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Abstract

In this paper we study a cost allocation problem that is inherent to most energy
networks: the allocation of losses. In particular, we study how to allocate gas losses
between haulers in gas transmission networks. We discuss five allocation rules, two
of them have already been in place in real networks and the rest are defined for
the first time in this paper. We then present a comparative analysis of the different
rules by studying their behavior with respect to a set of principles set forth by the
European Union. This analysis also includes axiomatic characterizations of two of
the rules. Finally, as an illustration, we apply them to the Spanish gas transmission
network.

Keywords. Gas transmission networks, loss allocation, cost allocation,
management

1 Introduction

Natural gas is an important energy resource, whose usage has increased very significantly
over the last three decades. According to data from the EIA (United States Energy
Information Administration), between 1980 and 2010, consumption of natural gas world
wide rose from 53 million cubic feet to 113 million, leading to a 23.9% share of global
primary energy consumption (British Petroleum, 2013). As a consequence of this, there
is an increasing need for construction and expansion of gas transmission networks and,
more importantly, an increasing need for its efficient management and operation.

A common problem in gas transmission networks is that it is very difficult to identify
the specific sources of gas losses. Thus, losses are present in virtually any gas network
and one must anticipate them so that they do not lead to deficit in the given gas system.
For instance, in the Spanish transmission network it is estimated that 0.2% of the gas
transported in the high pressure gas network is lost in the transmission process.1 In

1See Bolet́ın Oficial del Estado (2013a) for the Spanish regulation and Comisión Nacional de la Enerǵıa
(2006) for an overview of these estimates in different countries.
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monetary terms, the annual cost of the gas entering the Spanish gas network is around
1200 millions of Euro,2 which results in approximately 25 millions of Euro in losses
in the transmission network. The way in which these estimated losses are dealt with
in Spain and, to the best of our knowledge, in most gas networks is by withholding
a pre-set percentage of the gas entering the network, which usually corresponds with
the estimated loss; by doing this, the gas trading companies are the ones effectively
assuming the associated cost in the first instance. Since a gas network is typically owned
by different agents, called haulers, it must be decided how much of the withhold gas each
of them is allowed to lose in his own subnetwork. This must be done in a way that gives
the haulers the right incentives, i.e., each of them is penalized if his real loss exceeds the
allocated one and is rewarded otherwise.

s1

s2

c1

f = 600

v = 40

f = 600

v = 40

f = 1200

v = 20

h1

h2

h3

Figure 1: Example of the gas loss allocation problem.

To illustrate, consider the network depicted in Figure 1. There are two supply nodes,
s1 and s2, and a demand node, c1. There are three haulers in this network and v and f
denote, respectively, a pipe’s volume and the units of gas that flow through it. Since the
network is transporting 1200 units of gas, according to the 0.2% mentioned above, it is
estimated that 2.4 units of flow will be lost in the transmission process. The question is,
how much of this loss is allowed to each hauler? We cannot assign to each of them 0.2%
of the gas he is carrying because that would result in 1.2, 1.2, and 2.4 being allocated to
them, which results in a total of 4.8 units being allocated while the amount to allocate
is just 2.4. A sensible alternative is to split the 2.4 units proportionally to the flows, so
that hauler h3 is assigned a loss of 1.2 units of flow and h1 and h2 a loss of 0.6 each. Yet,
one can argue that the gas in the pipe of h3 is covering half the distance (assuming that
all pipes have the same diameter) and that the assigned loss should also reflect this fact,
leading to 0.8 being allocated to each hauler. Even in a small network is not entirely
obvious how the gas loss should be allocated, and other considerations arise for more
general networks.

Therefore, the definition of rules to allocate gas losses to haulers is a relevant issue
for the management of gas transmission networks. Importantly, the European Union
has already set forth some principles that should be pursued with the national and
international regulations regarding the natural gas market. One of the main documents

2Estimate based on the information provided by the Spanish Transmission System Operator (Enagás
GTS, 2013) and on a gas price of 30000 e/GWh.
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in this respect is Regulation (EC) (no. 55/2003), and some relevant principles mentioned
there are non-discrimination, cost-reflectivity, transparency, and fostering competition.

In this paper we discuss five different loss allocation rules: the one used in Spain
until 2013, the one used since 2014, and three other rules we define. We then present a
detailed analysis of the behavior of the rules with respect to a set of desirable properties
which are in turn related to the aforementioned European Union principles. We also
present axiomatic characterizations of two of the rules under study.

One of the conclusions of our analysis is that the rule that exhibits worst behavior
with respect to the EU principles is the one that was in place in Spain until 2013.
Interestingly, this rule was replaced by a new one because of the strong opposition of
most of the haulers (on the grounds that it favored big haulers). We also present an
illustration of the different rules in the Spanish gas network and note that there are
significant differences in the allocations proposed by the rules, with the maximum gap
we observed for a hauler having an annual monetary equivalent of almost 10 million of
Euro. Therefore, the issue of selecting a fair allocation rule can be very important for
the haulers.

Loss allocation has received a lot of attention in the electricity sector (see Kyung-Il
et al. (2010), Conejo et al. (2002), Galiana et al. (2002), and references therein). However,
most of the effort there concentrates on defining algorithms that allow to precisely identify
the sources of the losses which would then make the “allocating task” straightforward. As
far as we know, the former identification is much harder in gas networks and there are no
such algorithms available. Maybe more importantly, we have found no paper developing
a formal analysis of the properties of the different methods. The closest we have found
to an axiomatic analysis is Lima and Padilha-Feltrin (2004), where the authors compare
different allocation methods by means of their behavior in a series of examples.3

The paper is structured as follows. In Section 2 we present a brief introduction to
some relevant characteristics of the management and operation of a gas transmission
network. In Section 3 we present the formal mathematical model. Sections 4 and 5
are devoted to the definitions of the rules and properties, respectively. In Section 6 we
discuss the behavior of the rules with respect to the properties and EU principles. In
Section 7 we present two axiomatic characterizations. Section 8 contains an illustration
of the rules in the Spanish gas transmission network. In Section 9 we present some
conclusions. For the sake of exposition, all proofs have been relegated to the Appendix.

2 The underlying gas network problem

A gas network is formed by nodes and pipes. Some nodes are demand nodes, at which
some gas leaves the network. Some nodes are supply nodes, from which the gas enters the
network. The rest of the nodes are simply points at which two or more pipes intersect.
Each pipe belongs to a hauler and each hauler may own several pipes. The gas network

3Interestingly, there are several papers that use game theoretical models to define new loss allocation
methods, but do not build upon them to develop axiomatic analysis (Molina et al., 2010; Lima et al.,
2008).
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operation is decided by the Transmission System Operator (TSO). Once the TSO knows
the demand of gas in each demand node he decides, following some criteria, the amount
of gas that should be introduced in each supply node and how to route it so that the
total demand is fulfilled.

Naturally, the most important element of our cost allocation model is the gas network,
which we assume is in steady state, i.e., the gas flowing through each pipe and the
pressure at each node are constant.4 Then, for the purposes of this paper, in order to
have the network configuration completely specified we need to know, for each pipe, its
volume and the amount of gas flowing through it. The flow represents the total amount of
energy each pipe carries during a given period of time (which, when needed, we represent
as GWh/d). In particular, it is worth noting that, as far as this paper is concerned, there
is no relevant connection between the volume of the pipe and the amount of gas that can
flow through it.5

Ideally, the chosen flow configuration should be based on some realistic scenario of
demands and operating regime. In energy networks it is customary to work with reference
scenarios with high/peak demand and we will do so when working with the Spanish gas
network in Section 8. Yet, this is not critical for the normative analysis in this paper.
Indeed, once a methodology is chosen to allocate the losses, it can be run on a daily
basis if needed to ensure that the final allocations stem from representative network
configurations.

Given a network configuration and a percentage estimate for the gas loss, one can
obtain an estimate for the total loss of the system during the given period. Suppose such
a loss is L. Then, this total loss L has to be allocated among the haulers, conditioning
on the current network configuration. Let Ah be the loss assigned to hauler h and let Rh
be the real loss measured in the subnetwork of hauler h during this period. Then, the
hauler is penalized if Ah − Rh < 0 and rewarded otherwise.6 As we already mentioned
in the Introduction, L can be of the order of millions of Euro (around 25 million in the
Spanish network) and so the way L is allocated is very important for the haulers.

3 The mathematical model

Let U = {1, 2, 3, . . .} be the (infinite) set of possible nodes. A graph is a pair g = (N,E)
where N ⊂ U is the (finite) set of nodes and E is a collection of ordered pairs in N ,
i.e., E ⊂ {(i, j) : (i, j) ∈ N × N and i 6= j}. The pairs (i, j) are called edges. More
generally, a multigraph is also a pair g = (N,E), but where the set of edges is a multiset
E ⊂ N ×N × N. In particular, we say that two edges (i, j, n) and (i′, j′, n′) are part of
a multiedge if i = i′, j = j′, and n 6= n′. We say that E does not have multiedges if the

4The steady state assumption is not realistic for real time analysis of the network operation but, since
steady state modeling is much simpler, it is the standard approach for medium and long term analysis
of energy networks.

5Note that natural gas is a compressible fluid, so the capacity limitations would also critically depend
on the materials of the pipe and the maximum pressure they can support.

6In Spain, given a price p per unit of gas, the haulers pay p(Rh − Ah) when Ah − Rh < 0 and,
otherwise, they get p

2
(Rh −Ah) (Bolet́ın Oficial del Estado, 2013b).
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projection of E on N ×N is injective.
A path in g between i and j is a sequence of l > 1 nodes {k1, . . . , kl} such that i = k1,

j = kl, and (kq−1, kq) ∈ E for all q ∈ {2, . . . , l}. A simple path in g between i and j is a
path where all nodes are different. For the sake of notation we often identify a path with
the set of edges {(kq−1, kq)}q∈{2,...,l}. A graph g is connected if for each pair of nodes i
and j there is a path between i and j in the non-oriented version of g. We avoid the
trivial extension of these definitions for multigraphs.

A gas loss problem G is a 5-tuple (g, v, f,H, α) where

i) The multigraph g = (N,E) represents the gas network.

We assume that g is a connected graph without cycles modeling the way in which
the gas flows. If e = (i, j, l) ∈ E, then there may be gas flowing from i to j.

ii) v = (ve)e∈E where for each e ∈ E, ve > 0 denotes the volume of e.

iii) f = (fe)e∈E is the flow configuration where, for each e ∈ E, fe ≥ 0 denotes the
instantaneous flow of gas through e. There is some flow of gas, i.e.,

∑
e∈E fe > 0.

iv) H = (H, {Eh}h∈H) is the hauler structure, where H denotes the set of haulers
and, for each h ∈ H, Eh denotes the (possibly empty) set of edges of hauler h. In
particular, E =

⊔
h∈H Eh.

v) α ∈ [0, 1] denotes the proportion of gas allowed to be lost by the set of haulers.

We present an example of a gas problem below but, before that, we make some
observations and assumptions:

• For the sake of notation simplicity, we work with graphs instead of multigraphs,
and explicitly refer to the later when they can make a difference.

• We assume that the set of haulers H is infinite, although only a finite number of
them will effectively own some edge for each given problem. We do it because
we want to be able to model situations in which a hauler sells one of its edges to
another hauler in H having no edge. This assumption simplifies the notation. In
the examples we only mention the haulers having some edges.

Example 1. Let G be the gas problem where

i) g = (N,E) where N = {s1, s2, 1, c1, c2} and E = {(s1, 1), (1, c1), (s2, 1), (1, c2)}.

ii) v(s1,1) = v(s2,1) = v(1,c1) = v(1,c2) = 100.

iii) f(s1,1) = 20, f(s2,1) = 80, f(1,c1) = 60, and f(1,c2) = 40.

iv) H = (H, {Eh}h∈H), where H = {h1, h2, h3} and Eh1 = {(s1, 1), (1, c1)}, Eh2 =
{(s2, 1)}, and Eh3 = {(1, c2)}.

v) α = 0.1.
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Figure 2: Representation of the gas problem in Example 1.

This gas problem is represented in Figure 2 and will be used extensively as a running
example to illustrate the different concepts and definitions. 3

We now introduce some terminology. For each i ∈ N , we denote by Qi the gas balance
at node i, i.e., the amount of gas leaving node i minus the amount of gas arriving at
node i. Formally,

Qi =
∑

(i,j)∈E

f(i,j) −
∑

(j,i)∈E

f(j,i).

The set of suppliers S ⊂ N of the gas problem G is defined as the set of nodes s ∈ N
such that Qs > 0. On the other hand, the set of consumers C ⊂ N is defined as the
set of nodes c ∈ N such that Qc < 0. For the rest of nodes i ∈ N \ (S ∪ C), we have
that Qi = 0. We make the natural assumption that supply and demand are balanced,
namely, ∑

s∈S
Qs = −

∑
c∈C

Qc or, equivalently,
∑
i∈N

Qi = 0.

The total loss allowed to the haulers is L = α
∑

s∈S Qs. The flow carried by each
hauler h ∈ H, denoted by fh, is defined as the gas that reaches one of the edges of
hauler h from outside, that is, from some provider s ∈ S or from an edge of another
hauler. Formally, we first define, for each node i ∈ N and each hauler h ∈ H, Qhi =
max{

∑
(i,j)∈Eh

f(i,j)−
∑

(j,i)∈Eh
f(j,i), 0}; if no edge of hauler h contains node i we define

Qhi = 0. Then, for each h ∈ H,

fh =
∑
i∈N

Qhi .

In particular, fh = 0 whenever Eh = ∅.7
Given a gas problem G and a pair (s, c) ∈ S×C, we define P (s, c) as the set of simple

paths in g from s to c. We denote by P (S,C) the set of all simple paths from suppliers
to consumers. Namely,

P (S,C) =
⋃

(s,c)∈S×C

P (s, c).

7There are alternative ways to define the notion of “flow carried by a hauler”, but, as far as our
analysis is concerned, they would lead to similar results. Our formulation is the one implicit in the
Spanish Regulations (Bolet́ın Oficial del Estado, 2011, 2013b).
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We now want to define an important notion for our analysis that we call hauler’s influence
network, which, given a hauler h, would contain all edges whose gas might either reach
some edge in Eh or come from some edge in Eh. Formally, for each h ∈ H, we define
N h = (gh, vh, fh), as the subnetwork of (g, v, f) where gh = (Nh, Eh) and

Eh = {e ∈ g : there is p ∈ P (S,C) with e ∈ p and p ∩ Eh 6= ∅},
Nh = {i ∈ N : i ∈ e for some e ∈ Eh},
vh = (ve)e∈Eh ,

fh = (fe)e∈Eh .

Sometimes we slightly abuse language and refer to an edge’s influence network, to mean
the influence network that would have a hauler who owned only that edge. Note that
two edges with the same influence network belong to the same paths and, therefore, must
carry the same flow.

Example 1. (cont.) Going back to the gas problem in Figure 2, we have that Qs1 = 20,
Qs2 = 80, Q1 = 0, Qc1 = −60, and Qc2 = −40. Thus, S = {s1, s2} and C = {c1, c2}. If
we compute Qhi we have the following table:

Qhi s1 s2 1 c1 c2 fh
h1 20 0 40 0 0 60
h2 0 80 0 0 0 80
h3 0 0 40 0 0 40

The influence networks corresponding to this example are represented in Figure 3. 3
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1
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c2
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v = 100

f = 80

v = 100
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v = 100
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1

c1

c2

f = 80

v = 100

f = 60

v = 100

f = 40

v = 100

s1

s2

1

c1

c2

f = 20

v = 100

f = 80

v = 100

f = 40

v = 100

Nh1 Nh2 Nh3

Figure 3: Illustration of the hauler’s influence networks of Example 1.

3.1 Flow tracing methods

Given a gas problem G, we know the amount of gas flowing through each edge of the
network. Ideally, we would also like to know how much of this gas comes from each
supplier and how much goes to each consumer. Unfortunately, tracing the gas in a
network is far from being a trivial physical problem and, to the best of our knowledge,
one has to settle for some approximations.

A tracing method, Γ, describes how the gas arriving at a given node is split towards
the different outbound destinations. Once this is known, a tracing method can be used
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to obtain, for each pair (s, c) ∈ S ×C and each p ∈ P (s, c), an estimation of the amount
of gas fΓ

p going from s to c through path p.8 For this last part, one has to build upon
the natural assumption that the gas that enters a given pipe mixes to form a completely
homogeneous gas. To illustrate, consider a situation where the gas of several (incoming)
pipes meets at a given node and then is split in several outbound pipes. Let e1 be one of
the incoming pipes and e2 be one of the outbound pipes. The tracing method delivers the
proportion q of the gas flowing through e2 that comes from e1. Suppose that, somewhere
else down the network, e2 is an incoming pipe at some other node and its gas is split as
well in several outbound pipes, one of them being e3. Again, the tracing method pins
down the proportion q̄ of the gas flowing through e3 that comes from e2. The issue now
would be to determine the proportion of the gas flowing through e3 that comes from e1.
The homogeneity assumption on the gas flowing through e2 immediately leads to the
conclusion that qq̄ is the proportion of the gas flowing through e3 that comes from e1.

Figure 4 represents the relevant information to define a tracing rule: inbound and
outbound flows. In particular, it does not depend on the rest of the topology of the
network, the haulers owning the different pipes, or the volumes of the pipes.

f1

f2

fn

f̂1

f̂2

f̂m

Figure 4: A tracing method only depends on the inbound and outbound flows.

Now we present a natural tracing method, referred to as the proportional tracing
method, Γpt, introduced in Bialek (1996) and whose idea is that the incoming flow at
a node is split on the outbound edges proportionally to their flows. Interestingly, this
method has already been used to study the allocation of losses in electricity networks
(Conejo et al., 2002; Bialek and Kattuman, 2004).9 In Bialek and Kattuman (2004) the
authors write “This assumption can be neither proved nor disproved physically” and try
to “rationalize” it. The proportional tracing method has also appeared in the context of
gas networks (see, for instance, Alonso et al. (2010)).

Consider a node as the one in Figure 4. Denote by ei the inbound “edge” with flow
fi and by êj the outbound one with flow f̂j .

10 Then, for each i ∈ {1, . . . , n} and each

8Then, for each e ∈ E, we would be able to recover fe as
∑

p∈P (S,C), e∈p f
Γ
p .

9Even though these papers apply the proportional tracing method for estimating the way in which the
electricity flows, the approach in their setting is different from ours. Because of the physical differences
between gas and electricity networks, in the later the tracing methods allow to pin down precisely where
the losses take place and therefore can be used directly to allocate losses. In our setting the tracing
method is not used to identify the sources of the losses, but to estimate how much each hauler is using
each part of the network.

10Recall that here an “edge” may represent gas coming from outside the network or gas leaving the
network.
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j ∈ {1, . . . , n}, the proportional tracing method computes the amount of gas coming
through ei that is leaving through êj as

fi∑n
l=1 fl

f̂j .

Example 1. (cont.) We illustrate the proportional tracing method using again our
running example.

• If we consider the 60 units of flow of edge (1, c1), they are split so that 20
20+8060 = 12

come from (s1, 1) and 80
20+8060 = 48 come from edge (s2, 1).

• Similarly, the 40 units of edge (1, c2) are split so that 20
20+8040 = 8 come from edge

(s1, 1) and 80
20+8040 = 32 come from edge (s2, 1). 3

Concerning how the flow is split in the different paths, we would have

(s, c) P (s, c) fΓpt

p

(s1, c1) {(s1, 1), (1, c1)} 12
(s1, c2) {(s1, 1), (1, c2)} 8
(s2, c1) {(s2, 1), (1, c1)} 48
(s2, c2) {(s2, 1), (1, c2)} 32

4 Rules

The main question we study in this paper is how to allocate the loss allowed by the
regulatory authority, L, among the haulers. We present several allocation rules, one of
them in place in Spain. Another one was used in Spain from 2011 until 2013.

In a gas network, some of the gas is lost during its transportation and, identifying
the source of such losses is a very complex physical problem. The loss may come from
the different active elements of the network such as valves, compressors, regulation and
measurement points. . . Indeed, even the measurement precision is a limitation since the
precision of measurement instruments depends on gas pressure, temperature and other
factors that may vary substantially across the network. Given these limitations, it is
standard to assume that there is some proportionality connecting gas losses with gas
flow and volume. Most of the rules below build upon this idea.

A rule is a function assigning to each gas problem G a vector R(G) ∈ RH+ such that∑
h∈H Rh(G) = L, where Rh(G) denotes the loss assigned to hauler h. We consider five

rules. The first one is based on the flows, ignoring the volumes: the loss allocated to a
hauler is proportional to the flow entering in the hauler’s network.

Flow’s rule, Rflow. For each gas problem G and each hauler h ∈ H,

Rflow
h (G) = L

fh∑
ĥ∈H fĥ

.

This rule is the one in place in the Spanish gas transmission network since 2014.
According to the official regulation published in Bolet́ın Oficial del Estado (2013b): “the
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loss allocated to each hauler shall be computed sharing the total loss allocated to the
transmission network proportionally to the gas entering the network of each hauler in
the given year” (translated from Spanish).

The next three rules: aggregate edge’s rule, edge’s rule and proportional tracing rule
offer different interpretations of the idea that the loss depends in a multiplicative way
on both flow and volume. The first one computes, for each hauler, the product of his
flow and his volume (the sum of the volumes of his edges) and allocates the total loss
proportionally.

Aggregate edge’s rule, RAedge. For each gas problem G and each hauler h ∈ H,

RAedge
h (G) = L

fh
∑

e∈Eh
ve∑

ĥ∈H(fĥ
∑

e∈Eĥ
ve)

.

The aggregate edge’s rule was the one used in Spain since 2011 (Bolet́ın Oficial del
Estado, 2011), until it was replaced by the flow’s rule. The next rule computes, for each
edge, the product of its flow and its volume and allocates losses to edges proportionally.
Then, the loss allocated to a hauler is the sum of the losses allocated to his edges.

Edge’s rule, Redge. For each gas problem G and each hauler h ∈ H,

Redge
h (G) = L

∑
e∈Eh

feve∑
ê∈E fêvê

.

The following rule incorporates to the calculation the way in which the gas flows
through the network as given by the proportional tracing method. It proceeds in two
steps. First, it allocates the loss L among the different paths, p ∈ P (S,C), proportionally
to their flows, fΓpt

p . Second, inside each path, it allocates the loss allocated to it among
its edges proportionally to their volumes. Finally, the loss allocated to each hauler is the
sum of the losses allocated to his edges.

Proportional tracing rule, RΓpt
. For each gas problem G and each hauler h ∈ H,

RΓpt

h (G) = L
∑

p∈P (S,C)

fΓpt

p∑
p̂∈P (S,C) f

Γpt

p̂

·
∑

e∈Eh∩p ve∑
ê∈p vê

= L
∑
e∈Eh

∑
p∈P (S,C)

e∈p

fΓpt

p∑
p̂∈P (S,C) f

Γpt

p̂

· ve∑
ê∈p vê

.

Note that
∑

p∈P (S,C) f
Γpt

p =
∑

s∈S Qs is the total amount of gas flowing through the

network. Further, since, L = α
∑

s∈S Qs, R
Γpt

h (G) can be rewritten as

RΓpt

h (G) = α
∑
e∈Eh

∑
p∈P (S,C)

e∈p

fΓpt

p

ve∑
ê∈p vê

.
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The above rule builds upon the proportional tracing method, but we could analo-
gously define rules associated to different tracing methods. Thus, in general we say that
a rule is a tracing rule RΓ if there is a tracing method Γ such that

RΓ
h(G) = α

∑
e∈Eh

∑
p∈P (S,C)

e∈p

fΓ
p

ve∑
ê∈p vê

.

To conclude, we present a rule that is based on cooperative game theory.

Shapley’s rule, RSh. This rule consists of associating a cooperative game to each
gas problem G and then taking the Shapley value of the game. We start with some
preliminaries on cooperative games.11 A cooperative game with transferable utility,
briefly a TU game, is a pair (H, l) where H is the set of agents and, for each T ⊂ H,
l(T ) denotes the amount that agents in T can obtain by themselves. We assume that
l(∅) = 0.

The Shapley value (Shapley, 1953) is, by far, the most studied allocation rule in
cooperative game theory. It associates, to each TU game (H, l) a vector Sh(H, l) ∈ RN
such that

∑
h∈H Shh(H, l) = l(H). Formally, for each h ∈ H,

Shh(H, l) =
∑

T⊂H\{h}

|T |!
(
|H| − |T | − 1

)
!

|H|!
(
l(T ∪ {h})− l(T )

)
.

In our context H represents the set of haulers and, for each T ⊂ H, l(T ), is the
loss that haulers in T can have by “themselves”. Although there are several ways in
which the l(T ) values can be defined, we present a natural one inspired in the approach
taken in Kalai and Zemel (1982) for flow games. In their model there is also a set of
agents who own the different edges of the network and the value of a group of agents T
is defined as the maximum amount of flow that can be transported (from the source to
the sink) using only edges belonging to agents in T . We apply the same principle to our
model. Let fG(T ) denote the maximum demand that can be satisfied using only edges
of haulers in T , i.e., the maximum amount of gas that can be transported from suppliers
to consumers without exceding the capacities and demands of suppliers and consumers,
respectively. We also assume that the capacity of an edge is bounded by fe, the total
amount of gas flowing through that edge in the gas problem under study. Then, we
define lG(T ) = αfG(T ); in particular, lG(H) = αfG(H) = α

∑
s∈S Qs = L. When no

confusion arises we write l instead of lG.
Now, for each gas problem G we define Shapley’s rule as RSh(G) = Sh(H, lG). Note

that RSh(G) = α Sh(H, fG).

Example 1. (cont.) In our running example the loss to allocate is L = 10. If we
compute the losses assigned to each hauler with the different rules, we would get the

11For a deeper exposition of the basic game theoretical concepts we refer the reader to González-Dı́az
et al. (2010).
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following results
h fh Rflow RAedge Redge RΓpt

RSh

h1 60 3.33 5 4 4 4
h2 80 4.44 3.33 4 4 4
h3 40 2.22 1.66 2 2 2

Although in this example several rules lead to the same allocation, this is just a conse-
quence of the simplicity of the gas problem under consideration. 3

5 Properties

In this section we define several properties that a rule should satisfy in gas problems.
Most of the properties try to formalize the general principles established in the Euro-
pean regulations. We assign each property to one of the principles of these regulations,
although we acknowledge that this classification is arbitrary and that some properties
respond to various of the principles. Other properties are inspired in well established
principles of game theory and cost allocation theory.

In Directive 2003/55/EC of the European parliament and the council of 26 June
2003 (Regulation (EC), no. 55/2003), concerning common rules for the internal market
in natural gas, establishes some general principles that must be pursued. Some of them
are the following:

i) “tariffs are published prior to their entry into force”.

ii) “the provision of adequate economic incentives, using, where appropriate,
all existing national and Community tools. These tools may include liability mech-
anisms to guarantee the necessary investment”.

iii) “national regulatory authorities should ensure that transmission and distribution
tariffs are non-discriminatory and cost-reflective”.

iv) “Further measures should be taken in order to ensure transparent and non-
discriminatory tariffs for access to transportation”.

v) “Progressive opening of markets towards full competition should as soon as pos-
sible remove differences between Member States.”

The Spanish regulation related to the gas loss ensures that tariffs are published prior
to their entry into force. Moreover, since the amount received or paid by each hauler
depends monotonically on their loss (the larger is the loss, the larger is the amount the
hauler pays) we can say that it provides the adequate economic incentives.

Regarding the principles of being non-discriminatory, cost-reflective, transparent, and
foster competition we proceed as follows. We introduce some properties related to these
principles. Next, we check whether or not the different rules satisfy these properties and
present a discussion based on these properties.

12



5.1 Cost-reflective properties

The first property requires that haulers that do not transport gas do not have any
assigned loss.

Null hauler (NH). Let G = (g, v, f,H, α) and h ∈ H be such that, either Eh = ∅
or, for each e ∈ Eh, fe = 0. Then, Rh(G) = 0.

The following property has a spirit similar to that of NH. If two gas problems only
differ on edges without flow, then the losses assigned to each hauler should coincide.

Independence of unused edges (IUE). Let the gas problems G = (g, v, f,H, α)
and Ḡ = (ḡ, v̄, f̄ , H̄, α) be such that H = H̄ and, for each h ∈ H, Ēh = Eh \ Ê, where
Ê ⊂ E satisfies that, for each e ∈ E \ Ê, f̄e = fe and v̄e = ve, and, for each e ∈ Ê,
fe = 0. Then, R(G) = R(Ḡ).

A cost-reflective rule should not be sensitive to “equivalent” representations of the
same network. The next property captures this idea. Suppose that an edge is (trans-
versely) sectioned in several edges. Then the rule should not be affected by this operation.

Independence of edge sectioning (IES). Let the gas problems G = (g, v, f,H, α)
and Ḡ = (ḡ, v̄, f̄ , H̄, α) be such that H = H̄ and there are ĥ ∈ H and (i, j) ∈ Eĥ
satisfying

• ḡ = (N̄ , Ē), where N̄ = N ∪ {l} and l /∈ N , Ēĥ = (Eĥ\{(i, j)}) ∪ {(i, l), (l, j)} and,

for each h ∈ H\{ĥ}, Ēh = Eh, and

• f̄(i,l) = f̄(l,j) = f(i,j), v̄(i,l) + v̄(l,j) = v(i,j), and, for each e ∈ E\{(i, j)}, f̄e = fe and
v̄e = ve.

Then, for each h ∈ H, Rh(G) = Rh(Ḡ).
The next property goes along similar lines, but focusing on the longitudinal repre-

sentation of the network instead of the transverse sectioning. For this property we need
to explicitly consider that the gas network can be a multigraph: if a hauler duplicates
one of his edges then, as long as the total flow carried by them is the same, the loss
allocation should not change.

Independence of edge multiplication (IEM). Let G = (g, v, f,H, α) and Ḡ =
(ḡ, v̄, f̄ , H̄, α) be such that H = H̄ and there are ĥ ∈ H, e = (i, j,m) ∈ E, ē1 = (i, j, l1) ∈
Ē, and ē2 = (i, j, l2) ∈ Ē satisfying

• ḡ = (N, Ē), where Ēĥ = (Eĥ \ {e}) ∪ {ē1, ē2} and, for each h ∈ H\{ĥ}, Ēh = Eh,
and

• fe = f̄e1 + f̄e2 , ve = v̄e1 = v̄e2 , and, for each e ∈ E\{e}, f̄e = fe and v̄e = ve.

Then, for each h ∈ H, Rh(G) = Rh(Ḡ).
To prevent haulers from artificially distorting the final allocation of losses, if two

haulers engage in some trades affecting their own edges, then the rest of the haulers
should not be affected. This implies, in particular, that the loss allocated to a hauler
does not depend on who owns the edges different from his own.
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Independence of sales (IS). Let G = (g, v, f,H, α), Ḡ = (g, v, f, H̄, α), h1 and
h2 in H, and e ∈ E be such that Ēh1 = Eh1\{e}, Ēh2 = Eh2 ∪ {e}, and, for each
h ∈ H\{h1, h2}, Ēh = Eh. Then, for each h ∈ H\{h1, h2}, Rh(G) = Rh(Ḡ).

The rules satisfying IS have an interesting property, that we call edge decomposability.
Namely, these rules can be computed in a two stage procedure. We first decide the allowed
loss on each edge and later compute the allowed loss to each hauler adding the amount
assigned to each of his edges. Formally, given a gas problem G = (g, v, f,H, α), we define
the canonical gas problem associated with G, Gc = (g, v, f,Hc, α), by considering that
each edge belongs to a different hauler; for each h ∈ Hc, |Eh| = 1 and we can identify
Hc with the edge set E. Then, IS can be reformulated as follows. For each gas problem
G and each h ∈ H,

Rh(G) =
∑
e∈Eh

Re(G
c).

5.2 Non-discriminatory properties

Next, we present properties related with the principle of non-discrimination. The most
standard non-discriminatory principle says that we should offer an equal treatment to
equal agents. Some of the following properties deal with formalizations of this general
notion. We start with an illustrative example.

Example 2. Let G be the gas problem depicted in Figure 5. Assume that the volume
of the three edges is 100 and α = 0.06. Since there is only one supply node and 100 units
of gas are entering through it, we have L = α · 100 = 6.

s1

c1

c2

f = 50

f = 50

f = 50

h1

h2

h3

Figure 5: Allocating the loss among “symmetric” haulers.

How we allocate the loss among the three haulers? Two approaches seem reasonable:

i) We focus on edges. Three edges (haulers) are needed to send the 100 units of flow.
All edges are “symmetric” because they have the same volume and the same flow.
The loss allowed to each hauler is 2.

ii) We focus on flows. The flow is sent through two independent paths, each of them
carrying 50 units of flow and so it seems natural to assign the same loss, 3, to both
paths. The first path has a unique edge, thus the 3 units of loss go to h1. The
second path has two edges which are “symmetric” because they have the same flow
and the same volume. Thus, we assign the same loss to each one. Then, the loss
allocated to h2 is 1.5 and the loss allocated to h3 is 1.5. 3
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The first symmetry property is related with the first approach. Thus, we focus only
on flows and volumes.

Symmetry on edges (SE). Let G = (g, v, f,H, α) and h, h̄ ∈ H be such that
Eh = {e}, Eh̄ = {ē}, fe = fē, and ve = vē. Then, Rh(G) = Rh̄(G).

The next symmetry property is related with the second approach and we have to
consider also the rest of the graph. If two haulers own exactly one edge each and have
the same influence network, then, provided that the two edges have the same volume,
the rule should assign the same loss to both haulers.

Symmetry on paths (SP). Let G = (g, v, f,H, α) and h, h̄ ∈ H be such that
Eh = {e}, Eh̄ = {ē}, ve = vē, and N h = N h̄. Then, Rh(G) = Rh̄(G).

Since two edges with the same influence network have the same volume and must
carry the same flow, symmetry on edges implies symmetry on paths.

The following properties build upon the idea that there should be some kind of
proportionality on flow and volume.

Flow proportionality on edges (FPE). Let G = (g, v, f,H, α) and h, h̄ ∈ H be
such that Eh = {e}, Eh̄ = {ē}, and ve = vē. Then, if fē > 0, we have

Rh(G) =
fe
fē
Rh̄(G).

We could also define a flow proportionality on paths property but, since all the edges
with the same influence network would carry the same flow, such a property would be
equivalent to SP.

Volume proportionality on edges (VPE). Let G = (g, v, f,H, α) and h, h̄ ∈ H
be such that Eh = {e}, Eh̄ = {ē}, and fe = fē. Then,

Rh(G) =
ve
vē
Rh̄(G).

Volume proportionality on paths (VPP). Let G = (g, v, f,H, α) and h, h̄ ∈ H
be such that Eh = {e}, Eh̄ = {ē}, and N h = N h̄. Then,

Rh(G) =
ve
vē
Rh̄(G).

5.3 Transparency properties

It is not clear how to formalize the abstract principle of transparency in our context. We
relate it to the information used in order to compute the loss allocation. We consider that
a rule is transparent for a hauler if the information he needs to compute his allocated
loss is related mainly to the characteristics of his own network and independent of the
characteristics of parts of the network that are outside his influence network.

The two properties below are related to the way in which some changes in the gas
network should affect the loss allocated to the different haulers.

The first property says that the loss allocated to a hauler should not be affected if
there is an increase in the flows of some edges outside his influence network.
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Independence of irrelevant flows (IIF). Let G = (g, v, f,H, α) and Ḡ =
(g, v, f̄ ,H, α) be two problems such that, for each e ∈ E, f̄e ≥ fe. Let h ∈ H be
such that N h = N̄ h. Then, Rh(G) = Rh(Ḡ).

The next property follows the same idea, but allows for more substantial changes in
the gas network.

Independence of irrelevant changes (IIC). Consider the gas problems G =
(g, v, f,H, α) and Ḡ = (ḡ, v̄, f̄ , H̄, α) and let h ∈ H ∩ H̄ be such that N h = N̄ h. Then,
Rh(G) = Rh(Ḡ).

5.4 Properties to foster competition

The way in which losses are allocated among haulers should not harm competition among
agents. In particular, two haulers should not be better off by merging together.

Merging proofness (MP). Let G = (g, v, f,H, α), Ḡ = (g, v, f, H̄, α), h1, h2 ∈ H,
and h ∈ H̄ be such that Ēh = Eh1 ∪Eh2 and, for each ĥ ∈ H \ {h1, h2}, Ēĥ = Eĥ . Then
Rh(Ḡ) ≤ Rh1(G) +Rh2(G).

It is important to emphasize the importance of the previous property. Not only it is
important for its direct implications towards facilitating competition, but also because
of its connection with non-discrimination. Clearly, a rule in which merging is profitable
is also a rule that favors big haulers with respect to small haulers, which is size dis-
crimination.12 This is not saying that big haulers should not get assigned a higher loss,
but that the way the assigned loss grows with size should obey some principles (which
we have captured with the notion of merging proofness). Thus, for its relevance in the
discussion in Section 6 we say that a rule satisfying merging proofness is also free of
size discrimination.

5.5 Additivity properties

In this subsection we present two properties that deal with how a rule should react when
we add gas problems defined on the same gas network. They are standard in game theory
and cost allocation theory. The first property says that if a gas problem can be obtained
as the sum of the flows of other problems, then the loss should be the sum of the losses.

Strong additivity (SA). For each i ∈ {1, . . . , n}, let Gi = (g, v, fi,H, α) and let
G∗ = (g, v,

∑n
i=1 fi,H, α). Then, R(G∗) =

∑n
i=1R(Gi)

It turns out that this property is very strong and quite incompatible with the proper-
ties we have discussed so far. In the example below we show that SA is incompatible with
SP and NH. Recall that NH seems to be an essential cost-reflective requirement and,
moreover, Proposition 1 in Section 5.6 shows that SP is the weakest non-discriminatory
property.

Example 3. Let G1 = (g, v, f1,H, α), G2 = (g, v, f2,H, α), Ḡ1 = (g, v, f̄1, H, α), and
Ḡ2 = (g, v, f̄2,H, α), be as depicted in Figure 6 with H = E and all the volumes being
100. Note that G∗ = (g, v, f1 + f2,H, α) = (g, v, f̄1 + f̄2,H, α).

12This is illustrated in Section 8 for the Spanish gas transmission network.
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Figure 6: Incompatibility of SA with NH and SP.

Suppose that R is a rule satisfying SA, NH, and SP. Then, by SA

Rh1(G∗) = Rh1(G1) +Rh1(G2) = Rh1(Ḡ1) +Rh1(Ḡ2).

By NH all haulers with flow 0 must receive 0. Thus, Rh1(G2) = Rh1(Ḡ2) = 0. By
SP, Rh1(G1) = 1

3L and Rh1(Ḡ1) = 1
2L, which leads to a contradiction. 3

It is worth noting that all the rules we have defined satisfy SP and NH, so they
don’t satisfy SA. For this reason we exclude SA from the rest of the analysis and define
a weaker additivity property, which imposes a consistency condition between the flows
of the gas problems to be combined. Consider the gas problems G1 = (g, v, f1,H, α),
G2 = (g, v, f2,H, α),. . . , Gn = (g, v, fn,H, α), and G∗ = (g, v, f1 + f2 + . . . + fn,H, α),
for some n ∈ N, and let Γ be a tracing rule. We say that G1, G2, . . . , Gn are Γ-compatible
if they have the same sets of suppliers and consumers and G∗ is such that, for each
p ∈ P ∗(S,C), fΓ

p (G∗) =
∑n

i=1 f
Γ
p (Gi).

13

Tracing additivity (TA). Let Γ be a tracing method. Consider the set of Γ-
compatible gas problems {Gi = (g, v, fi,H, α)}i∈{1,...,n} and let G∗ = (g, v,

∑n
i=1 fi,H, α).

Then, R(G∗) =
∑n

i=1R(Gi).
This property is weaker than SA since, given a tracing methodology Γ, requiring that

a set of gas problems is Γ-compatible is typically quite demanding.

5.6 Relationships between the properties

The proposition below summarizes some straightforward connections between the differ-
ent properties we have defined in this section. We omit the proof because of its simplicity.

Proposition 1. The following individual relationships hold:

13Note that P1(S,C) = . . . = Pn(S,C) = P ∗(S,C).
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i) IIC implies IS and IIF.

ii) IS implies MP.

iii) SE implies SP.

iv) VPE implies SE and VPP.

v) VPP implies SP.

vi) FPE implies SE.

IIC

IS

IIF

MP

VPE

SE

SP

VPP

FPE

Relationships in Proposition 1.

Interestingly, we also show in Appendix B that the combination of IES, IS, and
FPE implies both NH and VPE (lemmas 1 and 2). This implication is crucial for the
characterization of the edge’s rule in Section 7.

6 Comparing the rules

In this section we study the behavior of the different rules with respect to the properties
defined in the previous section. For the sake of exposition, we present the results in
Table 1, where we have underlined those properties used in a characterization in Section 7.
The proofs can be found in Appendix A.

EU Principles

XXXXXXXXXXXProperty
Rule

Flow Aedge Edge
Prop.

Tracing
Shapley

Cost-reflective

Null hauler X X X X X
Ind. Unused Edges X X X X
Ind. Edge Sectioning X X X X X
Ind. Edge Mult. X X X X
Ind. Sales X X

Non-discriminatory

Symmetry on Edges X X X
Symmetry on Paths X X X X X
Flow Prop. Edges X X X
Volume Prop. Edges X X
Volume Prop. Paths X X X
Free of Size Disc. X X X

Transparency
Ind. Irr. Flows X
Ind. Irr. Changes X

Competition Merging Proofness X X X
Additivity Tracing Additivity X ??*

* Shapley’s rule does not satisfy TA with respect to the proportional tracing method, but it may

satisfy it with respect to other tracing rule (we conjecture this won’t be the case).

Table 1: Behavior of the different rules with respect to the different properties.
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6.1 Discussion

If we take a general look at the table, there are two rules that stand as the ones with
a better behavior: the proportional tracing rule and the edge’s rule. In the following
lines we take a closer look, with the focus on the principles taken from the European
regulations. Depending on the behavior with respect to the properties associated to each
principle, we assign a “grade” or “degree of fulfillment” of each principle by each rule.
These grades, on which we elaborate below are summarized in the following table:

Principle \ Rule Flow Aedge Edge Prop. tracing Shapley

Cost-reflective High Low Very high Very high High

Non-discriminatory High High Very high High Medium

Transparency Low Low Low Very High Low

Competition Very high Low Very High Very High Low

It is important to recall that one might have chosen a different classification of the
properties into principles, so the grades and ensuing discussion might change. Thus,
the arguments in this section partially respond to our subjective criteria when assigning
properties to principles. Yet, we consider that, overall, the main conclusions we draw in
this section are quite objective.

Since the proportional tracing rule and the edge’s rule satisfy all cost-reflective prop-
erties, their grade is very high. Flow’s rule only violates IS so it gets a high grade and,
finally, aggregate edge’s gets a low grade.

Concerning non-discrimination, the grades require some explanation. First, since the
edge’s rule satisfies all properties, it gets again a very high grade. The aggregate edge’s
rule only violates one of the properties, since it favors the haulers with large networks.14

Thus, the grade for this rule is high. Flow’s rule satisfies all properties but the ones
related with the volume. The idea underlying this rule is that gas losses are much more
related with flows than with volumes and, under this assumption, the properties related
to volumes make no sense. Thus, we still classify the flow’s rule as high. We move now
to the proportional tracing rule. Most of our non-discriminatory properties build upon
the principle of equal treatment of equals but, as we already argued when we introduced
them, it is not clear when should we consider two agents equal. We can focus on flows
and the paths they follow or on edges. In the first case the proportional tracing rule
would be non-discriminatory and in the second it would be discriminatory. We believe
that focusing on flows and paths is more reasonable, because the whole structure of the
graphs is taken into account and not only the edges on isolation. Thus, we still give a
high grade to the proportional rule.

The grades for transparency and competition principles are obvious.
We are in position of revisiting our initial comparison of rules in the light of the

grade’s table. According to it, if we had to provide a ranking of the rules we would
have the proportional rule on top and the edge’s rule would follow closely in the second

14Recall that this is not saying that big haulers should not get assigned a higher loss (see the discussion
in Section 5.4 and the illustration in Section 8).
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place. Interestingly both of them dominate the third one, the flow’s rule, according to
all principles and the flow’s rule also dominates the aggregate’s edges rule, which is the
last one.

In the light of the previous discussion we can also draw some normative conclusions
regarding the situation in the Spanish gas transmission network:

i) The flow rule satisfies more principles than the aggregate edge’s rule. Thus, the
change in the Spanish law can be seen as an improvement.

ii) There are other rules that seem to exhibit a better behavior than the flow rule with
respect to those principles.

There are many problems where the Shapley value of an associated cooperative game
has many interesting properties. We can mention, for instance, airport problems (see
Littlechild and Owen (1973)), queuing problems (see Maniquet (2003) and Chun (2006),
and minimum cost spanning tree problems (see Kar (2002) and Bergantiños and Vidal-
Puga (2007)). Nevertheless in our case the Shapley value satisfies few properties. Of
course it could be possible that if we define the associated cooperative game lG in a
different way, we could obtain a Shapley value with more properties.

7 Axiomatic characterizations

In this section we present axiomatic characterizations of the edge’s rule and the general
family of tracing rules. We also present an independent characterization of the propor-
tional tracing rule. The proofs can be found in Appendix B.

7.1 Edge’s rule characterization

We first present a characterization of edge’s rule using two cost-reflective properties (IES
and IS), and a non-discriminatory property (FPE).

Theorem 1. The edge’s rule is the unique rule satisfying IES, IS, and FPE. Besides,
the properties are independent.

7.2 Tracing rules characterization

We present a characterization of the tracing rules using two cost reflective properties,
IUE and IS, one non-discriminatory property, VPP, and one additivity property, TA.

Theorem 2. The tracing rules are the unique rules satisfying IUE, IS, VPP, and TA.
Besides, the properties are independent.

In particular, the proportional tracing rule is characterized with TA with respect to
the proportional tracing.

Corollary 1. The proportional tracing rule is the unique rule satisfying IUE, IS, VPP,
and TA with respect to Γpt. Besides, the properties are independent.
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The characterizations in Theorem 1 and Corollary 1 share property IS. Then, for
the edge’s rule we have added IES, which is also satisfied by the proportional tracing
rule and FPE, which is not. For the proportional tracing rule we have added IUE and
VPP, which are also satisfied by the edge’s rule, and TA, which is not. Thus, the main
difference comes from FPE vs. TA.

To conclude, we present another characterization of the proportional tracing rule.

Theorem 3. The proportional tracing rule is the unique tracing rule satisfying IEM. In
particular, it is the unique rule satisfying IUE, IS, VPP, TA, and IEM. Besides, the
properties are independent.

8 Illustration using the Spanish gas transmission network

In this section we illustrate the rules discussed in this paper by applying them to the
Spanish transmission network, which has a total extension of around 11000 km.15 The
computations build upon the optimal network operation in a hypothetical day of very
high demand.16

In Figure 7 we represent the Spanish gas transmission network. We have boxed the
pipes belonging to each hauler, except for hauler h1 who owns all the remaining ones. It
is worth noting this hauler corresponds with Enagás, a former public body who initially
owned the whole network and still owns around 10000 km of pipes, much more than any
other hauler. The second largest one is Enagás Transporte del Norte with approximately
350 km and it is worth noting that 90% of this last company is also owned by Enagás.

Gas losses Network
Flow Aedge Edge

Prop.
Shapley

in GWh/d Owned (%) Tracing

Enagás (h1) 91.44 4.55 5.32 5.27 4.72 4.69

Reganosa (h2) 1.76 0.21 0.0024 0.031 0.21 0.22

Gas Extremadura (h3) 0.61 0.0071 0.000010 0.00020 0.000073 0.0038

Enagás Transporte del Norte (h4) 3.54 0.31 0.0086 0.027 0.24 0.27

Transportista Regional Gas (h5) 1.46 0.016 0.000051 0.0005 0.00052 0.0090

Endesa Gas Transportista (h6) 0.36 0.0045 0.0000019 0.000029 0.000035 0.0024

Gas Natural (h7) 0.82 0.24 0.00095 0.0062 0.17 0.14

Table 2: Gas loss allocated to the haulers (GWh/d) with α = 0.002.

15To be precise, what we are representing is the primary network, the high pressure one (operating
pressures from 40 to 80 bar). The network representation is based on official documents and the ownership
of the different pipes is based on the information provided by the Transmission System Operator, where
the area of operation of each hauler is specified.

16The main reason for taking a day with very high demand as reference instead of an average day is
that, when studying energy networks for different purposes (capacity, expansion planning, security of
supply,. . . ), peak days are the norm and so finding realistic data on peak demand is easier. On the other
hand, for the determination of the optimal network operation, we have relied on GANESOTM, a software
developed by researchers at the University of Santiago de Compostela for Reganosa Company (a hauler
in the Spanish network).
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Figure 7: Haulers of the Spanish gas transmission network.

Percentage Network
Flow Aedge Edge

Prop.
Shapley

of gas losses (%) Owned (%) Tracing

Enagás (h1) 91.44 85.19 99.77 98.77 88.37 87.88

Reganosa (h2) 1.76 3.97 0.046 0.59 3.95 4.03

Gas Extremadura (h3) 0.61 0.13 0.00019 0.0037 0.0014 0.072

Enagás Transporte del Norte (h4) 3.54 5.74 0.16 0.51 4.44 5.11

Transportista Regional Gas (h5) 1.46 0.31 0.00096 0.0094 0.0098 0.17

Endesa Gas Transportista (h6) 0.36 0.083 0.000035 0.00055 0.00066 0.046

Gas Natural (h7) 0.82 4.58 0.018 0.12 3.23 2.69

Table 3: Percentage of gas loss allocated to the haulers.

Monetary equivalent Network
Flow Aedge Edge

Prop.
Shapley

in millions of e Owned (%) Tracing

Enagás (h1) 91.44 49.77 58.30 57.71 51.64 51.35

Reganosa (h2) 1.76 2.32 0.027 0.34 2.31 2.36

Gas Extremadura (h3) 0.61 0.077 0.00011 0.0022 0.00080 0.042

Enagás Transporte del Norte (h4) 3.54 3.35 0.095 0.30 2.60 2.99

Transportista Regional Gas (h5) 1.46 0.18 0.00056 0.0055 0.0057 0.098

Endesa Gas Transportista (h6) 0.36 0.049 0.000020 0.00032 0.00039 0.027

Gas Natural (h7) 0.82 2.68 0.010 0.068 1.89 1.57

Table 4: Annual monetary equivalent, assuming that 1 GWh/d = 30000 e.
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In tables 2-4 we present the results of applying the different rules to the Spanish gas
network. All of them are based on a parameter α = 0.002, which is the parameter used
in Spain (Bolet́ın Oficial del Estado, 2013a).17 Table 2 represents the allocated losses
measured in gas units, Table 3 represents the percentage allocated to each hauler, and
Table 4 contains an estimation of the annual monetary equivalent; under the assumption
that the given scenario repeats itself throughout the year. For this last table it should
be taken into account that the peak day considered has nearly twice the demand of an
average day, so dividing by two the amounts in Table 4 would deliver more realistic
figures. In practice, in order to minimize the dependence of the final allocation on the
chosen demands and network configuration, one might for instance apply the chosen rule
on a daily basis and then add up the daily allocations to get the annual loss allocation.

We can readily see that all rules allocate the largest gas loss to Enagás, which agrees
with the fact that Enagás is, by far, the biggest hauler. Yet, according to the aggregate
edge’s rule 99.77% of the allocated losses go to Enagás, which we believe is unreasonable
even if we take into account that this hauler owns 91.44% of the network. This goes
along the lines mentioned when discussing the properties of the rules, where we argued
that the aggregate edge’s rule size discriminates, penalizing small haulers and favoring
mergers, which hurts competition. Indeed, the allocated loss under the flow rule is, for
most haulers, over 100 times larger than it was before; for instance, Gas Natural (h7)
gets more than two millions of Euro when, according to the aggregate edge’s rule, it was
barely getting ten thousand. This probably explains why most Spanish haulers strongly
opposed to the aggregate edges rule until it was finally replaced by the flow rule.

9 Conclusions

We have addressed the issue of how to allocate gas losses between the haulers of a gas
transmission network. To the best of our knowledge, this is the first time this problem
is formally studied for gas networks and the first time a formal axiomatic approach is
developed for any kind of energy network.

We have discussed several allocation rules, two of them that have already been used in
practice and two new ones we define. We have studied their behavior with respect to some
principles set forth by the European Union such as non-discrimination, transparency, and
cost-reflectivity. As a result, we have seen that one of the rules that has already been
used in practice exhibits by far the worst behavior with respect to this principles. On
the other side, the two rules we define seem to abide better by them.

From a more theoretical perspective, we also use some of the properties representing
the EU principles to obtain axiomatic characterizations of two of the rules.

Finally, we apply the developed methodology to the Spanish gas transmission network
and note that the allocated losses vary significantly depending on the chosen rule. Thus,
confirming that the selection of a fair allocation scheme is an important issue for the
haulers.

17For the sake of clarity, each number is presented with the precision needed to show the first non-zero
decimal digit and also the following one.
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tribución de gas natural,” Official report.

Conejo, A. J., J. M. Arroyo, N. Alguacil, and A. L. Guijarro (2002): “Trans-
mission Loss Allocation: A Comparison of Different Practical Algorithms,” in IEEE
Transactions on Power Systems, vol. 17.

Enagás GTS (2013): “El Sistema Gasista Español: Informe 2013,” Annual report.
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A Results concerning the properties of the different rules

Unless explicitly mentioned otherwise, in all the examples in this section we assume that
the volume of the edges is 1, so the number on the edges represents flows.

Proposition 2. i) Rflow satisfies NH, IUE, IES, IEM, SE, SP, FPE, and MP.

ii) Rflow does not satisfy IS, VPE, VPP, IIF, IIC, and TA.

Proof. • NH. Let G = (g, v, f,H, α) and h ∈ H be such that, for each e ∈ Eh, fe = 0.
Then,

fh =
∑
i∈N

Qhi =
∑
i∈N

(max{
∑

(i,j)∈Eh

f(i,j) −
∑

(j,i)∈Eh

f(j,i), 0}) = 0,

and so Rflow
h (G) = L fh∑

ĥ∈H fĥ
= 0.

• IUE. Let G = (g, v, f,H, α) and Ḡ = (ḡ, v̄, f̄ , H̄, α) be as in the definition of IUE,
that is, there is Ê ⊂ E such that, for each h ∈ H, Ēh = Eh \ Ê and, for each e ∈ Ê,
fe = 0.

If i ∈ N \ N̄ , the edges of E of the form (i, j) or (j, i) belong to Ê and have flow zero.
Thus, for each h ∈ H,

Qhi = max{
∑

(i,j)∈Eh

f(i,j) −
∑

(j,i)∈Eh

f(j,i), 0} = 0. (1)
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If i ∈ N̄ , since fe = 0 for e ∈ Ê and fe = f̄e for e ∈ E \ Ê, we have, for each h ∈ H,

Qhi = max{
∑

(i,j)∈Eh
f(i,j) −

∑
(j,i)∈Eh

f(j,i), 0}
= max{

∑
(i,j)∈Eh\Ê f(i,j) −

∑
(j,i)∈Eh\Ê f(j,i), 0}

= max{
∑

(i,j)∈Ēh
f̄(i,j) −

∑
(j,i)∈Ēh

f̄(j,i), 0}
= Q̄hi .

(2)

Then, Rflow
h (G) = Rflow

h (Ḡ), since, by (1) and (2) we have that, for each h ∈ H,

fh =
∑
i∈N

Qhi =
∑
i∈N̄

Qhi =
∑
i∈N̄

Q̄hi = f̄h.

• IES. Let G = (g, v, f,H, α) and Ḡ = (ḡ, v̄, f̄ , H̄, α) be two problems that only
differ because there are ĥ ∈ H and (i, j) ∈ Eĥ satisfying that (i, j) is sectioned in two
consecutive edges (i, l), (l, j) ∈ Ēĥ.

Since f̄(i,l) = f̄(l,j) = f(i,j) we have that, for each h ∈ H and each k ∈ N̄ \ {l},
Q̄hk = Qhk . Further, it is easy to see that for each h ∈ H, Q̄hl = 0. Thus, for each h ∈ H,
f̄h = fh and, therefore, Rflow

h (G) = Rflow
h (Ḡ).

• IEM. It is straightforward.
• SE and SP. Since SE and SP are weaker than FPE (Proposition 1), SE and SP

follow from the fact that Rflow satisfies FPE (see below).
• FPE. Let G be as in the definition of FPE. Since Eh = {e} and Eh̄ = {ē}, we have

that fh = fe and fh̄ = fē > 0. Then, the definition of Rflow ensures that

Rflow
h (G) =

fe
fē
Rflow
h̄ (G).

• MP. Let G = (g, v, f,H, α), Ḡ = (g, v, f, H̄, α), h, h1, and h2 be as in the definition
of MP. Now, to compute Qhi , the gas reaching i through edges of h1 and exiting through
edges of h2 cancels out, whereas it does not cancel out to compute Qh1

i ; a similar obser-

vation holds for Qh2
i . Then, for each i ∈ N , Qhi ≤ Q

h1
i +Qh2

i and, hence, f̄h ≤ fh1 + fh2 .
Let F =

∑
h̄∈H̄\{h} f̄h̄ =

∑
h̄∈H\{h1,h2} fh̄. Then, since F ≥ 0, x

x+F is an increasing
function,

Rflow
h (Ḡ) = L

f̄h
f̄h + F

≤ L fh1 + fh2

fh1 + fh2 + F
= Rflow

h1
(G) +Rflow

h2
(G).

Next, we present some counterexamples to prove statement ii) of Proposition 2.
• IS. Let G = (g, v, f,H, α) and Ḡ = (g, v, f, H̄, α) as in the picture below.

G
1

1

1

1

Ḡ
1

1

1

1

h1

h2

h3
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Problems G and Ḡ satisfy the assumptions of the definition of IS. However, we have that
Rflow
h3

(G) = L1
3 6= L1

4 = Rflow
h3

(Ḡ).

• VPE. Since VPE is stronger than VPP (Proposition 1) and Rflow does not satisfy
VPP (see below), Rflow does not satisfy VPE.
• VPP. Let G = (g, v, f,H, α), h1 and h2 be as in the picture below.

G
f = 1
v = 1

f = 1
v = 2

h1

h2

Then,

Rflow
h2

(G) = Rflow
h1

(G) 6= 2Rflow
h1

(G) =
vh2

vh1

Rflow
h1

(G).

• IIF. Let G = (g, v, f,H, α) and Ḡ = (g, v, f̄ ,H, α) be as in the picture below.

G
1

1

1 Ḡ
1

2

1 h1

h2

h3

The gas problems G and Ḡ are as in the definition of IIF. However,

Rflow
h1

(G) = α
2

3
6= α

3

4
= Rflow

h1
(Ḡ).

• IIC. Since IIC is stronger than IIF (Proposition 1) and Rflow does not satisfy IIF,
Rflow does not satisfy IIC.
• TA. Let G = (g, v, f,H, α), Ḡ = (g, v, f̄ ,H, α), and G∗ = (g, v, f + f̄ ,H, α) be as

in the picture below.

G

s1

c2

c1

1

1

0

1 Ḡ

s1

c2

c1

1

0

1

0 G∗

s1

c2

c1

2

1

1

1

h1

h2

h3

Let p1 be the path from s1 to c1 and p2 the path from s1 to c2. Then, {p1, p2} = P (S,C) =
P̄ (S,C) = P ∗(S,C). Moreover, for each tracing method Γ and each i ∈ {1, 2}, we have
fΓ
pi(G) + fΓ

pi(Ḡ) = 1 = fΓ
pi(G

∗). Thus, G, Ḡ, and G∗ satisfy the assumptions of the
definition of TA with respect to any tracing method Γ. However,

Rflow
h3

(G) +Rflow
h3

(Ḡ) =
L

3
+ 0 = α

1

3
6= α

1

5
=
L∗

5
= Rflow

h3
(G∗).

Proposition 3. i) RAedge satisfies NH, IES, SE, SP, FPE, VPE, and VPP.

ii) RAedge does not satisfy IUE, IEM, IS, IIF, IIC, MP, and TA.
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Proof. • NH. Trivially, a hauler who does not carry flow through his edges gets 0
according to the aggregate edge’s rule.
• IES. Let G = (g, v, f,H, α) and Ḡ = (ḡ, v̄, f̄ , H̄, α) be two problems that only

differ because there are ĥ ∈ H and (i, j) ∈ Eĥ satisfying that (i, j) is sectioned in two
consecutive edges (i, l), (l, j) ∈ Ēĥ.

Since v(i,j) = v̄(i,l) + v̄(l,j), we have that, for each h ∈ H,
∑

e∈Eh
ve =

∑
e∈Ēh

v̄e.

Moreover, in the proof of IES in Proposition 2 we showed that f̄h = fh for all h. Thus,

RAedge
h (G) = L

fh(
∑

e∈Eh
ve)∑

ĥ∈H fĥ(
∑

e∈Eĥ
ve)

= L
f̄h(
∑

e∈Eh
v̄e)∑

ĥ∈H f̄ĥ(
∑

e∈Ēĥ
v̄e)

= RAedge
h (Ḡ).

• SE and SP. Since SE and SP are weaker than FPE (Proposition 1), SE and SP
follow from the fact that RAedge satisfies FPE (see below).
• FPE. Let G be as in the definition of FPE. Since Eh = {e} and Eh̄ = {ē} we have

that fh = fe and fh̄ = fē. Thus, since ve = vē, the definition of aggregate edge’s rule
implies that

RAedge
h (G) =

fe
fē
RAedge

h̄
(G).

• VPE. Let G be as in the definition of VPE. Since Eh = {e} and Eh̄ = {ē} we have
that fh = fe = fē = fh̄. Then, the definition of aggregate edge’s rule implies that

RAedge
h (G) =

ve
vē
RAedge

h̄
(G).

• VPP. The aggregate edge’s rule satisfies VPP, since we have seen that it satisfies
VPE and, by Proposition 1, VPE implies VPP.

Next, we present some counterexamples to prove statement ii) of Proposition 3.
• IS. Since IS is stronger than MP (Proposition 1) and RAedge does not satisfy MP

(see below), RAedge does not satisfy IS.
• IUE. Let G = (g, v, f,H, α) and Ḡ = (ḡ, v̄, f̄ , H̄, α) be as in the picture below.

G

c2 s1 c1

0 1 1

Ḡ

s1 c1

1 1

h1

h2

Clearly, G and Ḡ are as in the definition of IUE. However,

RAedge
h2

(G) = L
2

3
6= L

1

2
= RAedge

h2
(Ḡ)

• IEM. Let G = (g, v, f,H, α) and Ḡ = (ḡ, v̄, f̄ , H̄, α) be as in the picture below.

G
2

1

Ḡ 1

1

1

h1

h2
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Clearly, G and Ḡ are as in the definition of IEM. However,

RAedge
h1

(G) = L
2

3
6= L

4

5
= RAedge

h1
(Ḡ).

• IIF. We can use the same counterexample used for Rflow in Proposition 2, since
Rflow and RAedge coincide for the gas problems there.
• IIC. Since IIC is stronger than IIF (Proposition 1) and RAedge does not satisfy IIF,

RAedge does not satisfy IIC.
• MP. Let G = (g, v, f,H, α) and Ḡ = (g, v, f, H̄, α) be as in the picture below.

G
1

1

1 Ḡ
1

1

1 h1

h2, h

h3

Note that H = {h1, h2, h3} and H̄ = {h1, h} where h is the union of h2 and h3. Problems
G and Ḡ are as in the definition of MP. However,

RAedge
h (Ḡ) = L

4

5
> L

1

3
+ L

1

3
= RAedge

h2
(G) +RAedge

h3
(G).

• TA. We can use the counterexample used for Rflow in Proposition 2, where

RAedge
h3

(G) +RAedge
h3

(Ḡ) =
L

3
+ 0 = α

1

4
6= α

1

7
=
L∗

7
= RAedge

h3
(G∗).

Proposition 4. i) Redge satisfies NH, IUE, IES, IEM, IS, SE, SP, FPE, VPE, VPP,
and MP.

ii) Redge does not satisfy IIF, IIC, and TA.

Proof. • NH. Trivially, a hauler who does not carry flow through his edges gets 0
according to the edge’s rule.
• IUE. It is obvious.
• IES. Let G = (g, v, f,H, α) and Ḡ = (ḡ, v̄, f̄ , H̄, α) be two problems that only

differ because there are ĥ ∈ H and (i, j) ∈ Eĥ satisfying that (i, j) is sectioned in two
consecutive edges (i, l), (l, j) ∈ Ēĥ. Since v(i,j) = v̄(i,l) + v̄(l,j) and f(i,j) = f̄(i,l) = f̄(l,j),
we have

f(i,j)v(i,j) = f(i,j)(v̄(i,l) + v̄(l,j)) = f̄(i,l)v̄(i,l) + f̄(l,j)v̄(l,j).

Then, for each h ∈ H,
∑

e∈Eh
feve =

∑
e∈Ēh

f̄ev̄e and Redge
h (G) = Redge

h (Ḡ).

• IEM. Let G = (g, v, f,H, α) and Ḡ = (ḡ, v̄, f̄ , H̄, α) be two problems that only differ
because there are ĥ ∈ H and e ∈ Eĥ satisfying that e is duplicated in two multiedges
e1, e2 ∈ Ēĥ, with ve = v̄e1 = v̄e2 . Since fe = f̄e1 + f̄e2 , we have

feve = (f̄e1 + f̄e2)ve = f̄e1 v̄e1 + f̄e2 v̄e2 .
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Then, for each h ∈ H,
∑

e∈Eh
feve =

∑
e∈Ēh

f̄ev̄e and Redge
h (G) = Redge

h (Ḡ).

• IS. Let G = (g, v, f,H, α), Ḡ = (g, v, f, H̄, α), h1, h2 ∈ H and e ⊂ Eh1 be such
that, Ēh1 = Eh1\{e}, Ēh2 = Eh2 ∪ {e} and, for each h ∈ H\{h1, h2}, Ēh = Eh.

Note that
∑

e∈E feve =
∑

e∈E f̄ev̄e and that, for each h ∈ H \{h1, h2},
∑

ē∈Eh
fēvē =∑

ē∈Ēh
f̄ēv̄ē. Then, for each h ∈ H \ {h1, h2}, Redge

h (G) = Redge
h (Ḡ) .

• SE and SP. Since SE and SP are weaker than FPE (Proposition 1), SE and SP
follow from the fact that Redge satisfies FPE (see below).
• FPE. Let G be as in the definition of FPE. Since Eh = {e}, Eĥ = {ê} and ve = vê

it is straightforward to see that

Redge
h (G) =

fe
fê
Redge

ĥ
(G).

• VPE. Let G be as in the definition of VPE. Since Eh = {e} and Eĥ = {ê} with
fe = fê, it is straightforward to see that

Redge
h (G) =

ve
vê
Redge

ĥ
(G).

• VPP. The edge’s rule satisfies VPP, since we have seen that it satisfies VPE and,
by Proposition 1, VPE implies VPP.
• MP. The edge’s rule satisfies MP, since we have seen that it satisfies IS and, by

Proposition 1, IS implies MP.
Next, we present some counterexamples to prove statement ii) of Proposition 4.
• IIF. We can use the same counterexample used for Rflow in Proposition 2, since

Redge and Rflow coincide for the gas problems there.
• IIC. Since IIC is stronger than IIF (Proposition 1) and Redge does not satisfy IIF,

Redge does not satisfy IIC.
• TA. We can use the counterexample used for Rflow in Proposition 2, assuming that

all edges have the same volume.

Redge
h3

(G) +Redge
h3

(Ḡ) =
L

3
+ 0 = α

1

3
6= α

1

5
=
L∗

5
= Redge

h3
(G∗).

Proposition 5. i) RΓpt
satisfies NH, IUE, IES, IEM, IS, SP, VPP, IIF, IIC, MP,

and TA.

ii) RΓpt
does not satisfy SE, FPE, and VPE.

Proof. • NH. Let G = (g, v, f,H, α) and h ∈ H be such that, for each e ∈ Eh fe = 0.
Then, for each p ∈ P (S,C) with e ∈ p, fΓpt

p = 0, since all fΓpt

p flows are nonnegative

numbers and 0 = fe =
∑

p∈P (S,C),e∈p f
Γpt

p . Then, the definition of RΓpt
immediately

implies that RΓpt

h (G) = 0.
• IUE. Let G = (g, v, f,H, α) and Ḡ = (ḡ, v̄, f̄ , H̄, α) be as in the definition of IUE,

that is, there is Ê ⊂ E such that, for each h ∈ H, Ēh = Eh \ Ê and, for each e ∈ Ê,
fe = 0.
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Reasoning as above, we again have that, for each p ∈ P (S,C) such that p ∩ Ê 6= ∅,
fΓpt

p = 0. Moreover, P̄ (S,C) = P (S,C) \ {p ∈ P (S,C) : p ∩ Ê 6= ∅}. Thus,

RΓpt

h (Ḡ) = α
∑
e∈Ēh

∑
p∈P̄ (S,C)

e∈p

f̄Γpt

p (
v̄e∑
ê∈p v̄ê

) = α
∑

e∈Eh\Ê

∑
p∈P (S,C)

e∈p, p∩Ê=∅

fΓpt

p (
ve∑
ê∈p vê

) = RΓpt

h (G).

• IES. Let G = (g, v, f,H, α) and Ḡ = (ḡ, v̄, f̄ , H̄, α) be two problems that only
differ because there are ĥ ∈ H and (i, j) ∈ Eĥ satisfying that (i, j) is sectioned in two
consecutive edges (i, l), (l, j) ∈ Ēĥ.

Since (i, l) and (l, j) are the only two edges containing node l, then, given p ∈ P̄ (S,C),
(i, l) ∈ p if and only if (l, j) ∈ p. On the other hand,

P (S,C) \ {p ∈ P (S,C) : (i, j) ∈ p} = P̄ (S,C) \ {p ∈ P (S,C) : (i, l) ∈ p}.

Thus, there is a natural bijection between {p ∈ P (S,C) : (i, j) ∈ p} and {p ∈ P̄ (S,C) :
(i, l) ∈ p}, so, hereafter, we identify P̄ (S,C) with P (S,C). Then, for each p ∈ P (S,C),
fΓpt

p = f̄Γpt

p .
Since v(i,j) = v̄(i,l)+v̄(l,j) we have that, for each p ∈ P (S,C) with (i, j) ∈ p,

∑
ê∈p vê =∑

ê∈p v̄ê and

fΓpt

p

v(i,j)∑
ê∈p vê

= f̄Γpt

p

v̄(i,l)∑
ê∈p v̄ê

+ f̄Γpt

p

v̄(l,j)∑
ê∈p v̄ê

.

Therefore, for each h ∈ H,

RΓpt

h (G) = α
∑
e∈Eh

∑
p∈P (S,C)

e∈p

fΓpt

p

ve∑
ê∈p vê

= α
∑
e∈Ēh

∑
p∈P̄ (S,C)

e∈p

f̄Γpt

p

v̄e∑
ê∈p v̄ê

= RΓpt

h (Ḡ).

• IEM. Let G = (g, v, f,H, α) and Ḡ = (ḡ, v̄, f̄ , H̄, α) be two problems that only differ
because there are ĥ ∈ H and e ∈ Eĥ satisfying that e is duplicated in two multiedges
e1, e2 ∈ Ēĥ, with ve = v̄e1 = v̄e2 .

For each path p ∈ P (S,C) with e ∈ p, there are two paths p1, p2 ∈ P̄ (S,C) such that
e1 ∈ p1, e2 ∈ p2, and p1 \ {e1} = p2 \ {e2} = p \ {e}. Further, the proportional tracing
method ensures that f̄Γpt

p1
+ f̄Γpt

p2
= fΓpt

p . Hence, for each p ∈ P (S,C) with e ∈ p,

fΓpt

p

ve∑
ê∈p vê

= (f̄Γpt

p1
+ f̄Γpt

p2
)

ve∑
ê∈p vê

= f̄Γpt

p1

v̄e1∑
ê∈p1

v̄ê
+ f̄Γpt

p2

v̄e2∑
ê∈p2

v̄ê
.

On the other hand, for each p ∈ {p ∈ P (S,C) : e /∈ p} = {p ∈ P̄ (S,C) : e1, e2 /∈ p},
we have that fΓpt

p = f̄Γpt

p and for each ê ∈ p, vê = v̄ê. Therefore, for each h ∈ H,

RΓpt

ĥ
(G) = RΓpt

ĥ
(Ḡ).

• IS. Let G = (g, v, f,H, α), Ḡ = (g, v, f, H̄, α), h1, h2 ∈ H and e ⊂ Eh1 be such
that, Ēh1 = Eh1\{e}, Ēh2 = Eh2 ∪ {e} and, for each h ∈ H\{h1, h2}, Ēh = Eh.

Obviously, P (S,C) = P̄ (S,C) and, for each p ∈ P (S,C), f̄Γpt

p = fΓpt

p . Now, for

each h ∈ H\{h1, h2}, we have that Ēh = Eh and the definition of RΓpt
implies that

RΓpt

h (G) = RΓpt

h (Ḡ).
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• SP. Since SP is weaker than VPP (Proposition 1), SP follows from the fact that
RΓpt

satisfies VPP (see below).
• VPP. Let G be as in the definition of VPP. Since Eh = {e}, Eh̄ = {ē}, and

N h = N ĥ, we have that, for each p ∈ P (S,C), e ∈ p if and only if ê ∈ p, . Then, the
definition of RΓpt

implies that

RΓpt

h (G) =
ve
vē
RΓpt

h̄ (G).

• IIF. Since IIF is weaker than IIC (Proposition 1), IIF follows from the fact that
RΓpt

satisfies IIC (see below).
• IIC. Let G = (g, v, f,H, α), Ḡ = (ḡ, v̄, f̄ , H̄, α), and h ∈ H ∩ H̄ be such that

N h = N̄ h. Then {p ∈ P (S,C) : p ∩ Eh 6= ∅} = {p ∈ P̄ (S,C) : p ∩ Ēh 6= ∅} and the
proportional method assigns to all these paths the same flow in both problems. Since
N h = N̄ h, we have that for each e ∈ Eh = Ēh, ve = v̄e. Thus, RΓpt

h (G) = RΓpt

h (Ḡ).
• MP. The proportional tracing rule satisfies MP, since we have seen that it satisfies

IS and, by Proposition 1, IS implies MP.
• TA. Let G1 = (g, v, f1,H, α), G2 = (g, v, f2,H, α),. . . , Gn = (g, v, fn,H, α) be n

Γpt-compatible problems, and let G∗ = (g, v, f1 + f2 + . . . + fn,H, α). Recall that, by
definition, for each h ∈ H, Eih = E∗h and Pi(S,C) = P ∗(S,C), for each i ∈ {1, . . . , n}.
Moreover, for each p ∈ P ∗(S,C), fΓpt

p (G∗) =
∑n

i=1 f
Γpt

p (Gi). Then, the definition of RΓpt

implies that RΓpt
(G∗) =

∑n
i=1R

Γpt
(Gi).

Next, we present some counterexamples to prove statement ii) of Proposition 5.
• SE. Let G = (g, v, f,H, α) as in the picture below.

G

1

1

1

h1

h2

h3

Problem G is as in the definition of SE, since h1 = {e1} and h2 = {e2} with fe1 = fe2
and ve1 = ve2 . However,

RΓpt

h1
(G) =

L

2
6= L

4
= RΓpt

h2
(G).

• FPE and VPE. Since FPE and VPE are stronger than SE (Proposition 1) and
RΓpt

does not satisfy SE, RΓpt
satisfies neither FPE nor VPE.

Proposition 6. i) Shapley’s rule RSh satisfies NH, IUE, IES, IEM, and SP.

ii) Shapley’s rule RSh does not satisfy IS, SE, FPE, VPE, VPP, IIF, IIC, MP, and
TA with respect to the proportional tracing method.

Proof. • NH. Let G = (g, v, f,H, α) and h ∈ H be such that, for each e ∈ Eh fe = 0.
Since the edges of hauler h do not carry flow, they never help to increase the total flow
that can be carried between a supplier and a consumer. Thus, for each T ⊂ H\{h},
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we have that lG(T ) = lG(T ∪ {h}) and the definition of the Shapley value implies that
RSh
h = 0.
• IUE. Let G = (g, v, f,H, α) and Ḡ = (ḡ, v̄, f̄ , H̄, α) be as in the definition of IUE,

that is, there is Ê ⊂ E such that, for each h ∈ H, Ēh = Eh \ Ê and, for each e ∈ Ê,
fe = 0.

Let T ⊂ H be a set of players. Again, the edges that do not carry flow never help to
increase the total flow that can be carried between a supplier and a consumer. Thus, they
can be removed for the computation of the TU game associated with Ḡ and, therefore,
for each T ⊂ H, lG(T ) = lḠ(T ). Thus, RSh(G) = RSh(Ḡ).
• IES. Let G = (g, v, f,H, α) and Ḡ = (ḡ, v̄, f̄ , H̄, α) be two problems that only

differ because there are ĥ ∈ H and (i, j) ∈ Eĥ satisfying that (i, j) is sectioned in two
consecutive edges (i, l), (l, j) ∈ Ēĥ.

Since f(i,j) = f̄(i,l) = f̄(l,j), edge sectioning does not change the maximum flow that
can be transferred from consumers to suppliers. Then, for each T ⊂ H, lG(T ) = lḠ(T )
and, therefore, for each h ∈ H, RSh

h (G) = RSh
h (Ḡ).

• IEM. Let G = (g, v, f,H, α) and Ḡ = (ḡ, v̄, f̄ ,H, α) be two problems that only differ
because there are ĥ ∈ H and e ∈ Eĥ satisfying that e is duplicated in two multiedges
e1, e2 ∈ Ēĥ, with ve = v̄e1 = v̄e2 .

Since fe = f̄e1 + f̄e2 , edge multiplication does not change the maximum flow that can
be transferred from consumers to suppliers because we only have to split among f̄e1 and
f̄e2 the maximum flow that went through fe. Then, for each T ⊂ H, lG(T ) = lḠ(T ) and,
therefore, for each h ∈ H, RSh

h (G) = RSh
h (Ḡ).

• SP. Let G = (g, v, f,H, α) and h, h̄ ∈ H be such that Eh = {e}, Eh̄ = {ē}, ve = vē
and N h = N h̄.

Since N h = N h̄ we have that fe = fē and, for each p ∈ P (S,C), e ∈ p if and only if
ē ∈ p. Then, for each T ⊂ H\{h, h̄} we have lG(T ∪ h) = lG(T ∪ h̄). Thus, the definition
of the Shapley value implies that RSh

h (G) = RSh
h̄

(G).
Next, we present some counterexamples to prove statement ii) of Proposition 6.
• IS. Since IS is stronger than MP (Proposition 1) and RSh does not satisfy MP (see

below), RSh does not satisfy IS.
• SE. Let G = (g, v, f,H, α) be as in the picture below.

G
2

1

1

2

h1

h2

h3

Problem G is as in the definition of SE, since h1 = {e1} and h3 = {e2} with fe1 = fe2 = 2
and ve1 = ve2 . However, h3 can satisfy some demand on his own, while h1 needs h2. In
particular, we get RSh

h1
(G) = α 6= 2α = RSh

h3
(G).

• FPE and VPE. Since FPE and VPE are stronger than SE (Proposition 1) and RSh

does not satisfy SE, RSh satisfies neither FPE nor VPE.
• VPP. Let G = (g, v, f,H, α), h1 and h2 as in the picture below.
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G f = 1
v = 1

f = 1
v = 2

h1

h2

Clearly, RSh
h2

(G) = RSh
h1

(G) 6= 2RSh
h1

(G) =
vh2
vh1

RSh
h1

(G).

• IIF. Let G = (g, v, f,H, α) and Ḡ = (g, v, f̄ ,H, α) be as in the picture below.

G

1

3 7 1

5 1

7

Ḡ

1

3 7 11

5 11

7

h1

h2

h3

Problems G and Ḡ are as in the definition of IIF. Note that there are two edges
where the flow increases and N h1 = N̄ h1 . In this case we get the games

– lG({h1}) = 0, lG({h2}) = α, lG({h3}) = α, lG({h1, h2}) = 2α, lG({h1, h3}) = 2α,
lG({h2, h3}) = 8α, lG({h1, h2, h3}) = 9α and

– lḠ({h1}) = 0, lḠ({h2}) = 3α, lḠ({h3}) = 7, lḠ({h1, h2}) = 3α, lḠ({h1, h3}) = 8α,
lḠ({h2, h3}) = 18α, lḠ({h1, h2, h3}) = 19α.

The corresponding Shapley values are so that

RSh
h1

(G) = α
4

6
6= α

3

6
= RSh

h1
(Ḡ)

The key is that the marginal contribution of hauler h1 to hauler h2 changes from G to
Ḡ.
• IIC. Since IIC is stronger than IIF (Proposition 1) and RSh does not satisfy IIF,

RSh does not satisfy IIC.
• MP. Let G = (g, v, f,H, α) and Ḡ = (g, v, f, H̄, α) be as in the picture below.

G

22
3

41

3

3

Ḡ

22
3

41

3

3

h1

h2, h

h3

Note that H = {h1, h2, h3} and H̄ = {h, h3} where h is the union of h1 and h2. Problems
G and Ḡ are as in the definition of MP. In this case we get the games

– lG({h1}) = 0, lG({h2}) = 3α, lG({h3}) = 0, lG({h1, h2}) = 5α, lG({h1, h3}) = 2α,
lG({h2, h3}) = 7α, lG({h1, h2, h3}) = 9α and

– lḠ({h}) = 5α, lḠ({h3}) = 0, lḠ({h, h3}) = 9α.

The corresponding Shapley values are so that

RSh
h (Ḡ) = α

42

6
> α

40

6
= α

8

6
+ α

32

6
= RSh

h1
(G) +RSh

h2
(G).

• TA with respect to Γpt. Let G = (g, v, f,H, α), Ḡ = (g, v, f̄ ,H, α), and G∗ =
(g, v, f + f̄ ,H, α) be as in the picture below.
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G

s1

s2

s3

1 2

c1

c2

c3

25

25

40

10

1

10

1

Ḡ

s1

s2

s3

1 2

c1

c2

c3

60

60

20

100

109

1

10

G∗

s1

s2

s3

1 2

c1

c2

c3

85

85

60

110

110

11

11

h1

h2

h3

It is not difficult to prove that G and Ḡ are Γpt-compatible problems. The corresponding
TU games are:

– lG({h1}) = α, lG({h2}) = 25α, lG({h3}) = 0, lG({h1, h2}) = 26α, lG({h1, h3}) = α,
lG({h2, h3}) = 41α, lG({h1, h2, h3}) = 51α.

– lḠ({h1}) = α, lḠ({h2}) = 20α, lḠ({h3}) = 0, lḠ({h1, h2}) = 21α, lḠ({h1, h3}) =
10α, lḠ({h2, h3}) = 120α, lḠ({h1, h2, h3}) = 130α.

– lG∗({h1}) = 11α, lG∗({h2}) = 60α, lG∗({h3}) = 0, lG∗({h1, h2}) = 71α, lG∗({h1, h3}) =
11α, lG∗({h2, h3}) = 170α, lG∗({h1, h2, h3}) = 181α,

which lead to Shapley values such that

RSh
h1

(G∗) = α · 11 6= α · 9.5 = α · 4 + α · 5.5 = RSh
h1

(G) +RSh
h1

(Ḡ).

RSh
h2

(G∗) = α · 115 6= α · 106 = α · 36 + α · 70 = RSh
h2

(G) +RSh
h2

(Ḡ).

RSh
h3

(G∗) = α · 55 6= α · 65.5 = α · 11 + α · 54.5 = RSh
h3

(G) +RSh
h3

(Ḡ).

B Proofs of the axiomatic characterizations

B.1 Edge’s rule

Before proving Theorem 1, we present two lemmas.

Lemma 1. Let R be a rule satisfying IES, IS, and FPE, then R satisfies NH.

Proof. Let (g, v, f,H, α) be a gas problem. By IS we can assume that G is a canonical
gas problem, i.e, for each h ∈ H, |Eh| = 1. Thus, we can identify H and E.

We assume that there are e, ê ∈ E with fe = 0 and fê > 0 and show that Re(G) = 0
(the case where the flow of each edge is 0 is obvious). Let n > 1 be such that ve

n < vê.
Consider the gas problem Ḡ = (ḡ, v̄, f̄ , H̄, α) obtained from G by dividing edge e in n
consecutive edges e1, e2, . . . , en (as in the definition of IES) with v̄ei = ve

n and by dividing
the edge ê in two consecutive edges ê1, ê2 such that v̄ê1 = ve

n .
We can construct a sequence of problems starting inG and finishing in Ḡ by sectioning

at each step of the sequence only one edge. Applying sequentially IES we get that

Re(G) = Re1(Ḡ) + . . .+Ren(Ḡ). (3)
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Note that, for each i ∈ {1, . . . , n}, f̄ei = fe = 0 and f̄ê1 = f̄ê2 = fê > 0. Thus, for
each i ∈ {1, . . . , n}, since v̄ei = v̄ê1 , FPE implies that

Rei(Ḡ) =
f̄ei
f̄ê1

Rê1(Ḡ) = 0,

which, combined with (3), leads to Re(G) = 0.

Lemma 2. Let R be a rule satisfying IES, IS, and FPE, then R satisfies VPE.

Proof. Let (g, v, f,H, α) be a gas problem. By IS we can assume that G is a canonical
gas problem, i.e, for each h ∈ H, |Eh| = 1. Thus, we can identify H and E.

Let e, ê ∈ E be two edges such that fe = fê, we have to prove that Re(G) = ve
vê
Rê(G).

By Lemma 1, R satisfies NH and, hence, if fe = fê = 0 we have Re(G) = ve
vê
Rê(G) = 0.

On the other hand, if ve = vê, then, by FPE, Re(G) = fe
fê
Rê(G) = Rê(G) = ve

vê
Rê(G).

Thus, we can assume that fe = fê > 0 and, for instance, that ve > vê.
Consider the gas problem Ḡ = (ḡ, v̄, f̄ , H̄, α) obtained from G by dividing the edge e

in two consecutive edges e1, e2 (as in the definition of IES) where v̄e1 = vê, v̄e2 = ve − vê
and f̄e1 = f̄e2 = fe. By IES,

Rê(G) = Rê(Ḡ) and Re(G) = Re1(Ḡ) +Re2(Ḡ). (4)

Since v̄e1 = v̄ê, by FPE,

Re1(Ḡ) =
f̄e
f̄ê
Rê(Ḡ) =

fe
fê
Rê(Ḡ) = Rê(Ḡ). (5)

From (4) and (5) we have

Re(G)

Rê(G)
=
Re1(Ḡ) +Re2(Ḡ)

Re1(Ḡ)
= 1 +

Re2(Ḡ)

Re1(Ḡ)
.

Now, if we were able to prove that Re2(Ḡ) =
v̄e2
v̄e1
Re1(Ḡ) we would have

Re(G)

Rê(G)
= 1 +

v̄e2
v̄e1

=
v̄e1 + v̄e2
v̄e1

=
ve
vê
, and so Re(G) =

ve
vê
Rê(G),

obtaining the desired result.
Thus, it suffices to prove that, when an edge e is sectioned in two edges e1, e2, then

Re2(Ḡ) =
v̄e2
v̄e1
Re1(Ḡ). We consider two cases, when

v̄e1
ve

is a rational number and when it

is not.
• Case 1:

v̄e1
ve

∈ Q. Thus, v̄e1 = p
qve with p, q ∈ N and so v̄e2 = q−p

q ve. Consider

the gas problem Ĝ = (ĝ, f̂ , v̂, Ĥ, α) obtained from G by sequentially dividing the edge e
in 2 consecutive edges (as in the definition of IES) so that in the end we have ê1, . . . , êq,

where, for each i ∈ {1, . . . , q}, v̂êi = 1
qve and f̂êi = fe.
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Now, for each pair i, j ∈ {1, . . . , q}, we can apply FPE to get that Rêi(Ĝ) =
f̂êi
f̂êj
Rêi(Ĝ) = Rêj (Ĝ).

Now,
Re2(Ḡ) = Rêp+1(Ĝ) + . . .+Rêq(Ĝ) = (q − p)x.

where x = Rêp+1(Ĝ). Besides

Re1(Ḡ) = Rê1(Ĝ) + . . .+Rêp(Ĝ) = px

Thus,

Re2(Ḡ) = (q − p)x =

q−p
q ve
p
qve

px =
v̄e2
v̄e1

Re1(Ḡ).

• Case 2:
v̄e1
ve

/∈ Q. Thus, v̄e1 = sve with s /∈ Q and 0 < s < 1. Then, v̄e2 = (1−s)ve.
Consider two sequences {qn} and {pn}, both converging to s, with 0 < qn < s < pn < 1
and qn, pn ∈ Q for all n ∈ N.

Given n ∈ N, consider two gas problems Ĝn = (ĝ, f̂ , v̂, Ĥ, α) andG
′
n = (g′, f ′, v′,H′, α)

obtained from G by dividing the edge e in two consecutive edges (as in the definition of
IES) e1

qn , e
2
qn and e1

pn , e
2
pn respectively, where v̂e1qn = qnve and v′e1pn

= pnve.

We are in the hypothesis of Case 1, so we have

Re2qn (Ĝn)

Re1qn (Ĝn)
=
v̂e2qn
v̂e1qn

=
1− qn
qn

and
Re2pn (G′n)

Re1pn (G′n)
=
v′e2pn
v′
e1pn

=
1− pn
pn

. (6)

Note that, for each n ∈ N, Re1qn (Ĝn) ≤ Re1(Ḡ) ≤ Re1pn (G′n) and Re2pn (G′n) ≤ Re2(Ḡ) ≤
Re2qn (Ĝn), since each edge is a section of the next one. Then, by (6), we have

1− pn
pn

=
Re2pn (G′)

Re1pn (G′)
≤ Re2(Ḡ)

Re1(Ḡ)
≤
Re2qn (Ĝ)

Re1qn (Ĝ)
=

1− qn
qn

.

Finally, when n goes to infinity, both 1−qn
qn

and 1−pn
pn

converge to 1−s
s and we have

Re2(Ḡ)

Re1(Ḡ)
=

1− s
s

=
v̄e2
v̄e1

and so Re2(Ḡ) =
v̄e2
v̄e1

Re1(Ḡ).

Proof of Theorem 1. By Proposition 4 we already know that the edge’s rule satisfies IS,
IES, and FPE. Now, we we prove that no other rule does. Let R be a rule satisfying
IES, IS, and FPE. By lemmas 1 and 2 we know that R also satisfies NH and VPE.

Let (g, v, f,H, α) be a gas problem. By IS we can assume that G is a canonical gas
problem, i.e, for each h ∈ H, |Eh| = 1. Thus, we can identify H and E. By NH, For

each e ∈ E with fe = 0, Re(G) = 0, so Re(G) = Redge
e (G). Below we prove the equality

for e ∈ E with fe > 0.
Let λ > 0 be such that, for each e ∈ E, ve > λ. Let Ḡ = (ḡ, v̄, f̄ , H̄, α) be the problem

obtained from G by dividing each edge e in two consecutive edges (as in the definition of
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IES) e1, e2, where v̄e1 = λ, v̄e2 = ve−λ and f̄e1 = f̄e2 = fe. We can construct a sequence
of problems starting in G and finishing in Ḡ by changing, at each step of the sequence,
an edge e by the two edges e1 and e2.

By sequentially applying IES we get that, for each e ∈ E, Re(G) = Re1(Ḡ) +Re2(Ḡ).
Moreover, if fe > 0, we have that f̄e1 = f̄e2 > 0 and, by VPE, Re2(Ḡ) = ve−λ

λ Re1(Ḡ).
Combining the above two equalities we get that

Re(G) =
ve
λ
Re1(Ḡ).

Since R is such that
∑

h∈H Rh(G) = L > 0, there is e ∈ E such that Re(G) > 0. Now,
for each ê ∈ E with fê > 0,

Rê(G)

Re(G)
=

vê
λ Rê1(Ḡ)
ve
λ Re1(Ḡ)

=
vê
ve

Rê1(Ḡ).

Re1(Ḡ)
(7)

Since v̄e1 = v̄ê1 , by FPE, Rê1(Ḡ) =
f̄ê1

f̄e1
Re1(Ḡ) = fê

fe
Re1(Ḡ), and by (7) we have

Rê(G) =
fê
fe

vê
ve
Re(G). (8)

Note that NH implies that (8) also holds for ê ∈ E with fê = 0. Then,

L =
∑
ê∈E

Rê(G) =
∑
ê∈E

fê
fe

vê
ve
Re(G) =

∑
ê∈E

fêvê
Re(G)

feve
.

Therefore, Re(G) = L feve∑
ê∈E fêvê

= Redgee (G).

To conclude the proof we show the independence of the properties.
• IES. For each edge e let we = dvee, that is, the smallest integer greater than ve.

Let R be the rule defined as

Rh(G) = L

∑
e∈Eh

fewe∑
ê∈E fêwê

.

It is not difficult to prove that R satisfies IS, and FPE, but violates IES.
• IS. By Proposition 3 the aggregate edge’s rule satisfies IES and FPE, but violates

IS.
• FPE. By Proposition 5, the proportional tracing rule satisfies IES and IS, but

violates FPE.

B.2 Tracing rules

Proof of Theorem 2. By Proposition 5 we already know that the proportional tracing
rule satisfies IS, IUE, VPP, and TA. Using the same arguments it can be shown that all
tracing rules satisfy IS, IUE, VPP, and TA.

We now prove the uniqueness. Let R be a rule satisfying IS, IUE, VPP, and TA. We
claim that R = RΓ for some tracing method Γ. Let G = (g, v, f,H, α) be a gas problem.
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By IS we can assume that G is a canonical problem, i.e, for each h ∈ H, |Eh| = 1. Thus,
we can identify H and E.

Since R satisfies TA, R is additive with respect to a flow tracing method Γ. For each
p ∈ P (S,C) we define the problem Gp = (g, fp, v,H, α) obtained from G by assuming
that the only gas in Gp that flows through p according to Γ. Formally, fpe = fΓ

p (G) if
e ∈ p and fpe = 0 if e /∈ p. Note that G =

∑
p∈P (S,C)G

p and we are in the assumptions
of TA because for each p̂ ∈ P (S,C),

fΓ
p̂ (G) =

∑
p∈P (S,C)

fΓ
p̂ (Gp) = fΓ

p̂ (Gp̂).

Since R satisfies TA with respect to Γ, we have that, for each e ∈ E,

Re(G) = Re(
∑

p∈P (S,C)

Gp) =
∑

p∈P (S,C)

Re(G
p).

Let ê /∈ p and let Gp−ê be obtained from Gp by removing edge ê. By IUE, for each
e ∈ E \ {ê}, Re(Gp) = Re(G

p−ê). Since∑
e∈E\ê

Re(G
p) =

∑
e∈E\ê

Re(G
p−ê) = αfΓ

p (G) =
∑
e∈E

Re(G
p),

we get that Rê(G
p) = 0. Then, for each e ∈ E,

Re(G) =
∑

p∈P (S,C), e∈p

Re(G
p). (9)

Let Gp−E be obtained from Gp by removing all edges not belonging to p. Let e, ê ∈ p.
We have that N e(Gp−E) = N ê(Gp−E) = p. By VPP,

Rê(G
p−E) =

vê
ve
Re(G

p−E).

By IUE, for all e ∈ p, Re(Gp) = Re(G
p−E). Hence, Rê(G

p) = vê
ve
Re(G

p). Thus,

αfΓ
p (G) =

∑
ê∈E

Rê(G
p) =

∑
ê∈p

Rê(G
p) =

∑
ê∈p

(
vê
ve

)Re(G
p)

and we get that, for each e ∈ p,

Re(G
p) = αfΓ

p (G)(
ve∑
ê∈p vê

). (10)

Finally, combining (9) and (10), we have that

Re(G) =
∑

p∈P (S,C)
e∈p

αfΓ
p (G)(

ve∑
ê∈p vê

) = RΓ
e (G).
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To conclude the proof we show the independence of the properties.
• IS. Given e ∈ E, let he denote the hauler owning edge e. For each p ∈ P (S,C) and

each ê ∈ p, let n(hê, p) be the number of edges that hê owns in p. Let R1 be defined as

R1
h(G) = α

∑
e∈Eh

∑
p∈P (S,C)

e∈p

fΓpt

p

ven(he, p)∑
ê∈p vên(hê, p)

It is not difficult to prove that R1 satisfies IUE, VPP, and TA, but violates IS.
• VPP. Let |p| denote the number of edges of a path p and let R be defined as

R2
h(G) = α

∑
e∈Eh

∑
p∈P (S,C)

e∈p

fΓpt

p

1

|p|
.

It is not difficult to prove that R2 satisfies IS, IUE, and TA, but violates VPP.
• IUE. Let P 1 be the set of problems such that no two edges have the same influence

network (so any rule trivially satisfies VPP for all problems in P 1). We define R3 such
that R3(G) = R2(G) when G ∈ P 1 and R3(G) = RΓpt

(G) otherwise. It is not difficult
to prove that R3 satisfies IS, VPP, and TA, but violates IUE.
• TA. The edge’s rule satisfies IS, IUE, and VPP but violates TA.

Proof of Corollary 1. In the proof of Theorem 2 we proved that if a rule satisfies IS, IUE,
VPP, and TA with respect to a tracing method Γ, then R = RΓ. Consequently, RΓpt

is
the unique rule satisfying IS, IUE, VPP and TA with respect to Γpt.

B.3 Proportional tracing rule

We start introducing a last property that will be useful in the proof of Theorem 3.
Equally treatment of equals (ETE). Let G = (g, v, f,H, α) be such that there are

two haulers h, h̄ ∈ H, and two edges e = (i, j, l1) ∈ E and ē = (i, j, l2) ∈ E satisfying
that Eh = {e} and Eh̄ = {ē} with ve = vē and fe = fē. Then, Rh(G) = Rh̄(G).

Lemma 3. Let R be a rule satisfying IEM and IS, then R satisfies ETE.

Proof. Let G = (g, v, f,H, α) be as in the definition of ETE. Consider the gas problem
Ĝ = (ĝ, v̂, f̂ ,H, α) obtained fromG by duplicating e and ē in two multiedges e1 = (i, j, l3),
e2 = (i, j, l4), and ē1 = (i, j, l5), ē2 = (i, j, l6) respectively, with v̂ei = v̂ēi = ve and
f̂ei = f̂ēi = 1

2fe for i ∈ {1, 2}. By IEM, Rh(G) = Rh(Ĝ).
Now, consider G∗ = (g∗, v∗, f∗,H∗, α) obtained from G by duplicating e and ē in two

multiedges e1 = (i, j, l5), e2 = (i, j, l6), and ē1 = (i, j, l3), ē2 = (i, j, l4) respectively, with
v∗ei = v∗ēi = ve and f∗ei = f∗ēi = 1

2fe for i ∈ {1, 2}. By IEM, Rh̄(G) = Rh̄(G∗).

Let Ĝ12 (respectively G∗12) be obtained from Ĝ (respectively G∗) when hauler h sells
his edges to hauler h1 and hauler h̄ sells his edges to hauler h2 (we assume that haulers
h1 and h2 have not edges in G). By IS, Rh(Ĝ) = Rh1(Ĝ12) and Rh̄(G∗) = Rh1(G∗12)

Since Ĝ12 and G∗12 are the same problem, Rh1(Ĝ12) = Rh1(G∗12). Thus, Rh(G) =
Rh̄(G).
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Proof of Theorem 3. By Proposition 5 we already know that the proportional tracing
rule satisfies IS, IUE, IEM, VPP, and TA. Further, by Lemma 3, it also satisfies ETE.
By Theorem 2, it suffices to show that RΓpt

is the unique tracing rule satisfying IEM.
More precisely, we want to show that if a tracing rule RΓ satisfies ETE and IEM, then
the gas arriving at a given node is split towards the different outbound destinations
using the proportional method. In order to characterize the underlying tracing method
it suffices to consider a canonical gas problem G = (g, v, f,H, α), where g is as in the
picture below.

s1

s2

sn

1 c

e1

e2

en

ê1

ê2

êm

Given i ∈ {1, . . . , n} and j ∈ {1 . . . ,m}, we denote by pij = {ei, êj} the path from
si to c containing êj and by fij = fΓ

pij (G) the amount of gas that flows through pij . We
denote by F the gas entering in the network, that is F =

∑n
i=1 fei =

∑m
j=1 fêj =

∑
i,j fij .

We want to prove that, for each i ∈ {1, . . . , n} and each j ∈ {1 . . . ,m},

fij =
feifêj
F

.

We consider three cases: in the first one we assume that the outbound edges have the
same flow, in the second one their flows may be different but are rational numbers, and
in the last one we consider the general case where outbound flows can be different and
irrational. Since a tracing method is independent of the volumes, we can assume that
vê1 = . . . = vêm = v.

Case 1. Assume that fê1 = . . . = fêm = F
m . By ETE, RΓ

ê1
(G) = . . . = RΓ

êm
(G).

Thus, from the definition of the Γ-tracing rule we get

n∑
i=1

fi1
v

vei + v
= . . . =

n∑
i=1

fim
v

vei + v
.

The above equalities hold independently of the values of vei and this implies that, for
each i ∈ {1, . . . , n}, fi1 = . . . = fim. On the other hand, since fei =

∑m
j=1 fij = mfij ,

we have that

fij =
fei
m

=
feifêj
mfêj

=
feifêj

m F
m

=
feifêj
F

.

Case 2. Assume that fê1 , . . . , fêm are (maybe different) rational numbers. Then,

there are natural numbers nj ∈ N such that
fê1
n1

= . . . =
fêm
nm

= r for some r > 0.

Consider the gas problem Ḡ = (ḡ, v̄, f̄ , H̄, α) obtained by multiplying each edge êj in
nj multiedges {êj1, . . . , êjnj} with v̄êjl = vêj = v. Further, according to f̄ , the flow of the
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original edge is equally divided among the multiedges, that is, for each j ∈ {1, . . . ,m}
and each l ∈ {1, . . . , nj}, f̄êjl =

fêj
nj

= r.

From Ḡ we obtain the canonical problem ḠĒ where each edge is a hauler. Now, for
each i ∈ {1, . . . , n}, each j ∈ {1, . . . ,m}, and each l ∈ {1, . . . , nj}, let f̄ijl be the flow
through the path in ḠĒ from si to c through edge êjl. Then, since ḠĒ satisfies the
assumptions of Case 1, we have

f̄ijl =
f̄ei f̄êjl
F

=
fei .fêj
njF

. (11)

On the other hand, by IEM and IS, we have that, for each h ∈ H,

RΓ
h(G) = RΓ

h(Ḡ) =
∑
e∈Ēh

RΓ
e (ḠĒ). (12)

Moreover, by ETE,
RΓ
êj1

(ḠĒ) = . . . = RΓ
êjnj

(ḠĒ). (13)

Now, combining (12) and (13), we have that RΓ
êj

(G) = njR
Γ
êj1

(ḠĒ), that is,

n∑
i=1

fij
v

v + vei
= nj

n∑
i=1

f̄ij1
v̄

v̄ + v̄ei
=

n∑
i=1

nj f̄ij1
v

v + vei
.

The above equalities hold, for each j, independently of the vei values and this implies
that, for each i ∈ {1, . . . , n} and each j ∈ {1, . . . ,m}, fij = nj f̄ij1. Thus, we can conclude
by (11) that

fij = nj f̄ij1 =
fei .fêj
F

.

Case 3. Assume that the flows fê1 , . . . , fêm may be different and irrational. For
each j ∈ {1, . . . ,m}, take a sequence {qtj}t∈N such that limt→∞ q

t
j = fêj , with qtj ∈ Q

and qtj < fêj for each t ∈ N. Let εtj = fêj − qtj . Then, for each t ∈ N, there are natural

numbers ntj ∈ N for j ∈ {1, . . . ,m} such that
qt1
nt

1
= . . . = qtm

nt
m

= rt for some rt > 0.

For each t ∈ N, consider the gas problem Gt = (gt, f t, vt,Ht, α) obtained from G by
multiplying each edge êj in ntj + 1 multiedges {êj1, . . . , êjnt

j+1} with the same volume

v and such that, for each j ∈ {1, . . . ,m} and each l ∈ {1, . . . , ntj}, f têjl =
qtj
nt
j

= rt and

f tê
jnt

j
+1

= εtj .

From Gt we obtain the canonical problem where each edge is a hauler. For the sake
of notation, hereafter we assume that Gt itself is canonical. For each i ∈ {1, . . . , n}, each
j ∈ {1, . . . ,m}, and each l ∈ {1, . . . , ntj + 1}, let f tijl denote the flow inside the path in

Gt from si to c through edge êjl. By ETE, for each t ∈ N,

RΓ
ê11

(Gt) = . . . = RΓ
ê
1nt

1

(Gt) = . . . = RΓ
êm1

(Gt) = . . . = RΓ
ê
mnt

m
(Gt).
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By the definition of the Γ-tracing rule, we have that

n∑
i=1

f ti11

v

vtei + v
= . . . =

n∑
i=1

f ti1nt
1

v

vtei + v
= . . . =

n∑
i=1

f tim1

v

vtei + v
= . . . =

n∑
i=1

f timnt
m

v

vtei + v
.

Since the above equalities hold independently of the vtei values, we have that, for each
t ∈ N and each i ∈ {1, . . . , n}, there is rti such that

f ti11 = . . . = f ti1nt
1

= . . . = f tim1 = . . . = f timnt
m

= rti . (14)

Combining (14) with IEM and IS, we have that, for each j ∈ {1, . . . ,m} and each
l ∈ {1, . . . , ntj},

RΓ
êj

(G) =
( nt

j∑
l=1

RΓ
êjl

(Gt)
)

+RΓ
ê
jnt

j
+1

(Gt) = ntjR
Γ
êjl

(Gt) +RΓ
ê
jnt

j
+1

(Gt).

Therefore, for each i ∈ {1, . . . , n}, each j ∈ {1, . . . ,m}, and each l ∈ {1, . . . , ntj},

fij = ntjf
t
ijl + f tijnt

j+1 = ntjr
t
i + f tijnt

j+1. (15)

On the other hand, fei =
∑m

j=1 fij =
∑m

j=1(ntjr
t
i + f t

ijnt
j+1

) = (nt1 + . . . + ntm)rti +∑m
j=1 f

t
ijnt

j+1
. Then,

rti =
fei −

∑m
j=1 f

t
ijnt

j+1

nt1 + . . .+ ntm
. (16)

Moreover, combining (15) and (16) we have

fij =
ntj

nt1 + . . .+ ntm
(fei −

m∑
j=1

f tijnt
j+1) + f tijnt

j+1 (17)

Taking into account that, as t goes to infinity, ntjr
t = qtj converges to fêj and f t

ijnt
j+1
≤

f t
jnt

j+1
= εtj converges to 0, we have that

fij = lim
t→∞

qtj
qt1 + . . .+ qt1

(fei −
m∑
j=1

f tijnt
j+1) + f tijnt

j+1 =
fêjfei
F

.

To conclude the proof we show the independence of the properties.
• IEM. By Theorem 2, it suffices to find a tracing rule different from RΓpt

. Consider
the tracing method defined as follows: the flow inbound edge with the highest flow goes
to the outbound edge with the highest flow. If after “filling” it there is some flow left, it
goes to the one with the second largest flow and so on. If the flow of an inbound edge is
finished before the outbound edge at hand is “filled”, the inbound edge with the highest
flow among the remaining ones is used to continue. If several edges have the same flow,
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they are taken simultaneously, that is, the flows of inbound edges with the same flow is
divided proportionally among the outbound edge(s) at hand.
• IS, VPP, IUE, and TA. We can take the same rules used to establish the inde-

pendence of these properties in the proof of Theorem 2, since all of them also satisfy
IEM.
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