, ς̂, θ) = 0 with

Un(q, ς, θ) =
n∑

i=1

δi
q(xi, ti)

ψ2

(
yi − θ

ς

)
. (5)

3 Asymptotic behavior of the regression parameter estimators

In this section, we will derive the strong consistency and the asymptotic normality of the regression para-
meter.

3.1 Consistency of β̂

We will assume that t ∈ T ⊂ R, and let T0 ⊂ T be a compact set. For any continuous function v : T → R, we
will denote ‖v‖∞ = supt∈T |v(t)| and ‖v‖0,∞ = supt∈T0

|v(t)|. We will need the following set of assumptions

C1. The function ρ and ψ1 are continuous and bounded. Moreover, the function ρ is Lipschitz and υ is
bounded.
C2. The kernel K : R → R is an even, nonnegative, continuous and bounded function, with bounded
variation, satisfying

∫
K(u)du = 1,

∫
u2K(u)du <∞ |u|K(u) → 0 as |u| → ∞.
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C3. The bandwidth sequence hn is such that hn → 0, nhn/ log(n) → ∞.
C4. The marginal density fT of t is a bounded function. Moreover, given any compact set T0 ⊂ T there
exists a positive constant A1 (T0) such that A1 (T0) < fT (τ) for all τ ∈ T0.
C5. The function S(1)(a,β, τ) satisfies the following equicontinuity condition: for any ε > 0 there exists
δ > 0 such that for any τ1, τ2 ∈ T0 and β1,β2 ∈ K, a compact set in Rp,

|τ1 − τ2| < δ and ‖β1 − β2‖ < δ ⇒ sup
a∈R

|S(1)(a,β1, τ1) − S(1)(a,β2, τ2)| < ε .

C6. The function S(1)(a,β, τ) is continuous, and gβ(τ) is a continuous function of (β, τ).

Remark 3.1.1. If the conditional distribution of x|t = τ is continuous with respect to τ , the continuity and
boundness of ψ1 stated in C1 entail that S(1)(a,β, τ) is continuous. Assumption C3 ensures that for each
fixed a and β we have convergence of the kernel estimates to their mean, while C5 guarantees that the bias
term converges to 0. Assumption C4 is a standard condition in semiparametric models. Assumption C5 is
fulfilled under C1 if the following equicontinuity condition holds: for any ε > 0 there exist compact sets
K1 ⊂ R and Kp ⊂ Rp such that for any τ ∈ T0 P ((y,x) ∈ K1 ×Kp|t = τ) > 1− ε, which holds for instance if
xij = φj(ti) +uij , 1 ≤ i ≤ n, 1 ≤ j ≤ p, where φj are continuous functions and uij are i.i.d and independent
of ti.

Theorem 3.1. Let K ⊂ Rp and T0 ⊂ T be compact sets such that Tδ ⊂ T where Tδ is the closure of a δ
neighborhood of T0 . Assume that C1 to C6 and the following conditions hold

i) ψ1 is of bounded variation

ii) inf
β∈K

σβ > 0 and sup
β∈K

|ŝβ − σβ| a.s.−→ 0, where σβ as defined in Step 1.

Then, we have

a) supβ∈K
a∈R

‖S(1)
n (a,β, ·) − S(1)(a,β, ·)‖0,∞

a.s.−→ 0.

b) If, in addition, S(1)(a,β, τ) = 0 has a unique root gβ(τ), then sup
β∈K

‖ĝβ − gβ‖0,∞
a.s.−→ 0 .

The proof of Theorem 3.1 follows the same arguments of those used in Theorem 3.1 of Boente et al. (2006)
using the fact that asumption ii) implies that the family of functions F = {f(y,x) = ψ1 ((y − xtβ + a) /σ) υ(x),
β ∈ K, a ∈ R, σ > 0} has covering number N

(
ε,F , L1(Q)

)
≤ Aε−W , for any probability Q and 0 < ε < 1.

Besides, the condition that S(1)(a,β, τ) = 0 has a unique root is fulfilled if ψ1 is a nondecresing function
and strictly increasing in a neighborhood of 0.

Theorem 3.2. Let β̂ be the minimizer of Hn(β) where Hn(β) is defined in Step 2 with ĝβ satisfying

sup
β∈K

‖ĝβ − gβ‖0,∞
a.s.−→ 0 for any compact sets K ⊂ Rp and T0 ⊂ T . If C1 holds and σ̂

a.s.−→ σ0, then

a) supβ∈K |Hn(β) −H(β)| a.s.−→ 0,

b) If, in addition, there exists a compact set K1 such that limm→∞ P
(⋂

n≥m β̂ ∈ K1

)
= 1 and H(β) has a

unique minimum at β0, then β̂
a.s.−→ β0.

We also omit the proof of Theorem 3.2, since it follows as Theorem 3.2 of Boente et al. (2006).

Remark 3.2. Theorems 3.1 and 3.2 entail that ‖ĝ
̂β − g0‖0,∞

a.s.−→ 0, for any compact set T0 ⊂ T , since gβ(t)
is continuous.



6

3.2 Asymptotic Normality of β̂

From now on, T is assumed to be a compact set. The assumptions N1 to N6 under which the resulting
estimates are asymptotically normally distributed are detailed in the Appendix.

Theorem 3.3. Assume that t1 is a random variable with distribution on a compact set T . Assume that N1

to N6 in the Appendix hold and that σ̂
p−→ σ0, then for any consistent solution β̂ of (4), we have

√
n
(
β̂ − β0

)
D−→ N

(
0, σ2

0A
−1ΣA−1

)
,

where the symmetric matrix A is defined in N3 and Σ is defined in N4.

It is worth noticing that, when υ (x) ≡ 1, the efficiency of the robust estimator β̂ with respect to its linear
relative, i.e., the least square estimator, equals [Eψ′ (ε)]−2Eψ2 (ε), which corresponds to the very well known
efficiency of any robust location M−estimator. This situation includes, in particular, MM−estimators and
so, the same asymptotic efficiency as in the regression model is obtained in this case.

4 Asymptotic Normality of θ̂

In this section, we will derive the asymptotic distribution of the weighted simplified M−estimate, θ̂, under
different situations, i.e., when the missingness probability is assumed to be known or when it is estimated
either parametrically or using a kernel approach. Different asymptotic variances are obtained in each situa-
tion. The goal is to see if we can validate theoretically the results observed in the simulation study performed
in Bianco et al. (2010), i.e., if we can prove that estimating nonparametrically the missingness probability
reduces the variance of the estimator. It is worth noticing that our results require consistency of the proposed
estimators, i.e., that θ̂

p−→ θ. Conditions that guarantee strongly consistent estimators are given in Theorem
4.1 of Bianco et al. (2010) and include among others, uniform consistency of the missingness probability,
i.e., sup(x,t) |pn(x, t) − p(x, t)| a.s.−→ 0, smootheness conditions to the score function ψ2 and the assumption
that inf(x,t) p(x, t) = A > 0, which states that some response variables are observed at each neighborhood
of (x, t).

Assumptions NM1 to NM8 under which the estimators are asymptotically normally distributed are
stated in the Appendix. From now on, we will denote by u = (y − θ)/ς0.

Theorem 4.1. Let Un be defined in (5). Assume that NM1 to NM3 in the Appendix hold and that

ς̂
p−→ ς0. Denote by θ̂(1), the solution of Un(p, ς̂, θ) = 0, i.e., the weighted simplified estimator assuming

that the missingness probability is known. If θ̂(1)
p−→ θ, we have that

√
n(θ̂(1) − θ) D−→ N(0, υ(1)), where

υ(1) = E
(
ψ2

2 (u)/p(x, t)
)
(Eψ′

2 (u))−2
.

Note that in this situation, the efficiency with respect to the classical simplified estimator, i.e., when
ψ2(u) = u, is not the efficiency of the location estimator when no missing data are present, since a factor
1/p(x, t) depending on the missingness probability appears in the numerator’s expectation. Therefore, the
efficiency of the estimators depends on the proportion of missing data appearing in the sample.

Theorem 4.2. Let Un be defined in (5). Assume that NM1 to NM5 in the Appendix hold and that ς̂
p−→ ς0.

Moreover, assume that p(xi, ti) = G(xi, ti,λ0), where λ0 ∈ Rq , and let pn,̂λ(xi, ti) = G(xi, ti, λ̂), where λ̂
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is an estimator of λ such that λ̂
p−→ λ0. Denote by θ̂(2), the solution of Un(pn,̂λ, ς̂ , θ) = 0, i.e., assuming a

parametric model for the missingness probability. If θ̂(2)
p−→ θ, we have that

√
n(θ̂(2) − θ) D−→ N(0, υ(2)),

where υ(2) = γ2 (Eψ′
2 (u))−2

with

γ2 = E

[
δ

G(x, t,λ0)
ψ2 (u) − η(δ,x, t)tE

(
G′(x, t,λ0)
G(x, t,λ0)

ψ2 (u)
)]2

= E
ψ2

2 (u)
p(x, t)

+E

(
ψ2 (u)

G′(x, t,λ0)
G(x, t,λ0)

)t {
Σ E

(
ψ2 (u)

G′(x, t,λ0)
G(x, t,λ0)

)
− 2E

[
δψ2 (u)η(δ,x, t)
G(x, t,λ0)

]}
and η and Σ given in NM5.

Remark 4.1. Denote by Fl(s) = (1 + e−s)−1 the logistic distribution function and let us assume that the
missingness probablity is given by the logistic model, i.e., that p(x, t) = Fl(vtλ0) and G(x, t,λ) = Fl(vtλ)
where v = (1,xt, t)t. Hence, G′(x, t,λ) = Fl(vtλ)[1 − Fl(vtλ)]v. Moreover, let us assume that λ̂ is the
maximum likelihood estimator. This estimator can be consider instead of a robust one, such as that defined
in Croux and Haesbroeck (2003), if we suspect that no outliers are present in the covariates x or if we know
that p(x, t) only depends on t where no outliers appear, i.e., if in the above model, v = (1, t)t. This last
situation is also included in the sequel just by taking into account the new expression for v. The calculations
to be done include in particular, the classical estimators, for which up to our knowledge there are no results
regarding the theoretical comparison of the asymptotic variances of the marginal location estimator when
the missing probability is known and when it is parametrically estimated. In this situation, we have that

• G′(x, t,λ0) = p(x, t)[1 − p(x, t)]v,
• η(δ,x, t) = A−1

1 (δ − p(x, t))v where A1 = Ep(x, t)(1 − p(x, t))vv
t
, implying that Σ = A−1

1 ,
• E (G′(x, t,λ0)ψ2 (u)/p(x, t)) = E ((1 − p(x, t)ψ2 (u)v).

Therefore, γ2 = E
(
ψ2

2 (u)/p(x, t)
)

+ ν with

ν = E
(
(1 − p(x, t))ψ2 (u)vt)A−1

1

{
E ((1 − p(x, t))ψ2 (u)v) − 2E

[
ψ2 (u)

δ(δ − p(x, t))
p(x, t)

v
]}

= −E
(
(1 − p(x, t))ψ2 (u)vt)A−1

1 E ((1 − p(x, t))ψ2 (u)v) ,

where we have used that

E

(
δ

p(x, t)
(δ − p(x, t))|(y,x, t)

)
= E

(
δ

p(x, t)
(δ − p(x, t))|(x, t)

)
= 1 − p(x, t) . (6)

Hence, ν ≤ 0 which entails that υ(2) ≤ υ(1) and equality holds if and only if E ((1 − p(x, t))ψ2 (u)v) = 0
that happens obviously if there are no missing observations.

Remark 4.2. In some situations, the parameters of the logistic model need to be estimated robustly, for
instance, if we suspect that high leverage points in the carriers x are present. We can carry on the robust
estimation using, for instance, a weighted maximum likelihood estimator or the estimator defined in Croux
and Haesbroeck (2003), i.e., λ̂ = argminλ

∑n
i=1 w(xi)ϕ(vt

i λ; δi) where ϕ(s; 0) = ϕ(−s; 1) and ϕ(s; 0) =
ρ(− ln (1 − Fl(s))) + C (Fl(s)) + C (1 − Fl(s)) − C(1) and C(s) =

∫ s

0
ρ′(− lnu)du. The weighted maximum

likelihood estimator corresponds to the choice ρ(s) = s. Then, using the results in Bianco and Mart́ınez
(2009), we have that η(δ,x, t) = −A−1

1,rw(x)Ψ(vtλ0; δ)v, where Ψ(s; 0) = ∂ϕ(s; 0)/∂s, Ψ(s; 1) = −Ψ(−s; 0)
and

A1,r = E

{
w(x)

∂2

∂s2
ϕ(s; δ)

∣∣∣
s=vtλ0

vvt
}
.
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Straightforward calculations lead to

E

(
δη(δ,x, t)
p(x, t)

ψ2 (u)
)

= A−1
1,rE (ψ2 (u)w(x) (1 − p(x, t))D(x, t)v)

Σ = A−1
1,rE

(
w2(x) (1 − p(x, t)) p(x, t)D2(x, t)vvt)A−1

1,r ,

where D(x, t) = (1 − p(x, t))C ′(p(x, t)) + p(x, t)C ′(1 − p(x, t)). Therefore, γ2 = E
(
ψ2

2 (u)/p(x, t)
)

+ ν with

ν = E
(
(1 − p(x, t))ψ2 (u)vt) {Σ E ((1 − p(x, t))ψ2 (u)v) − 2A−1

1,rE (ψ2 (u)w(x) (1 − p(x, t))D(x, t)v)
}
.

In particular, if w(x) = w2(x) which corresponds to a 0−1 weight function and ρ(s) = s, i.e., when considering
the weighted maximum likelihood, we have that A1,r = E {w(x)p(x, t)(1 − p(x, t))vvt}, D(x, t) ≡ 1 and so,
E

(
w2(x) (1 − p(x, t)) p(x, t)D2(x, t)vvt

)
= A1,r that implies

ν = E
(
(1 − p(x, t))ψ2 (u)vt) {A−1

1,r E ((1 − p(x, t))ψ2 (u)v) − 2A−1
1,rE (ψ2 (u)w(x) (1 − p(x, t)) v)

}
= btA−1

1,rb − 2btA−1
1,rbw ,

where b = E ((1 − p(x, t))ψ2 (u)v) and bw = E (ψ2 (u)w(x) (1 − p(x, t)) v). Depending on the choice of the
weight function w, i.e., on the tuning constant selected to cutoff outliers, the inner product btA−1

1,rbw can be
much smaller than the squared norm btA−1

1,rb, leading to a positive value of ν. In this situation, the variance
of the robust marginal location estimator θ̂(2) will be larger than that of the estimator θ̂(1) computed with
the true missingness probability. This fact is consistent with the simulation results obtained in Bianco et
al. (2010) and opposite to the conclusions obtained when the parameters of the missing probability are
estimated using the classical maximum likelihood estimator, leading to a larger loss of eficiency when robust
estimators are used.

We will now study the asymptotic distribution of the weighted simplified estimator when the missingness
probability is estimated using a kernel estimator

pn,bn(x, t) =
n∑

i=1

K1

(
wi −w
bn

)
δi


n∑

j=1

K1

(
wj −w
bn

)
−1

, (7)

where K1 : Rp+1 → R is a kernel function, w = (xt, t)t and bn denotes the smoothing parameter.

Theorem 4.3. Let Un be defined in (5). Assume that NM1 to NM3 and NM6 to NM8 in the Appendix

hold and that ς̂
p−→ ς0. Let pn,bn(xi, ti) be the kernel estimator defined in (7). Denote by θ̂(3), the solution

of Un(pn,bn , ς̂, θ) = 0, i.e., using the nonparametric estimator of the missingness probability. If θ̂(3)
p−→ θ, we

have that
√
n(θ̂(3) − θ) D−→ N(0, υ(3)) where υ(3) = γ2

s (Eψ′
2 (u))−2

and

γ2
s = E

(
δ

p(w)
ψ2

(
y − θ

ς0

)
− (δ − p(w))

p(w)
r(w)

)2

,

with r(w) = E (ψ2 (u) |w).

Remark 4.3. Using (6) and after some algebra, we get that

γ2
s = E

ψ2
2 (u)
p(w)

−E

(
(1 − p(w))
p(w)

r2(w)
)
.



9

Hence, υ(3) ≤ υ(1) and so, the marginal location estimator θ̂(3) using the kernel estimator for the miss-
ing probability is more efficient than θ̂(1). Note that both estimators have equal variance if and only if
E

(
(1 − p(w)) r2(w)/p(w)

)
= 0, i.e., if and only if there are no missing observations, since E (ψ2 (u) |w) = 0

a.e. holds only if xtβ + g(t) is constant, which is a situation to be discarded in practice.

Remark 4.4. As in Remark 4.1 let us assume that the missingness probablity is given by the logistic
model, i.e., that p(x, t) = Fl(vtλ0) and G(x, t,λ) = Fl(vtλ) where v = (1,xt, t)t and Fl is the logistic
function. Moreover, let us assume that λ̂ is estimated using the maximum likelihood estimator. In this case,
we can compare the asymptotic variances of the marginal location estimator when the missing probability is
estimated parametrically or using a kernel estimator. We want to show that γ2

s ≤ γ2 and hence, υ(3) ≤ υ(2)

which means that the nonparametric estimator of the missing probability gives whenever it is possible to
compute the smallest asymptotic variance. As above, our conclusions include in particular, the classical
estimators, for which up to our knowledge there are no results regarding the theoretical comparison of the
asymptotic variances a parametric or a nonparametric approach is used to estimate the missing probability.
Let us recall that for the parametric situation, the asymptotic variance is given by γ2 = E

(
ψ2

2 (u)/p(x, t)
)
+ν

with ν = −E ((1 − p(w))ψ2 (u)vt)A−1
1 E ((1 − p(w))ψ2 (u)v), where A1 = Ep(x, t)(1 − p(x, t))vv

t
. Note

that E ((1 − p(w))ψ2 (u)vt) = E ((1 − p(w))r(w)vt), and so, in order to compare the asymptotic variances
and using the expression given in Remark 4.3, we only need to compare, the quantities

νp = E
(
(1 − p(w))r(w)vt)A−1

1 E ((1 − p(w))r(w)v)

νs = E

(
(1 − p(w))
p(w)

r2(w)
)
.

Clearly, if νs = 0 then νp = 0, so we can assume that νs > 0. Let A1 = C1Ct
1 and denote by z =

C−1
1 (δ− p(w))v and by ξ = (δ− p(w))p(w)−1r(w). Then, E(z) = 0, E(ξ) = 0, E(zzt) = I, νp = ‖E (ξz) ‖2

while νs = E(ξ2) = V ar(ξ). If we denote by ρ = E (ξz) and Σ� = E (sst) with s = (ξ, zt)t, we have that

Σ� =
(
νs ρt

ρ I

)
is a non–negative definite matrix. Note that since det (Σ�) = νs det

(
I − ν−1

s ρρt
)
≥ 0, the

eigenvalue 1 − ν−1
s ρtρ of I − ν−1

s ρρt is non–negative and so, νp = ‖ρ‖2 ≤ νs, as desired.

5 Concluding Remarks

Under a partially linear model when there are missing observations in the response variable, but the co-
variates (xt, t) are totally observed, the classical procedures fail to give reliable estimations when it can
be suspected that anomalous observations are present in the sample. Robust procedures to estimate the
regression parameter and the marginal location y were introduced in Bianco et al. (2010). These methods
lead to strongly consistent estimators. Moreover, in this paper, we derive their asymptotic distribution. In
particular, for the weighted simplified M−estimate, θ̂, we obtain the asymptotic distribution when the miss-
ingness probability is assumed to be known or when it is estimated either parametrically or using a kernel
approach. Different asymptotic variances are obtained in each situation.

The obtained theoretical results validate the numerical results observed in the simulation study per-
formed in Bianco et al. (2010), since they allow to show that estimating nonparametrically the missingness
probability reduces the variance of the marginal estimator either when the probability is known or when
it is estimated parametrically using the maximum likelihood estimator under a logistic missingness model.
This counterintuitive phenomenon was also observed by several authors, such as, Pierce (1982), Rosenbaum
(1987), Robins et al. (1994, 1995), Wang et al. (1998) and the references given therein. When the covariates
are missing, Wang et al. (1997) discussed the gain of efficiency of the estimators of θ via adjustment of the
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missing probability. An heuristical argument justifying this behavior for general parameter estimation with
missing covariates was given in Robins et al. (1994). The same arguments can be applied for missing re-
sponses. When the missing probability is modeled parametrically and the unknown quantities are estimated
using maximum likelihood estimators, the gain of efficiency is related to the linear expansion given in the
Appendix together with the joint asymptotic distribution of

∑n
i=1 δip

−1(wi)ψ2 (ui) /
√
n and of

√
n
(
λ̂ − λ0

)
and so, the optimality arguments used in Pierce (1982) can be considered to explain the effect of replacing
estimators for the true paramaters.

On the other hand, when the parameters are estimated robustly using a weighted maximum likelihood
method with weight function w, the robust estimators of the marginal location θ̂(2) may have a higher loss
of efficiency. To be more precise, depending on the tuning constant selected to cutoff outliers, the variance of
the robust marginal location estimator θ̂(2) may be larger than that of the estimator θ̂(1) computed with the
true missingness probability and so, larger than that of θ̂(3), the estimator based on a kernel approach. In
this sense, we recommend using a smooth estimator of the missing probabilities instead of a parametric one,
if the dimension of the covariates and the number of observations allow to compute the kernel estimator.

6 Appendix

6.1 Proof of the asymptotic normality of the regression estimates

For the sake of simplicity, we denote ψ′ and ψ′′ the first and second derivatives of ψ. Moreover, let z =
z(β0) = x + (∂gβ(t)/∂β) |β=β0

, zi = zi(β0) = xi + (∂gβ(ti)/∂β) |β=β0
and

γ̂(β, τ) = ĝβ(τ) − gβ(τ) γ̂0(τ) = γ̂(β0, τ) (8)

v̂j(β, τ) =
∂γ̂(β, τ)
∂βj

v̂j,0(τ) = v̂j(β0, τ) . (9)

We list the conditions needed for the asymptotic normality of the regression parameter estimators, fol-
lowed by general comments on those conditions. The first condition is on the preliminary estimate of gβ(τ),
while the other ones concern the score functions and the underlying model distributions.

N1. a) The functions ĝβ(τ) and gβ(τ) are continuously differentiable with respect to (β, τ) and twice
continuously differentiable with respect to β such that (∂2gβ(τ)/∂βj∂β�)|β=β0

is bounded. Furthermore,
for any 1 ≤ j, � ≤ p, ∂2gβ(τ)/∂βj∂β� satisfies the following equicontinuity condition:

∀ε > 0, ∃δ > 0 : |β1 − β0| < δ ⇒

∥∥∥∥∥∥ ∂2

∂βj∂β�
gβ

∣∣∣∣∣
β=β1

− ∂2

∂βj∂β�
gβ

∣∣∣∣∣
β=β0

∥∥∥∥∥∥
∞

< ε .

b)
∥∥∥ĝ

̂β − g0

∥∥∥
∞

p−→ 0, for any consistent estimate β̂ of β0.

c) For each τ ∈ T and β, γ̂(β, τ)
p−→ 0. Moreover, n1/4 ‖γ̂0‖∞

p−→ 0 and n1/4 ‖v̂j,0‖∞
p−→ 0 for all

1 ≤ j ≤ p.
d) There exists a neighborhood of β0 with closure K such that for any
1 ≤ j, � ≤ p, supβ∈K

(
‖v̂j(β, ·)‖∞ + ‖∂v̂j(β, ·)/∂β�‖∞

) p−→ 0.
e) ‖∂γ̂0/∂τ‖∞ + ‖∂v̂j,0/∂τ‖∞

p−→ 0 for any 1 ≤ j ≤ p.
N2. The functions υ and Υ (x) = xυ(x) are bounded and continuous. The function ψ = ρ′ is an odd,
bounded and twice continuously differentiable function with bounded derivatives ψ′ and ψ′′, such that
ϕ1(s) = sψ′(s) and ϕ2(s) = sψ′′(s) are bounded. Moreover, the function ψ1 is a bounded and continuously
differentiable function with bounded derivative ψ′

1.
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N3. The matrix A = Eψ′ (ε) E (υ(x)p(x, t)z(β0)z(β0)
t) is non-singular.

N4. The matrix Σ = Eψ2 (ε) E
(
υ2(x)p(x, t)z(β0)z(β0)t

)
is positive definite.

N5. E(ψ′
1 (ε)) 
= 0 and E(ψ′ (ε)) 
= 0.

N6. E
(
p(x, t)υ(x) ‖z(β0)‖

2
)
<∞.

Remark 6.1.1. Condition N1b) follows from the continuity of gβ(τ) = g(β, τ) with respect to (β, τ) and
Theorem 3.1 that leads to supβ∈K ‖ĝβ − gβ‖∞

a.s.−→ 0. Conditions N1a) and d) entail that for any consistent
estimator β̃ of β0, we have that

max
1≤j≤p

∥∥∥∥∂ĝβ

∂βj
|β=˜β − ∂gβ

∂βj
|β=β0

∥∥∥∥
∞

p−→ 0 and max
1≤j,�≤p

∥∥∥∥ ∂2ĝβ

∂βj∂β�
|β=˜β − ∂2gβ

∂βj∂β�
|β=β0

∥∥∥∥
∞

p−→ 0 .

Remark 6.1.2. When the kernel K is continuously differentiable with bounded derivative K ′ and with
bounded variation, the uniform convergence required in N1d) and e) can be derived through analogous
arguments to those considered in Theorem 3.1 by using that

∂

∂τ
ĝβ(τ) =

(
nhn

2
)−1

n∑
i=1

K ′
(
τ − ti
hn

)
δiψ1

(
yi − xt

i β − ĝβ(τ)
ŝβ

)
υ(xi)

(nhn)−1
n∑

i=1

K

(
τ − ti
hn

)
δiψ

′
1

(
yi − xt

i β − ĝβ(τ)
ŝβ

)
υ(xi)

∂

∂βj

ĝβ(τ) = −

n∑
i=1

K

(
τ − ti
hn

)[
δiψ

′
1

(
yi − xt

i β − ĝβ(τ)
ŝβ

)
υ(xi)

](
xij +

yi − xt
i β − ĝβ(τ)
ŝβ

∂

∂βj

ŝβ

)
n∑

i=1

K

(
τ − ti
hn

)
δiψ

′
1

(
yi − xt

i β − ĝβ(τ)
ŝβ

)
υ(xi)

and requiring that uψ′
1(u) is a bounded function and

sup
τ∈T

E

(
sup

β∈K,σ∈Kσ

|ψ′
1

(
y − xtβ − gβ(τ)

σ

)
‖x‖ |t = τ

)
< ∞

sup
τ∈T

E

(
sup

β∈K,σ∈Kσ

|ψ′′
1

(
y − xtβ − gβ(τ)

σ

)
‖x‖ |t = τ

)
< ∞

inf
β∈K,σ∈Kσ

τ∈T
|E

(
ψ′

1

(
y − xtβ − gβ(τ)

σ

)
|t = τ

)
| > 0 .

The uniform convergence rates required in N1c) are fulfilled when ĝβ is defined in Step 1 using kernel
weights and a rate-optimal bandwidth is used for the kernel.

Remark 6.1.3. Note that if P (υ(x) > 0) = 1 and Eψ′(ε) 
= 0, N3 holds, i.e., A will be non–singular
unless P (atz(β0) = 0) = 1, for some a ∈ Rp, that is, unless there is a linear combination of x which can
be completely determined by t. The condition Eψ′(ε) 
= 0 is a standard requirement in robust regression in
order to get root-n estimators of β.

Again, if N4 is fulfilled the columns of x + (∂gβ(t)/∂β)|β=β0
will not be collinear. It is necessary not to

allow x to be predicted by t to get root-n regression estimates.

N5 is a standard condition in robustness in order to get root−n estimators. It is worth noticing that N5
entails

E

[(
x +

∂

∂β
gβ(τ)

∣∣∣
β=β0

)
υ(x)p(x, τ)|t = τ

]
= 0 . (10)
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Effectively, since gβ(τ) satisfies (2) for each τ differentiating with respect to β, we get

E

[
δψ′

1

(
y − xtβ − gβ(τ)

σβ

)(
x +

∂

∂β
gβ(τ) +

y − xtβ − gβ(τ)
σβ

∂

∂β
σβ

)
υ(x)| t = τ

]
= 0 ∀β .

Thus, specializing at β = β0, we get that

0 = E

[
δψ′

1 (ε)
(
x +

∂

∂β
gβ(τ)

∣∣∣
β=β0

+ ε
∂

∂β
σβ

∣∣∣
β=β0

)
υ(x)| t = τ

]
= E(ψ′

1 (ε)) E
[
p(x, t)

(
x +

∂

∂β
gβ(τ)

∣∣∣
β=β0

)
υ(x)| t = τ

]
+E(εψ′

1 (ε))E [p(x, t)υ(x)| t = τ ]
∂

∂β
σβ

∣∣∣
β=β0

= E(ψ′
1 (ε)) E

[
p(x, t)

(
x +

∂

∂β
gβ(τ)

∣∣∣
β=β0

)
υ(x)| t = τ

]
,

where the last equality holds since ψ′
1 is an even function and ε has a symmetric distribution. Thus, (10)

holds.

Assumption N6 is used to ensure the consistency of the estimates of A based on preliminary estimates
of the regression parameter β and of the functions gβ.

Lemma 6.1.1. Let (yi,xt
i , ti) be independent observations satisfying (1). Assume that ti are random vari-

ables with distribution on a compact set T and that N1 to N3 and N6 hold. Let β̃ be such that β̃
p−→ β0

and ẑi(β̃) = xi + (∂ĝβ(ti)/∂β) |β=˜β. Then, An
p−→ A where A is given in N3

An =
1
n

n∑
i=1

(
ψ′

(
yi − xt

i β̃ − ĝ
˜β(ti)

σ̂

)
ẑi(β̃)ẑi(β̃)t + ψ

(
yi − xt

i β̃ − ĝ
˜β(ti)

σ̂

)
∂2

∂β∂βt ĝβ(ti)
∣∣∣t
β=˜β

)
δiυ(xi)

Proof. Note that An can be written as An =
∑6

j=1 A(j)
n where

A(1)
n =

1
n

n∑
i=1

δiψ
′

(
yi − xt

i β̃ − g0(ti)
σ̂

)
zi zt

i υ(xi)

A(2)
n =

1
n

n∑
i=1

δiψ

(
yi − xt

i β̃ − g0(ti)
σ̂

)
∂2

∂β∂βt gβ(ti)
∣∣∣t
β=β0

υ(xi)

A(3)
n =

1
σ̂

1
n

n∑
i=1

δiψ
′′

(
yi − xt

i β̃ − ξi,1
σ̂

)
ŵ0(ti)zizt

i υ(xi)

A(4)
n =

1
σ̂

1
n

n∑
i=1

δiψ
′

(
yi − xt

i β̃ − ξi,2
σ̂

)
ŵ0(ti)

∂2

∂β∂βt gβ(ti)
∣∣∣t
β=β0

υ(xi)

A(5)
n =

1
n

n∑
i=1

δiψ
′

(
yi − xt

i β̃ − ĝ
˜β(ti)

σ̂

)[
ŵ(ti)zt

i + ziŵ(ti)t + ŵ(ti) ŵ(ti)t
]
υ(xi)

A(6)
n =

1
n

n∑
i=1

δiψ

(
yi − xt

i β̃ − ĝ
˜β(ti)

σ̂

)
V̂(ti)tυ(xi) ,

where ξi,1 and ξi,2 are intermediate points and zi = zi(β0), ŵ0(t) = ĝ
˜β(t) − g0(t) and

ŵ(t) =
∂

∂β
ĝβ(t)

∣∣∣
β=˜β

− ∂

∂β
gβ(t)

∣∣∣
β=β0

V̂(t) =
∂2

∂β∂βt ĝβ(ti)
∣∣∣
β=˜β

− ∂2

∂β∂βt gβ(ti)
∣∣∣
β=β0

.



13

Using N1a), b) and d), N6, the boundness of ψ, ψ′, ψ′′, υ and Υ and the fact that β̂
p−→ β0, it follows

easily that A(j)
n

p−→ 0 for 3 ≤ j ≤ 6. From N6, the consistency of β̃ and the continuity of ψ and ψ′, we get
easily that A(1)

n + A(2)
n

p−→ A.

Proof of Theorem 3.3. Let β̂ is a solution of H(1)
n (β) = 0 defined in (4) and denote by ẑi(β) =

xi + (∂ĝβ(ti)/∂β) |β. Using a Taylor’s expansion of order one we get

0 =
n∑

i=1

δiψ

(
yi − xt

i β̂ − ĝ
̂β(ti)

σ̂

)
υ (xi) ẑi(β̂)

=
n∑

i=1

δiψ

(
yi − xt

i β0 − ĝβ0
(ti)

σ̂

)
υ (xi) ẑi(β0) −

1
σ̂
nAn

(
β̂ − β0

)
,

where

An = − σ̂
n

n∑
i=1

δi
∂

∂β

{
ψ

(
yi − xt

i β − ĝβ(ti)
σ̂

)
ẑi(β)

} ∣∣∣
β=˜β

υ(xi)

=
1
n

n∑
i=1

(
ψ′

(
yi − xt

i β̃ − ĝ
˜β(ti)

σ̂

)
ẑi(β̃)ẑi(β̃)t − ψ

(
yi − xt

i β̃ − ĝ
˜β(ti)

σ̂

)
∂2

∂β∂βt ĝβ(ti)
∣∣∣t
β=˜β

)
δiυ(xi) ,

with β̃ an intermediate point between β0 and β̂. From Lemma 6.1.1, we have that An
p−→ A, where A is

defined in N3. Therefore, in order to obtain the asymptotic distribution of β̂ it will be enough to derive the
asymptotic behavior of

L̂n = n−1/2
n∑

i=1

δiψ

(
yi − xt

i β0 − ĝβ0
(ti)

σ̂

)
υ (xi) ẑi(β0) .

Let

Ln = n−1/2
n∑

i=1

δiψ

(
yi − xt

i β0 − gβ0
(ti)

σ̂

)
υ (xi) zi(β0) = n−1/2

n∑
i=1

δiψ
(εiσ0

σ̂

)
υ (xi) zi(β0) ,

since gβ0
= g0. Using that ψ is odd and the errors have a symmetric distribution and are independent of the

carriers, we have that E [ψ (εiσ0/σ) |(xi, ti)] = Eψ (εiσ0/σ) = 0, for all σ. Then, the consistency of σ̂ and
standard tightness arguments entail that Ln is asymptotically normally distributed with covariance matrix
Σ. Therefore, it remains to show that Ln − L̂n

p−→ 0.

We have the following expansion L̂n − Ln = −σ̂−2L1
n + σ̂−1L2

n − σ̂−1L3
n + σ̂−2L4

n, with

L1
n = n−1/2σ̂

n∑
i=1

δiψ
′
(
yi − xt

i β0 − gβ0
(ti)

σ̂

)
zi(β0)υ(xi)γ̂0(ti)

L2
n = n−1/2σ̂

n∑
i=1

δiψ

(
yi − xt

i β0 − gβ0
(ti)

σ̂

)
υ(xi)v̂0(ti)

L3
n = n−1

n∑
i=1

δiψ
′
(
yi − xt

i β0 − gβ0
(ti)

σ̂

)
υ(xi)

(
n1/4v̂0(ti)

) (
n1/4γ̂0(ti)

)
L4

n = (2n)−1
n∑

i=1

δiψ
′′
(
yi − xt

i β0 − ξi(ti)
σ̂

)
zi(β0)υ(xi)

(
n1/4γ̂0(ti)

)2

,
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where γ̂0(τ) = ĝβ0
(τ) − g0(τ), v̂0(τ) = (v̂1,0(τ), . . . , v̂p,0(τ))

t = ∂γ̂(β, τ)/∂β|β=β0
is defined in (9), γ̂ is

defined in (8) and ξ(ti) an intermediate point between ĝβ0
(ti) and g0(ti). It is easy to see that L3

n
p−→ 0 and

L4
n

p−→ 0 follow from N1c) and N2.

To complete the proof, we will show that Lj
n

p−→ 0 for j = 1, 2 which will follow from N1c) to e) and
(10), using similar arguments to those considered in Bianco and Boente (2004).

Effectively, fix the coordinate j, 1 ≤ j ≤ p. For any function γ and any positive fixed number σ, if xi,j

and βj denote the j−th coordinate of xi and β respectively, we define

Jn,1 (γ, σ) = n−1/2σ

n∑
i=1

ψ′
(
yi − xt

i β0 − g0(ti)
σ

)[
xi,j +

∂

∂βj
gβ(ti)

∣∣∣
β=β0

]
υ(xi) γ(ti)

Jn,2 (γ, σ) = n−1/2σ

n∑
i=1

ψ

(
yi − xt

i β0 − g0(ti)
σ

)
υ(xi) γ(ti)

where we have omitted the subscript j for the sake of simplicity.

Let V = {γ ∈ C1(T ) : ‖γ‖∞ ≤ 1 ‖γ ′‖∞ ≤ 1}. Note that, for any probability measure Q, the bracketing
number N[ ]

(
ε,V , L2(Q)

)
, and so the covering number N

(
ε,V , L2(Q)

)
, satisfy

logN
(
ε/2,V , L2(Q)

)
≤ logN[ ]

(
ε,V , L2(Q)

)
≤ Aε−1 ,

for 0 < ε < 2, where the constant A is independent of the probability measure Q (see Corollary 2.7.2 in van
der Vaart and Wellner (1996)).

Denote I = [σ0/2, 2σ0]. Consider the classes of functions

F1 =
{
f1,γ,σ(y,x, t) = σψ′

(
y − xtβ0 − g0(t)

σ

)[
xj +

∂

∂βj
gβ(t)

∣∣∣
β=β0

]
υ(x) γ(t) , γ ∈ V , σ ∈ I

}
F2 =

{
f2,γ,σ(y,x, t) = σψ

(
y − xtβ0 − g0(t)

σ

)
υ(x) γ(t) , γ ∈ V , σ ∈ I

}
.

F1 and F2 have as envelopes the constants

A1 = 2σ0‖ψ′‖∞
[
‖Υ‖∞ +

∥∥(∂gβ)/∂βj |β=β0

∥∥
∞ ‖υ‖∞

]
= 2σ0‖ψ′‖∞A0

and A2 = 2σ0‖ψ‖∞‖υ‖∞, respectively. On the other hand, (10), the oddness of ψ and the symmetry of the
error’s distribution imply that, for any f ∈ F1 ∪ F2, E f (yi,xi, ti) = 0.

Write ψσ(r) = σ ψ(r/σ) and ψ′
σ(r) = σ ψ′(r/σ). From N2, we have that ϕ1 and ϕ2 are bounded, which

entails that

|ψ′
s1

(r) − ψ′
s2

(r)| ≤ (‖ψ′‖∞ + ‖ϕ2‖∞) |s1 − s2| and |ψs1(r) − ψs2(r)| ≤ (‖ψ‖∞ + ‖ϕ1‖∞) |s1 − s2| .

Let B1 = A0 (‖ψ′‖∞(3 + 2σ0) + 3‖ϕ2‖∞) and B2 = ‖υ‖∞ (‖ψ‖∞(3 + 2σ0) + 3‖ϕ1‖∞). Denote ‖f‖Q,2 =(
EQ(f2)

)1/2. It is easy to see that, for any γ ∈ V , σ ∈ I and 0 < ε < 2, ‖γs − γ‖Q,2 < ε and |σ� − σ| < ε,
entail that ‖f1,γs,σ�

− f1,γ,σ‖Q,2 ≤ B1 ε which allows to conclude that

N
(
εB1,F1, L

2(Q)
)
≤ N

(
ε,V , L2(Q)

)
N (ε, I, | · |) .

Similarly, we get thatN
(
εB2,F2, L

2(Q)
)
≤ N

(
ε,V , L2(Q)

)
N (ε, I, | · |). Therefore, these classes of functions

have finite uniform–entropy.

For any class of functions F , denote by J (δ,F) = supQ

∫ δ

0

√
1 + log (N (ε ‖F‖Q,2,F , L2(Q))) dε, where the

supremum is taken over all discrete probability measures Q with ‖F‖Q,2 > 0 and F is the envelope of F . The
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function J is increasing, J (0,F) = 0 and J (1,F) <∞ and J (δ,F) → 0 as δ → 0 for classes of functions F
which satisfies the uniform–entropy condition. Moreover, if F0 ⊂ F and the envelope F is used for F0, then
J (δ,F0) ≤ J (δ,F).

For any ε > 0 and 0 < δ < 1, consider the subclasses

F1,δ = {f1,γ,σ(y,x, t) ∈ F1 with ‖υ‖∞ < δ} and F2,δ = {f2,γ,σ(y,x, t) ∈ F2 with ‖υ‖∞ < δ} .

Remind that γ̂0(τ) = ĝβ0
(τ) − g0(τ) and v̂j,0(τ) = (∂γ̂(β, τ))/∂βj |β=β0

. Using that N1c) and e) entail that
supτ∈T |γ̂0(τ)|

p−→ 0, supτ∈T |∂γ̂0(τ)/∂τ |
p−→ 0, supτ∈T |v̂j,0(τ)|

p−→ 0, supτ∈T |∂v̂j,0(τ)/∂τ |
p−→ 0 and the

consistency of σ̂, we have that, for 1 ≤ j ≤ p and n large enough,

P (σ̂ ∈ I , γ̂0 ∈ V and ‖γ̂0‖∞ < δ) > 1 − δ/2
P (v̂j,0 ∈ V and ‖v̂j,0‖∞ < δ) > 1 − δ/2 .

It is clear that supf∈F1,δ

∑n
i=1 f

2(ri, zi, ti)/n ≤ A2
1δ

2 and supf∈F2,δ

∑n
i=1 f

2(ri, zi, ti)/n ≤ A2
2 δ

2. Therefore,
the maximal inequality for covering numbers entails that, for any 0 ≤ � ≤ p,

P (|Jn,1 (γ̂0, σ̂) | > ε) ≤ P (|Jn,1 (γ̂0, σ̂) | > ε , σ̂ ∈ I, γ̂0 ∈ V and ‖γ̂0‖∞ < δ) + δ

≤ P

(
sup

f∈F1,δ

∣∣∣∣∣n−1/2
n∑

i=1

f(yi,xi, ti)

∣∣∣∣∣ > ε

)
+ δ

≤ ε−1D1A1 J (δ,F1) + δ ,

where D1 is a constant not depending on n.

Similarly, P (|Jn,2 (v̂j,0, σ̂) | > ε) ≤ ε−1D2A2 J (δ,F2) + δ. Using that the classes F1 and F2 satisfy the
uniform–entropy condition, we get limδ→0 J (δ,F1) = 0 and limδ→0 J (δ,F2) = 0. Thus, we have that
L1

n = Jn,1 (γ̂0)
p−→ 0 and L2

n = (Jn,2 (v̂1,0) , . . . , Jn,2 (v̂p,0))
t p−→ 0, as desired.

6.2 Proof of the asymptotic distribution of the marginal estimators

When estimating the marginal location, we will assume, without loss of generality, that the marginal scale
ς0 is known and so we will replace ς̂ by ς0. Recall that u = (y − θ)/ς0 and denote ui = (yi − θ)/ς0.

NM1. The function ψ2 is twice continuously differentiable with bounded derivatives.
NM2. A(ψ2) = E [δψ′

2 (u) /p(x, t)] = Eψ′
2 (u) 
= 0.

NM3. inf(x,t) p(x, t) = ι(p) > 0.
NM4. The missingness probability p(x, t) = G(x, t,λ0), λ0 ∈ Rq , is such that
a) the family of functions G = {G(x, t,λ) : λ ∈ Rq} has finite entropy.
b) G(x, t,λ) is twice continuously differentiable with respect to λ. We will denote by G′(x, t,λ) and

G′′(x, t,λ) the gradient and hessian matrix of G(x, t,λ) with respect to λ.
c) E

(
|G′

j(x, t,λ0)|ψ′
2 (u) /p(x, t)

)
<∞ for 1 ≤ j ≤ q.

d) For some Λ > 0, E
(
sup‖λ−λ0|<Λ |G′′

j�(x, t,λ)ψ′
2 (u) |/p(x, t)

)
<∞ for 1 ≤ j, � ≤ q.

NM5. λ̂ admits a Bahadur expansion given by
√
n
(
λ̂ − λ0

)
= (1/

√
n)

∑n
i=1 η(δi,xi, ti) + op(1) where

Eη(δi,xi, ti) = 0 and E‖η(δi,xi, ti)‖2 <∞. We will denote by Σ = Eη(δ,x, t)η(δ,x, t)t the asymptotic
covariance matrix of λ̂.
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Assumption NM4 holds in most parametric situations such as the logistic missingness model.

Proof of Theorem 4.1. A Taylor’s expansion of order two leads to

0 =
√
n Un(p, ς0, θ̂(1)) =

1√
n

n∑
i=1

δi
p(xi, ti)

ψ2 (ui) −
√
n(θ̂(1) − θ)An(ψ2) ,

where

An(ψ2) =
1
n

n∑
i=1

δi
p(xi, ti)

ψ′
2 (ui) +

1
2
(θ̂(1) − θ)

1
n

n∑
i=1

δi
p(xi, ti)

ψ′′
2

(
yi − ξn
ς0

)
and ξn is an intermediate point between θ̂(1) and θ. Using that An(ψ2)

p−→ A(ψ2) and
√
n Un(p, ς0, θ)

D−→ N(0, γ2
0) with γ2

0 = E
(
δψ2

2 (u) /p(x, t)2
)

= Eψ2
2 (u) /p(x, t), the proof follows.

Proof of Theorem 4.2. As in the proof of Theorem 4.1, using a Taylor’s expansion of order two, we get
that 0 = (1/

√
n)

∑n
i=1(δi/pn,̂λ(xi, ti))ψ2 (ui) −

√
n(θ̂(2) − θ)A(2)

n (ψ2), where

A(2)
n (ψ2) =

1
n

n∑
i=1

δi
pn,̂λ(xi, ti)

ψ′
2 (ui) +

1
2
(θ̂(2) − θ)

1
n

n∑
i=1

δi
pn,̂λ(xi, ti)

ψ′′
2

(
yi − ξn
ς0

)
and ξn is an intermediate point between θ̂(2) and θ. Using NM3, it follows that A(2)

n (ψ2)
p−→ A(ψ2).

Therefore, it is enough to show that Bn = (1/
√
n)

∑n
i=1

(
δi/pn,̂λ(xi, ti)

)
ψ2 (ui)

D−→ N(0, υ2). Note that

Bn =
1√
n

n∑
i=1

δi
p(xi, ti)

ψ2 (ui) +
1√
n

n∑
i=1

(
p(xi, ti)

pn,̂λ(xi, ti)
− 1

)
δi

p(xi, ti)
ψ2 (ui) .

Denote by

Rn(λ) =
1√
n

n∑
i=1

(
G(xi, ti,λ0)
G(xi, ti,λ)

− 1
)

δi
p(xi, ti)

[ψ2 (ui) − r(xi, ti)] ,

where r(x, t) = Eψ2 (u) |(x, t). Then, using NM4a), the fact that λ̂
p−→ λ0 and standard empirical processes

arguments as those considered in the proof of Theorem 3.3, we get easily that Rn(λ̂)
p−→ 0 and so, Bn =

B1,n +B2,n +B3,n + op(1) where

B1,n =
1√
n

n∑
i=1

δi
p(xi, ti)

ψ2 (ui) , B2,n =
1√
n

n∑
i=1

(
λ0 − λ̂

)t G′(xi, ti,λ0)

G(xi, ti, λ̂)

δi
p(xi, ti)

r(xi, ti)

B3,n =
1
2

(
λ0 − λ̂

)t 1
n

n∑
i=1

G′′(xi, ti, ξ)
1

G(xi, ti, λ̂)

δi
p(xi, ti)

r(xi, ti)
√
n
(
λ0 − λ̂

)
.

The Bahadur expansion given in NM5 implies that
√
n
(
λ̂ − λ0

)
= Op(1), thus, using NM4d) we obtain

that B3,n
p−→ 0. Therefore, since B2,n = −√

n
(
λ̂ − λ0

)t
E ((G′(x, t,λ0)/G(x, t,λ0))r(x, t)) + op(1), to

derive the asymptotic distribution of Bn it is enough to study that of

Cn =
1√
n

n∑
i=1

δi
p(xi, ti)

ψ2 (ui) −
√
n
(
λ̂ − λ0

)t
E

(
G′(x, t,λ0)
G(x, t,λ0)

r(x, t)
)

+ op(1)

=
1√
n

n∑
i=1

[
δi

p(xi, ti)
ψ2 (ui) − η(δi,xi, ti)tE

(
G′(x, t,λ0)
G(x, t,λ0)

r(x, t)
)]

+ op(1) ,
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where the last equality follows from NM5. The proof follows now from the Central Limit Theorem.

To derive the asymptotic distribution of θ̂(3) we will need the following additional assumptions. For the
sake of simplicity we will denote by w = (xt, t)t.

NM6. The missingness probability p(w) is twice continuously differentiable.
NM7. The bandwidth bn satisfies that ρ2

n =
{
nb4n + (nb2(p+1)

n )−1
}
→ 0

NM8. The kernel K1 : Rp+1 → R is bounded, nonnegative, has compact support and
∫
K1(u)du > 0,∫

ujK1(u)du = 0, for 1 ≤ j ≤ p+ 1,
∫
‖u‖2K1(u)du > 0 and

∫
u2

jK1(u)du > 0.

For the sake of simplicity, we will assume that
∫
K1(u)du = 1.

Proof of Theorem 4.3. As in the proof of Theorem 4.2, using a Taylor’s expansion of order two, we get
that 0 = (1/

√
n)

∑n
i=1 (δi/pn,bn(xi, ti))ψ2 ((yi − θ)/ς0) −

√
n(θ̂(3) − θ)A(3)

n (ψ2) where

A(3)
n (ψ2) =

1
n

n∑
i=1

δi
pn,bn(xi, ti)

ψ′
2 (ui) +

1
2
(θ̂(3) − θ)

1
n

n∑
i=1

δi
pn,bn(xi, ti)

ψ′′
2

(
yi − ξn
ς0

)
and ξn is an intermediate point between θ̂(3) and θ. Using NM3, it is easy to see that A(3)

n (ψ2)
p−→ A(ψ2).

Therefore, it is enough to show that Bn = (1/
√
n)

∑n
i=1(δi/pn,bn(xi, ti))ψ2 (ui)

D−→ N(0, γ2
s ). Note that

Bn =
1√
n

n∑
i=1

δi
p(wi)

ψ2 (ui) +
1√
n

n∑
i=1

(
p(wi)

pn,bn(wi)
− 1

)
δi

p(wi)
ψ2 (ui) = B(1)

n +B(2)
n ,

where pn,bn(w) is defined in (7). Denote by fn(w) =
∑n

i=1K1 ((wi −w)/bn)/
(
nbp+1

n

)
. As in Wang et al.

(1997), we have that

B(2)
n =

1√
n

n∑
i=1

(p(wi) − pn,bn(wi))
δi

p2(wi)
ψ2 (ui) +Op(ρn)

= − 1√
n

1
nbp+1

n

n∑
i=1

n∑
j=1

K1

(
wj −wi

bn

)
(δj − p(wi)) δi

fn(wi)p2(wi)
ψ2 (ui) +Op(ρn)

= − 1√
n

1
nbp+1

n

n∑
i=1

n∑
j=1

K1

(
wj −wi

bn

)
(δj − p(wi)) (δi − p(wi))

fn(wi)p2(wi)
ψ2 (ui)

− 1√
n

1
nbp+1

n

n∑
i=1

n∑
j=1

K1

(
wj −wi

bn

)
(δj − p(wi))

fn(wi)p(wi)
ψ2 (ui) +Op(ρn) = −B1,n −B2,n +Op(ρn) .

Besides,

B2,n =
1√
n

1
nbp+1

n

n∑
j=1

n∑
i=1

K1

(
wj −wi

bn

)
(δj − p(wi))

fn(wi)p(wi)
(ψ2 (ui) − r(wi))

+
1√
n

1
nbp+1

n

n∑
j=1

n∑
i=1

K1

(
wj −wi

bn

)
(δj − p(wi)) r(wi)

fn(wi)p(wi)
.
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Then, arguing as in Wang et al. (1997) and using standard U−statistics arguments, we get that B2,n =
(1/

√
n)

∑n
j=1 r(wj) (δj − p(wj)) /p(wj)+Op(ρn). On the other hand, using the same arguments as in Wang

et al. (1997), we get that B1,n = Op(ρn). Hence, we obtain that

Bn =
1√
n

n∑
j=1

δj
p(wj)

ψ2

(
yj − θ

ς0

)
− (δj − p(wj))

p(wj)
r(wj) +Op(ρn)

and so, the Central Limit Theorem entails that Bn
D−→ N(0, γ2

s ) concluding the proof.
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