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Abstract

A game with optimistic aspirations specifies two values for each coalition

of players: the first value is the worth that the players in the coalition can

guarantee for themselves in the event that they coordinate their actions, and

the second value is the amount that the players in the coalition aspire to

get under reasonable but very optimistic assumptions about the demands of

the players who are not included in the coalition. In this paper, in addition

to presenting this model and justifying its relevance, we introduce allocation

rules and extend the properties of efficiency, additivity, symmetry, and null

player property to this setting. We demonstrate that these four properties

are insufficient to find a unique allocation rule and define three properties

involving null players and nullifying players that allow the identification of
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unique allocation rules. The allocation rules we identify are related to the

Shapley value and the equal division rule.

Keywords: Optimistic aspirations, TU-games, Shapley value, equal division

rule.

1 Introduction

In this paper we introduce games with optimistic aspirations and identify

attractive allocation rules for such games through axiomatizations. A game

with optimistic aspirations specifies two values for each coalition of players:

the first value is the worth that the players in the coalition can guarantee for

themselves in the event that they coordinate their actions (where the word

guarantee implies a very conservative attitude), and the second value is the

amount that the players in the coalition aspire to get under reasonable but

very optimistic assumptions about the demands of the players who are not

included in the coalition. We explain games with optimistic aspirations as

well as our motivation for introducing such games by means of an example.

Consider an interactive situation that can be described by the following 2-

player strategic-form game

1,1 0,0
0,0 10,1

.

Also suppose that the two players involved recognize that they can benefit

from cooperation and that they are trying to figure out what side-payments

would be reasonable to use in order to give both of them the correct incentives

to cooperate with each other. One approach to this question is to consider the

TU-game (N, v) in which each coalition S is assigned the lower value of the

zero-sum game between coalition S and coalition N \S and some allocation,

for example the Shapley value, of this game. This lower value approach is

an adaptation of the classical one by von Neumann and Morgenstern (1944),

which uses the value of the mixed extension of the zero-sum game between

the coalition and its complement. The lower value represents a conservative

view of the worth of a coalition because the coalition can guarantee that it

will get a payoff equal to this value by sticking to an appropriate coordinated
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strategy. We refer the reader to Carpente et al. (2005) for more extensive

explanation as well as an axiomatization of the lower-value approach and

suffice here by saying that this procedure applied to the situation in our

example leads to the game ({1, 2}, v) with v(1) = v(2) = 0 and v(N) = 11.

A more optimistic perspective is to consider for each coalition S the upper

value (v) of the zero-sum game between coalition S and coalition N \ S.

This upper value assigns to each coalition the value that it can obtain under

circumstances where it reacts optimally to the strategies played by the players

outside the coalition under the assumption that those players are choosing

their strategies with the purpose of holding the coalition members’ payoffs

down. In our example, doing so would result in the game ({1, 2}, v) with

v(1) = v(2) = 1 and v(N) = 11. In Carpente et al. (2008) we incorporate

this more optimistic view by considering interval games that associate with

every coalition S the interval whose extremes are, respectively, the lower

value and the upper value of the zero-sum game between coalition S and

coalition N \ S.

However, as we clearly see in our example, neither the lower value nor

the upper value reflect all possible asymmetries that may exist between the

players and coalitions. In many situations, it is reasonable and customary to

take into account what we will refer to as coalitions’ optimistic aspirations -

the value that the players in the coalition aspire to get under reasonable but

very optimistic assumptions about the demands of the players who are not

included in the coalition. For example, Bergantiños and Vidal-Puga (2007)

consider optimistic TU-games in minimal cost spanning tree problems, and

Maniquet (2003) considers an optimistic estimate of the costs of coalitions

in queueing problems. Following ideas similar to those behind these two

optimistic games, we define optimistic aspirations of coalitions in our example

as o(1) = 10, o(2) = 1, and o(N) = 11, because these values are the maximum

values that each of the coalitions can obtain in any reasonable play of the

game (note that player 1 can obtain 10 without any negative effect on player

2’s payoff). Clearly, the game defined by the optimistic aspirations reflects

the asymmetry that exists between the two players in our example. We think

it desirable to consider a model that takes this sort of optimistic information

into account, while at the same time recognizing that the players have no
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strategies that guarantee them these optimistic payoffs. To this end, we

introduce games with optimistic aspirations, which consist of a TU-game p

(for “pessimistic”) that gives for each coalition the value that the players in

the coalition can guarantee themselves through the use of some appropriate

coordinated strategy, and a TU-game o (for “optimistic”) that gives for each

coalition its optimistic aspiration - the value that the players in S could use

as an aim in negotiations over payoffs in the grand coalition. The difference

between games with optimistic aspirations and games with upper bounds as

introduced in Carpente et al. (2010) is subtle, but important: In a game

with upper bounds, there is some external bound on the maximum payoff

that a coalition can possibly get and any proposed allocation has to respect

these bounds. In a game with optimistic aspirations, however, the optimistic

aspirations model goals that coalitions have in mind and use in negotiations,

but they do not constitute bounds on possible agreements that can be reached

in the grand coalition.

We are interested in allocation rules for games with optimistic aspirations.

To find reasonable allocation rules, we use for inspiration extensions of the

familiar axioms that characterize the Shapley value for TU-games to the

setting of games with optimistic aspirations.

The paper is organized as follows. In Section 2 we formally introduce

games with optimistic aspirations and identify a way to decompose such

games into basic games that are inspired by unanimity games. In Section 3

we introduce allocation rules and extend the properties efficiency, additivity,

symmetry, and null player property to the setting of games with optimistic

aspirations. We demonstrate that the 4 properties obtained are insufficient to

find a unique allocation rule and we define 3 properties related to null players

and nullifying players that allow the identification of unique allocation rules.

The allocation rules we identify are related to the Shapley value and the

equal division rule.

2 Games with optimistic aspirations

For every finite set N , G(N) denotes the class of TU-games with set of players

N and O(N) the class of games with optimistic aspirations and set of players
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N . Formally,

• G(N) = {v : 2N → R | v(∅) = 0}.

• O(N) = {(p, o) | p, o ∈ G(N), p(S) ≤ o(S) ∀S ⊂ N, and p(N) =

o(N)}.

G and O denote, respectively, the class of TU-games with a finite set of

players and the class of games with optimistic aspirations and a finite set of

players. It is well known thatG(N) is a vector space of dimension1 2n−1. The

basis of this space that is most commonly used in axiomatic characterizations

of the Shapley value is that of unanimity games uS ∈ G(N), S ⊂ N , which

are defined by uS(T ) = 1 if T ⊂ N with S ⊂ T and uS(T ) = 0 if T ⊂ N

with S 6⊂ T . Thus, it is tempting to use2 {(uS, 0) | S ∈ 2N \ ∅} ∪ {(0, uS) |
S ∈ 2N \ ∅} as a basis for O(N), which is after all a subset of G(N)×G(N).

However, (uS, 0) 6∈ O(N), because it violates the condition p(S) ≤ o(S) for

all S ⊂ N that we have imposed on (p, o) ∈ O(N). In fact, O(N) is not a

vector space because the condition p(S) ≤ o(S) for all S ⊂ N implies that if

(p, o) ∈ O(N) such that p 6= o, then −(p, o) 6∈ O(N).

In the following theorem we identify a basis of O(N) by establishing that

every game (p, o) ∈ O(N) can be written as a linear combination of games

with optimistic aspirations (uS, uS) and (uN , uS) in a unique way.

Theorem 1 Every game with optimistic aspirations can be written as a lin-

ear combination of games with optimistic aspirations in the family {(uS, uS) |
S ∈ 2N \ ∅} ∪ {(uN , uS) | S ∈ 2N \ ∅} ⊂ O(N) in a unique way.

Proof. Let (p, o) ∈ O(N). It is well known that every v ∈ G(N) can uniquely

be written as a linear combination of unanimity games; v =
∑

S∈2N\∅ a
v
Su

S

with unanimity coefficients avS ∈ R for each S. Using this, we derive that

(p, o) =
∑

S∈2N\∅

apS(uS, 0) +
∑

S∈2N\∅

aoS(0, uS)

=
∑

S∈2N\∅

apS(uS, uS) +
∑

S∈2N\∅

(aoS − a
p
S) (0, uS). (1)

1We adopt the common notation in which n denotes the cardinality of N , s denotes
the cardinality of a set S, and so on.

2The symbol 0 denotes both the value zero and the TU-game in which each coalition’s
value equals 0.
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Notice that (0, uS) is not in O(N) for any S ∈ 2N\∅ (because uS(N) = 1 6=
0 = 0(N)). However, in expression (1) we can replace the game 0 by the

game uN , as we demonstrate below.

If T ⊂ N , T 6= N , then uN(T ) = 0, so that∑
S∈2N\∅

(aoS − a
p
S)uN(T ) = 0. (2)

If T = N , then∑
S∈2N\∅

(aoS − a
p
S)uN(T ) =

∑
S∈2N\∅

(aoS − a
p
S)

=
∑

S∈2N\∅

(aoS − a
p
S)uS(N)

= o(N)− p(N) = 0. (3)

Using (2) and (3) in (1), we derive

(p, o) =
∑

S∈2N\∅

apS(uS, uS) +
∑

S∈2N\∅

(aoS − a
p
S) (uN , uS)

=
∑

S∈2N\{∅,N}

apS(uS, uS) +
∑

S∈2N\{∅,N}

(aoS − a
p
S) (uN , uS)

+aoN(uN , uN), (4)

where we take the term (uN , uN) outside the summation signs because it

appears in both the first and the second summation.

We now turn to demonstrating that the decomposition in (4) is unique.

Let αS, S ∈ 2N \ {∅, N}, βS, S ∈ 2N \ {∅, N}, and γN be generic coefficients

such that

(p, o) =
∑

S∈2N\{∅,N}

αS(uS, uS) +
∑

S∈2N\{∅,N}

βS(uN , uS) + γN(uN , uN). (5)

Then, obviously,

p =
∑

S∈2N\{∅,N}

αSu
S +

∑
S∈2N\{∅,N}

βSu
N + γNu

N

=
∑

S∈2N\{∅,N}

αSu
S +

( ∑
S∈2N\{∅,N}

βS + γN

)
uN (6)
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and

o =
∑

S∈2N\{∅,N}

(αS + βS)uS + γNu
N . (7)

It thus follows from (6) and the uniqueness of the unanimity coefficients apS
that

αS = apS for all S ∈ 2N \ {∅, N} (8)

and ∑
S∈2N\{∅,N}

βS + γN = apN (9)

and it follows from (7) and the uniqueness of the unanimity coefficients aoS
that

αS + βS = aoS for all S ∈ 2N \ {∅, N} (10)

and

γN = aoN . (11)

Combining (10) and (8), we obtain

βS = aoS − a
p
S for all S ∈ 2N \ {∅, N}. (12)

Equalities (8), (11), and (12) demonstrate that the decomposition in (5) is

necessarily the same as that in (4).3 �

3 Allocation Rules

The objective of this paper is to find reasonable allocation rules for the class

of games with optimistic aspirations O.

Definition 2 An allocation rule ψ on O is a map that associates a vector

ψ(p, o) ∈ RN with every (p, o) ∈ O(N) ⊂ O.

We have in mind to find an extension of the Shapley value and therefore

we start by looking for allocation rules that satisfy axioms similar to those

that axiomatize the Shapley value on the class of games G. Below, we extend

3Note that (9), (11), and (12) are mutually consistent, as is demonstrated in the
sequence of equalities ap

N =
∑

S∈2N\{∅,N} βS + γN =
∑

S∈2N\{∅,N} (ao
S − a

p
S) + ao

N =
o(N)− p(N) + ap

N = ap
N .
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the familiar properties that axiomatize the Shapley value on G to allocation

rules for games with optimistic aspirations.4

Efficiency (EFF). Allocation rule ψ satisfies EFF if, for all (p, o) ∈ O(N)∑
i∈N

ψi(p, o) = p(N) (= o(N)).

Additivity (ADD). Allocation rule ψ satisfies ADD if, for every (p, o), (p̄, ō) ∈
O(N)

ψ
(

(p, o) + (p̄, ō)
)

= ψ(p, o) + ψ(p̄, ō).

Two players i, j ∈ N are said to be symmetric in (p, o) if p(S ∪ {i}) =

p(S ∪ {j}) and o(S ∪ {i}) = o(S ∪ {j}) for every coalition S ⊂ N \ {i, j}.
Symmetry (SYM). Allocation rule ψ satisfies SYM if, for every (p, o) ∈
O(N) and players i, j ∈ N who are symmetric in (p, o)

ψi(p, o) = ψj(p, o).

A player i ∈ N is said to be a null player in (p, o) if p(S ∪ {i}) = p(S)

and o(S ∪ {i}) = o(S) for every coalition S ⊂ N .

Null Player Property (NPP). Allocation rule ψ satisfies NPP if, for every

(p, o) ∈ O(N) and player i ∈ N who is a null player in (p, o)

ψi(p, o) = 0.

In the following example, we demonstrate that the 4 properties defined

above do not determine a unique allocation rule for games with optimistic

aspirations.

Example 3 We consider convex combinations of the Shapley values φ(p)

and φ(o). For each λ ∈ [0, 1], we define an allocation rule φλ by

φλ(p, o) = λφ(p) + (1− λ)φ(o).

It follows easily from the fact that the Shapley value satisfies the appropriate

efficiency, additivity, symmetry, and null player properties, that φλ satisfies

4A reader not familiar with the standard axiomatization of the Shapley value is referred
to Shapley (1953) or, more widely available, Winter (2002).
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EFF, ADD, SYM, and NPP for each λ ∈ [0, 1]. However, varying λ leads

to different allocations for games with optimistic aspirations (p, o) in which

φ(p) 6= φ(o). For an example of such a game, consider the player set N =

{1, 2} and define the game with optimistic aspirations (p, o) by p(2) = 1,

p(1) = p(N) = 2, and o(1) = o(2) = o(N) = 2. Then φ(p) = (3
2
, 1

2
) and

φ(o) = (1, 1).

3.1 Null players

It is clear from Example 3 that we need to augment the set of axioms that we

obtained as straightforward extensions of the familiar ones for the Shapley

value in order to pinpoint a unique allocation rule for games with optimistic

aspirations.

A property that, in combination with the 4 previously defined axioms,

allows us to pinpoint a unique allocation rule is the following.

Strong Null Player Property (SNPP). Allocation rule ψ satisfies SNPP

if, for every (p, o) ∈ O(N) and i ∈ N it holds that (a) if i is a null player in

p, then ψi(p, o) = 1
2
ψi(o, o), and (b) if i is a null player in o, then ψi(p, o) =

1
2
ψi(p, p).

The SNPP implies the NPP. To see this, consider a game with optimistic

aspirations (p, o) and a player i who is a null player in both p and o. Because

i is a null player in o, it follows from application of SNPP of ψ to the game

with optimistic aspirations (o, o) that ψi(o, o) = 1
2
ψi(o, o). From this it follows

that ψi(o, o) = 0 has to hold. Now, we can derive from SNPP and the fact

that i is a null player in p that ψi(p, o) = 1
2
ψi(o, o) = 0.

We show in the following theorem that the SNPP leads us to the allocation

rule φλ with λ = 1
2
, as defined in Example 3.

Theorem 4 The allocation rule φ1/2 is the unique allocation rule for O sat-

isfying EFF, ADD, SYM, and SNPP.

Proof. It follows easily from the fact that the Shapley value satisfies the

appropriate efficiency, additivity, symmetry, and null player properties, that

φ1/2 satisfies EFF, ADD, SYM, and SNPP. Let ψ be an allocation rule on O
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that satisfies the four properties. It suffices to demonstrate that ψ is uniquely

determined.

The fact that O(N) is not a vector space necessitates some caution when

subtracting games. Suppose that (p, o) and (p̄, ō) are two games in O(N)

such that (p, o)− (p̄, ō) ∈ O(N) as well. Then ADD of ψ implies that

ψ(p, o) = ψ
(

(p, o)− (p̄, ō) + (p̄, ō)
)

= ψ
(

(p, o)− (p̄, ō)
)

+ ψ(p̄, ō),

so that

ψ
(

(p, o)− (p̄, ō)
)

= ψ(p, o)− ψ(p̄, ō). (13)

Now, let (p, o) ∈ O(N). We demonstrated in Theorem 1 (see (4)) that

(p, o) =
∑

S∈2N\{∅,N}

apS(uS, uS) +
∑

S∈2N\{∅,N}

(aoS − a
p
S) (uN , uS) + aoN(uN , uN),

which we re-write as

(p, o) =
∑

S∈2N\{∅,N}

apS(uS, uS) + aoN(uN , uN)

+
∑

S∈2N\{∅,N}| (ao
S−a

p
S)≥0

(aoS − a
p
S) (uN , uS)

−
∑

S∈2N\{∅,N}| (ao
S−a

p
S)<0

(apS − a
o
S) (uN , uS). (14)

It is easy to show that by first one-by-one adding the games in the first two

lines of this expression and then one-by-one subtracting the games in the last

line, we can obtain (p, o) through a chain of games that all are in O(N).5

Thus, we can use ADD and (13) to derive from (14) that

ψ(p, o) =
∑

S∈2N\{∅,N}

ψ
(
apS(uS, uS)

)
+ ψ

(
aoN
(
uN , uN

) )
+

∑
S∈2N\{∅,N}| (ao

S−a
p
S)≥0

ψ
(

(aoS − a
p
S) (uN , uS)

)
−

∑
S∈2N\{∅,N}| (ao

S−a
p
S)<0

ψ
(

(apS − a
o
S) (uN , uS)

)
. (15)

5The details are available from the authors on request.
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Thus, it remains to prove that ψ is uniquely determined on games with

optimistic aspirations of the form appearing in (15).

Case 1 Let S ∈ 2N \ {∅} and a ∈ R. Consider the game (p̃, õ) := a(uS, uS).

Clearly, all players in N \ S are null players in (p̃, õ) and thus by NPP6

ψi(p̃, õ) = 0 for all i ∈ N \ S. In addition, by EFF it must hold that∑
i∈N ψi(p̃, õ) = p̃(N) = a, so that we obtain

∑
i∈S ψi(p̃, õ) = a. Since all

players in S are symmetric in (p̃, õ), it follows from SYM that ψi(p̃, õ) =

ψj(p̃, õ) for all i, j ∈ S, so that we find that ψi(p̃, õ) = a
s

for all i ∈ S must

hold.

Case 2 Let S ∈ 2N \ {∅, N} and a ∈ R, a ≥ 0. Consider the game

(p̃, õ) := a(uN , uS). All players in N \ S are null players in õ = auS, so

that it follows from SNPP that ψi(p̃, õ) = 1
2
ψi(p̃, p̃) for all i ∈ N \ S. It

follows from Case 1 above that ψi(p̃, p̃) = a
n

for all i ∈ N . By EFF it

must hold that
∑

i∈N ψi(p̃, õ) = p̃(N) = a, so that we obtain
∑

i∈S ψi(p̃, õ) =

a−
∑

i∈N\S ψi(p̃, õ) = a
(
1− n−s

2n

)
= a

2

(
1 + s

n

)
. Since all players in S are sym-

metric in (p̃, õ), it follows from SYM that ψi(p̃, õ) = ψj(p̃, õ) for all i, j ∈ S,

so that we find that ψi(p̃, õ) = a
2 s

(
1 + s

n

)
= a

2 s
+ a

2n
for all i ∈ S must hold.

Cases 1 and 2 above demonstrate that ψ is uniquely determined (and

equal to φ1/2) for all games with optimistic aspirations that appear in (15).

�

In principle, we can change the weights 1
2

on ψ(p, p) and ψ(o, o) in the

SNPP. If, for some λ ∈ (0, 1), we change these weights to λ and 1 − λ,

respectively, then we would obtain the convex combination φλ of the Shapley

values of p and o as the allocation rule satisfying EFF, ADD, SYM, and

SNPP.7 However, we see no motivation to treat the games p and o differently

and thus we use the weights 1
2
.

Another option one may consider is to take the point of view that if a

player i is a null player in the game o, then ψi(p, o) = ψi(p, p), the motivation

for which could be that if player i has no influence on the optimistic aspi-

rations of coalitions, then player i’s allocation should be determined by his

influence in p solely. However, such a property, combined with ADD, EFF,

6Note that we can use NPP because it is implied by SNPP.
7This is easily verified by going through the proof of Theorem 4 and making the ap-

propriate adjustments in Case 2, which is the only place where adjustments are needed.
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SYM, and NPP, leads to the conclusion that ψ(p, o) = ψ(p, p) for all games

with optimistic aspirations (p, o) ∈ O(N) and thus the optimistic aspirations

are not taken into account for any game.8

3.2 Nullifying players

Instead of concentrating on null players, we can also concentrate on nulli-

fying players (cf. van den Brink (2007)). A nullifying player is one whose

presence in a coalition causes the worth of that coalition to be equal to zero

and thus such a player’s presence prevents others from obtaining a positive

worth. Therefore, the other players may argue that such a player deserves

no positive payoff. On the other hand, the nullifying player himself can ar-

gue that he deserves no negative payoff either since he can guarantee himself

zero by not joining any others. The nullifying player property states that a

nullifying player gets a payoff 0. Van den Brink (2007) uses this property

to axiomatize the equal division allocation rule for TU games. We extend

the nullifying player property to the setting of games with optimistic aspira-

tions and investigate if replacing NPP with the new property determines an

allocation rule.

A player i ∈ N is said to be a nullifying player in (p, o) if p(S) = o(S) = 0

for every coalition S ⊂ N with i ∈ S.

Nullifying Player Property (NFPP). Allocation rule ψ satisfies NFPP if,

for every (p, o) ∈ O(N) and player i ∈ N who is a nullifying player in (p, o)

ψi(p, o) = 0.

We show in the following theorem that the NFPP leads us to the equal

division allocation rule ED defined by

EDi(p, o) =
p(N)

n
.

Theorem 5 The allocation rule ED is the unique allocation rule for O sat-

isfying EFF, ADD, SYM, and NFPP.

8A proof is available from the authors upon request.

12



Proof. It follows easily and straightforwardly that ED satisfies EFF, ADD,

SYM, and NFPP. Let ψ be an allocation rule on O that satisfies the four

properties. It suffices to demonstrate that ψ is uniquely determined. To

do so, we use the canonical basis of G(N), which consists of the games

eS ∈ G(N), S ⊂ N , defined by eS(T ) = 1 if T = S and eS(T ) = 0 if T 6= N .

Every v ∈ G(N) can uniquely be written as a combination of canonical games

as follows: v =
∑

S∈2N\∅ v(S)eS.

Now, let (p, o) ∈ O(N). We easily derive that

(p, o) =
∑

S∈2N\∅

p(S)(eS, 0) +
∑

S∈2N\∅

o(S)(0, eS)

=
∑

S∈2N\∅

p(S)(eS, eS) +
∑

S∈2N\∅

(o(S)− p(S)) (0, eS). (16)

Unlike with the unanimity games (see Theorem 1), there is no problem with

any of the games in (16) not being in O(N). This holds because o(S)−p(S) ≥
0 for all S ⊂ N and o(N) − p(N) = 0. Thus, like we did in the proof of

Theorem 4, we can use ADD to derive that

ψ(p, o) =
∑

S∈2N\∅

ψ
(
p(S)(eS, eS)

)
+
∑

S∈2N\∅

ψ
(

(o(S)− p(S)) (0, eS)
)
. (17)

Thus, it remains to prove that ψ is uniquely determined on games with

optimistic aspirations of the form appearing in (17).

Case 1 Let S ∈ 2N \{∅, N} and a, b ∈ R, b ≥ 0. Consider the games (p̃, õ) :=

a(eS, eS) and (p̂, ô) := b(0, eS). Clearly, all players in N \ S are nullifying

players in (p̃, õ) and also in (p̂, ô) and thus by NFPP ψi(p̃, õ) = ψi(p̂, ô) = 0 for

all i ∈ N \S. In addition, by EFF it must hold that
∑

i∈N ψi(p̃, õ) = p̃(N) =

0 = p̂(N) =
∑

i∈N ψi(p̂, ô), so that we obtain
∑

i∈S ψi(p̃, õ) =
∑

i∈S ψi(p̂, ô) =

0. Since all players in S are symmetric in (p̃, õ) and also in (p̂, ô), it follows

from SYM that ψi(p̃, õ) = ψj(p̃, õ) and ψi(p̂, ô) = ψj(p̂, ô) for all i, j ∈ S, so

that we find that ψi(p̃, õ) = ψi(p̂, ô) = 0
s

= 0 for all i ∈ S must hold.

Case 2 Let a ∈ R and consider the game (p̃, õ) := a(eN , eN). By EFF it must

hold that
∑

i∈N ψi(p̃, õ) = p̃(N) = a. Since all players in S are symmetric in

(p̃, õ), it follows from SYM that ψi(p̃, õ) = ψj(p̃, õ) for all i, j ∈ N , so that

we find that ψi(p̃, õ) = a
n

for all i ∈ N must hold.
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Remember that o(N) − p(N) = 0, so that we do not have to consider

the game (0, eN). Thus, cases 1 and 2 above demonstrate that ψ is uniquely

determined (and equal to ED) for all games with optimistic aspirations that

appear in (17). �

Instead of concentrating on the worths of coalitions that include a nul-

lifying player, we can also concentrate on what happens to the worths of

coalitions when a nullifying player joins it. Hence, instead of concentrating

on the fact that a nullifying player causes the worth of any coalition he is a

member of to be 0, we look at the change in worth that he causes when he

joins various coalitions. To reflect this change of focus, we give an alternative

(but equivalent) description of nullifying players.

A player i ∈ N is said to be a nullifying player in (p, o) if p(S ∪ {i}) =

o(S ∪ {i}) = 0 for every coalition S ⊂ N .

When a nullifying player joins a coalition S of players, he destroys the

worth p(S) that coalition S could guarantee itself and also causes the opti-

mistic aspiration to change from o(S) to 0. The destroyer player property

(see below) states that a nullifying player should get a payoff that is equal

to the value that he destroys in expectation by joining a coalition, assuming

that first the cardinality of a coalition is selected at random (from the range

0 to n − 1), then a coalition of that size is selected at random, and, finally,

a random choice determines whether we consider the effect on p or o.

Destroyer Player Property (DPP). Allocation rule ψ satisfies DPP if, for

every (p, o) ∈ O(N) and player i ∈ N who is a nullifying player in (p, o)

ψi(p, o) = −
∑

S⊂N\{i}

1

2n

(
n− 1
s

)p(S)−
∑

S⊂N\{i}

1

2n

(
n− 1
s

)o(S).

It turns out that DPP together with EFF, ADD, and SYM, determines a

unique allocation rule and that it is the rule φ1/2, which we already encoun-

tered in Theorem 4.

Theorem 6 The allocation rule φ1/2 is the unique allocation rule for O sat-

isfying EFF, ADD, SYM, and DPP.

14



Proof. With regard to existence, it remains to demonstrate that φ1/2 sat-

isfies DPP. Let (p, o) ∈ O(N) be a game with optimistic aspirations with a

nullifying player i ∈ N . Then

φ
1/2
i (p, o) =

1

2
φi(p) +

1

2
φi(o)

=
1

2

∑
S⊂N\{i}

s!(n− s− 1)!

n!
(p(S ∪ {i})− p(S))

+
1

2

∑
S⊂N\{i}

s!(n− s− 1)!

n!
(o(S ∪ {i})− o(S))

= −
∑

S⊂N\{i}

1

2n

(
n− 1
s

)p(S)−
∑

S⊂N\{i}

1

2n

(
n− 1
s

)o(S),

where the second equality uses the definition of the Shapley value, and the

third equality the fact that player i is nullifying in (p, o).

To prove uniqueness, let ψ be an allocation rule on O that satisfies EFF,

ADD, SYM, and DPP. It suffices to demonstrate that ψ is uniquely deter-

mined. As in the proof of Theorem 5, we derive using ADD of ψ that

ψ(p, o) =
∑

S∈2N\∅

ψ
(
p(S)(eS, eS)

)
+
∑

S∈2N\∅

ψ
(

(o(S)− p(S)) (0, eS)
)
.

Remember that o(N)− p(N) = 0, so that we do not have to consider the

game (0, eN). For games (p̃, õ) defined either by (p̃, õ) = a(eS, eS) for some

S ∈ 2N \ {∅} and a ∈ R, or by (p̃, õ) = a(0, eS) for some S ∈ 2N \ {∅, N}
and a ∈ R with a ≥ 0, the following reasoning holds: All players in N \ S
are nullifying players in (p̃, õ) and thus by DPP

ψi(p̃, õ) = −
∑

S⊂N\{i}

1

2n

(
n− 1
s

) p̃(S)−
∑

S⊂N\{i}

1

2n

(
n− 1
s

) õ(S)

for all i ∈ N \S, which means that these values are uniquely determined. In

addition, by EFF it must hold that
∑

i∈N ψi(p̃, õ) = p̃(N), so that we obtain∑
i∈S ψi(p̃, õ) = p̃(N)−

∑
i∈N\S ψi(p̃, õ). Since all players in S are symmetric

in (p̃, õ), it follows from SYM that ψi(p̃, õ) = ψj(p̃, õ) for all i, j ∈ S, and

thus we find that ψi(p̃, õ) =
p̃(N)−

∑
i∈N\S ψi(p̃,õ)

s
for all i ∈ S must hold. This

uniquely determines ψi(p̃, õ) for all i ∈ S. �
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